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Introduction

In a a previous paper:
H. Cornean, P. Duclos, Gh. Nenciu, R. Purice:
Adiabatically switched-on electrical bias and the LandauerBttiker
formula, Journal of Mathematical Physics 49 (2008), 20 pp.

we have studied the linear response approximation for the electric
curent appearing in a system composed of two conductors
communicating through a ’small’ sample, when a potential
difference is applied adiabatically on the two conductors.
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Introduction

Now, our problem is to prove the existence of a stationary limit
state for the same problem.

DIAS - December, 2008 NESS as adiabatic limit



Plan of the talk
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Proof of the Main Result
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The System

We consider a sample connected to two semi-infinite cylindrical
conductors, in which a gas of non-interacting electrons is moving.

The configuration space is

L :=
[
I− ×D

]
∪ C ∪

[
I+ ×D

]
,

where:

1 I− := (−∞,−a) and I+ := (a,∞) for some a > 0.

2 D ⊂ Rd is a bounded open set awith regular boundary ∂D,

3 C ⊂ Rd+1 is bounded and satisfies: [−a, a]×D ⊂ C,

[{−a} ×D ∪ {a} ×D] ⊂ ∂C,

Σ :=
[
I−×(∂D)

]
∪
[
∂C\({−a}×D∪{a}×D)

]
∪
[
I+×(∂D)

]
is a regular surface in Rd+1.
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The One-body Dynamics

Each electron moves free in each conductor L± := I± ×D,
with Dirichlet boundary conditions on I± × (∂D).

To the sample C we associate

a sample Hilbert space K of finite dimension kC ,
an electron-sample interaction HC defined as a bounded
self-adjoint operator on L2(C)⊗K

(it may contain a term of multiplication with a potential
w ∈ C∞c (C), smooth functions with compact support)

We shall suppose that HC ≥ 0 (by just adding a constant
term)
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The One-body Dynamics

The Hilbert Space

H := L2(L)⊗K

we use the orthogonal decomposition:

Π− : H → H− := L2(I− ×D)⊗K,
Π+ : H → H+− := L2(I+ ×D)⊗K,
Π0 : H → H0 := L2(C)⊗K,

Let H1
0 (L) and H2(L) be the usual Sobolev spaces on the

open domain L ⊂ Rd+1.

Let −∆D be the Laplace operator on L
with Dirichlet boundary conditions on Σ

and having the domain HD(L) := H1
0 (L) ∩ H2(L)
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The One-body Dynamics

Due to our assumption the perturbation, Π0HC Π0 is relatively
bounded with bound 0 with respect to ∆D ⊗ 1.

The one-particle Hamiltonian

is of the form:

H :=
(
−∆D

)
⊗ 1 + Π0HC Π0

acting on H := L2(L)⊗K, with domain

HD(L) := H1
0 (L) ∩ H2(L)

Hypothesis 1

We shall suppose that σ(H) = σac(H).

We denote by R(z) the rezolvent of H.
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The One-body Dynamics

Hypothesis 2

We shall suppose that all the iterated commutators of the form[
Q1,

[
Q1, . . .

[
Q1,Π0HC Π0

]
. . .
]]

[
P1,
[
P1, . . .

[
P1,Π0HC Π0

]
. . .
]]

are bounded operators in H.

We denoted by Q1 the operator of multiplication with the variable
x ∈ R on H and by P1 := −i∂x
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The Electric Bias

We consider that an electric voltage is aplied adiabatically on the
two conductors starting at time s = −∞.

v± ∈ R, V := v−Π− + v+Π+.

χ a strictly increasing function in C∞(R−) such that
0 < χ(t) < 1; for any η > 0 let χη(t) := χ(ηt).

Vη(t) := χη(t)V .

The time-dependent Hamiltonian

Kη(t) := H + Vη(t)

with domain
HD(L) := H1

0 (L) ∩ H2(L)

.
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The Electric Bias

The non-homogenous evolution

For −∞ < s ≤ t ≤ 0, the unitary propagator Wη(t, s)
solution of the Cauchy problem:

i∂tWη(t, s) = Kη(t)Wη(t, s)

Wη(s, s) = 1

For any η > 0 the family {Kη(t)}t∈R are self-adjoint operators in
H, having a common domain equal to HD(L)⊗K and depending
differentiable on t ∈ R with a bounded self-adjoint norm derivative

∂tKη(t) = η χ(ηt)V .
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The State

We consider that in the remote past, t → −∞,
the electron gas has no self-interactions and is in equilibrium
at a temperature T and a chemical potential, µ,
moving in all the volume L

Thus it is described by a quasi-free state having as two-point
function the usual Fermi-Dirac density at temperature T and
chemical potential µ:

ρ(E ) :=
1

1 + e(E−µ)/kT

applied to the total Hamiltonian H =
(
−∆D

)
⊗ 1 + Π0HC Π0.

Initial state at t = −∞: ρ(H).
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The State

The state at time t ∈ R−
ρη(t) := s − lim

s↘−∞
Wη(t, s)ρ(H)Wη(t, s)∗.

Remarks:

ρ(H) = e i(t−s)Hρ(H)e−i(t−s)H

Let us define Ωη(t, s) := Wη(t, s)e i(t−s)H

so that: ρη(t) := s − lim
s↘−∞

Ωη(t, s)ρ(H)Ωη(t, s)∗.

Proposition

The following limit exists

Ωη(t) := s − lim
s↘−∞

Ωη(t, s).

but, not uniformly with respect to η.
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The State

Proof of the Proposition:
Let us write the equation in integral form:

Ωη(t, s) = 1 + i

∫ t

s
χ(ηr)Ωη(t, r)e i(r−t)HV (Q)e−i(r−t)H dr

so that

‖Ωη(t, s1) − Ωη(t, s2)‖ ≤
∫ s1

s2

χ(ηr)‖V (Q)‖ dr

verifying thus the Cauchy criterion for convergence with respect to
the uniform topology on B[H] due to the integrability of χ.
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The State

In oredr to study the limit for η ↘ 0
we shall introduce some new wave operators associated to other
pairs of Hamiltonians defined by
decoupling the system at x = ±a by imposing Dirichelt conditions
on D±.

This trick will allow us to compare in a more precise way
the asymptotic evolution Wη(t, s)
with the one associated to the Hamiltonian H.
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The Adiabatic Limit

DIAS - December, 2008 NESS as adiabatic limit



The Decoupled System

We shall denote by:

◦
HD(L) := HD(L−)⊕HD(C)⊕HD(L+); where

HD(L±) := H1
0 (L±) ∩ H2(L±); HD(C) := H1

0 (C) ∩ H2(C)

◦
∆D :

◦
HD(L)→ L2(L) the self-adjoint Laplace operator with

Dirichlet conditions on ∂L ∪D− ∪D+;

we have
◦
∆D =

◦
∆D,− ⊕

◦
∆D,0 ⊕

◦
∆D,+.

We can write
◦
∆D,± = l± ⊗ 1 + 1⊗ LD with:

LD the Laplacean on the bounded domain D ⊂ Rd with
Dirichlet conditions on the boundary ∂D
l± the operator of second derivative on I± with Dirichlet
condition at ±a.
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The Decoupled System

The decoupled Hamiltonian
◦
H :=

(
−
◦
∆D

)
⊗ 1 + Π0HC Π0 :

◦
HD(L)⊗K −→ H

(having Dirichlet conditions on ∂L ∪D− ∪D+).

The decoupled Hamiltonian with bias
◦
K η(t) :=

◦
H + Vη(t) =

◦
H + χη(t)V :

◦
HD(L)⊗K −→ H

The decoupled non-homogeneous evolution
◦

W η(t, s) defined as the solution of the following Cauchy problem: −i∂t

◦
W η(t, s) = −

◦
K η(t)

◦
W η(t, s)

◦
W η(s, s) = 1

.
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The Decoupled System

The existence of the solution
◦

W η(t, s) results by arguments
similar to those concerning the existence of Wη(t, s).

All the above operators commute with Π± and thus with V .

We have the formula
◦

W η(t, s) =

= e−i(t−s)
◦
H
[
1 + Π−

(
e iv−

R t
s χ(ηu)du

)
+ Π+

(
e iv+

R t
s χ(ηu)du

)]
with the exponentials being just complex numbers.

We shall denote by
◦
R(z) the rezolvent of

◦
H.
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We shall also need to consider
the ’bias’ with a fixed coupling constant κ ∈ [0, 1]
and define:

Kκ := H + κV ,

◦
Kκ :=

◦
H + κV ,

and their rezolvents Rκ(z) and
◦
Rκ(z).

Hypothesis

σpp(K1) = ∅.

DIAS - December, 2008 NESS as adiabatic limit



We shall also need to consider
the ’bias’ with a fixed coupling constant κ ∈ [0, 1]
and define:

Kκ := H + κV ,

◦
Kκ :=

◦
H + κV ,

and their rezolvents Rκ(z) and
◦
Rκ(z).

Hypothesis

σpp(K1) = ∅.

DIAS - December, 2008 NESS as adiabatic limit



We shall also need to consider
the ’bias’ with a fixed coupling constant κ ∈ [0, 1]
and define:

Kκ := H + κV ,

◦
Kκ :=

◦
H + κV ,

and their rezolvents Rκ(z) and
◦
Rκ(z).

Hypothesis

σpp(K1) = ∅.

DIAS - December, 2008 NESS as adiabatic limit



We shall also need to consider
the ’bias’ with a fixed coupling constant κ ∈ [0, 1]
and define:

Kκ := H + κV ,

◦
Kκ :=

◦
H + κV ,

and their rezolvents Rκ(z) and
◦
Rκ(z).

Hypothesis

σpp(K1) = ∅.

DIAS - December, 2008 NESS as adiabatic limit



We shall also need to consider
the ’bias’ with a fixed coupling constant κ ∈ [0, 1]
and define:

Kκ := H + κV ,

◦
Kκ :=

◦
H + κV ,

and their rezolvents Rκ(z) and
◦
Rκ(z).

Hypothesis

σpp(K1) = ∅.

DIAS - December, 2008 NESS as adiabatic limit



The Main Result

Theorem

1 The limit ρη(t) := lim
s↘−∞

ρη(t, s) exists for any t ≤ 0,

in the strong operator topology on B(H),
uniformly with respect to η > 0.

2 The wave operator Ξ− associated to the pair {
◦
K 1,K1} exists

and is complete.

3 The limit lim
η↘0

ρη(t) exists

in the strong operator topology on B(H)
and we have the equality

s − lim
η↘0

ρη(t) =
(
Ξ−
)
ρ(
◦
H)
(
Ξ−
)∗
,

so that the ’asymptotic state’ is stationary.
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Proof of the main result
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Proof

The idea of the proof consists in a more detailed analysis of
the operator Ωη(t, s) = Wη(t, s)e i(t−s)H .

Using the decoupled evolution we may write

Ωη(t, s) = Wη(t, s)
◦

W η(t, s)∗
◦

W η(t, s)e i(t−s)
◦
He−i(t−s)

◦
He i(t−s)H =

= Wη(t, s)
◦

W η(t, s)∗×

×
h
1 + Π−

“
e iv−

R t
s
χ(ηu)du

”
+ Π+

“
e iv+

R t
s
χ(ηu)du

”i
×

×e−i(t−s)
◦
He i(t−s)H

We recall that we know that the above limit exists (even for
the uniform topology on B(H))
but not uniformly with respect to η > 0.
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Proof

Proposition A - The wave operator ω−

Let Eac(
◦
H) be the spectral projector of the self-adjoint

operator
◦
H on its subspace of absolute continuity.

Let ω− be the wave operator associated to the pair {H,
◦
H}.

Then ω− := s − lim
s↘−∞

e is
◦
He−isH exists and is complete.

Thus ω− = Eac(
◦
H)ω− and ∃s − lim

s↘−∞
e isHe−is

◦
HEac(

◦
H) = ω∗−.

Corollary

With the above notations we have (Π = Π± or Π0)

s − lim
s↘−∞

»
Wη(t, s)

◦
W η(t, s)∗Πe−i(t−s)

◦
He i(t−s)H −Wη(t, s)

◦
W η(t, s)∗ΠEac (

◦
H)ω−

–
= 0.
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Proof

Proposition B - The wave operator Ξη(t)

The following limit exists with respect to the strong operator
topology on B(H)
and uniformly with respect to η > 0:

s − lim
s↘−∞

Wη(t, s)
◦

W η(t, s)∗Eac(
◦
H) =: Ξη(t).

Corollary

we may conclude that (Π = Π± or Π0)

s − lim
s↘−∞

[
Wη(t, s)

◦
W η(t, s)∗Πe−i(t−s)

◦
He i(t−s)H − Ξη(t)ΠEac(

◦
H)ω−

]
= 0.
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Proof

Proposition C - The wave operator Ξη(t)∗

For any η > 0 the limit s − lim
s↘−∞

◦
W η(t, s)Wη(t, s)∗,

exists with respect to the strong operator topology on B(H),

and its image is contained in Eac(
◦
H)H.

For any η > 0, s − lim
s↘−∞

◦
W η(t, s)Wη(t, s)∗ = Eac(

◦
H)Ξη(t)∗

that will be an isometry.

Corollary

we may conclude that (Π = Π± or Π0)

s − lim
s↘−∞

[
e−i(t−s)He i(t−s)

◦
HΠWη(t, s)Wη(t, s)∗ − ω∗−Eac(

◦
H)ΠΞη(t)∗

]
= 0.
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◦
H)Ξη(t)∗

that will be an isometry.

Corollary

we may conclude that (Π = Π± or Π0)

s − lim
s↘−∞

[
e−i(t−s)He i(t−s)

◦
HΠWη(t, s)Wη(t, s)∗ − ω∗−Eac(

◦
H)ΠΞη(t)∗

]
= 0.
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Proof

Observing that

ω−ρ(H)ω∗− = ρ(
◦
H).

Commuting Π with ρ(
◦
H) and cancelling the terms with the

exponential factors.
we get

Conclusion 1

∃s − lim
s↘−∞

ρη(t, s), uniformly for η > 0.

We have the equality

ρη(t) = Ξη(t)ρ(
◦
H)Ξη(t)∗.
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Proof

Proposition D - The wave operator Ξ−

1 For any κ ∈ [0, 1] the following spectral projections coincide

Eac(
◦
Kκ) = Eac(

◦
H).

2 The following wave operators exist and are complete:

s − lim
s↘−∞

e−isK1e is
◦
K1Eac(

◦
H) =: Ξ−.

Proposition E - The adiabatic limit

The following limits exist with respect to the strong operator
topology on B(H) and we have the equalities:

s − lim
η↘0

Ξη(t)Eac(
◦
H) = Ξ−,

s − lim
η↘0

Ξη(t)∗ = Ξ∗−.
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Proof - Some remarks on
◦
H

σpp

( ◦
H
)

= σpp

(
Π0

◦
HΠ0

)
= σ

(
Π0

◦
HΠ0

)
⊂ R+,

σac

( ◦
H
)

= σac

(
Π−
◦
HΠ−⊕Π+

◦
HΠ+

)
= σ

(
Π−
◦
HΠ−⊕Π+

◦
HΠ+

)
= [0,∞).

σsc

( ◦
H
)

= ∅

Let {wn}n∈N be the orthonormal eigenbasis of LD in L2(D),

having eigenvalues {λn}n∈N, so that σpp

( ◦
H
)

= {λn}n∈N;

Let Pn be the 1-dimensional orthogonal projection on wn in H.

for z ∈ C \ [0,∞) we have
◦
R(z) = ⊕

n∈N

h`
l− − (z − λn)

´−1
π− ⊕

`
l+ − (z − λn)

´−1
π+

i
Pn

with π± : L2(R)→ L2(I±) the usual orthogonal projections.

the integral kernel of the rezolvent
(
l± − z)

)−1
has

exponential decay like e∓α(z)x for some α(z) > 0.
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Proof of Proposition A

Proposition A - The wave operator ω−

Let Eac(
◦
H) be the spectral projector of the self-adjoint

operator
◦
H on its subspace of absolute continuity.

Let ω− be the wave operator associated to the pair {H,
◦
H}.

Then ω− := s − lim
s↘−∞

e is
◦
He−isH exists and is complete.

Thus ω− = Eac(
◦
H)ω− and ∃s − lim

s↘−∞
e isHe−is

◦
HEac(

◦
H) = ω∗−.

Steps of the proof:

exponential decay

Hilbert Schmidt property

localization of R(z)−
◦
R(z)

application of Kuroda-Birman results.

DIAS - December, 2008 NESS as adiabatic limit



Proof of Proposition A

Proposition A - The wave operator ω−

Let Eac(
◦
H) be the spectral projector of the self-adjoint

operator
◦
H on its subspace of absolute continuity.

Let ω− be the wave operator associated to the pair {H,
◦
H}.

Then ω− := s − lim
s↘−∞

e is
◦
He−isH exists and is complete.

Thus ω− = Eac(
◦
H)ω− and ∃s − lim

s↘−∞
e isHe−is

◦
HEac(

◦
H) = ω∗−.

Steps of the proof:

exponential decay

Hilbert Schmidt property

localization of R(z)−
◦
R(z)

application of Kuroda-Birman results.

DIAS - December, 2008 NESS as adiabatic limit



Proof of Proposition A

Proposition A - The wave operator ω−

Let Eac(
◦
H) be the spectral projector of the self-adjoint

operator
◦
H on its subspace of absolute continuity.

Let ω− be the wave operator associated to the pair {H,
◦
H}.

Then ω− := s − lim
s↘−∞

e is
◦
He−isH exists and is complete.

Thus ω− = Eac(
◦
H)ω− and ∃s − lim

s↘−∞
e isHe−is

◦
HEac(

◦
H) = ω∗−.

Steps of the proof:

exponential decay

Hilbert Schmidt property

localization of R(z)−
◦
R(z)

application of Kuroda-Birman results.

DIAS - December, 2008 NESS as adiabatic limit



Proof of Proposition A

Proposition A - The wave operator ω−

Let Eac(
◦
H) be the spectral projector of the self-adjoint

operator
◦
H on its subspace of absolute continuity.

Let ω− be the wave operator associated to the pair {H,
◦
H}.

Then ω− := s − lim
s↘−∞

e is
◦
He−isH exists and is complete.

Thus ω− = Eac(
◦
H)ω− and ∃s − lim

s↘−∞
e isHe−is

◦
HEac(

◦
H) = ω∗−.

Steps of the proof:

exponential decay

Hilbert Schmidt property

localization of R(z)−
◦
R(z)

application of Kuroda-Birman results.

DIAS - December, 2008 NESS as adiabatic limit



Proof of Proposition A

Proposition A - The wave operator ω−

Let Eac(
◦
H) be the spectral projector of the self-adjoint

operator
◦
H on its subspace of absolute continuity.

Let ω− be the wave operator associated to the pair {H,
◦
H}.

Then ω− := s − lim
s↘−∞

e is
◦
He−isH exists and is complete.

Thus ω− = Eac(
◦
H)ω− and ∃s − lim

s↘−∞
e isHe−is

◦
HEac(

◦
H) = ω∗−.

Steps of the proof:

exponential decay

Hilbert Schmidt property

localization of R(z)−
◦
R(z)

application of Kuroda-Birman results.

DIAS - December, 2008 NESS as adiabatic limit



Proof of Proposition A

Proposition A - The wave operator ω−

Let Eac(
◦
H) be the spectral projector of the self-adjoint

operator
◦
H on its subspace of absolute continuity.

Let ω− be the wave operator associated to the pair {H,
◦
H}.

Then ω− := s − lim
s↘−∞

e is
◦
He−isH exists and is complete.

Thus ω− = Eac(
◦
H)ω− and ∃s − lim

s↘−∞
e isHe−is

◦
HEac(

◦
H) = ω∗−.

Steps of the proof:

exponential decay

Hilbert Schmidt property

localization of R(z)−
◦
R(z)

application of Kuroda-Birman results.

DIAS - December, 2008 NESS as adiabatic limit



Proof of Proposition A

Proposition A - The wave operator ω−

Let Eac(
◦
H) be the spectral projector of the self-adjoint

operator
◦
H on its subspace of absolute continuity.

Let ω− be the wave operator associated to the pair {H,
◦
H}.

Then ω− := s − lim
s↘−∞

e is
◦
He−isH exists and is complete.

Thus ω− = Eac(
◦
H)ω− and ∃s − lim

s↘−∞
e isHe−is

◦
HEac(

◦
H) = ω∗−.

Steps of the proof:

exponential decay

Hilbert Schmidt property

localization of R(z)−
◦
R(z)

application of Kuroda-Birman results.

DIAS - December, 2008 NESS as adiabatic limit



Proof of Proposition A - Exponential decay

For any α < α(z) let Ψα ∈ C∞(R) be such that

Ψα(x) ≥ 1, ∀x ∈ R; Ψα(x) = e±αx , ∀x ∈ I±,

|(∂Ψα)(x)| ≤ α, |(∂sΨα)(x)| ≤ C ,∀s ≥ 2, ∀x ∈ R.

Then Ψα(x) is invertible and Ψ−1
α ∈ Lk(R) for any k ≥ 1.

Lemma

For any α < α(z)

Ψα(Q1)
◦
HΨα(Q1)−1 =

◦
H +

◦
Tα; Ψα(Q1)HΨα(Q1)−1 = H + Tα

where for any k ≥ 1,
◦
Tα is a bounded operator

Hk(L−)⊕ Hk(C)⊕ Hk(L+) −→ Hk−1(L−)⊕ Hk−1(C)⊕ Hk−1(L+)

and Tα is a bounded operator Hk(L) −→ Hk−1(L).
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Proof of Proposition A - A Hilbert-Schmidt property

Thus the range of
◦
R(z)k and of Ψα(Q1)

◦
R(z)kΨα(Q1)−1 are

contained in H2k(L−)⊕ H2k(C)⊕ H2k(L+)
and the range of R(z) and of Ψα(Q1)R(z)kΨα(Q1)−1 are
contained in H2k(L), (using the Hypotheis on HC ).

Using the usual Sobolev embeding theorems we get:

Lemma

There exists kd ∈ N depending on the dimension d such that for
any z ∈ C \ [0,∞), any k ≥ kd , any α < α(z) and for any
measurable function w ∈ L2(R), we have that

w(Q1)
◦
R(z)k and w(Q1)Ψα(Q1)

◦
R(z)kΨα(Q1)−1 are

Hilbert-Schmidt operators on H;

w(Q1)R(z)k and w(Q1)Ψα(Q1)R(z)kΨα(Q1)−1 are
Hilbert-Schmidt operators on H.
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Proof of Proposition A - Difference of the rezolvents

The Hamiltonians H and
◦
H are two self-adjoint extensions of the

same symetric operator

K0,κ :=
(
−∆D

)
⊗ 1 + Π0HC Π0 : C∞0 (

◦
L− ∪

◦
C ∪

◦
L+)→ H.

Let K ∗0 be its adjoint. It extends both operators H and
◦
H so that[

R(z)−
◦
R(z)

]
H ⊂ Ker (K ∗0 − z) .

For elements u ∈ Ker (K ∗0 − z) the distribution K ∗0 u − zu has
support in the border D− ∪D+ and thus on L− ∪L+ it satisfies:

◦
∆D,±u = −(z − v±)u

with boundary condition u±|I±×∂D = 0.
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Proof of Proposition A - Difference of the rezolvents

We deduce

Proposition

For any fixed z ∈ C \ [0,∞) there exists γ0(z) > 0 such that for
0 < γ± ≤ γ0(z) we have:∥∥∥∥e±γ±Q1Π±

(
R(z)−

◦
R(z)

)∥∥∥∥ ≤ c,

Corollary

For any fixed z ∈ C \ [0,∞), for α < γ0(z), let µα be a strictly
positive smooth function such that µα(x) ≥ 1 for any x ∈ R and
µα(x) = e±αx for ±x ≥ 2a. Then∥∥∥∥µα(Q1)

(
R(z)−

◦
R(z)

)∥∥∥∥ ≤ c ,
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Proof of Proposition A - End

Proposition

There exists nd ∈ N depending on the dimension d such that for

z ∈ C \ [0,∞) and n ≥ nd we have
[
R(z)n −

◦
R(z)n

]
∈ B1(H).

Proof: For any p ∈ N:

R(z)p −
◦
R(z)p =

∑
0≤j≤p−1

R(z)j
(
R(z)−

◦
R(z)

) ◦
R(z)p−1−j .

If p ≥ 2kd + 1, then either j ≥ kd or p − j − 1 ≥ kd

so that each term is Hilbert-Schmidt by writing:

R(z)j
(
R(z)−

◦
R(z)

)
= R(z)jµα(Q1)−1µα(Q1)

(
R(z)−

◦
R(z)

)
or(
R(z)−

◦
R(z)

) ◦
R(z)p−j−1 =

(
R(z)−

◦
R(z)

)
µα(Q1)µα(Q1)−1

◦
R(z)p−j−1.
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Proof of Proposition A - End

If β > 0 such that α + β < min{α(z), γ0(z)} we conclude in a

similar way that µβ(Q1)

(
R(z)p −

◦
R(z)p

)
is also Hilbert-Schmidt.

Thus for p ≥ 2kd + 1 there exist a Hilbert-Schmidt operator Sp(z)

such that R(z)p =
◦
R(z)p + Sp(z),

µβ(Q1)Sp(z) is also Hilbert-Schmidt for β < min{α(z), γ0(z)}
and

R(z)2p =
◦
R(z)2p + Sp(z)

◦
R(z)p +

◦
R(z)pSp(z) + Sp(z)2.

Here the last three terms are obviously of trace-class due to the
properties of Sp(z). Thus we just have to take nd = 2(2kd + 1).

We can apply the usual Kato-Birman procedure.
�
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Proof of Proposition B

Proposition B - The wave operator Ξη(t)

The following limit exists with respect to the strong operator
topology on B(H)
and uniformly with respect to η > 0:

s − lim
s↘−∞

Wη(t, s)
◦

W η(t, s)∗Eac(
◦
H) =: Ξη(t).

Let us denote by Ξη(t, s) := Wη(t, s)
◦

W η(t, s)∗.
We have evidently:

σsc(
◦
Kκ) = ∅, Hac(

◦
Kκ) = H−⊕H+, Hpp(

◦
Kκ) = H0, ∀κ ∈ [0, 1],

σac(
◦
H) = [0,∞) has the set of thresholds T = σpp(LD).

For any δ > 0 let Vδ be the set of vectors f ∈ Hac(
◦
H) with

compact spectral support with respect to
◦
H at distance δ from all

the thresholds.
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Proof of Proposition B

If we denote by

Ψη(t, s) := Wη(t, s)

[(
Kη(s) + 1

)−1 −
( ◦
K η(s) + 1

)−1
]
◦

W η(t, s)∗

Φη(t, s) := Wη(t, s)
(
Kη(s) + 1

)−1( ◦
K η(s) + 1

)−1 ◦
W η(t, s)∗

we have that
Ξη(t, s) =

=
(
Kη(t) + 1

)−1( ◦
K η(t) + 1

)−1
+

+

∫ s

t
Ψη(t, u) du

( ◦
K η(s) + 1

)2 −Ψη(t, s)
( ◦
K η(s) + 1

)
.
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Proof of Proposition B

For f ∈ H− ∩ Vδ of the form f = v1 ⊗ w we have

‖Ψη(t, s)v‖ =

∥∥∥∥[(Kη(s) + 1
)−1 −

( ◦
K η(s) + 1

)−1
]
◦

W η(t, s)∗v

∥∥∥∥ ≤
≤
∥∥∥∥eγ−|Q1|Π−

(
Rχη(s) −

◦
Rχη(s)

)∥∥∥∥ ∥∥∥∥e−γ−|Q1|
◦

W η(t, s)∗v

∥∥∥∥ ≤
≤ cγ−

∥∥∥∥e−γ−|Q1|e i(t−s)
◦
Hv

∥∥∥∥ .
But e i(t−s)

◦
Hv = e i(t−s)l−v1 ⊗ e i(t−s)LDw

where
∥∥e i(t−s)LDw

∥∥ = ‖w‖
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Proof of Proposition B

For t ≥ t0 > 0 with t0

√
δ ≥ 2x , for any N ∈ N, by integration by

parts: ∣∣∣(e itl−v1

)
(x)
∣∣∣ =

∣∣∣∣∣
∫
|k|≥
√
δ
dk e i(tk2+kx)v̂1(k)

∣∣∣∣∣ ≤
≤ CN(t

√
δ − |x |)−N‖l1+(N/2)

− v1‖2.

Thus, for t ≥ t0 > 0, and N ∈ N there exists CN > 0 such that∥∥∥∥e−γ−|Q1|e it
◦
Hv

∥∥∥∥2

2

≤

≤ CN‖w‖
2
2

(Z −(t
√
δ)/2

−∞
dx e
−2γ−|x|

˛̨̨`
e
itl− v1

´
(x)

˛̨̨2
+

Z 0

−(t
√
δ)/2

dx e
−2γ−|x|

˛̨̨`
e
itl− v1

´
(x)

˛̨̨2)
≤

≤ 2CN t−2N‖w‖2
2

`√
δ
´−2N

‚‚‚< Q1 >
2+N e

−γ−|Q1|e itl− v1

‚‚‚2

2
+
`√
δ/2
´−2N‖l1+(N/2)

− v1‖
2
2

ff
≤

≤ C ′N,γ−t−2N
(√
δ
)−2N‖(l1+(N/2)

− ⊗ 1)v‖2
2.
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Proof of Proposition B

We conclude that:

∀t ≤ 0, s − lim
s↘−∞

Ψη(t, s) = 0;

(taking N ≥ 1) the function Ψη(t, u) is integrable in norm on
u ∈ (−∞, 0];

the following limit Φη(t,−∞) := s − lim
t↘−∞

Φη(t, s) exists.

Conclusion

∃ Ξη(t) := s − lim
s↘−∞

Ξη(t, s) =

=
(
Kη(t) + 1

)−1( ◦
K η(t) + 1

)−1
+ Φη(t,−∞)

( ◦
H + 1

)2
,

uniformly with respect to η > 0.
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Proof of Proposition C

Proposition C - The wave operator Ξη(t)∗

For any η > 0 the limit s − lim
s↘−∞

◦
W η(t, s)Wη(t, s)∗,

exists with respect to the strong operator topology on B(H),

and its image is contained in Eac(
◦
H)H.

For any η > 0, s − lim
s↘−∞

◦
W η(t, s)Wη(t, s)∗ = Eac(

◦
H)Ξη(t)∗

that will be an isometry.

We may write:
◦

W η(t, s)Wη(t, s)∗ =

=
◦

W η(t, s)e i(t−s)
◦
He−i(t−s)

◦
He i(t−s)He−i(t−s)HWη(t, s)∗ =

=
[
1 + Π−

(
e iv−

R t
s

χ(ηu)du
)

+ Π+

(
e iv+

R t
s

χ(ηu)du
)]
×

×
(

e−i(t−s)
◦
He i(t−s)H

)(
e−i(t−s)HWη(t, s)∗

)
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Proof of Proposition C

Remark that:

at fixed η > 0 the first factor converges in operator norm to[
1 + Π−

(
e iv−

R t
−∞ χ(ηu)du

)
+ Π+

(
e iv+

R t
−∞ χ(ηu)du

)]
;

(χ is supposed integrable; convergence not uniform in η)

the middle factor converges strongly to ω− and has the range

included in Eac(
◦
H)H (Proposition A);

the first factor leaves Eac(
◦
H)H invariant;

the last factor converges in operator norm to Ωη(t)∗.
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Proof of Proposition C

Let us denote by Ξη(t, s) := Wη(t, s)
◦

W η(t, s)∗Eac(
◦
H).

Then from Proposition B we know that there exists

s − lim
s↘−∞

Ξη(t, s) = Ξη(t)

and hence also

w − lim
s↘−∞

Ξη(t, s)∗ = Ξη(t)∗.

Now, If we denote by Θη(t, s) :=
◦

W η(t, s)Wη(t, s)∗,

we observe that Ξη(t, s)∗ = Eac(
◦
H)Θη(t, s)

and we proved that ∃s − lim
s↘−∞

Θη(t, s) =: Θη(t) = Eac(
◦
H)Θη(t).

Thus Θη(t) = Ξη(t)∗,
which being the strong limit of unitary operators is an isometry.
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Proof of Proposition D

Proposition D - The wave operator Ξ−

1 For any κ ∈ [0, 1] the following spectral projections coincide

Eac(
◦
Kκ) = Eac(

◦
H).

2 The following wave operators exist and are complete:

s − lim
s↘−∞

e−isK1e is
◦
K1Eac(

◦
H) =: Ξ−.

The first point is evident.
Let us consider the second point.
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Proof of Proposition D

Lemma 1

σsc(K1) = ∅

For s > 1/2 let us consider < Q1 >
−s R1(z) < Q1 >

−s

that we shall compare with a ’quasi-decoupled’ rezolvent.
We introduce a quadratic partition of the unity:

χ2
− + χ2

0 + χ2
+ = 1, χ±,∈ C∞(R),

χ±(x) = 1 for ± x > 2a, χ±(x) = 0 for ± x < a

χ0,∈ C∞(R), χ0(x) = 0 for |x | > 2a, χ0(x) = 1 for |x | < a,

and the operator: R̃1(z) :=

= χ−(Q1)
◦
R1(z)χ−(Q1)+χ0(Q1)S(z)χ(Q1)+χ+(Q1)

◦
R1(z)χ+(Q1),
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Proof of Proposition D

S(z) is the rezolvent of the operator K1,L, that is just K1 with
Dirichlet boundary conditions on some L > 2a; it clearly has
an analytic extension to the plane C \N with N ⊂ R+ the
discret set of eigenvalues of K1,L.

On the range of χ±(Q1) the operators K1 and
◦
K 1 coincide.

On the range of χ0(Q1) the operators K1 and K1,L coincide.

Thus we can write (K1 − z)R̃1(z) = 1 + X (z) with X (z)
containing on the left side only commutators that have
compact support in x ∈ R.
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Proof of Proposition D

In conclusion
< Q1 >

−s R1(z) < Q1 >
−s=

=< Q1 >
−s R̃1(z) < Q1 >

−s [1− < Q1 >
s X (z)]−1

and we can use the analytic Frdholm alternative on any open set
{x + iy |x ∈ I , 0 < y < δ}
for intervals I ⊂ R+ \ ({0} ∪N ∪ σpp(LD)))

and the continuity to the border of < Q1 >
−s
◦
R1(z) < Q1 >

−s

(the limiting absorption principle for the Laplace operator)
to obtain

LAP for K1

The Hamiltonian K1 has no singular spectrum,
and its rezolvent verifies the estimation (for any s > 1/2)

sup
z∈{x+iy |x∈I ,0<y<δ}

∥∥< Q1 >
−s R1(z) < Q1 >

−s
∥∥ ≤ C (I , δ, s) <∞.
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Proof of Proposition D

We remark that the perturbation V is still relatively bounded
with respect to H with 0 relative bound but it is no longer
relatively compact with respect to H and its commutator with
H defined as a sesquilinear form on the domain HD(L)⊗K of
H is singular.

Nevertheless (V commuting with
◦
H),

the exponential decay for
◦
R1(z),

the Hilbert-Schmidt property similar to that of
◦
R(z),

and the exponential decay of the difference of the rezolvents,
can stil be obtained by the same argument as in the proof of
Proposition A.
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Proof of Proposition D

We shall consider a modified potential Ṽ (Q1)
with Ṽ ∈ C∞(R) and V (x) = v± for x ± x > (a/2)

and the rezolvents R̃1(z) and
◦
R̃1(z) associated to the

Hamiltonians H + Ṽ and
◦
H.

To this pair we can apply exactly the arguments used for the pair

H and
◦
H in order to get

Proposition

There exists k ′d ∈ N depending on the dimension d such that for

any z ∈ C \ [0,∞) and any k ≥ k ′d we have that w(Q1)R̃1(z)k ,

w(Q1)
◦
R̃1(z)k and w(Q1)Ψα(Q1)R̃1(z)kΨα(Q1)−1,

w(Q1)Ψα(Q1)
◦
R̃1(z)kΨα(Q1)−1 with α < α(z), are

Hilbert-Schmidt operators on H for any measurable function
w ∈ L2(R).
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Proof of Proposition D

The arguments used in the proof of Proposition A may be repeated
identically to get

proposition

Let z ∈ C \ [0,∞) and γ± ∈ R+ \ {0} be such that
0 < γ± ≤ γ0(z), then we have:∥∥∥∥∥e±γ±Q1Π±

(
R̃1(z)−

◦
R̃1(z)

)∥∥∥∥∥ ≤ c ,

∥∥∥∥∥µα(Q1)
(
R̃1(z)−

◦
R̃1(z)

)∥∥∥∥∥ ≤ c ,

where for α < γ0(z), µα is a strictly positive smooth function such
that µα(x) ≥ 1 for any x ∈ R and µα(x) = e±αx for ±x ≥ 2a.
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Proof of Proposition D

Thus we can use the Kuroda-Birman theory to get the existence
and asymptotic completness of the wave operators for the pait of

Hamiltonians {H + Ṽ ,
◦
H + Ṽ }.

Now we observe that Eac(
◦
H + V ) = Eac(

◦
H + Ṽ ) = Eac(

◦
H)

and moreover

e it(
◦
H+eV )Eac(

◦
H) = e it(

◦
H+V )Eac(

◦
H)

so that we deduce the existence and asymptotic completness of

the wave operators for the pair {H + Ṽ ,
◦
H + V }.

Now using Proposition LAP-K1 and the fact that
K1 − (H + Ṽ (Q1) = w(Q1) a bounded function with compact
support, we conclude that the wave operators for the pair
{K1,H + Ṽ } also exist and are complete.
Puting these results together we get the existence and asymptotic

completness of the wave operators for the pair {K1,
◦
K 1} and thus

we end the proof of Proposition D.
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H + Ṽ }.

Now we observe that Eac(
◦
H + V ) = Eac(

◦
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Proof of Proposition E

Proposition E - The adiabatic limit

The following limits exist with respect to the strong operator
topology on B(H) and we have the equalities:

s − lim
η↘0

Ξη(t)Eac(
◦
H) = Ξ−,

s − lim
η↘0

Ξη(t)∗ = Ξ∗−.

We shall first consider the limit η ↘ 0 for the operators Ξη(t).
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Proof of Proposition E

All the estimations in the proof of Proposition B have been
independent of the value of η > 0 and we deduce that the limit
s − lim
s↘−∞

Φη(t, s) is uniform in η > 0.

Repeating the arguments in the proof of Proposition B we denote
by

Ξ1(t) = e−itK1e it
◦
K1 ,

and can write

Ξ1(t) =
(
K1+1

)−1( ◦
K 1+1

)
u+

∫ t

0
Ψ(s) ds

( ◦
K 1+1

)2
u−Ψ(t)

( ◦
K 1+1

)
.

With similar notations:

Ψ(t) := e−itK1

[(
K1 + 1

)−1 −
( ◦
K 1 + 1

)−1
]

e it
◦
K1

Φ(t) := e−itK1
(
K1 + 1

)−1( ◦
K 1 + 1

)−1
e it
◦
K1 .
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Proof of Proposition E

We repeat the same arguments of the proof of Proposition B to
prove that the right-hand side has a strong limit for t ↘ −∞,

while due to Proposition D the left-hand side has strong limit Ξ−.
Starting from the usual approximation of the non-homogeneous
propagator by products of unitary groups associated to
Hamiltonians at sets of fixed points during the evolution it is easy
to see that for any fixed s ≤ t ≤ 0 we have

s − lim
η↘0

Ψη(t, s) = Ψ(t − s)

and this finishes the first part of the Proposition E, concerning the
strong limit of Ξη(t) for η ↘ 0.
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Proof of Proposition E

To finish our proof we have to control the limit for η ↘ 0 of the
adjoints Ξη(t)∗.

We have just seen that s − lim
η↘0

Ξη(t) = Ξ−.

Thus w − lim
η↘0

Ξη(t)∗ = Ξ∗−.

The completness of the wave operator Ξ− (Proposition B)

implies Ξ∗− = s − lim
η↘0

e−is
◦
K1e isK1

Thus Ξ∗− is an isometry.

Now, if the weak limit of a family of operators with norms
bounded by 1 is an isometry, then for any f ∈ H∥∥[Ξ∗− − Ξη(t)∗

]
f
∥∥
H ≤ 2‖f ‖H − 2<

( 〈
Ξ∗−f ,Ξη(t)∗f

〉 )
→ 0

Thus we have strong convergence of Ξη(t)∗ to Ξ∗− when η ↘ 0.
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