Spectral analysis of a completely positive map and
 thermal relaxation of a QED cavity

Joint work with Laurent Bruneau (Cergy)

Overview

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations
- The one-atom maser

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations
- The one-atom maser
- Rabi resonances

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations
- The one-atom maser
- Rabi resonances
- Rabi sectors

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations
- The one-atom maser
- Rabi resonances
- Rabi sectors
- Ergodic properties of CP maps

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations
- The one-atom maser
- Rabi resonances
- Rabi sectors
- Ergodic properties of CP maps
- Ergodic properties of the one-atom maser

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations
- The one-atom maser
- Rabi resonances
- Rabi sectors
- Ergodic properties of CP maps
- Ergodic properties of the one-atom maser
- Few words about the proof

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations
- The one-atom maser
- Rabi resonances
- Rabi sectors
- Ergodic properties of CP maps
- Ergodic properties of the one-atom maser
- Few words about the proof
- Metastable states of the one-atom maser

Overview

- Cavity QED and the Jaynes-Cummings Hamiltonian
- Rabi oscillations
- The one-atom maser
- Rabi resonances
- Rabi sectors
- Ergodic properties of CP maps
- Ergodic properties of the one-atom maser
- Few words about the proof
- Metastable states of the one-atom maser
- Open questions

1. Cavity QED and the Jaynes-Cummings Hamiltonian

The cavity:

1. Cavity QED and the Jaynes-Cummings Hamiltonian

The cavity: one mode of the quantized EM-field

$$
H_{\text {cavity }}=\omega a^{*} a
$$

1. Cavity QED and the Jaynes-Cummings Hamiltonian

The cavity: one mode of the quantized EM-field

$$
H_{\text {cavity }}=\omega a^{*} a
$$

The atom: a 2 level system

$$
H_{\mathrm{atom}}=\omega_{0} b^{*} b
$$

1. Cavity QED and the Jaynes-Cummings Hamiltonian

The cavity: one mode of the quantized EM-field

$$
H_{\text {cavity }}=\omega a^{*} a
$$

The atom: a 2 level system

$$
H_{\mathrm{atom}}=\omega_{0} b^{*} b
$$

The coupling: dipole approximation

$$
H_{\mathrm{dipol}}=\frac{\lambda}{2}\left(b+b^{*}\right)\left(a+a^{*}\right)
$$

1. Cavity QED and the Jaynes-Cummings Hamiltonian

The cavity: one mode of the quantized EM-field

$$
H_{\text {cavity }}=\omega a^{*} a
$$

The atom: a 2 level system

$$
H_{\text {atom }}=\omega_{0} b^{*} b
$$

The coupling: dipole approximation

$$
H_{\mathrm{dipol}}=\frac{\lambda}{2}\left(b+b^{*}\right)\left(a+a^{*}\right)
$$

The coupling: rotating wave approximation

$$
H_{\mathrm{RWA}}=\frac{\lambda}{2}\left(b^{*} a+b a^{*}\right)
$$

1. Cavity QED and the Jaynes-Cummings Hamiltonian

The Jaynes-Cummings Hamiltonian

$$
H_{\mathrm{JC}}=\omega a^{*} a+\omega_{0} b^{*} b+\frac{\lambda}{2}\left(b^{*} a+b a^{*}\right)
$$

The cavity: one mode of the quantized EM-field

$$
H_{\text {cavity }}=\omega a^{*} a
$$

The atom: a 2 level system

$$
H_{\mathrm{atom}}=\omega_{0} b^{*} b
$$

The coupling: dipole approximation

$$
H_{\mathrm{dipol}}=\frac{\lambda}{2}\left(b+b^{*}\right)\left(a+a^{*}\right)
$$

The coupling: rotating wave approximation

$$
H_{\mathrm{RWA}}=\frac{\lambda}{2}\left(b^{*} a+b a^{*}\right)
$$

2. Rabi oscillations

$$
\text { Detuning parameter } \Delta=\omega-\omega_{0}
$$

The Rotating Wave Approximation is
known (at least from numerical investigations) to be accurate as long as

$$
|\Delta| \ll \omega_{0}+\omega
$$

2. Rabi oscillations

$$
\text { Detuning parameter } \Delta=\omega-\omega_{0}
$$

The Rotating Wave Approximation is known (at least from numerical investigations) to be accurate as long as

$$
|\Delta| \ll \omega_{0}+\omega
$$

2. Rabi oscillations

Detuning parameter $\Delta=\omega-\omega_{0}$

$$
\left.P(t)=\left|\langle n-1 ; \uparrow| \mathrm{e}^{-\mathrm{i} t H_{\mathrm{JC}}}\right| n ; \downarrow\right\rangle\left.\right|^{2}
$$

The Rotating Wave Approximation is known (at least from numerical investigations) to be accurate as long as

$$
|\Delta| \ll \omega_{0}+\omega
$$

2. Rabi oscillations

Detuning parameter $\Delta=\omega-\omega_{0}$

$$
\left.P(t)=\left|\langle n-1 ; \uparrow| \mathrm{e}^{-\mathrm{i} t H_{\mathrm{JC}}}\right| n ; \downarrow\right\rangle\left.\right|^{2}
$$

The Rotating Wave Approximation is known (at least from numerical investigations) to be accurate as long as
n photons Rabi frequency

$$
\Omega_{\mathrm{Rabi}}(n)=\sqrt{\lambda^{2} n+\Delta^{2}}
$$

$$
|\Delta| \ll \omega_{0}+\omega
$$

2. Rabi oscillations

Detuning parameter $\Delta=\omega-\omega_{0}$

$$
\left.P(t)=\left|\langle n-1 ; \uparrow| \mathrm{e}^{-\mathrm{i} t H_{\mathrm{JC}}}\right| n ; \downarrow\right\rangle\left.\right|^{2}
$$

The Rotating Wave Approximation is known (at least from numerical investigations) to be accurate as long as
n photons Rabi frequency

$$
\Omega_{\mathrm{Rabi}}(n)=\sqrt{\lambda^{2} n+\Delta^{2}}
$$

$$
|\Delta| \ll \omega_{0}+\omega
$$

$$
P(t)=\left[1-\left(\frac{\Delta}{\Omega_{\mathrm{Rabi}}(n)}\right)^{2}\right] \sin ^{2} \Omega_{\mathrm{Rabi}}(n) t / 2
$$

3. The one-atom maser

3. The one-atom maser

Repeated interaction scheme

$$
\mathcal{H}=\mathcal{H}_{\text {cavity }} \otimes \mathcal{H}_{\text {beam }}, \quad \mathcal{H}_{\text {beam }}=\bigotimes_{n \geq 1} \mathcal{H}_{\text {atom } n}
$$

3. The one-atom maser

Repeated interaction scheme

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}_{\text {cavity }} \otimes \mathcal{H}_{\text {beam }}, \quad \mathcal{H}_{\text {beam }}=\bigotimes_{n \geq 1} \mathcal{H}_{\text {atom } n} \\
H_{n}=H_{\mathrm{JC}} \quad \text { acting on } \quad \mathcal{H}_{\text {cavity }} \otimes \mathcal{H}_{\text {atom } n}
\end{gathered}
$$

3. The one-atom maser

Repeated interaction scheme

$$
\begin{gathered}
\mathcal{H}=\mathcal{H}_{\text {cavity }} \otimes \mathcal{H}_{\text {beam }}, \quad \mathcal{H}_{\text {beam }}=\bigotimes_{n \geq 1} \mathcal{H}_{\text {atom } n} \\
H_{n}=H_{\mathrm{JC}} \quad \text { acting on } \quad \mathcal{H}_{\text {cavity }} \otimes \mathcal{H}_{\text {atom } n}
\end{gathered}
$$

Cavity state after n interactions

$$
\rho_{n}=\operatorname{Tr}_{\mathcal{H}_{\text {beam }}}\left[\mathrm{e}^{-\mathrm{i} \tau H_{n}} \cdots \mathrm{e}^{-\mathrm{i} \tau H_{1}}\left(\rho_{0} \otimes \bigotimes_{k=1}^{n} \rho_{\text {atom } k}\right) \mathrm{e}^{\mathrm{i} \tau H_{1}} \cdots \mathrm{e}^{\mathrm{i} \tau H_{n}}\right]
$$

3. The one-atom maser

Thermal beam: $\rho_{\text {atom } k}=\rho^{\beta}=Z^{-1} \mathrm{e}^{-\beta H_{\text {atom }}}$

3. The one-atom maser

Thermal beam: $\rho_{\text {atom } k}=\rho^{\beta}=Z^{-1} \mathrm{e}^{-\beta H_{\text {atom }}}$

$$
\rho_{n}=\mathcal{L}_{\beta}\left(\rho_{n-1}\right)
$$

3. The one-atom maser

Thermal beam: $\rho_{\text {atom } k}=\rho^{\beta}=Z^{-1} \mathrm{e}^{-\beta H_{\text {atom }}}$

$$
\rho_{n}=\mathcal{L}_{\beta}\left(\rho_{n-1}\right)
$$

Reduced dynamics

$$
\mathcal{L}_{\beta}(\rho)=\operatorname{Tr}_{\mathcal{H}_{\text {atom }}}\left[\mathrm{e}^{-\mathrm{i} \tau H_{\mathrm{JC}}}\left(\rho \otimes \rho^{\beta}\right) \mathrm{e}^{\mathrm{i} \tau H_{\mathrm{JC}}}\right]
$$

Completely positive, trace preserving map on the trace ideal $\mathcal{J}^{1}\left(\mathcal{H}_{\text {cavity }}\right)$

4. Rabi resonances

A resonance occurs when the interaction time τ is a multiple of the Rabi period

$$
\Omega_{\mathrm{Rabi}}(n) \tau \in 2 \pi \mathbb{Z}
$$

4. Rabi resonances

A resonance occurs when the interaction time τ is a multiple of the Rabi period

$$
\Omega_{\mathrm{Rabi}}(n) \tau \in 2 \pi \mathbb{Z}
$$

4. Rabi resonances

A resonance occurs when the interaction time τ is a multiple of the Rabi period

$$
\Omega_{\mathrm{Rabi}}(n) \tau \in 2 \pi \mathbb{Z}
$$

4. Rabi resonances

A resonance occurs when the interaction time τ is a multiple of the Rabi period

$$
\Omega_{\mathrm{Rabi}}(n) \tau \in 2 \pi \mathbb{Z}
$$

Dimensionless parameters

$$
\eta=\left(\frac{\Delta \tau}{2 \pi}\right)^{2}, \quad \xi=\left(\frac{\lambda \tau}{2 \pi}\right)^{2}
$$

4. Rabi resonances

A resonance occurs when the interaction time τ is a multiple of the Rabi period

$$
\Omega_{\mathrm{Rabi}}(n) \tau \in 2 \pi \mathbb{Z}
$$

Dimensionless parameters

$$
\eta=\left(\frac{\Delta \tau}{2 \pi}\right)^{2}, \quad \xi=\left(\frac{\lambda \tau}{2 \pi}\right)^{2}
$$

$$
R(\eta, \xi)=\left\{n \in \mathbb{N}^{*} \mid \xi n+\eta \text { is a perfect square }\right\}
$$

4. Rabi resonances

A resonance occurs when the interaction time τ is a multiple of the Rabi period

$$
\Omega_{\mathrm{Rabi}}(n) \tau \in 2 \pi \mathbb{Z}
$$

Dimensionless parameters

$$
\eta=\left(\frac{\Delta \tau}{2 \pi}\right)^{2}, \quad \xi=\left(\frac{\lambda \tau}{2 \pi}\right)^{2}
$$

$$
R(\eta, \xi)=\left\{n \in \mathbb{N}^{*} \mid \xi n+\eta \text { is a perfect square }\right\}
$$

Definition. The system is

- Non resonant: $R(\eta, \xi)$ is empty.
- Simply resonant: $R(\eta, \xi)=\left\{n_{1}\right\}$.
- Fully resonant: $R(\eta, \xi)=\left\{n_{1}, n_{2}, \ldots\right\}$ i.e. has ∞-many resonances.
- Degenerate: fully resonant and there exist $n \in R(\eta, \xi) \cup\{0\}$ and $m \in R(\eta, \xi)$ such that $n+1, m+1 \in R(\eta, \xi)$.

4. Rabi resonances

Lemma. If η and ξ are

4. Rabi resonances

Lemma. If η and ξ are

- not both irrational or not both rational: non-resonant;

4. Rabi resonances

Lemma. If η and ξ are

- not both irrational or not both rational: non-resonant;
- both irrational: either simply resonant or non-resonant (the generic case);

4. Rabi resonances

Lemma. If η and ξ are

- not both irrational or not both rational: non-resonant;
- both irrational: either simply resonant or non-resonant (the generic case);
- both rational: $\eta=a / b, \xi=c / d$ (irreducible) and $m=\operatorname{LCM}(b, d)$

$$
\mathfrak{X}=\left\{x \in\{0, \ldots, \xi m-1\} \mid x^{2} m \equiv \eta m(\bmod \xi m)\right\}
$$

then non-resonant if \mathfrak{X} is empty or fully resonant

$$
R(\eta, \xi)=\left\{\left(k^{2}-\eta\right) / \xi \mid k=j m \xi+x, j \in \mathbb{N}^{*}, x \in \mathscr{X}\right\} \cap \mathbb{N}^{*}
$$

4. Rabi resonances

Lemma. If η and ξ are

- not both irrational or not both rational: non-resonant;
- both irrational: either simply resonant or non-resonant (the generic case);
- both rational: $\eta=a / b, \xi=c / d$ (irreducible) and $m=\operatorname{LCM}(b, d)$

$$
\mathfrak{X}=\left\{x \in\{0, \ldots, \xi m-1\} \mid x^{2} m \equiv \eta m(\bmod \xi m)\right\}
$$

then non-resonant if \mathfrak{X} is empty or fully resonant

$$
R(\eta, \xi)=\left\{\left(k^{2}-\eta\right) / \xi \mid k=j m \xi+x, j \in \mathbb{N}^{*}, x \in \mathscr{X}\right\} \cap \mathbb{N}^{*}
$$

Moreover, if degenerate then η and ξ are integers such that $\eta>0$ is a quadratic residue modulo ξ.

4. Rabi resonances

Lemma. If η and ξ are

- not both irrational or not both rational: non-resonant;
- both irrational: either simply resonant or non-resonant (the generic case);
- both rational: $\eta=a / b, \xi=c / d$ (irreducible) and $m=\operatorname{LCM}(b, d)$

$$
\mathfrak{X}=\left\{x \in\{0, \ldots, \xi m-1\} \mid x^{2} m \equiv \eta m(\bmod \xi m)\right\}
$$

then non-resonant if \mathfrak{X} is empty or fully resonant

$$
R(\eta, \xi)=\left\{\left(k^{2}-\eta\right) / \xi \mid k=j m \xi+x, j \in \mathbb{N}^{*}, x \in \mathfrak{X}\right\} \cap \mathbb{N}^{*}
$$

Moreover, if degenerate then η and ξ are integers such that $\eta>0$ is a quadratic residue modulo ξ.

Remark. This lemma is elementary but characterizing integers η, ξ for which the system is degenerate is a very hard (open) problem in Diophantine analysis.

5. Rabi sectors

Decomposition into Rabi sectors

$$
\ell^{2}(\mathbb{N})=\mathcal{H}_{\text {cavity }}=\bigoplus_{k=1}^{r} \mathcal{H}^{(k)}
$$

where $\mathcal{H}^{(k)}=\ell^{2}\left(I_{k}\right)$

5. Rabi sectors

Decomposition into Rabi sectors

$$
\ell^{2}(\mathbb{N})=\mathcal{H}_{\text {cavity }}=\bigoplus_{k=1}^{r} \mathcal{H}^{(k)}
$$

where $\mathcal{H}^{(k)}=\ell^{2}\left(I_{k}\right)$ and

$$
\begin{array}{llll}
r=1 & I_{1} \equiv \mathbb{N} & \text { if } & R(\eta, \xi) \text { is empty, } \\
r=2 & I_{1} \equiv\left\{0, \ldots, n_{1}-1\right\}, I_{2} \equiv\left\{n_{1}, n_{1}+1, \ldots\right\} & \text { if } & R(\eta, \xi)=\left\{n_{1}\right\}, \\
r=\infty & I_{1} \equiv\left\{0, \ldots, n_{1}-1\right\}, I_{2} \equiv\left\{n_{1}, \ldots, n_{2}-1\right\}, \ldots & \text { if } & R(\eta, \xi)=\left\{n_{1}, n_{2}, \ldots\right\} .
\end{array}
$$

5. Rabi sectors

Decomposition into Rabi sectors

$$
\ell^{2}(\mathbb{N})=\mathcal{H}_{\text {cavity }}=\bigoplus_{k=1}^{r} \mathcal{H}^{(k)}
$$

where $\mathcal{H}^{(k)}=\ell^{2}\left(I_{k}\right)$ and

$$
\begin{array}{llll}
r=1 & I_{1} \equiv \mathbb{N} & \text { if } & R(\eta, \xi) \text { is empty, } \\
r=2 & I_{1} \equiv\left\{0, \ldots, n_{1}-1\right\}, I_{2} \equiv\left\{n_{1}, n_{1}+1, \ldots\right\} & \text { if } & R(\eta, \xi)=\left\{n_{1}\right\}, \\
r=\infty & I_{1} \equiv\left\{0, \ldots, n_{1}-1\right\}, I_{2} \equiv\left\{n_{1}, \ldots, n_{2}-1\right\}, \ldots & \text { if } & R(\eta, \xi)=\left\{n_{1}, n_{2}, \ldots\right\} .
\end{array}
$$

P_{k} denotes the orthogonal projection onto $\mathcal{H}^{(k)}$

5. Rabi sectors

Decomposition into Rabi sectors

$$
\ell^{2}(\mathbb{N})=\mathcal{H}_{\text {cavity }}=\bigoplus_{k=1}^{r} \mathcal{H}^{(k)}
$$

where $\mathcal{H}^{(k)}=\ell^{2}\left(I_{k}\right)$ and

$$
\begin{array}{llll}
r=1 & I_{1} \equiv \mathbb{N} & \text { if } & R(\eta, \xi) \text { is empty, } \\
r=2 & I_{1} \equiv\left\{0, \ldots, n_{1}-1\right\}, I_{2} \equiv\left\{n_{1}, n_{1}+1, \ldots\right\} & \text { if } & R(\eta, \xi)=\left\{n_{1}\right\}, \\
r=\infty & I_{1} \equiv\left\{0, \ldots, n_{1}-1\right\}, I_{2} \equiv\left\{n_{1}, \ldots, n_{2}-1\right\}, \ldots & \text { if } & R(\eta, \xi)=\left\{n_{1}, n_{2}, \ldots\right\} .
\end{array}
$$

$$
P_{k} \text { denotes the orthogonal projection onto } \mathcal{H}^{(k)}
$$

Partial Gibbs state in $\mathcal{H}^{(k)}$:

6. Ergodic properties of CP maps

Support of a density matrix ρ is the orthogonal projection $s(\rho)$ onto the closure of $\operatorname{Ran} \rho$.

6. Ergodic properties of CP maps

Support of a density matrix ρ is the orthogonal projection $s(\rho)$ onto the closure of $\operatorname{Ran} \rho$.

$$
\mu \ll \rho \text { means } s(\mu) \leq s(\rho)
$$

6. Ergodic properties of CP maps

Support of a density matrix ρ is the orthogonal projection $s(\rho)$ onto the closure of Ran ρ.

$$
\mu \ll \rho \text { means } s(\mu) \leq s(\rho)
$$

ρ is ergodic for the CP map \mathcal{L} iff, for all $\mu \ll \rho, A \in \mathcal{B}\left(\mathcal{H}_{\text {cavity }}\right)$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(\mathcal{L}^{n}(\mu)\right)(A)=\rho(A)
$$

6. Ergodic properties of CP maps

Support of a density matrix ρ is the orthogonal projection $s(\rho)$ onto the closure of Ran ρ.

$$
\mu \ll \rho \text { means } s(\mu) \leq s(\rho)
$$

ρ is ergodic for the CP map \mathcal{L} iff, for all $\mu \ll \rho, A \in \mathcal{B}\left(\mathcal{H}_{\text {cavity }}\right)$

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(\mathcal{L}^{n}(\mu)\right)(A)=\rho(A) \\
\rho \text { is mixing for } \mathcal{L} \text { iff, for all } \mu \ll \rho, A \in \mathcal{B}\left(\mathcal{H}_{\text {cavity }}\right) \\
\lim _{n \rightarrow \infty}\left(\mathcal{L}^{n}(\mu)\right)(A)=\rho(A)
\end{gathered}
$$

6. Ergodic properties of CP maps

Support of a density matrix ρ is the orthogonal projection $s(\rho)$ onto the closure of $\operatorname{Ran} \rho$.

$$
\mu \ll \rho \text { means } s(\mu) \leq s(\rho)
$$

ρ is ergodic for the $C P \operatorname{map} \mathcal{L}$ iff, for all $\mu \ll \rho, A \in \mathcal{B}\left(\mathcal{H}_{\text {cavity }}\right)$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(\mathcal{L}^{n}(\mu)\right)(A)=\rho(A)
$$

ρ is mixing for \mathcal{L} iff, for all $\mu \ll \rho, A \in \mathcal{B}\left(\mathcal{H}_{\text {cavity }}\right)$

$$
\lim _{n \rightarrow \infty}\left(\mathcal{L}^{n}(\mu)\right)(A)=\rho(A)
$$

and exponentially mixing iff

$$
\begin{aligned}
& \left|\left(\mathcal{L}^{n}(\mu)\right)(A)-\rho(A)\right| \leq C_{A, \mu} \mathrm{e}^{-\alpha n}, \\
& \text { for some constants } C_{A, \mu} \text { and } \alpha>0 .
\end{aligned}
$$

7. Ergodic properties of the one-atom maser

Main Theorem. 1. If the system is non-resonant then \mathcal{L}_{β} has no invariant state for $\beta \leq 0$ and a unique ergodic state

$$
\rho_{\text {cavity }}^{\beta^{*}}=\frac{\mathrm{e}^{-\beta^{*} H_{\text {cavity }}}}{\operatorname{Tr} \mathrm{e}^{-\beta^{*} H_{\text {cavity }}}}, \quad \beta^{*}=\beta \frac{\omega_{0}}{\omega}
$$

for $\beta>0$. In the latter case any initial state relaxes in the mean to this thermal equilibrium state

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(\mathcal{L}_{\beta}^{n}(\mu)\right)(A)=\rho_{\text {cavity }}^{\beta^{*}}(A)
$$

for any $A \in \mathcal{B}\left(\mathcal{H}_{\text {cavity }}\right)$.

7. Ergodic properties of the one-atom maser

Main Theorem. 2. If the system is simply resonant then \mathcal{L}_{β} has the unique ergodic state $\rho_{\text {cavity }}^{(1) \beta^{*}}$ if $\beta \leq 0$ and two ergodic states $\rho_{\text {cavity }}^{(1) \beta^{*}}, \rho_{\text {cavity }}^{(2)} \beta^{*}$ if $\beta>0$. In the latter case, for any state μ, one has

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(\mathcal{L}_{\beta}^{n}(\mu)\right)(A)=\mu\left(P_{1}\right) \rho_{\text {cavity }}^{(1) \beta^{*}}(A)+\mu\left(P_{2}\right) \rho_{\text {cavity }}^{(2) \beta^{*}}(A)
$$

for any $A \in \mathcal{B}\left(\mathcal{H}_{\text {cavity }}\right)$.

7. Ergodic properties of the one-atom maser

Main Theorem. 3. If the system is fully resonant then for any $\beta \in \mathbb{R}, \mathcal{L}_{\beta}$ has infinitely many ergodic states $\rho_{\text {cavity }}^{(k) \beta^{*}}, k=1,2, \ldots$ Moreover, if the system is non-degenerate,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(\mathcal{L}_{\beta}^{n}(\mu)\right)(A)=\sum_{k=1}^{\infty} \mu\left(P_{k}\right) \rho_{\text {cavity }}^{(k) \beta^{*}}(A)
$$

holds for any state μ and all $A \in \mathcal{B}\left(\mathcal{H}_{\text {cavity }}\right)$.

7. Ergodic properties of the one-atom maser

Main Theorem. 4. If the system is fully resonant and degenerate there exists a finite set $\mathcal{D}(\eta, \xi) \subset \mathbb{Z}$ such that the conclusions of 3 . still hold provided the non-resonance condition

$$
\text { (NR) } \quad \mathrm{e}^{\mathrm{i}(\tau \omega+\xi \pi) d} \neq 1
$$

is satisfied for all $d \in \mathcal{D}(\eta, \xi)$.
5. In all the previous cases any invariant state is diagonal and can be represented as a convex linear combination of ergodic states, i.e., the set of invariant states is a simplex whose extremal points are ergodic states.
In the remaining case, i.e., if condition (NR) fails, there are non-diagonal invariant states.
6. Whenever the state $\rho_{\text {cavity }}^{(k) \beta^{*}}$ is ergodic it is also exponentially mixing if the Rabi sector $\mathcal{H}_{\text {cavity }}^{(k)}$ is finite dimensional.

7. Ergodic properties of the one-atom maser

Remarks.

7. Ergodic properties of the one-atom maser

Remarks.

- Numerical experiments support the conjecture that all ergodic states are mixing.

7. Ergodic properties of the one-atom maser

Remarks.

- Numerical experiments support the conjecture that all ergodic states are mixing.
- Mixing is very slow in infinite dimensional Rabi sectors due to the presence of ∞-many metastable states $\left(1 \in \operatorname{sp}_{\text {ess }}\left(\mathcal{L}_{\beta}\right)\right)$.

7. Ergodic properties of the one-atom maser

Remarks.

- Numerical experiments support the conjecture that all ergodic states are mixing.
- Mixing is very slow in infinite dimensional Rabi sectors due to the presence of ∞-many metastable states $\left(1 \in \operatorname{sp}_{\text {ess }}\left(\mathcal{L}_{\beta}\right)\right)$.
- For given η, ξ it is easy to compute the set $\mathcal{D}(\eta, \xi)$. However it is extremely hard (and an open problem) to characterize those integers η and ξ for which $\mathcal{D}(\eta, \xi)$ is non-empty.

7. Ergodic properties of the one-atom maser

Remarks.

- Numerical experiments support the conjecture that all ergodic states are mixing.
- Mixing is very slow in infinite dimensional Rabi sectors due to the presence of ∞-many metastable states $\left(1 \in \operatorname{sp}_{\mathrm{ess}}\left(\mathcal{L}_{\beta}\right)\right)$.
- For given η, ξ it is easy to compute the set $\mathcal{D}(\eta, \xi)$. However it is extremely hard (and an open problem) to characterize those integers η and ξ for which $\mathcal{D}(\eta, \xi)$ is non-empty.
- Degenerate fully resonant systems exist. If $\eta=241$ and $\xi=720$ then

$$
720+241=29^{2}, \quad 2 \cdot 720+241=41^{2}, \quad 3 \cdot 720+241=49^{2}
$$

so that 1 and 2 are successive Rabi resonances. In this case $\mathcal{D}(241,720)=\{1\}$.

7. Ergodic properties of the one-atom maser

Remarks.

- Numerical experiments support the conjecture that all ergodic states are mixing.
- Mixing is very slow in infinite dimensional Rabi sectors due to the presence of ∞-many metastable states $\left(1 \in \operatorname{sp}_{\text {ess }}\left(\mathcal{L}_{\beta}\right)\right)$.
- For given η, ξ it is easy to compute the set $\mathcal{D}(\eta, \xi)$. However it is extremely hard (and an open problem) to characterize those integers η and ξ for which $\mathcal{D}(\eta, \xi)$ is non-empty.
- Degenerate fully resonant systems exist. If $\eta=241$ and $\xi=720$ then

$$
720+241=29^{2}, \quad 2 \cdot 720+241=41^{2}, \quad 3 \cdot 720+241=49^{2}
$$

so that 1 and 2 are successive Rabi resonances. In this case $\mathcal{D}(241,720)=\{1\}$.

- Another example is $\eta=1$ and $\xi=840$ for which $1,2,52$ and 53 are Rabi resonances

$$
840+1=29^{2}, \quad 2 \cdot 840+1=41^{2}, \quad 52 \cdot 840+1=209^{2}, \quad 53 \cdot 840+1=211^{2}
$$

and $\mathcal{D}(1,840)=\{51\}$.

7. Ergodic properties of the one-atom maser

Remarks.

- Numerical experiments support the conjecture that all ergodic states are mixing.
- Mixing is very slow in infinite dimensional Rabi sectors due to the presence of ∞-many metastable states $\left(1 \in \operatorname{sp}_{\mathrm{ess}}\left(\mathcal{L}_{\beta}\right)\right)$.
- For given η, ξ it is easy to compute the set $\mathcal{D}(\eta, \xi)$. However it is extremely hard (and an open problem) to characterize those integers η and ξ for which $\mathcal{D}(\eta, \xi)$ is non-empty.
- Degenerate fully resonant systems exist. If $\eta=241$ and $\xi=720$ then

$$
720+241=29^{2}, \quad 2 \cdot 720+241=41^{2}, \quad 3 \cdot 720+241=49^{2}
$$

so that 1 and 2 are successive Rabi resonances. In this case $\mathcal{D}(241,720)=\{1\}$.

- Another example is $\eta=1$ and $\xi=840$ for which $1,2,52$ and 53 are Rabi resonances

$$
840+1=29^{2}, \quad 2 \cdot 840+1=41^{2}, \quad 52 \cdot 840+1=209^{2}, \quad 53 \cdot 840+1=211^{2}
$$

and $\mathcal{D}(1,840)=\{51\}$.

- We do not know of any example where $\mathcal{D}(\eta, \xi)$ contains more than one element.

8. Few words about the proof

Main idea: control the peripheral spectrum of \mathcal{L}_{β}.

8. Few words about the proof

Main idea: control the peripheral spectrum of \mathcal{L}_{β}.
Main difficulty: perturbation theory does'nt work! At zero coupling $(\lambda=0)$ one has

$$
\mathcal{L}_{\beta}(\rho)=\mathrm{e}^{-\mathrm{i} \tau H_{\text {cavity }} \rho \mathrm{e}^{\mathrm{i} \tau H_{\text {cavity }}}, ~}
$$

so that

$$
\operatorname{sp}\left(\mathcal{L}_{\beta}\right)=\operatorname{sp}_{\mathrm{pp}}\left(\mathcal{L}_{\beta}\right)=\left\{\mathrm{e}^{\mathrm{i} \tau \omega d} \mid d \in \mathbb{Z}\right\}
$$

is either finite (if $\omega \tau \in 2 \pi \mathbb{Q}$) or dense on the unit circle, but always infinitely degenerate.

8. Few words about the proof

Main idea: control the peripheral spectrum of \mathcal{L}_{β}.
Main difficulty: perturbation theory does'nt work! At zero coupling $(\lambda=0)$ one has

$$
\mathcal{L}_{\beta}(\rho)=\mathrm{e}^{-\mathrm{i} \tau H_{\text {cavity }} \rho \mathrm{e}^{\mathrm{i} \tau H_{\text {cavity }}}, ~}
$$

so that

$$
\operatorname{sp}\left(\mathcal{L}_{\beta}\right)=\operatorname{sp}_{\mathrm{pp}}\left(\mathcal{L}_{\beta}\right)=\left\{\mathrm{e}^{\mathrm{i} \tau \omega d} \mid d \in \mathbb{Z}\right\}
$$

is either finite (if $\omega \tau \in 2 \pi \mathbb{Q}$) or dense on the unit circle, but always infinitely degenerate.

Main tools:

8. Few words about the proof

Main idea: control the peripheral spectrum of \mathcal{L}_{β}.
Main difficulty: perturbation theory does'nt work! At zero coupling $(\lambda=0)$ one has

$$
\mathcal{L}_{\beta}(\rho)=\mathrm{e}^{-\mathrm{i} \tau H_{\text {cavity }} \rho \mathrm{e}^{\mathrm{i} \tau H_{\text {cavity }}}, ~}
$$

so that

$$
\operatorname{sp}\left(\mathcal{L}_{\beta}\right)=\operatorname{sp}_{\mathrm{pp}}\left(\mathcal{L}_{\beta}\right)=\left\{\mathrm{e}^{\mathrm{i} \tau \omega d} \mid d \in \mathbb{Z}\right\}
$$

is either finite (if $\omega \tau \in 2 \pi \mathbb{Q}$) or dense on the unit circle, but always infinitely degenerate.

Main tools:

- Use gauge symmetry! It follows from $\left[H_{\mathrm{JC}}, a^{*} a+b^{*} b\right]=\left[H_{\mathrm{atom}}, \rho_{\mathrm{atom}}^{\beta}\right]=0$ that

$$
\mathcal{L}_{\beta}\left(\mathrm{e}^{-\mathrm{i} \theta a^{*} a} X \mathrm{e}^{\mathrm{i} \theta a^{*} a}\right)=\mathrm{e}^{-\mathrm{i} \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{\mathrm{i} \theta a^{*} a}
$$

8. Few words about the proof

Main idea: control the peripheral spectrum of \mathcal{L}_{β}.
Main difficulty: perturbation theory does'nt work! At zero coupling $(\lambda=0)$ one has

$$
\mathcal{L}_{\beta}(\rho)=\mathrm{e}^{-\mathrm{i} \tau H_{\text {cavity }} \rho \mathrm{e}^{\mathrm{i} \tau H_{\text {cavity }}}, ~}
$$

so that

$$
\operatorname{sp}\left(\mathcal{L}_{\beta}\right)=\operatorname{sp}_{\mathrm{pp}}\left(\mathcal{L}_{\beta}\right)=\left\{\mathrm{e}^{\mathrm{i} \tau \omega d} \mid d \in \mathbb{Z}\right\}
$$

is either finite (if $\omega \tau \in 2 \pi \mathbb{Q}$) or dense on the unit circle, but always infinitely degenerate.

Main tools:

- Use gauge symmetry! It follows from $\left[H_{\mathrm{JC}}, a^{*} a+b^{*} b\right]=\left[H_{\mathrm{atom}}, \rho_{\mathrm{atom}}^{\beta}\right]=0$ that

$$
\mathcal{L}_{\beta}\left(\mathrm{e}^{-\mathrm{i} \theta a^{*} a} X \mathrm{e}^{\mathrm{i} \theta a^{*} a}\right)=\mathrm{e}^{-\mathrm{i} \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{\mathrm{i} \theta a^{*} a}
$$

- Use the block structure induced by Rabi sectors.

8. Few words about the proof

Main idea: control the peripheral spectrum of \mathcal{L}_{β}.
Main difficulty: perturbation theory does'nt work! At zero coupling $(\lambda=0)$ one has

$$
\mathcal{L}_{\beta}(\rho)=\mathrm{e}^{-\mathrm{i} \tau H_{\text {cavity }} \rho \mathrm{e}^{\mathrm{i} \tau H_{\text {cavity }}}, ~}
$$

so that

$$
\operatorname{sp}\left(\mathcal{L}_{\beta}\right)=\operatorname{sp}_{\mathrm{pp}}\left(\mathcal{L}_{\beta}\right)=\left\{\mathrm{e}^{\mathrm{i} \tau \omega d} \mid d \in \mathbb{Z}\right\}
$$

is either finite (if $\omega \tau \in 2 \pi \mathbb{Q}$) or dense on the unit circle, but always infinitely degenerate.

Main tools:

- Use gauge symmetry! It follows from $\left[H_{\mathrm{JC}}, a^{*} a+b^{*} b\right]=\left[H_{\mathrm{atom}}, \rho_{\mathrm{atom}}^{\beta}\right]=0$ that

$$
\mathcal{L}_{\beta}\left(\mathrm{e}^{-\mathrm{i} \theta a^{*} a} X \mathrm{e}^{\mathrm{i} \theta a^{*} a}\right)=\mathrm{e}^{-\mathrm{i} \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{\mathrm{i} \theta a^{*} a}
$$

- Use the block structure induced by Rabi sectors.
- Use Schrader's version of Perron-Frobenius theory for trace preserving CP maps on trace ideals [Fields Inst. Commun. 30 (2001)].

9. Metastable states of the one-atom maser

By gauge symmetry, the subspace of diagonal states is invariant. The action of \mathcal{L}_{β} on this subspace is conjugated to that of

$$
L=I-\nabla^{*} D(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}
$$

on $\ell^{1}(\mathbb{N})$ where

$$
(N x)_{n}=n x_{n}, \quad(\nabla x)_{n}=\left\{\begin{array}{ll}
x_{0} & \text { for } n=0 ; \\
x_{n}-x_{n-1} & \text { for } n \geq 1 ;
\end{array} \quad\left(\nabla^{*} x\right)_{n}=x_{n}-x_{n+1}\right.
$$

and

$$
D(N)=\frac{1}{1+\mathrm{e}^{-\beta \omega_{0}}} \frac{\xi N}{\xi N+\eta} \sin ^{2}(\pi \sqrt{\xi N+\eta})
$$

9. Metastable states of the one-atom maser

By gauge symmetry, the subspace of diagonal states is invariant. The action of \mathcal{L}_{β} on this subspace is conjugated to that of

$$
L=I-\nabla^{*} D(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}
$$

on $\ell^{1}(\mathbb{N})$ where

$$
(N x)_{n}=n x_{n}, \quad(\nabla x)_{n}=\left\{\begin{array}{ll}
x_{0} & \text { for } n=0 ; \\
x_{n}-x_{n-1} & \text { for } n \geq 1 ;
\end{array} \quad\left(\nabla^{*} x\right)_{n}=x_{n}-x_{n+1}\right.
$$

and

$$
D(N)=\frac{1}{1+\mathrm{e}^{-\beta \omega_{0}}} \frac{\xi N}{\xi N+\eta} \sin ^{2}(\pi \sqrt{\xi N+\eta})
$$

Rabi resonances are integers n such that $D(n)=0$. They decouple L.

9. Metastable states of the one-atom maser

There is an increasing sequence m_{k} such that $D\left(m_{k}\right)=O\left(k^{-2}\right)$. They almost decouple L : Rabi quasi-resonances.

9. Metastable states of the one-atom maser

There is an increasing sequence m_{k} such that $D\left(m_{k}\right)=O\left(k^{-2}\right)$. They almost decouple L : Rabi quasi-resonances.

Setting $L_{0}=I-\nabla^{*} D_{0}(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}$ with

$$
D_{0}(n)= \begin{cases}0 & \text { if } n \in\left\{m_{1}, m_{2}, \ldots\right\} \\ D(n) & \text { otherwise }\end{cases}
$$

we get $L=L_{0}+$ trace class.

9. Metastable states of the one-atom maser

There is an increasing sequence m_{k} such that $D\left(m_{k}\right)=O\left(k^{-2}\right)$. They almost decouple L : Rabi quasi-resonances.

Setting $L_{0}=I-\nabla^{*} D_{0}(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}$ with

$$
D_{0}(n)= \begin{cases}0 & \text { if } n \in\left\{m_{1}, m_{2}, \ldots\right\} \\ D(n) & \text { otherwise }\end{cases}
$$

we get $L=L_{0}+$ trace class.
L_{0} has infinitely degenerate eigenvalue 1 : eigenvectors are metastable states of L

9. Metastable states of the one-atom maser

The metastable cascade

9. Metastable states of the one-atom maser

Local equilibrium after 5000 interactions

9. Metastable states of the one-atom maser

Local equilibrium after 50000 interactions

9. Metastable states of the one-atom maser

Mean photon number

10. Open questions

10. Open questions

- Beyond the rotating wave approximation.

10. Open questions

- Beyond the rotating wave approximation.
- What is the mathematical status of RWA ?

10. Open questions

- Beyond the rotating wave approximation.
- What is the mathematical status of RWA ?
- Mixing in infinite Rabi sectors.

10. Open questions

- Beyond the rotating wave approximation.
- What is the mathematical status of RWA ?
- Mixing in infinite Rabi sectors.
- Leaky cavities: coupling the full EM field.

10. Open questions

- Beyond the rotating wave approximation.
- What is the mathematical status of RWA ?
- Mixing in infinite Rabi sectors.
- Leaky cavities: coupling the full EM field.
- For number theorists and algebraic geometers: The Diophantine problem.

10. Open questions

- Beyond the rotating wave approximation.
- What is the mathematical status of RWA ?
- Mixing in infinite Rabi sectors.
- Leaky cavities: coupling the full EM field.
- For number theorists and algebraic geometers: The Diophantine problem.
- For probabilitsts: Random interaction times.

10. Open questions

- Beyond the rotating wave approximation.
- What is the mathematical status of RWA ?
- Mixing in infinite Rabi sectors.
- Leaky cavities: coupling the full EM field.
- For number theorists and algebraic geometers: The Diophantine problem.
- For probabilitsts: Random interaction times.

