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QUANTUM COMPUTING

A qubit is the quantum state of a two-level system, e.g. a spin-
1 particle. If we choose an orthonormal basis |0), |1) in the (2-dim.)

state space, we can write a general qubit as
¢ = aol0) + a1[1),

where we can normalise ¢ so that |ag]|? + |a1]? = 1.

More generally, an n-qubit state is the state of an ensemble of
n two-level systems, i.e. a vector in a given 2"-dimensional Hilbert

space. It can be written analogously in the form

b= > i)=Y ag|x).
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Basic Postulate: A quantum computation is the controlled
(unitary) evolution of an initially prepared n-qubit state and its sub-

sequent measurement.

ENTANGLEMENT

An n-qubit state with n > 1 is said to be entangled if it is not a
tensor product of a k-qubit and an n— k-qubit (k < n). For example,
the 2-qubit state ¢ = %(\OO) + |11)) is entangled. Entanglement is

essential for quantum computing.



Basic circuit elements:
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Two other important gates are:
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Example: Memory cells

Flip-Flop

(Set)

R
(Reset)

As shown below, flip-flop circuits need a clock signal to operate
properly. A combination of such D-type flip-flops can act as a shift

register.

Clock operation:
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Clock Signal: [ LI LI 1.




Theorem. FEvery logical operation
f:4{0,1}" — {0,1}™ can be expressed in terms of AND, OR and
NOT.

The proof is by induction, and uses the following diagram:
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QUANTUM GATES

Definition. A quantum gate with n inputs and outputs is

specified by a unitary operator on an 2"-dimenstonal Hilbert space.

There is no quantum analogue of the classical AND gate, i.e.
there is no unitary 4 x 4-matrix U such that U|00) = |00), U|01) =
|00), U|10) = |10) and U|11) = |11).

However, the XOR gate does generalise. It is usually called the
controlled-NOT gate, and is defined by

Ucn|00) = [00),  Ucn|01) = |01),
Uon|10) = [11),  Ucx|11) = [10).

Alternative symbol:

€



The NOT gate has an obvious quantum analogue, which is a

1-qubit gate. To complete the Boolean algebra, we complement this

with the so-called Toffoli gate on 3 qubits:

Urrot|000
Urrot|010

Urot|110

The symbol for a Toffoli gate is as follows:

) =
) =
Urrot|100) =
> =

Urot|001
Urog|011

Urog|111

) =
) =
Uror|101) =
) =

001),
011),
101),
1110).

N
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These gates suffice for generating all Boolean gates, i.e. per-

mutations of basis elements. However, we would like to decompose

every quantum gate into elementary gates.



Definition. A quantum circuit on n qubits is a collection of

quantum gates acting sequentially, each on a subset of the qubits.

Definition. A set {Uq,...,U,} of quantum gates is called uni-
versal if any unitary gate U operating on an n-qubit register with ar-
bitrarily large n can be approximated with arbitrary precision € > 0

by a circuit Cp . consisting of gates from that set.

Example. An example of a quantum circuit on 4 qubits is
(12 X UTOf)(UCN & UCN)(12 QK Ucn ® 12).

(15 is the 2 x 2 identity matrix.)

This circuit has the following circuit diagram:

T
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Example. The Hadamard gate defined by the matrix

1 /1 1
=7 4)
It cannot be represented as a quantum circuit of NOT gates, CNOT
gates, and Toffoli gates.



It is easy to see that any single-qubit gate U can be written in

the form
U = ®(6)PS(a)R(A)PS(3)

for real numbers o, 3,0 and &, where ®(§) = €1, and

67304/2 0
PS(Q):< 0 —ia/2>7

€

and

R(O) = (cose —sin9>-

sinf cosé

Theorem. If 6y, ag and 0y are irrational multiples of w, then
®(00), PS(ap) and R(0y) together with the CNOT gate are universal.

Outline of the proof. To construct a general n x n unitary

gate U, we diagonalise it in the form

U= Z eio(w)Pwm.
x€{0,1}n



Here €°(*) are the eigenvalues of U, and P, are one-dimen-
sional projections onto an orthonormal system of eigenvectors ),.
Given any normalised vector ¢, let Sy, be a unitary matrix such
that Sy, ¢, = [11...1).

Then we can write U as follows:

U= H STZjXU(I)Sw$’

xz€{0,1}

where Sy, is a unitary such that Sy = |1...1) and where

1 0
Xa(ac) =Ap_1 (0 eqjg(gg)> .
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For general k-qubit gate U, A,,(U) is defined as a block-diagonal
2ntk 27tk matrix with one block equal to the 2™-dimensional iden-

tity matrix, and the other equal to U.

The corresponding diagram is

n lines

k lines U

Both A,,(U) and S, are constructed by induction.
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Example. Consider the inversion about the average operator
D,,. It can be written as D,, = 2P—1, where P is the one-dimensional
projection onto the vector (1,...,1)T. Eigenvalues are therefore 1

and —1 (2" — 1 times). In particular,

3
Dy =[] S5 A1 (0%)S,.
=1

where

For Sy, we can take

1 1 -1 1 1 1
ol Vol 4)-smom
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Circuit diagram:

T |

S

b4

The circuit for A;(c?) is more complicated. The circuit diagram

is as follows:

¢ ® E ——

D D
1B ¢ B

In formula this reads as follows:

Ai(0%) = (E®@ B")A1(0")(1 ® B)A1(07)

: 10 e/t 0
WlthE—(O z) andB-( 0 e_”/4>'
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This is seen as follows:

(E® B*)A1(0”)(1® B)A1(0") =
(5 )6 ~)E 56 »)
(6 imne) = (0 wm2) = (0 )
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ALGORITHMS

Grover’s Search Algorithm

Problem: Given a binary function f : {0,1}" — {0,1} such
that there is a unique xo € {0,1}" for which f(xo) = 1, determine

Zo.

Grover’s quantum algorithm for this problem is as follows:
1. Apply H,, to [0(™) to get 277/2 w0} 1)
2. Apply V.
3. Apply the inversion about the average operator D,,.
4. Repeat steps 2 and 3 |72"/272] times.
5. Measure x. If f(x) # 1, goto step 1, else o = .

Here the operator D,, is defined by

Do | ) aglz)| = ) (2M —ay)la),

xe{0,1}n xe{0,1}n

where M =27" Zwe{o’l}n az. Moreover, Vy is defined by

Vi lz) = (=1)7)|z).
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Basic idea of the algorithm: Vy changes the sign of the amplitude

of |zg), and D,, reflects all amplitudes about the average.

Example. First iteration of the Grover algorithm:

g = O N 01 W 01 b
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Second and third iterations of the Grover algorithm.
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Shor’s Algorithm.

Problem: Fuactorise a large integer into prime factors.

One can show that this problem can be reduced to finding a

non-trivial solution of 22 = 1 (modn).
This in turn can be reduced to finding the period of the function

fne(k) = ¥modn. This is also called the order of z, i.e. the

smallest r such that " = 1 (modn).

17



Algorithm.
1. Choose x € {2,...,n — 1} randomly.
2. Check that ged (z,n) = 1. If not, then we have a factor of n.

3. Find the period r of ¥ modn.
4. If r is odd, or 2"/%2 = 41 (mod n) then goto 1., otherwise STOP.

If this algorithm stops then z"/? is a non-trivial solution of 22 =

1 (modn).

18



To compute the period of f, (k), Shor proposed to use the
quantum Fourier transform defined by

qg—1

1 miac
QFTq:|a>|—>7Ze2 /4)c).

q c=0

His algorithm has three stages:
(I) Create a state with the period we need to determine.
(IT) Apply the QFT.

(ITI) Extract the period by measurement and a classical computation.

19



Example of the Shor algorithm. To explain how this algo-
rithm works, we consider the simple example n = 143 and x = 5.

The steps are as follows:
(I) Start with two registers, each of length | = [logn] = 8,
initialised to 0, and apply a Hadamard transform to the first. This

yields with ¢ = 2' = 256, - S0 a, 0).

Then applying Uy, . given by
Utla,z) = |a,z @ f(a)),

we obtain the state

1=,
%;\a,x (modn))

14
= % (1204, 1) + |205 + 1,5) + ... + 205 + 15,34))+
§=0
1 13
+ 76 > (1205 4 16,27) + ... + 205 + 19,86)).
§j=0
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(IT) Applying the QFT we get

255 12
256 [Z 57rzcj/32 |C 1 157”;6/128|C7 34>]
c=0 *-3j=0
11
4 Ze5ﬂ'icj/32 [eﬂic/8|c,27> 4+ 6197ri6/128|c7 86}] _
=0

(ITT) Summing over j we get the functions

Z Smicj/32 _ sin ( 7TC>

sin ( 654 7TC)

and

Z Bricj/32 _ Sm(64 )

sin (&)
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These attain maxima at ¢ = 13,26, 38, 52:

15¢
12.5¢

10
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A measurement of ¢ therefore leads with high probability to
c = 13,26,38 or c = 52, irrespective of what value the second register
has. One now determines the period by expanding c¢/q as a partial

fraction:

One can prove that in general for large n the probability is
strongly concentrated near values of ¢ which are very close to mul-
tiples of 1/r. Hence z = 59 mod 143 = 12 is a solution. Therefore

143 has a common factor with 11 or 13. In fact, both are factors.
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IMPLEMENTATION

Many possible implementations have been proposed, e.g.
Using Nuclear Magnetic Resonance;

Using trapped ions;

Using Josephson junctions;

Using the Quantum Hall effect;

Using quantum dots.
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The provosal bv Cirac and Zoller using trapped ions:
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Figure 2 Scalable quantum computer. We envisage a two-dimensional array of
independent ion traps®, and a different ion (Head) that moves above this plane,
approaching any particular ion. By switching on a laser propagating in the perpendicular
direction to the plane, we can perform the two-qubit gate between the target ion and the
head as explained above. In particular, we can swap the state of that ion to the head,
which immediately allows us to perform entanglement operations between distant ions.

Kane’s NMR computer:

ate
A gate Te A gate

— N N .
or @r

(1) A-gates control the hyperfine interaction;

(2) J-gates turn on and off electron-mediated coupling between nu-
clear spins;

(3) A global a.c. magnetic field flips nuclear spins at resonance.

24



