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QUANTUM COMPUTING

A qubit is the quantum state of a two-level system, e.g. a spin-
1
2 particle. If we choose an orthonormal basis |0〉, |1〉 in the (2-dim.)
state space, we can write a general qubit as

φ = a0|0〉+ a1|1〉,

where we can normalise φ so that |a0|2 + |a1|2 = 1.

More generally, an n-qubit state is the state of an ensemble of
n two-level systems, i.e. a vector in a given 2n-dimensional Hilbert
space. It can be written analogously in the form

φ =
∑

i1,...,in=0,1

ai1,...,in |i1, . . . , in〉 =
∑

x∈{0,1}n

ax |x〉.

Basic Postulate: A quantum computation is the controlled
(unitary) evolution of an initially prepared n-qubit state and its sub-
sequent measurement.

ENTANGLEMENT

An n-qubit state with n > 1 is said to be entangled if it is not a
tensor product of a k-qubit and an n−k-qubit (k < n). For example,
the 2-qubit state φ = 1√

2
(|00〉+ |11〉) is entangled. Entanglement is

essential for quantum computing.
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Boolean Logic

Basic circuit elements:

Two other important gates are:
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Example: Memory cells

As shown below, flip-flop circuits need a clock signal to operate
properly. A combination of such D-type flip-flops can act as a shift
register.
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Theorem. Every logical operation
f : {0, 1}n → {0, 1}m can be expressed in terms of AND, OR and
NOT.

The proof is by induction, and uses the following diagram:

f

f0

f1

=
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QUANTUM GATES

Definition. A quantum gate with n inputs and outputs is
specified by a unitary operator on an 2n-dimensional Hilbert space.

There is no quantum analogue of the classical AND gate, i.e.
there is no unitary 4× 4-matrix U such that U |00〉 = |00〉, U |01〉 =
|00〉, U |10〉 = |10〉 and U |11〉 = |11〉.

However, the XOR gate does generalise. It is usually called the
controlled-NOT gate, and is defined by

UCN|00〉 = |00〉, UCN|01〉 = |01〉,
UCN|10〉 = |11〉, UCN|11〉 = |10〉.

Alternative symbol:
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The NOT gate has an obvious quantum analogue, which is a
1-qubit gate. To complete the Boolean algebra, we complement this
with the so-called Toffoli gate on 3 qubits:

UTof |000〉 = |000〉, UTof |001〉 = |001〉,
UTof |010〉 = |010〉, UTof |011〉 = |011〉,
UTof |100〉 = |100〉, UTof |101〉 = |101〉,
UTof |110〉 = |111〉, UTof |111〉 = |110〉.

The symbol for a Toffoli gate is as follows:

These gates suffice for generating all Boolean gates, i.e. per-
mutations of basis elements. However, we would like to decompose
every quantum gate into elementary gates.
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Definition. A quantum circuit on n qubits is a collection of
quantum gates acting sequentially, each on a subset of the qubits.

Definition. A set {U1, . . . , Un} of quantum gates is called uni-

versal if any unitary gate U operating on an n-qubit register with ar-
bitrarily large n can be approximated with arbitrary precision ε > 0
by a circuit CU,ε consisting of gates from that set.

Example. An example of a quantum circuit on 4 qubits is

(12 ⊗ UTof)(UCN ⊗ UCN)(12 ⊗ UCN ⊗ 12).

(12 is the 2× 2 identity matrix.)
This circuit has the following circuit diagram:

Example. The Hadamard gate defined by the matrix

UH =
1√
2

(
1 1
1 −1

)
.

It cannot be represented as a quantum circuit of NOT gates, CNOT
gates, and Toffoli gates.
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It is easy to see that any single-qubit gate U can be written in
the form

U = Φ(δ)PS(α)R(θ)PS(β)

for real numbers α, β, θ and δ, where Φ(δ) = eiδ1, and

PS(α) =
(

eiα/2 0
0 e−iα/2

)
,

and

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

Theorem. If δ0, α0 and θ0 are irrational multiples of π, then
Φ(δ0), PS(α0) and R(θ0) together with the CNOT gate are universal.

Outline of the proof. To construct a general n × n unitary
gate U , we diagonalise it in the form

U =
∑

x∈{0,1}n

eiσ(x)Pψx .
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Here eiσ(x) are the eigenvalues of U , and Pψx
are one-dimen-

sional projections onto an orthonormal system of eigenvectors ψx.
Given any normalised vector ψ, let Sψx be a unitary matrix such
that Sψx

ψx = |11 . . . 1〉.

Then we can write U as follows:

U =
∏

x∈{0,1}
S−1

ψx
Xσ(x)Sψx

,

where Sψ is a unitary such that Sψψ = |1 . . . 1〉 and where

Xσ(x) = Λn−1

(
1 0
0 eiσ(x)

)
.
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For general k-qubit gate U , Λn(U) is defined as a block-diagonal
2n+k×2n+k matrix with one block equal to the 2n-dimensional iden-
tity matrix, and the other equal to U .

The corresponding diagram is

Both Λn(U) and Sψ are constructed by induction.
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Example. Consider the inversion about the average operator
Dn. It can be written as Dn = 2P−I, where P is the one-dimensional
projection onto the vector (1, . . . , 1)T . Eigenvalues are therefore 1
and −1 (2n − 1 times). In particular,

D2 =
3∏

i=1

S−1
ψi

Λ1(σz)Sψi
,

where

ψ1 =
1
2




1
−1
1
−1


 , ψ2 =

1
2




1
i
−1
−i


 , ψ3 =

1
2




1
−i
−1
i


 .

For Sψ1 we can take

Sψ1 =
1√
2

(
1 −1
1 1

)
⊗ 1√

2

(
1 1
1 −1

)
= UH̄ ⊗ UH .
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Circuit diagram:

The circuit for Λ1(σz) is more complicated. The circuit diagram
is as follows:

In formula this reads as follows:

Λ1(σz) = (E ⊗B∗)Λ1(σx)(1⊗B)Λ1(σx)

with E =
(

1 0
0 i

)
and B =

(
eiπ/4 0

0 e−iπ/4

)
.
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This is seen as follows:

(E ⊗B∗)Λ1(σx)(1⊗B)Λ1(σx) =

=
(

B∗ 0
0 iB∗

)(
1 0
0 σx

)(
B 0
0 B

)(
1 0
0 σx

)

=
(

1 0
0 iB∗σxBσx

)
=

(
1 0
0 i(B∗)2

)
=

(
1 0
0 σz

)
.
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ALGORITHMS

Grover’s Search Algorithm

Problem: Given a binary function f : {0, 1}n → {0, 1} such
that there is a unique x0 ∈ {0, 1}n for which f(x0) = 1, determine
x0.

Grover’s quantum algorithm for this problem is as follows:
1. Apply Hn to |0(n)〉 to get 2−n/2

∑
x∈{0,1}n |x〉.

2. Apply Vf .
3. Apply the inversion about the average operator Dn.
4. Repeat steps 2 and 3 bπ2n/2−2c times.
5. Measure x. If f(x) 6= 1, goto step 1, else x0 = x.

Here the operator Dn is defined by

Dn


 ∑

x∈{0,1}n

ax|x〉

 =

∑

x∈{0,1}n

(2M − ax)|x〉,

where M = 2−n
∑

x∈{0,1}n ax. Moreover, Vf is defined by

Vf |x〉 = (−1)f(x)|x〉.
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Basic idea of the algorithm: Vf changes the sign of the amplitude
of |x0〉, and Dn reflects all amplitudes about the average.

Example. First iteration of the Grover algorithm:
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Second and third iterations of the Grover algorithm.
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Shor’s Algorithm.

Problem: Factorise a large integer into prime factors.

One can show that this problem can be reduced to finding a
non-trivial solution of x2 ≡ 1 (mod n).

This in turn can be reduced to finding the period of the function
fn,x(k) = xk mod n. This is also called the order of x, i.e. the
smallest r such that xr ≡ 1 (mod n).
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Algorithm.

1. Choose x ∈ {2, . . . , n− 1} randomly.
2. Check that gcd (x, n) = 1. If not, then we have a factor of n.
3. Find the period r of xk modn.
4. If r is odd, or xr/2 ≡ ±1 (mod n) then goto 1., otherwise STOP.

If this algorithm stops then xr/2 is a non-trivial solution of x2 ≡
1 (mod n).
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To compute the period of fn,x(k), Shor proposed to use the
quantum Fourier transform defined by

QFTq : |a〉 7→ 1√
q

q−1∑
c=0

e2πiac/q|c〉.

His algorithm has three stages:
(I) Create a state with the period we need to determine.
(II) Apply the QFT.
(III) Extract the period by measurement and a classical computation.
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Example of the Shor algorithm. To explain how this algo-
rithm works, we consider the simple example n = 143 and x = 5.
The steps are as follows:

(I) Start with two registers, each of length l = dlog ne = 8,
initialised to 0, and apply a Hadamard transform to the first. This
yields with q = 2l = 256, 1√

q

∑q−1
a=0 |a, 0〉.

Then applying Ufn,x given by

Uf |a, x〉 = |a, x⊕ f(a)〉,

we obtain the state

1√
q

q−1∑
a=0

|a, xa (mod n)〉

=
1
16

14∑

j=0

(|20j, 1〉+ |20j + 1, 5〉+ . . . + |20j + 15, 34〉)+

+
1
16

13∑

j=0

(|20j + 16, 27〉+ . . . + |20j + 19, 86〉).
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(II) Applying the QFT we get

1
256

255∑
c=0

[ 12∑

j=0

e5πicj/32[|c, 1〉+ . . . + e15πic/128|c, 34〉]

+
11∑

j=0

e5πicj/32[eπic/8|c, 27〉+ . . . + e19πic/128|c, 86〉]
]
.

(III) Summing over j we get the functions

f(c) =
12∑

j=0

e5πicj/32 =
sin

(
65
64πc

)

sin
(

5
64πc

)

and

g(c) =
11∑

j=0

e5πicj/32 =
sin

(
60
64πc

)

sin
(

5
64πc

) .
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These attain maxima at c = 13, 26, 38, 52:
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A measurement of c therefore leads with high probability to
c = 13, 26, 38 or c = 52, irrespective of what value the second register
has. One now determines the period by expanding c/q as a partial
fraction:

13
256

=
1

19 +
1

1 + 1

2+ 1
4

≈ 1
20

.

One can prove that in general for large n the probability is
strongly concentrated near values of c which are very close to mul-
tiples of 1/r. Hence x = 510 mod 143 = 12 is a solution. Therefore
143 has a common factor with 11 or 13. In fact, both are factors.
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IMPLEMENTATION

Many possible implementations have been proposed, e.g.
• Using Nuclear Magnetic Resonance;
• Using trapped ions;
• Using Josephson junctions;
• Using the Quantum Hall effect;
• Using quantum dots.
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The proposal by Cirac and Zoller using trapped ions:

Kane’s NMR computer:

(1) A-gates control the hyperfine interaction;
(2) J-gates turn on and off electron-mediated coupling between nu-
clear spins;
(3) A global a.c. magnetic field flips nuclear spins at resonance.
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