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Motivation

We present an asymptotic model for the transport of 3D quantum
gas strongly confined in one direction (z ∈ R) and subject to a
strong magnetic field whose direction is in the transport plane (the
horizontal (x , y) plane).

Hence, we want to derive, from asymptotic analysis, a quantum
equivalent to the guiding center approximation for classical
systems.

The three directions will play different roles :

in z , the dynamics is frozen by the confinement,

in y , direction of B, the dynamics is not perturbed by B,

in x , the dynamics is averaged over the cyclotron motion.



Introduction Heuristics and main result Second order averaging The nonlinear analysis : main tools Towards a global in time result

Motivation

We present an asymptotic model for the transport of 3D quantum
gas strongly confined in one direction (z ∈ R) and subject to a
strong magnetic field whose direction is in the transport plane (the
horizontal (x , y) plane).

Hence, we want to derive, from asymptotic analysis, a quantum
equivalent to the guiding center approximation for classical
systems.

The three directions will play different roles :

in z , the dynamics is frozen by the confinement,

in y , direction of B, the dynamics is not perturbed by B,

in x , the dynamics is averaged over the cyclotron motion.



Introduction Heuristics and main result Second order averaging The nonlinear analysis : main tools Towards a global in time result

Motivation

We present an asymptotic model for the transport of 3D quantum
gas strongly confined in one direction (z ∈ R) and subject to a
strong magnetic field whose direction is in the transport plane (the
horizontal (x , y) plane).

Hence, we want to derive, from asymptotic analysis, a quantum
equivalent to the guiding center approximation for classical
systems.

The three directions will play different roles :

in z , the dynamics is frozen by the confinement,

in y , direction of B, the dynamics is not perturbed by B,

in x , the dynamics is averaged over the cyclotron motion.



Introduction Heuristics and main result Second order averaging The nonlinear analysis : main tools Towards a global in time result

1 Introduction
The singularly perturbed problem

2 Heuristics and main result
Harmonic confinement
The strategy in the general case
The case B = 0
On the way to the asymptotic model
Main theorem

3 Second order averaging

4 The nonlinear analysis : main tools
Adapted functional framework
Asymptotics for the Poisson kernel
A priori local-in-time estimates

5 Towards a global in time result



Introduction Heuristics and main result Second order averaging The nonlinear analysis : main tools Towards a global in time result

The singularly perturbed problem

The nonlinear model

The Schrödinger-Poisson system

i~∂tΨ =
~2

2m
(i∇)2Ψ + VΨ,

−ε∆V = e2N|Ψε|2.
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The singularly perturbed problem

The nonlinear model

The Schrödinger-Poisson system perturbed by a confinement poten-
tial

i~∂tΨ =
~2

2m
(i∇)2Ψ + VcΨ + VΨ,

V =
e2N

4πε
√

x2 + y2 + z2
∗
(
|Ψ|2

)
.
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The singularly perturbed problem

The nonlinear model

The Schrödinger-Poisson system perturbed by a confinement poten-
tial and a strong uniform magnetic potential :

i~∂tΨ =
1

2m

(
i~∇− eB

c
z

)2

Ψ + VcΨ + VΨ,

=
e2N

4πε
√

x2 + y2 + z2
∗
(
|Ψ|2

)
.

with Vc = Vc(z)→ +∞ as z → +∞,
and B has a constant value.
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The singularly perturbed problem

Choice of the scales

Let us put the system in dimensionless form. We assume that there
are two energy scales in the problem, Econf � Etransp, related with
two lengthes `� L :

z is at the scale ` and (x , y) are at the scale L,

Econf ∼ Vc ∼ 1
2m
(

eB
mc

)2
`2 ∼ ~2

2m`2 ,

Etransp ∼ V ∼ e2N
εL2 ∼ ~2

2mL2 ∼ ~
t .

Introduce a small parameter `
L = ε� 1. Then we have

Econf

Etransp
=

1

ε2
.
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The singularly perturbed problem

Rescaling : the initial singularly perturbed system

This leads to the following dimensionless system :

i∂tψ
ε =

1

ε2
Hzψ

ε − 2iB

ε
z∂xψ

ε − ∂2
xψ

ε − ∂2
yψ

ε + V εψε,

where
Hz = −∂2

z + B2z2 + Vc(z)

and

V ε =
1

4π
√
|x |2 + ε2z2

∗ |ψε|2.
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Harmonic confinement

A simplified case

The following case is well-known by physicists : when Vc is an
harmonic confinement potential and V ε (the Poisson potential) is
replaced by a given potential.

i∂tψ
ε =

1

ε2
Hzψ

ε − 2iB

ε
z∂xψ

ε − ∂2
xψ

ε − ∂2
yψ

ε + V εψε,

where
Hz = −∂2

z + B2z2 + α2z2

and
V ε = V (t, x , y , εz) given, smooth enough.

In this case, there is a usual trick in order to transform the equation

i∂tψ
ε =

1

ε2

(
−∂2

z + (α2 + B2)z2 − 2iBεz∂x − ε2∂2
x

)
−∂2

yψ
ε+V εψε.
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Harmonic confinement

Indeed,

−∂2
z + (α2 + B2)z2 − 2iBεz∂x − ε2∂2

x

= −∂2
z + (α2 + B2)

(
z − B

α2 + B2
iε∂x

)2

− α2

α2 + B2
ε2∂2

x

Introduce the following operator : for a function u, we set

(Θu)(x , y , z) = u

(
x , y , z − B

α2 + B2
iε∂x

)
.

We obtain a simplified system on the unknown uε = ΘΨε :

i∂tu
ε =

1

ε2
H̃zu

ε − α2

α2 + B2
∂2

xuε − ∂2
yuε + ΘV εΘ−1uε,

where
H̃z = −∂2

z + (α2 + B2)z2
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Harmonic confinement

The cyclotron effective mass

As ε→ 0, there is combination of two effects :

Θ becomes the identity operator : ΘV εΘ−1 → 0.

V ε(t, x , y , z)→ V (t, x , y , 0), so the dynamics along z and
(x , y) are decoupled.

Indeed, one can filter out the oscillations by setting

φε = exp(itH̃z/ε
2)ψε.

Then, asymptotically, we obtain a bidimensional Schödinger
equation with the cyclotron effective mass :

i∂tφ
ε = − α2

α2 + B2
∂2

xφ
ε − ∂2

yφ
ε + V (t, x , y , 0)φε.
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The strategy in the general case

To go further in the more general situation, two difficulties :

1 With a general confinement potential Vc(z) one cannot use
the trick.

2 The Poisson nonlinearity might induce non trivial effects such
as resonances between fast oscillating terms.

Our strategy :

1 Adapt the general techniques of averaging of fast oscillating
ODEs (see Sanders-Verhulst).

2 Introduce an adapted functional framework for the nonlinear
analysis.
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The case B = 0

As ε tends to 0, the solution V ε of the Poisson equation behaves
as follows :

V (t, x , z) ∼W (t, x) =
1

4π
√

x2 + y2
∗
∫

R
|ψε(t, ·, z ′)|2dz ′

The Schrödinger-Poisson system confined on the plane :

i∂tψ
ε = −∆x ,yψ

ε +
1

ε2
Hzψ

ε + V εψε

We filter out the fast oscillations :

φε(t, x , y , z) = e itHz/ε2
ψε(t, x , y , z)

satisfies

i∂tφ
ε = −∆x ,yφ

ε + e−itHz/ε2
V εe itHz/ε2

φε.

It converges towards the limit model :

i∂tφ = −∆x ,yφ+ Wφ
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The case B = 0

A few previous works on nonlinear quantum confinement
problems...

1 Ben Abdallah, Méhats, Pinaud, ’05 : the case B = 0 for
Schrödinger-Poisson (with polarized initial data)

2 Ben Abdallah, Castella, Méhats, ’08 : confinement on the
plane or on a line for the Gross-Pitaevski equation,

3 Ben Abdallah, Castella, Delebecque-Fendt, Méhats, ’09 :
confinement on a line for Schrödinger-Poisson.
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On the way to the asymptotic model

Back to the initial system :

i∂tψ
ε =

1

ε2
Hzψ

ε − 2iB

ε
z∂xψ

ε −∆x ,yψ
ε + V εψε,

We expect that it be approximated by an intermediate system :

i∂tψ
ε =

1

ε2
Hzψ

ε − 2iB

ε
z∂xψ

ε −∆x ,yψ
ε + Wψε,

Now, both operators −∆x and W commute with Hz . Filtering by
e itHz/ε2

in the intermediate system : the function

φε(t, x , z) = e itHz/ε2
ψε(t, x , z)

satisfies the filtered system

i∂tφ
ε =

2B

ε
e itHz/ε2

ze−itHz/ε2
(−i∂xφ

ε)−∆x ,yφ
ε + Wφε.
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Main theorem

Assumptions

Confinement assumption

Vc is assumed to be even, positive and smooth such that :

Vc(z) −→
|z|→∞

+∞, at most polynomially.

+ a spectral assumption : If (Ep)p≥0 denote the eigenvalues of
operator −∂2

z + B2z2 + Vc(z), we assume that

∃n0 > 0, ∃C > 0 : ∀p ≥ 0, |Ep+1 − Ep| > Cp−n0 .

Examples :

Vc(z) = α2z2 + V1(z), with ‖V1‖L∞ small,

Vc(z) ∼ α2|z |k with k > 2.
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Main theorem

Assumptions

The initial datum

At the initial time, we have

ψε(t = 0) = ψ0,

with ψ0 in the energy space

B1 =
{

u ∈ H1(R3),
√

Vcu ∈ L2(R3), zu ∈ L2(R3)
}
.
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Main theorem

Main result

Theorem

There exists T > 0 such that the following convergence holds :

sup
t∈[0,T ]

∥∥∥∥∥∥ψε(t, x , y , z)−
∑
p≥0

e−itEp/ε2
ϕp(t, x , y)χp(z)

∥∥∥∥∥∥
B1

−→
ε→0

0.

where, for all p ∈ N :

Ep and χp are the pth eigenvalue and eigenfunction of the
confinement operator Hz = −∂2

z + B2z2 + Vc(z)

the functions ϕp satisfies the following infinite system of
coupled bidimensional Schrödinger equations.
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the functions ϕp satisfies the following infinite system of
coupled bidimensional Schrödinger equations.
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Main theorem

For all p ≥ 0,

i∂tϕp = −αp∂
2
xϕp − ∂2

yϕp + Wϕp ,

ϕp(t = 0, x , y) =

∫
ψ0(x , y , z)χq(z)dz ,

and the selfconsistent potential is given by

W (t, x) =
1

4π
√

x2 + y2
∗

∑
p≥0

|ψp|2
.

Moreover, the coefficients αp are given by

∀p ≥ 0, αp = 1− 4B2
∑
q 6=p

∫
zχp(z), χq(z)dz)2

Eq − Ep
.
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Main theorem

Comments

In the case V (z) = α2z2, one computes explicitely Ep and χp,
and

αp =
α2

α2 + B2.

In the general case, the 2D dynamics is diagonal on the
eigenmodes of Hz but the cyclotron effective mass depends on
the label p of the considered eigenmode.
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Fast oscillating ODEs

Let us introduce

τ 7→ f (τ)u = 2Be iτHz ze−iτHz (−i∂xu)

and
g(u) = −∆x ,yu + W (u)u.

Then our initial system reads as the following fast oscillating ODE :

iy ′(t) =
1

ε
f
( t

ε2

)
y(t) + g(y(t))

Assuming that y is estimated in sufficiently regular spaces, let us
analyze this equation.
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An integration by parts in time

Duhamel representation of the solution :

y(t) = y0 −
i

ε

∫ t

0
f
( s

ε2

)
y(s)ds − i

∫ t

0
g(y(s))ds.

Key Idea : replace i
ε

∫ t
0 f ( s

ε2 y(s)ds by a sum of terms that are not

of order O( 1
ε ).

Consider

F (t)u =

∫ t

0
f (s)uds,

then

1
ε f ( s

ε2 )y(s) = ε
∂

∂s

[
F (

s

ε2
)y(s)

]
− εF (

s

ε2
)
∂y

∂s
(s)

= ε
∂

∂s

[
F (

s

ε2
)y(s)

]
+ iF (

s

ε2
)
(
f
( t

ε2

)
y(t) + εg(y(t))

)
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Finally we obtain the twice iterated Duhamel representation :

y(t) = y0 +

∫ t

0
F (

s

ε2
)f (

s

ε2
)y(s)ds − i

∫ t

0
g(y(s))ds

− iεF (
t

ε2
)y(t) + ε

∫ t

0
F (

s

ε2
)g(y(s))ds.

One can prove that the terms in ε are small. It remains to consider
the term ∫ t

0
F (

s

ε2
)f (

s

ε2
)y(s)ds.
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Convergence towards the asymptotic model

Direct computations give, if apq =
∫

zχp(z), χq(z)dz :

f (τ)y = 2B
∑
n≥0

∑
p≥0

apne
−it(Ep−En)∂xypχn.

Key fact : we have that ∀p ≥ 0, app =
∫

z |χp(z)|2dz = 0 because
Vc is even. This is crucial to avoid dangerous terms of order τ
(which will be 1/ε2). Hence

f (τ)y = 2B
∑
n≥0

∑
p 6=n

apne
−it(Ep−En)∂xypχn

and

F (τ)y = 2B
∑
n≥0

∑
m≥0

amn
e−it(Em−En) − 1

Em − En
∂xymχn.

F (t)f (t)y = −4iB2
∑
m≥0

∑
n 6=m

∑
r 6=m

amnamr
e−it(Em−En) − 1

Em − En
e−it(Er−Em)∂2

xyrχn
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Convergence towards the asymptotic model

We need to compute the limit :

lim
ε→0

∫ t

0
F (

s

ε2
)f (

s

ε2
)y(s)ds.

Each term of the series is of the form :∫ t

0
e−i s

ε2 (Em−En)yr (s)ds or

∫ t

0
e−i s

ε2 (Er−En)yr (s)ds.

The arguments for the convergence :

1 The terms with m 6= n and n 6= r are small if we have some
regularity in time for y(s). It remains only the terms
n = r 6= m.

2 Small denominators Em − En seem to appear. But, the
assumption |Ep+1 − Ep| > Cp−n0 and the regularity in space
of the function y(s) garantee the summability.
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Adapted functional framework

Scale of adapted functional spaces

The natural scale of functional spaces adapted to the positive
self-adjoint operators −∆x ,y and Hz = −∂2

z + z2 + Vc(z) is the
Sobolev Bm scale defined for m ≥ 0 by

Bm :=
{

u ∈ L2(R3), ∆
m/2
x ,y u ∈ L2(R3), H

m/2
z u ∈ L2(R3)

}
.

They form a scale of Hilbert spaces for the following norm :

‖u‖2
Bm := ‖u‖2

L2(R3) + ‖(−∆x ,y )m/2u‖2
L2(R3) + ‖Hm/2

z u‖2
L2(R3)

Using Weyl-Hörmander pseudodifferential calculus, on can prove
that it is equivalent to the norm

‖u‖2
Bm ∼ ‖u‖2

Hm(R3) + ‖(Vc(z) + z2)m/2u‖2
L2(R3).
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Asymptotics for the Poisson kernel

In order to justify the approximation of the initial system by the
system where the Poisson kernel V ε is replaced by W , we need to
precise the asymptotic behavior of the Poisson kernel.
We prove the following result. Consider ψ ∈ B2 and define the
potentials

V ε(x , z) =,

W (x , z) =
1

4π
√

x2 + y2
∗
(∫

R
|ψ(x , z ′)|2dz ′

)
.

Then there exists η < 1 such that :

‖V εψ −Wψ‖B1 ≤ Cε1−η‖ψ‖3
B2

where C does not depend on ψ.
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A priori local-in-time estimates

Bm estimates

To justify the proof of second order averaging, we use a
regularization procedure. In that view, we need a local-in-time Bm

estimate for m arbitrary large and for regularized initial data ψε0 in
Bm.
To this aim, we need in a crucial way the following tame estimate
for the Poisson nonlinearity :.

tame estimate

For all m ∈ N∗, there exists Cm > 0 such that, for all ψ ∈ Bm,∥∥∥∥∥
(

1

4π
√

x2 + y2 + ε2z2
∗ |ψ|2

)
ψ

∥∥∥∥∥
Bm

≤ Cm‖ψ‖2
B1‖ψ‖Bm
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Consider the limit system. In order to get global in time estimates,
we deduce from the energy estimates :∑

n≥0

αn‖∂xϕn‖2
L2(R2) + ‖∂yϕn‖2

L2(R2) ≤ C

where C does not depend on ε.
In the case of harmonic confinement, i.e Vc(z) = α2z2, then

αn =
α2

α2 + B2
.

What is remarkable here is :

1 The fact that αn does not depend on n : the effective mass is
the same for any energy level.

2 The fact that ∀n ≥ 0, αn > 0. It allows us to get global in
time estimates in H1(R3).
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