NESS as adiabatic limit on the potential bias

Radu Purice Based on work in collaboration with Horia Cornean, Pierre Duclos and Gheorghe Nenciu

Workshop on *Mathematical aspects of transport in mesoscopic systems*Dublin Institute for Advanced Studies

December 4-7, 2008

Introduction

In a a previous paper:

H. Cornean, P. Duclos, Gh. Nenciu, R. Purice:

Adiabatically switched-on electrical bias and the LandauerBttiker formula, Journal of Mathematical Physics 49 (2008), 20 pp.

Introduction

In a a previous paper:

H. Cornean, P. Duclos, Gh. Nenciu, R. Purice: Adiabatically switched-on electrical bias and the LandauerBttiker formula, Journal of Mathematical Physics 49 (2008), 20 pp.

we have studied the linear response approximation for the electric curent appearing in a system composed of two conductors communicating through a 'small' sample, when a potential difference is applied adiabatically on the two conductors.

Introduction

Now, our problem is to prove the existence of a stationary limit state for the same problem.

Plan of the talk

- The System
- The Adiabatic Limit
- Proof of the Main Result

We consider a sample connected to two semi-infinite cylindrical conductors, in which a gas of non-interacting electrons is moving.

We consider a sample connected to two semi-infinite cylindrical conductors, in which a gas of non-interacting electrons is moving.

The configuration space is

$$\mathcal{L} := [\mathcal{I}_{-} \times \mathfrak{D}] \cup \mathcal{C} \cup [\mathcal{I}_{+} \times \mathfrak{D}],$$

We consider a sample connected to two semi-infinite cylindrical conductors, in which a gas of non-interacting electrons is moving.

The configuration space is

$$\boldsymbol{\mathcal{L}} := \begin{bmatrix} \boldsymbol{\mathcal{I}}_- \times \boldsymbol{\mathfrak{D}} \end{bmatrix} \cup \boldsymbol{\mathcal{C}} \cup \begin{bmatrix} \boldsymbol{\mathcal{I}}_+ \times \boldsymbol{\mathfrak{D}} \end{bmatrix},$$

where:

- ② $\mathfrak{D} \subset \mathbb{R}^d$ is a bounded open set awith regular boundary $\partial \mathfrak{D}$,
- **3** $\mathcal{C} \subset \mathbb{R}^{d+1}$ is bounded and satisfies: $[-a, a] \times \mathfrak{D} \subset \mathcal{C}$,

$$[\{-a\}\times\mathfrak{D}\cup\{a\}\times\mathfrak{D}]\subset\partial\mathcal{C},$$

$$\mathbf{\Sigma} := \big[\mathbf{\mathcal{I}}_{-} \times (\partial \mathfrak{D}) \big] \cup \big[\partial \mathbf{\mathcal{C}} \setminus (\{-a\} \times \mathfrak{D} \cup \{a\} \times \mathfrak{D}) \big] \cup \big[\mathbf{\mathcal{I}}_{+} \times (\partial \mathfrak{D}) \big]$$

is a regular surface in \mathbb{R}^{d+1} .

• Each electron moves free in each conductor $\mathcal{L}_{\pm} := \mathcal{I}_{\pm} \times \mathfrak{D}$, with Dirichlet boundary conditions on $\mathcal{I}_{\pm} \times (\partial \mathfrak{D})$.

- Each electron moves free in each conductor $\mathcal{L}_{\pm} := \mathcal{I}_{\pm} \times \mathfrak{D}$, with Dirichlet boundary conditions on $\mathcal{I}_{\pm} \times (\partial \mathfrak{D})$.
- ullet To the sample ${\cal C}$ we associate

- Each electron moves free in each conductor $\mathcal{L}_{\pm} := \mathcal{I}_{\pm} \times \mathfrak{D}$, with Dirichlet boundary conditions on $\mathcal{I}_{\pm} \times (\partial \mathfrak{D})$.
- ullet To the sample ${\cal C}$ we associate
 - a sample Hilbert space K of finite dimension k_C ,

- Each electron moves free in each conductor $\mathcal{L}_{\pm} := \mathcal{I}_{\pm} \times \mathfrak{D}$, with Dirichlet boundary conditions on $\mathcal{I}_{\pm} \times (\partial \mathfrak{D})$.
- ullet To the sample ${\cal C}$ we associate
 - a sample Hilbert space K of finite dimension k_C ,
 - an electron-sample interaction $\mathfrak{H}_{\mathcal{C}}$ defined as a bounded self-adjoint operator on $L^2(\mathcal{C}) \otimes \mathcal{K}$

- Each electron moves free in each conductor $\mathcal{L}_{\pm} := \mathcal{I}_{\pm} \times \mathfrak{D}$, with Dirichlet boundary conditions on $\mathcal{I}_{\pm} \times (\partial \mathfrak{D})$.
- ullet To the sample ${\cal C}$ we associate
 - a sample Hilbert space K of finite dimension k_C ,
 - an electron-sample interaction $\mathfrak{H}_{\mathcal{C}}$ defined as a bounded self-adjoint operator on $L^2(\mathcal{C}) \otimes \mathcal{K}$
 - (it may contain a term of multiplication with a potential $w \in C_c^{\infty}(\mathcal{C})$, smooth functions with compact support)

- Each electron moves free in each conductor $\mathcal{L}_{\pm} := \mathcal{I}_{\pm} \times \mathfrak{D}$, with Dirichlet boundary conditions on $\mathcal{I}_{\pm} \times (\partial \mathfrak{D})$.
- ullet To the sample ${\cal C}$ we associate
 - a sample Hilbert space K of finite dimension k_C ,
 - an electron-sample interaction $\mathfrak{H}_{\mathcal{C}}$ defined as a bounded self-adjoint operator on $L^2(\mathcal{C}) \otimes \mathcal{K}$ (it may contain a term of multiplication with a potential $w \in C_c^{\infty}(\mathcal{C})$, smooth functions with compact support)

We shall suppose that $\mathfrak{H}_C \geq 0$ (by just adding a constant term)

The Hilbert Space

$$\mathcal{H}:=L^2(\mathcal{L})\otimes\mathcal{K}$$

The Hilbert Space

$$\mathcal{H}:=L^2(\mathcal{L})\otimes\mathcal{K}$$

The Hilbert Space

$$\mathcal{H}:=L^2(\mathcal{L})\otimes\mathcal{K}$$

- $\Pi_-: \mathcal{H} \to \mathcal{H}_- := L^2(\mathcal{I}_- \times \mathfrak{D}) \otimes \mathcal{K}$,
- $\Pi_+: \mathcal{H} \to \mathcal{H} + := L^2(\mathcal{I}_+ \times \mathfrak{D}) \otimes \mathcal{K}$,
- $\Pi_0: \mathcal{H} \to \mathcal{H}_0 := L^2(\mathcal{C}) \otimes \mathcal{K}$,

The Hilbert Space

$$\mathcal{H}:=L^2(\mathcal{L})\otimes\mathcal{K}$$

- $\Pi_-: \mathcal{H} \to \mathcal{H}_- := L^2(\mathcal{I}_- \times \mathfrak{D}) \otimes \mathcal{K}$,
- $\Pi_+: \mathcal{H} \to \mathcal{H} + := L^2(\mathcal{I}_+ \times \mathfrak{D}) \otimes \mathcal{K}$,
- $\Pi_0: \mathcal{H} \to \mathcal{H}_0 := L^2(\mathcal{C}) \otimes \mathcal{K}$,
- Let $H_0^1(\mathcal{L})$ and $H^2(\mathcal{L})$ be the usual Sobolev spaces on the open domain $\mathcal{L} \subset \mathbb{R}^{d+1}$.

The Hilbert Space

$$\mathcal{H} := L^2(\mathcal{L}) \otimes \mathcal{K}$$

- $\Pi_-: \mathcal{H} \to \mathcal{H}_- := L^2(\mathcal{I}_- \times \mathfrak{D}) \otimes \mathcal{K}$,
- $\Pi_+: \mathcal{H} \to \mathcal{H} + := L^2(\mathcal{I}_+ \times \mathfrak{D}) \otimes \mathcal{K}$,
- $\Pi_0: \mathcal{H} \to \mathcal{H}_0 := L^2(\mathcal{C}) \otimes \mathcal{K}$,
- Let $H_0^1(\mathcal{L})$ and $H^2(\mathcal{L})$ be the usual Sobolev spaces on the open domain $\mathcal{L} \subset \mathbb{R}^{d+1}$.
- Let $-\Delta_D$ be the Laplace operator on \mathcal{L} with Dirichlet boundary conditions on Σ

The Hilbert Space

$$\mathcal{H}:=L^2(\mathcal{L})\otimes\mathcal{K}$$

- $\Pi_-: \mathcal{H} \to \mathcal{H}_- := L^2(\mathcal{I}_- \times \mathfrak{D}) \otimes \mathcal{K}$,
- $\Pi_+: \mathcal{H} \to \mathcal{H} + := L^2(\mathcal{I}_+ \times \mathfrak{D}) \otimes \mathcal{K},$
- $\Pi_0: \mathcal{H} \to \mathcal{H}_0 := L^2(\mathcal{C}) \otimes \mathcal{K}$,
- Let $H_0^1(\mathcal{L})$ and $H^2(\mathcal{L})$ be the usual Sobolev spaces on the open domain $\mathcal{L} \subset \mathbb{R}^{d+1}$.
- Let $-\Delta_D$ be the Laplace operator on \mathcal{L} with Dirichlet boundary conditions on Σ and having the domain $\mathbb{H}_D(\mathcal{L}) := H_0^1(\mathcal{L}) \cap H^2(\mathcal{L})$

• Due to our assumption the perturbation, $\Pi_0 \mathfrak{H}_C \Pi_0$ is relatively bounded with bound 0 with respect to $\Delta_D \otimes 1$.

- Due to our assumption the perturbation, $\Pi_0 \mathfrak{H}_C \Pi_0$ is relatively bounded with bound 0 with respect to $\Delta_D \otimes 1$.
- The one-particle Hamiltonian

- Due to our assumption the perturbation, $\Pi_0 \mathfrak{H}_C \Pi_0$ is relatively bounded with bound 0 with respect to $\Delta_D \otimes 1$.
- The one-particle Hamiltonian is of the form:

$$H := (-\Delta_D) \otimes 1 + \Pi_0 \mathfrak{H}_C \Pi_0$$

acting on $\mathcal{H}:=L^2(\mathcal{L})\otimes\mathcal{K}$, with domain

$$\mathbb{H}_D(\mathcal{L}) := H_0^1(\mathcal{L}) \cap H^2(\mathcal{L})$$

- Due to our assumption the perturbation, $\Pi_0 \mathfrak{H}_C \Pi_0$ is relatively bounded with bound 0 with respect to $\Delta_D \otimes 1$.
- The one-particle Hamiltonian is of the form:

$$H := (-\Delta_D) \otimes 1 + \Pi_0 \mathfrak{H}_C \Pi_0$$

acting on $\mathcal{H}:=L^2(\mathcal{L})\otimes\mathcal{K}$, with domain

$$\mathbb{H}_D(\mathcal{L}) := H_0^1(\mathcal{L}) \cap H^2(\mathcal{L})$$

Hypothesis 1

We shall suppose that $\sigma(H) = \sigma_{ac}(H)$.

- Due to our assumption the perturbation, $\Pi_0 \mathfrak{H}_C \Pi_0$ is relatively bounded with bound 0 with respect to $\Delta_D \otimes 1$.
- The one-particle Hamiltonian is of the form:

$$H := (-\Delta_D) \otimes 1 + \Pi_0 \mathfrak{H}_C \Pi_0$$

acting on $\mathcal{H}:=L^2(\mathcal{L})\otimes\mathcal{K}$, with domain

$$\mathbb{H}_D(\mathcal{L}) := H_0^1(\mathcal{L}) \cap H^2(\mathcal{L})$$

Hypothesis 1

We shall suppose that $\sigma(H) = \sigma_{ac}(H)$.

• We denote by R(z) the rezolvent of H.

Hypothesis 2

We shall suppose that all the iterated commutators of the form

$$\left[Q_1, \left[Q_1, \dots \left[Q_1, \Pi_0 \mathfrak{H}_C \Pi_0\right] \dots\right]\right]$$

$$[P_1, [P_1, \dots [P_1, \Pi_0 \mathfrak{H}_C \Pi_0] \dots]]$$

are bounded operators in \mathcal{H} .

Hypothesis 2

We shall suppose that all the iterated commutators of the form

$$\begin{bmatrix} Q_1, [Q_1, \dots [Q_1, \Pi_0 \mathfrak{H}_C \Pi_0] \dots] \end{bmatrix}$$
$$\begin{bmatrix} P_1, [P_1, \dots [P_1, \Pi_0 \mathfrak{H}_C \Pi_0] \dots] \end{bmatrix}$$

are bounded operators in \mathcal{H} .

We denoted by Q_1 the operator of multiplication with the variable $x\in\mathbb{R}$ on \mathcal{H} and by $P_1:=-i\partial_x$

We consider that an electric voltage is aplied adiabatically on the two conductors starting at time $s=-\infty$.

We consider that an electric voltage is aplied adiabatically on the two conductors starting at time $s=-\infty$.

• $v_{\pm} \in \mathbb{R}, \ V := v_{-}\Pi_{-} + v_{+}\Pi_{+}.$

We consider that an electric voltage is aplied adiabatically on the two conductors starting at time $s=-\infty$.

- $v_{\pm} \in \mathbb{R}$, $V := v_{-}\Pi_{-} + v_{+}\Pi_{+}$.
- χ a strictly increasing function in $C^{\infty}(\mathbb{R}_{-})$ such that $0 < \chi(t) < 1$; for any $\eta > 0$ let $\chi_{\eta}(t) := \chi(\eta t)$.

We consider that an electric voltage is aplied adiabatically on the two conductors starting at time $s=-\infty$.

- $v_{\pm} \in \mathbb{R}$, $V := v_{-}\Pi_{-} + v_{+}\Pi_{+}$.
- χ a strictly increasing function in $C^{\infty}(\mathbb{R}_{-})$ such that $0 < \chi(t) < 1$; for any $\eta > 0$ let $\chi_{\eta}(t) := \chi(\eta t)$.
- $\bullet V_{\eta}(t) := \chi_{\eta}(t)V.$

We consider that an electric voltage is aplied adiabatically on the two conductors starting at time $s=-\infty$.

- $v_{\pm} \in \mathbb{R}, \ V := v_{-}\Pi_{-} + v_{+}\Pi_{+}.$
- χ a strictly increasing function in $C^{\infty}(\mathbb{R}_{-})$ such that $0 < \chi(t) < 1$; for any $\eta > 0$ let $\chi_{\eta}(t) := \chi(\eta t)$.
- $V_{\eta}(t) := \chi_{\eta}(t)V$.

The time-dependent Hamiltonian

$$K_{\eta}(t) := H + V_{\eta}(t)$$

with domain

$$\mathbb{H}_D(\mathcal{L}) := H_0^1(\mathcal{L}) \cap H^2(\mathcal{L})$$

The non-homogenous evolution

For $-\infty < s \le t \le 0$, the unitary propagator $W_{\eta}(t,s)$ solution of the Cauchy problem:

$$i\partial_t W_\eta(t,s) = K_\eta(t) W_\eta(t,s) \ W_\eta(s,s) = 1$$

The non-homogenous evolution

For $-\infty < s \le t \le 0$, the unitary propagator $W_{\eta}(t,s)$ solution of the Cauchy problem:

$$i\partial_t W_\eta(t,s) = K_\eta(t) W_\eta(t,s) \ W_\eta(s,s) = 1$$

For any $\eta>0$ the family $\{K_{\eta}(t)\}_{t\in\mathbb{R}}$ are self-adjoint operators in \mathcal{H} , having a common domain equal to $\mathbb{H}_D(\mathcal{L})\otimes\mathcal{K}$ and depending differentiable on $t\in\mathbb{R}$ with a bounded self-adjoint norm derivative

$$\partial_t K_{\eta}(t) = \eta \chi(\eta t) V.$$

We consider that in the remote past, $t\to -\infty$, the electron gas has no self-interactions and is in equilibrium at a temperature T and a chemical potential, μ , moving in all the volume $\mathcal L$

We consider that in the remote past, $t \to -\infty$, the electron gas has no self-interactions and is in equilibrium at a temperature T and a chemical potential, μ , moving in all the volume $\mathcal L$

Thus it is described by a quasi-free state having as two-point function the usual Fermi-Dirac density at temperature T and chemical potential μ :

$$\rho(E) := \frac{1}{1 + e^{(E-\mu)/kT}}$$

applied to the total Hamiltonian $H = (-\Delta_D) \otimes 1 + \Pi_0 \mathfrak{H}_C \Pi_0$.

Initial state at
$$t = -\infty$$
: $\rho(H)$.

The state at time $t \in \mathbb{R}_{-}$

$$\rho_{\eta}(t) := \underset{s \searrow -\infty}{s - \lim} W_{\eta}(t,s) \rho(H) W_{\eta}(t,s)^*.$$

The state at time $t \in \mathbb{R}_{-}$

$$\rho_{\eta}(t) := \underset{s \searrow -\infty}{s - \lim} W_{\eta}(t,s) \rho(H) W_{\eta}(t,s)^*.$$

Remarks:

The state at time $t \in \mathbb{R}_{-}$

$$ho_{\eta}(t) := \underset{s \searrow -\infty}{s - \lim} W_{\eta}(t,s)
ho(H) W_{\eta}(t,s)^*.$$

Remarks:

•
$$\rho(H) = e^{i(t-s)H}\rho(H)e^{-i(t-s)H}$$

The state at time $t \in \mathbb{R}_{-}$

$$ho_{\eta}(t) := \underset{s \searrow -\infty}{s - \lim} W_{\eta}(t,s)
ho(H) W_{\eta}(t,s)^*.$$

Remarks:

- $\rho(H) = e^{i(t-s)H}\rho(H)e^{-i(t-s)H}$
- ullet Let us define $\Omega_{\eta}(t,s):=W_{\eta}(t,s)e^{i(t-s)H}$

200

The state at time $t \in \mathbb{R}_{-}$

$$\rho_{\eta}(t) := s - \lim_{s \to -\infty} W_{\eta}(t,s) \rho(H) W_{\eta}(t,s)^*.$$

Remarks:

- $\rho(H) = e^{i(t-s)H}\rho(H)e^{-i(t-s)H}$
- Let us define $\Omega_{\eta}(t,s) := W_{\eta}(t,s)e^{i(t-s)H}$

200

The state at time $t \in \mathbb{R}_{-}$

$$ho_{\eta}(t) := \underset{s \searrow -\infty}{\mathsf{s} - \lim} W_{\eta}(t,s)
ho(\mathsf{H}) W_{\eta}(t,s)^*.$$

Remarks:

- $\rho(H) = e^{i(t-s)H}\rho(H)e^{-i(t-s)H}$
- Let us define $\Omega_{\eta}(t,s) := W_{\eta}(t,s)e^{i(t-s)H}$
- $oldsymbol{\circ}$ so that: $ho_{\eta}(t) := s \lim_{s \searrow -\infty} \Omega_{\eta}(t,s)
 ho(\mathcal{H}) \Omega_{\eta}(t,s)^*.$

Proposition

The following limit exists

$$\Omega_{\eta}(t) := s - \lim_{s \searrow -\infty} \Omega_{\eta}(t,s).$$

but, not uniformly with respect to η .

19 Q C

Proof of the Proposition:

Let us write the equation in integral form:

$$\Omega_{\eta}(t,s) = 1 + i \int_{s}^{t} \chi(\eta r) \Omega_{\eta}(t,r) e^{i(r-t)H} V(Q) e^{-i(r-t)H} dr$$

so that

$$\|\Omega_{\eta}(t,s_1) - \Omega_{\eta}(t,s_2)\| \le \int_{s_2}^{s_1} \chi(\eta r) \|V(Q)\| dr$$

verifying thus the Cauchy criterion for convergence with respect to the uniform topology on $\mathbb{B}[\mathcal{H}]$ due to the integrability of χ .

In oredr to study the limit for $\eta \searrow 0$ we shall introduce some new wave operators associated to other pairs of Hamiltonians defined by decoupling the system at $x=\pm a$ by imposing Dirichelt conditions on \mathcal{D}_{+} .

In oredr to study the limit for $\eta \searrow 0$ we shall introduce some new wave operators associated to other pairs of Hamiltonians defined by decoupling the system at $x=\pm a$ by imposing Dirichelt conditions on \mathcal{D}_{\pm} .

This trick will allow us to compare in a more precise way the asymptotic evolution $W_{\eta}(t,s)$ with the one associated to the Hamiltonian H.

The Adiabatic Limit

We shall denote by:

$$ullet$$
 $\mathbb{H}_D(\mathcal{L}) := \mathbb{H}_D(\mathcal{L}_-) \oplus \mathbb{H}_D(\mathcal{C}) \oplus \mathbb{H}_D(\mathcal{L}_+);$ where

$$\mathbb{H}_D(\mathcal{L}_\pm) := H^1_0(\mathcal{L}_\pm) \cap H^2(\mathcal{L}_\pm); \ \mathbb{H}_D(\mathcal{C}) := H^1_0(\mathcal{C}) \cap H^2(\mathcal{C})$$

We shall denote by:

 $\bullet \ \mathbb{H}_D(\boldsymbol{\mathcal{L}}) := \mathbb{H}_D(\boldsymbol{\mathcal{L}}_-) \oplus \mathbb{H}_D(\boldsymbol{\mathcal{C}}) \oplus \mathbb{H}_D(\boldsymbol{\mathcal{L}}_+); \text{ where }$

$$\mathbb{H}_D(\boldsymbol{\mathcal{L}}_\pm) := H^1_0(\boldsymbol{\mathcal{L}}_\pm) \cap H^2(\boldsymbol{\mathcal{L}}_\pm); \ \mathbb{H}_D(\boldsymbol{\mathcal{C}}) := H^1_0(\boldsymbol{\mathcal{C}}) \cap H^2(\boldsymbol{\mathcal{C}})$$

• $\mathring{\Delta}_D : \overset{\circ}{\mathbb{H}}_D(\mathcal{L}) \to L^2(\mathcal{L})$ the self-adjoint Laplace operator with Dirichlet conditions on $\partial \mathcal{L} \cup \mathcal{D}_- \cup \mathcal{D}_+$;

we have
$$\overset{\circ}{\Delta}_D = \overset{\circ}{\Delta}_{D,-} \oplus \overset{\circ}{\Delta}_{D,0} \oplus \overset{\circ}{\Delta}_{D,+}.$$

We shall denote by:

ullet $\mathbb{H}_D(\mathcal{L}) := \mathbb{H}_D(\mathcal{L}_-) \oplus \mathbb{H}_D(\mathcal{C}) \oplus \mathbb{H}_D(\mathcal{L}_+);$ where

$$\mathbb{H}_D(\mathcal{L}_\pm) := H^1_0(\mathcal{L}_\pm) \cap H^2(\mathcal{L}_\pm); \ \mathbb{H}_D(\mathcal{C}) := H^1_0(\mathcal{C}) \cap H^2(\mathcal{C})$$

• $\mathring{\Delta}_D : \overset{\circ}{\mathbb{H}}_D(\mathcal{L}) \to L^2(\mathcal{L})$ the self-adjoint Laplace operator with Dirichlet conditions on $\partial \mathcal{L} \cup \mathcal{D}_- \cup \mathcal{D}_+$;

we have $\overset{\circ}{\Delta}_D = \overset{\circ}{\Delta}_{D,-} \oplus \overset{\circ}{\Delta}_{D,0} \oplus \overset{\circ}{\Delta}_{D,+}.$

We can write $\mathring{\Delta}_{D,+} = \mathfrak{l}_{\pm} \otimes 1 + 1 \otimes \mathfrak{L}_{\mathcal{D}}$ with:

- $\mathfrak{L}_{\mathcal{D}}$ the Laplacean on the bounded domain $\mathcal{D} \subset \mathbb{R}^d$ with Dirichlet conditions on the boundary $\partial \mathcal{D}$
- \mathfrak{l}_{\pm} the operator of second derivative on \mathcal{I}_{\pm} with Dirichlet condition at $\pm a$.

The decoupled Hamiltonian

$$\overset{\circ}{\mathcal{H}}:=\left(-\overset{\circ}{\Delta}_{D}
ight)\otimes 1+\Pi_{0}\mathfrak{H}_{\mathcal{C}}\Pi_{0}: \quad \overset{\circ}{\mathbb{H}}_{D}(\mathcal{L})\otimes \mathcal{K} \quad \longrightarrow \quad \mathcal{T}_{0}$$

(having Dirichlet conditions on $\partial \mathcal{L} \cup \mathcal{D}_- \cup \mathcal{D}_+$).

The decoupled Hamiltonian

$$\overset{\circ}{\mathcal{H}}:=\left(\,-\overset{\circ}{\Delta}_{\mathcal{D}}\right)\otimes 1+\Pi_{0}\mathfrak{H}_{\mathcal{C}}\Pi_{0}:\quad \overset{\circ}{\mathbb{H}}_{\mathcal{D}}(\boldsymbol{\mathcal{L}})\otimes \mathcal{K}\quad \longrightarrow\quad \mathcal{H}$$

(having Dirichlet conditions on $\partial \mathcal{L} \cup \mathcal{D}_- \cup \mathcal{D}_+$).

The decoupled Hamiltonian with bias

$$\overset{\circ}{\mathcal{K}}_{\eta}(t) := \overset{\circ}{\mathcal{H}} + V_{\eta}(t) = \overset{\circ}{\mathcal{H}} + \chi_{\eta}(t) V: \quad \overset{\circ}{\mathbb{H}}_{D}(\mathcal{L}) \otimes \mathcal{K} \quad \longrightarrow \quad \mathcal{H}$$

The decoupled Hamiltonian

$$\overset{\circ}{\mathcal{H}}:=\big(-\overset{\circ}{\Delta}_{\mathcal{D}}\big)\otimes 1+\Pi_{0}\mathfrak{H}_{\mathcal{C}}\Pi_{0}:\quad \overset{\circ}{\mathbb{H}}_{\mathcal{D}}(\boldsymbol{\mathcal{L}})\otimes \mathcal{K}\quad \longrightarrow\quad \mathcal{H}$$

(having Dirichlet conditions on $\partial \mathcal{L} \cup \mathcal{D}_- \cup \mathcal{D}_+$).

The decoupled Hamiltonian with bias

$$\overset{\circ}{\mathcal{K}}_{\eta}(t) := \overset{\circ}{\mathcal{H}} + V_{\eta}(t) = \overset{\circ}{\mathcal{H}} + \chi_{\eta}(t)V : \quad \overset{\circ}{\mathbb{H}}_{\mathcal{D}}(\mathcal{L}) \otimes \mathcal{K} \quad \longrightarrow \quad \mathcal{H}$$

The decoupled non-homogeneous evolution

 $\overset{\circ}{W}_{\eta}(t,s)$ defined as the solution of the following Cauchy problem:

$$\left\{egin{array}{l} -i\partial_t \overset{\circ}{{\cal W}}_{\eta}(t,s) = -\overset{\circ}{{\cal K}}_{\eta}(t)\overset{\circ}{{\cal W}}_{\eta}(t,s) \ \overset{\circ}{{\cal W}}_{\eta}(s,s) = 1 \end{array}
ight. .$$

• The existence of the solution $W_{\eta}(t,s)$ results by arguments similar to those concerning the existence of $W_{\eta}(t,s)$.

- The existence of the solution $W_{\eta}(t,s)$ results by arguments similar to those concerning the existence of $W_{\eta}(t,s)$.
- All the above operators commute with Π_{\pm} and thus with V.

- The existence of the solution $W_{\eta}(t,s)$ results by arguments similar to those concerning the existence of $W_{\eta}(t,s)$.
- All the above operators commute with Π_{\pm} and thus with V.
- ullet We have the formula $\overset{\circ}{W}_{\eta}(t,s)=$

$$= e^{-i(t-s)\overset{\circ}{H}} \left[1 + \Pi_{-} \left(e^{iv_{-} \int_{s}^{t} \chi(\eta u) du} \right) + \Pi_{+} \left(e^{iv_{+} \int_{s}^{t} \chi(\eta u) du} \right) \right]$$

with the exponentials being just complex numbers.

- The existence of the solution $W_{\eta}(t,s)$ results by arguments similar to those concerning the existence of $W_{\eta}(t,s)$.
- All the above operators commute with Π_{\pm} and thus with V.
- ullet We have the formula $\overset{\circ}{W}_{\eta}(t,s)=$

$$= e^{-i(t-s)\overset{\circ}{H}} \left[1 + \Pi_{-} \left(e^{iv_{-} \int_{s}^{t} \chi(\eta u) du} \right) + \Pi_{+} \left(e^{iv_{+} \int_{s}^{t} \chi(\eta u) du} \right) \right]$$

with the exponentials being just complex numbers.

• We shall denote by $\overset{\circ}{R}(z)$ the rezolvent of $\overset{\circ}{H}$.

•
$$K_{\kappa} := H + \kappa V$$
,

- $K_{\kappa} := H + \kappa V$,
- $\bullet \overset{\circ}{K}_{\kappa} := \overset{\circ}{H} + \kappa V,$

- $K_{\kappa} := H + \kappa V$,
- $\bullet \overset{\circ}{K}_{\kappa} := \overset{\circ}{H} + \kappa V,$
- and their rezolvents $R_{\kappa}(z)$ and $\overset{\circ}{R}_{\kappa}(z)$.

- $K_{\kappa} := H + \kappa V$,
- $\bullet \overset{\circ}{K}_{\kappa} := \overset{\circ}{H} + \kappa V,$
- and their rezolvents $R_{\kappa}(z)$ and $\overset{\circ}{R}_{\kappa}(z)$.

Hypothesis

$$\sigma_{pp}(K_1) = \emptyset.$$

The Main Result

Theorem

- The limit $\rho_{\eta}(t) := \lim_{s \searrow -\infty} \rho_{\eta}(t,s)$ exists for any $t \leq 0$, in the strong operator topology on $\mathbb{B}(\mathcal{H})$, uniformly with respect to $\eta > 0$.
- ② The wave operator Ξ_{-} associated to the pair $\{\tilde{K}_1,K_1\}$ exists and is complete.
- The limit $\lim_{\eta \searrow 0} \rho_{\eta}(t)$ exists in the strong operator topology on $\mathbb{B}(\mathcal{H})$ and we have the equality

$$s - \lim_{\eta \searrow 0} \rho_{\eta}(t) = (\Xi_{-}) \rho(\overset{\circ}{H}) (\Xi_{-})^{*},$$

so that the 'asymptotic state' is stationary.

Proof of the main result

Proof

• The idea of the proof consists in a more detailed analysis of the operator $\Omega_{\eta}(t,s) = W_{\eta}(t,s)e^{i(t-s)H}$.

Proof

- The idea of the proof consists in a more detailed analysis of the operator $\Omega_{\eta}(t,s) = W_{\eta}(t,s)e^{i(t-s)H}$.
- Using the decoupled evolution we may write

$$\begin{split} \Omega_{\eta}(t,s) &= W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* \overset{\circ}{W}_{\eta}(t,s) e^{i(t-s)\overset{\circ}{H}} e^{-i(t-s)\overset{\circ}{H}} e^{i(t-s)H} = \\ &= W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* \times \\ &\times \left[1 + \Pi_{-} \left(e^{iv_{-} \int_{s}^{t} \chi(\eta u) du} \right) + \Pi_{+} \left(e^{iv_{+} \int_{s}^{t} \chi(\eta u) du} \right) \right] \times \\ &\times e^{-i(t-s)\overset{\circ}{H}} e^{i(t-s)H} \end{split}$$

Proof

- The idea of the proof consists in a more detailed analysis of the operator $\Omega_{\eta}(t,s) = W_{\eta}(t,s)e^{i(t-s)H}$.
- Using the decoupled evolution we may write

$$\begin{split} \Omega_{\eta}(t,s) &= W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* \overset{\circ}{W}_{\eta}(t,s) e^{i(t-s)\overset{\circ}{H}} e^{-i(t-s)\overset{\circ}{H}} e^{i(t-s)H} = \\ &= W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* \times \\ &\times \left[1 + \Pi_{-} \left(e^{iv_{-} \int_{s}^{t} \chi(\eta u) du} \right) + \Pi_{+} \left(e^{iv_{+} \int_{s}^{t} \chi(\eta u) du} \right) \right] \times \\ &\times e^{-i(t-s)\overset{\circ}{H}} e^{i(t-s)H} \end{split}$$

• We recall that we know that the above limit exists (even for the uniform topology on $\mathbb{B}(\mathcal{H})$) but not uniformly with respect to $\eta > 0$.

Proposition A - The wave operator ω_-

• Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator H on its subspace of absolute continuity.

- Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator H on its subspace of absolute continuity.
- Let ω_{-} be the wave operator associated to the pair $\{H, H\}$.

- Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator H on its subspace of absolute continuity.
- Let ω_{-} be the wave operator associated to the pair $\{H, H\}$.
- Then $\omega_- := \underbrace{s \lim_{s \setminus -\infty}}_{s \setminus -\infty} e^{-isH}$ exists and is complete.

- Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator H on its subspace of absolute continuity.
- Let ω_{-} be the wave operator associated to the pair $\{H, \overset{\circ}{H}\}$.
- Then $\omega_- := \underbrace{s \text{lim} e^{i \overset{\circ}{s} \overset{\circ}{H}} e^{-i s H}}_{s \searrow -\infty}$ exists and is complete.
- Thus $\omega_{-} = E_{ac}(\overset{\circ}{H})\omega_{-}$ and $\exists s \underset{s \searrow -\infty}{\text{lim}} e^{isH} e^{-is\overset{\circ}{H}} E_{ac}(\overset{\circ}{H}) = \omega_{-}^{*}$.

Proposition A - The wave operator ω_-

- Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator H on its subspace of absolute continuity.
- Let ω_{-} be the wave operator associated to the pair $\{H, \overset{\circ}{H}\}$.
- Then $\omega_- := \underbrace{s \lim_{s \searrow -\infty}}_{s \searrow -\infty} e^{-isH}$ exists and is complete.
- Thus $\omega_{-} = E_{ac}(\overset{\circ}{H})\omega_{-}$ and $\exists s \underset{s \searrow -\infty}{\text{lim}} e^{isH} e^{-is\overset{\circ}{H}} E_{ac}(\overset{\circ}{H}) = \omega_{-}^{*}$.

Corollary

With the above notations we have $(\Pi = \Pi_{\pm} \text{ or } \Pi_0)$

$$s - \lim_{s \searrow -\infty} \left[W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* \Pi e^{-i(t-s)\overset{\circ}{H}} e^{i(t-s)H} - W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* \Pi E_{ac} (\overset{\circ}{H}) \omega_- \right] = 0.$$

Proposition B - The wave operator $\Xi_{\eta}(t)$

The following limit exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$ and uniformly with respect to $\eta > 0$:

$$s - \lim_{s \searrow -\infty} W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}) =: \Xi_{\eta}(t).$$

Proposition B - The wave operator $\Xi_{\eta}(t)$

The following limit exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$ and uniformly with respect to $\eta > 0$:

$$s - \lim_{s \searrow -\infty} W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}) =: \Xi_{\eta}(t).$$

Corollary

we may conclude that $(\Pi = \Pi_{\pm} \text{ or } \Pi_0)$

$$s - \lim_{s \searrow -\infty} \left[W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* \Pi e^{-i(t-s)\overset{\circ}{H}} e^{i(t-s)H} - \Xi_{\eta}(t) \Pi E_{ac} (\overset{\circ}{H}) \omega_{-} \right] = 0.$$

Proposition C - The wave operator $\Xi_{\eta}(t)^*$

Proposition C - The wave operator $\Xi_{\eta}(t)^*$

• For any $\eta > 0$ the limit $s - \lim_{s \to -\infty} \overset{\circ}{W}_{\eta}(t,s) W_{\eta}(t,s)^*$, exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$, and its image is contained in $E_{ac}(\overset{\circ}{H})\mathcal{H}$.

Proposition C - The wave operator $\Xi_{\eta}(t)^*$

- For any $\eta > 0$ the limit $s \lim_{s \to -\infty} \overset{\circ}{W}_{\eta}(t,s) W_{\eta}(t,s)^*$, exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$, and its image is contained in $E_{ac}(\overset{\circ}{H})\mathcal{H}$.
- For any $\eta > 0$, $s \lim_{s \searrow -\infty} \overset{\circ}{W}_{\eta}(t,s) W_{\eta}(t,s)^* = E_{ac}(\overset{\circ}{H}) \Xi_{\eta}(t)^*$ that will be an isometry.

Proposition C - The wave operator $\Xi_{\eta}(t)^*$

- For any $\eta > 0$ the limit $s \lim_{s \to -\infty} \overset{\circ}{W}_{\eta}(t,s) W_{\eta}(t,s)^*$, exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$, and its image is contained in $E_{ac}(\overset{\circ}{H})\mathcal{H}$.
- For any $\eta > 0$, $s \lim_{s \searrow -\infty} \overset{\circ}{W}_{\eta}(t,s) W_{\eta}(t,s)^* = E_{ac}(\overset{\circ}{H}) \Xi_{\eta}(t)^*$ that will be an isometry.

Corollary

we may conclude that $(\Pi = \Pi_{\pm} \text{ or } \Pi_0)$

$$s - \lim_{s \searrow -\infty} \left[e^{-i(t-s)H} e^{i(t-s)\overset{\circ}{H}} \Pi W_{\eta}(t,s) W_{\eta}(t,s)^* - \omega_{-}^* E_{ac}(\overset{\circ}{H}) \Pi \Xi_{\eta}(t)^* \right] = 0.$$

Observing that

$$\omega_{-}\rho(H)\omega_{-}^{*}=\rho(\overset{\circ}{H}).$$

Observing that

$$\omega_{-}\rho(H)\omega_{-}^{*}=\rho(\overset{\circ}{H}).$$

Commuting Π with $\rho(\overset{\circ}{H})$ and cancelling the terms with the exponential factors.

Observing that

$$\omega_{-}\rho(H)\omega_{-}^{*}=\rho(\overset{\circ}{H}).$$

Commuting Π with $\rho(\overset{\circ}{H})$ and cancelling the terms with the exponential factors.

we get

Conclusion 1

• $\exists s - \lim_{s \setminus -\infty} \rho_{\eta}(t, s)$, uniformly for $\eta > 0$.

Observing that

$$\omega_{-}\rho(H)\omega_{-}^{*}=\rho(\overset{\circ}{H}).$$

Commuting Π with $\rho(\overset{\circ}{H})$ and cancelling the terms with the exponential factors.

we get

Conclusion 1

- $\exists s \lim_{s \setminus -\infty} \rho_{\eta}(t, s)$, uniformly for $\eta > 0$.
- We have the equality

$$\rho_{\eta}(t) = \Xi_{\eta}(t)\rho(\overset{\circ}{H})\Xi_{\eta}(t)^{*}.$$

Proposition D - The wave operator Ξ_{-}

① For any $\kappa \in [0,1]$ the following spectral projections coincide

$$E_{ac}(\overset{\circ}{K}_{\kappa}) = E_{ac}(\overset{\circ}{H}).$$

Proposition D - The wave operator Ξ_{-}

 $\textbf{ 0} \ \ \mathsf{For any} \ \kappa \in [0,1] \ \mathsf{the following spectral projections coincide}$

$$E_{ac}(\overset{\circ}{K}_{\kappa})=E_{ac}(\overset{\circ}{H}).$$

The following wave operators exist and are complete:

$$s - \lim_{s \to -\infty} e^{-isK_1} e^{isK_1} E_{ac}(\mathring{H}) =: \Xi_-.$$

Proposition D - The wave operator Ξ_{-}

 $oldsymbol{0}$ For any $\kappa \in [0,1]$ the following spectral projections coincide

$$E_{ac}(\overset{\circ}{K}_{\kappa})=E_{ac}(\overset{\circ}{H}).$$

The following wave operators exist and are complete:

$$s - \lim_{s \to -\infty} e^{-isK_1} e^{is\overset{\circ}{K}_1} E_{ac}(\overset{\circ}{H}) =: \Xi_-.$$

Proposition E - The adiabatic limit

The following limits exist with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$ and we have the equalities:

$$s - \lim_{\eta \searrow 0} \Xi_{\eta}(t) E_{ac}(\overset{\circ}{H}) = \Xi_{-},$$

$$s - \lim_{\eta \searrow 0} \Xi_{\eta}(t)^{*} = \Xi_{-}^{*}.$$

$$\begin{split} \sigma_{pp} \big(\overset{\circ}{H} \big) &= \sigma_{pp} \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) = \sigma \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) \subset \mathbb{R}_+, \\ \sigma_{ac} \big(\overset{\circ}{H} \big) &= \sigma_{ac} \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = \sigma \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = [0, \infty). \\ \sigma_{sc} \big(\overset{\circ}{H} \big) &= \emptyset \end{split}$$

•

$$\begin{split} \sigma_{pp} \big(\overset{\circ}{H} \big) &= \sigma_{pp} \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) = \sigma \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) \subset \mathbb{R}_+, \\ \sigma_{ac} \big(\overset{\circ}{H} \big) &= \sigma_{ac} \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = \sigma \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = [0, \infty). \\ \sigma_{sc} \big(\overset{\circ}{H} \big) &= \emptyset \end{split}$$

• Let $\{w_n\}_{n\in\mathbb{N}}$ be the orthonormal eigenbasis of $\mathfrak{L}_{\mathcal{D}}$ in $L^2(\mathcal{D})$, having eigenvalues $\{\lambda_n\}_{n\in\mathbb{N}}$, so that $\sigma_{pp}(\overset{\circ}{H})=\{\lambda_n\}_{n\in\mathbb{N}}$;

$$\begin{split} \sigma_{pp} \big(\overset{\circ}{H} \big) &= \sigma_{pp} \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) = \sigma \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) \subset \mathbb{R}_+, \\ \sigma_{ac} \big(\overset{\circ}{H} \big) &= \sigma_{ac} \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = \sigma \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = [0, \infty). \\ \sigma_{sc} \big(\overset{\circ}{H} \big) &= \emptyset \end{split}$$

- Let $\{w_n\}_{n\in\mathbb{N}}$ be the orthonormal eigenbasis of $\mathfrak{L}_{\mathcal{D}}$ in $L^2(\mathcal{D})$, having eigenvalues $\{\lambda_n\}_{n\in\mathbb{N}}$, so that $\sigma_{pp}(\overset{\circ}{H})=\{\lambda_n\}_{n\in\mathbb{N}}$;
- Let P_n be the 1-dimensional orthogonal projection on w_n in \mathcal{H} .

$$\begin{split} \sigma_{pp} \big(\overset{\circ}{H} \big) &= \sigma_{pp} \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) = \sigma \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) \subset \mathbb{R}_+, \\ \sigma_{ac} \big(\overset{\circ}{H} \big) &= \sigma_{ac} \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = \sigma \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = [0, \infty). \\ \sigma_{sc} \big(\overset{\circ}{H} \big) &= \emptyset \end{split}$$

- Let $\{w_n\}_{n\in\mathbb{N}}$ be the orthonormal eigenbasis of $\mathfrak{L}_{\mathcal{D}}$ in $L^2(\mathcal{D})$, having eigenvalues $\{\lambda_n\}_{n\in\mathbb{N}}$, so that $\sigma_{pp}(\overset{\circ}{H})=\{\lambda_n\}_{n\in\mathbb{N}}$;
- Let P_n be the 1-dimensional orthogonal projection on w_n in \mathcal{H} .
- for $z \in \mathbb{C} \setminus [0, \infty)$ we have

$$\begin{split} \sigma_{pp} \big(\overset{\circ}{H} \big) &= \sigma_{pp} \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) = \sigma \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) \subset \mathbb{R}_+, \\ \sigma_{ac} \big(\overset{\circ}{H} \big) &= \sigma_{ac} \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = \sigma \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = [0, \infty). \\ \sigma_{sc} \big(\overset{\circ}{H} \big) &= \emptyset \end{split}$$

- Let $\{w_n\}_{n\in\mathbb{N}}$ be the orthonormal eigenbasis of $\mathfrak{L}_{\mathcal{D}}$ in $L^2(\mathcal{D})$, having eigenvalues $\{\lambda_n\}_{n\in\mathbb{N}}$, so that $\sigma_{pp}(\overset{\circ}{H})=\{\lambda_n\}_{n\in\mathbb{N}}$;
- Let P_n be the 1-dimensional orthogonal projection on w_n in \mathcal{H} .
- for $z \in \mathbb{C} \setminus [0, \infty)$ we have
- $\overset{\circ}{R}(z) = \underset{n \in \mathbb{N}}{\oplus} \left[(\mathfrak{l}_{-} (z \lambda_{n}))^{-1} \pi_{-} \oplus (\mathfrak{l}_{+} (z \lambda_{n}))^{-1} \pi_{+} \right] P_{n}$ with $\pi_{\pm} : L^{2}(\mathbb{R}) \to L^{2}(\mathcal{I}_{\pm})$ the usual orthogonal projections.

$$\begin{split} \sigma_{pp} (\overset{\circ}{H}) &= \sigma_{pp} \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) = \sigma \big(\Pi_0 \overset{\circ}{H} \Pi_0 \big) \subset \mathbb{R}_+, \\ \sigma_{ac} (\overset{\circ}{H}) &= \sigma_{ac} \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = \sigma \big(\Pi_- \overset{\circ}{H} \Pi_- \oplus \Pi_+ \overset{\circ}{H} \Pi_+ \big) = [0, \infty). \\ \sigma_{sc} (\overset{\circ}{H}) &= \emptyset \end{split}$$

- Let $\{w_n\}_{n\in\mathbb{N}}$ be the orthonormal eigenbasis of $\mathcal{L}_{\mathcal{D}}$ in $L^2(\mathcal{D})$, having eigenvalues $\{\lambda_n\}_{n\in\mathbb{N}}$, so that $\sigma_{pp}(\overset{\circ}{H})=\{\lambda_n\}_{n\in\mathbb{N}}$;
- Let P_n be the 1-dimensional orthogonal projection on w_n in \mathcal{H} .
- for $z \in \mathbb{C} \setminus [0, \infty)$ we have
- $R(z) = \bigoplus_{n \in \mathbb{N}} \left[(\mathfrak{l}_{-} (z \lambda_n))^{-1} \pi_{-} \oplus (\mathfrak{l}_{+} (z \lambda_n))^{-1} \pi_{+} \right] P_n$ with $\pi_{\pm} : L^2(\mathbb{R}) \to L^2(\mathcal{I}_{\pm})$ the usual orthogonal projections.
- the integral kernel of the rezolvent $(l_{\pm} z)^{-1}$ has exponential decay like $e^{\mp \alpha(z)x}$ for some $\alpha(z) > 0$.

- Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator $\overset{\circ}{H}$ on its subspace of absolute continuity.
- Let ω_- be the wave operator associated to the pair $\{H, H\}$.
- Then $\omega_- := \underbrace{s \lim_{s \searrow -\infty}}_{e^{-isH}} e^{-isH}$ exists and is complete.
- Thus $\omega_{-} = E_{ac}(\overset{\circ}{H})\omega_{-}$ and $\exists s \underset{s \searrow -\infty}{\text{lim}} e^{isH} e^{-is\overset{\circ}{H}} E_{ac}(\overset{\circ}{H}) = \omega_{-}^{*}$.

Proposition A - The wave operator ω_-

- Let $E_{ac}(\overset{\circ}{H})$ be the spectral projector of the self-adjoint operator $\overset{\circ}{H}$ on its subspace of absolute continuity.
- Let ω_- be the wave operator associated to the pair $\{H, H\}$.
- Then $\omega_- := \underbrace{s \lim_{s \searrow -\infty}} e^{-isH}$ exists and is complete.
- Thus $\omega_{-} = E_{ac}(\overset{\circ}{H})\omega_{-}$ and $\exists s \underset{s \searrow -\infty}{\text{lim}} e^{isH} e^{-is\overset{\circ}{H}} E_{ac}(\overset{\circ}{H}) = \omega_{-}^{*}$.

Proposition A - The wave operator ω_-

- Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator H on its subspace of absolute continuity.
- Let ω_- be the wave operator associated to the pair $\{H, H\}$.
- Then $\omega_- := \underset{s \searrow -\infty}{s \lim} e^{is\tilde{H}} e^{-isH}$ exists and is complete.
- Thus $\omega_- = E_{ac}(\overset{\circ}{H})\omega_-$ and $\exists s \underset{s \searrow -\infty}{\text{lim}} e^{isH} e^{-is\overset{\circ}{H}} E_{ac}(\overset{\circ}{H}) = \omega_-^*$.

Steps of the proof:

exponential decay

Proposition A - The wave operator ω_-

- Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator H on its subspace of absolute continuity.
- Let ω_{-} be the wave operator associated to the pair $\{H, H\}$.
- Then $\omega_- := \underset{s \searrow -\infty}{s \lim} e^{is\tilde{H}} e^{-isH}$ exists and is complete.
- Thus $\omega_{-} = E_{ac}(\overset{\circ}{H})\omega_{-}$ and $\exists s \underset{s \searrow -\infty}{\text{lim}} e^{isH} e^{-is\overset{\circ}{H}} E_{ac}(\overset{\circ}{H}) = \omega_{-}^{*}$.

- exponential decay
- Hilbert Schmidt property

Proposition A - The wave operator ω_-

- Let $E_{ac}(H)$ be the spectral projector of the self-adjoint operator H on its subspace of absolute continuity.
- Let ω_- be the wave operator associated to the pair $\{H, H\}$.
- Then $\omega_- := \underbrace{s \lim_{s \to -\infty}}_{e^{-isH}} e^{-isH}$ exists and is complete.
- Thus $\omega_- = E_{ac}(\overset{\circ}{H})\omega_-$ and $\exists s \underset{s \searrow -\infty}{\text{lim}} e^{isH} e^{-is\overset{\circ}{H}} E_{ac}(\overset{\circ}{H}) = \omega_-^*$.

- exponential decay
- Hilbert Schmidt property
- localization of $R(z) \overset{\circ}{R}(z)$

Proposition A - The wave operator ω_-

- Let $E_{ac}(\overset{\circ}{H})$ be the spectral projector of the self-adjoint operator $\overset{\circ}{H}$ on its subspace of absolute continuity.
- Let ω_{-} be the wave operator associated to the pair $\{H, H\}$.
- Then $\omega_- := s \lim_{s \setminus -\infty} e^{-isH}$ exists and is complete.
- Thus $\omega_- = E_{ac}(\overset{\circ}{H})\omega_-$ and $\exists s \underset{s \searrow -\infty}{\text{lim}} e^{isH} e^{-is\overset{\circ}{H}} E_{ac}(\overset{\circ}{H}) = \omega_-^*$.

- exponential decay
- Hilbert Schmidt property
- localization of $R(z) \overset{\circ}{R}(z)$
- application of Kuroda-Birman results.

Proof of Proposition A - Exponential decay

For any $\alpha < \alpha(z)$ let $\Psi_{\alpha} \in C^{\infty}(\mathbb{R})$ be such that

$$\Psi_{\alpha}(x) \geq 1, \ \forall x \in \mathbb{R}; \quad \Psi_{\alpha}(x) = e^{\pm \alpha x}, \ \forall x \in \mathcal{I}_{\pm},$$

$$|(\partial \Psi_{\alpha})(x)| \leq \alpha, \ |(\partial^{s}\Psi_{\alpha})(x)| \leq C, \forall s \geq 2, \ \forall x \in \mathbb{R}.$$

Then $\Psi_{\alpha}(x)$ is invertible and $\Psi_{\alpha}^{-1} \in L^{k}(\mathbb{R})$ for any $k \geq 1$.

Lemma

For any $\alpha < \alpha(z)$

$$\Psi_{\alpha}(Q_1)\overset{\circ}{H}\Psi_{\alpha}(Q_1)^{-1}=\overset{\circ}{H}+\overset{\circ}{T}_{\alpha};\ \Psi_{\alpha}(Q_1)H\Psi_{\alpha}(Q_1)^{-1}=H+T_{\alpha}$$

where for any $k \geq 1$, T_{α} is a bounded operator

$$H^k(\mathcal{L}_-) \oplus H^k(\mathcal{C}) \oplus H^k(\mathcal{L}_+) \ \longrightarrow \ H^{k-1}(\mathcal{L}_-) \oplus H^{k-1}(\mathcal{C}) \oplus H^{k-1}(\mathcal{L}_+)$$

and T_{α} is a bounded operator $H^{k}(\mathcal{L}) \longrightarrow H^{k-1}(\mathcal{L})$.

Proof of Proposition A - A Hilbert-Schmidt property

Thus the range of $R(z)^k$ and of $\Psi_{\alpha}(Q_1)R(z)^k\Psi_{\alpha}(Q_1)^{-1}$ are contained in $H^{2k}(\mathcal{L}_-) \oplus H^{2k}(\mathcal{C}) \oplus H^{2k}(\mathcal{L}_+)$ and the range of R(z) and of $\Psi_{\alpha}(Q_1)R(z)^k\Psi_{\alpha}(Q_1)^{-1}$ are contained in $H^{2k}(\mathcal{L})$, (using the Hypotheis on $\mathfrak{H}_{\mathcal{C}}$).

Proof of Proposition A - A Hilbert-Schmidt property

Thus the range of $R(z)^k$ and of $\Psi_{\alpha}(Q_1)R(z)^k\Psi_{\alpha}(Q_1)^{-1}$ are contained in $H^{2k}(\mathcal{L}_-)\oplus H^{2k}(\mathcal{C})\oplus H^{2k}(\mathcal{L}_+)$ and the range of R(z) and of $\Psi_{\alpha}(Q_1)R(z)^k\Psi_{\alpha}(Q_1)^{-1}$ are contained in $H^{2k}(\mathcal{L})$, (using the Hypotheis on $\mathfrak{H}_{\mathcal{C}}$). Using the usual Sobolev embeding theorems we get:

Lemma

Proof of Proposition A - A Hilbert-Schmidt property

Thus the range of $R(z)^k$ and of $\Psi_{\alpha}(Q_1)R(z)^k\Psi_{\alpha}(Q_1)^{-1}$ are contained in $H^{2k}(\mathcal{L}_-)\oplus H^{2k}(\mathcal{C})\oplus H^{2k}(\mathcal{L}_+)$ and the range of R(z) and of $\Psi_{\alpha}(Q_1)R(z)^k\Psi_{\alpha}(Q_1)^{-1}$ are contained in $H^{2k}(\mathcal{L})$, (using the Hypotheis on $\mathfrak{H}_{\mathcal{C}}$). Using the usual Sobolev embeding theorems we get:

Lemma

There exists $k_d \in \mathbb{N}$ depending on the dimension d such that for any $z \in \mathbb{C} \setminus [0, \infty)$, any $k \geq k_d$, any $\alpha < \alpha(z)$ and for any measurable function $w \in L^2(\mathbb{R})$, we have that

- $w(Q_1)\overset{\circ}{R}(z)^k$ and $w(Q_1)\Psi_{\alpha}(Q_1)\overset{\circ}{R}(z)^k\Psi_{\alpha}(Q_1)^{-1}$ are Hilbert-Schmidt operators on \mathcal{H} ;
- $w(Q_1)R(z)^k$ and $w(Q_1)\Psi_{\alpha}(Q_1)R(z)^k\Psi_{\alpha}(Q_1)^{-1}$ are Hilbert-Schmidt operators on \mathcal{H} .

The Hamiltonians \boldsymbol{H} and \boldsymbol{H} are two self-adjoint extensions of the same symetric operator

$$\mathcal{K}_{0,\kappa}:=\big(-\Delta_D\big)\otimes 1+ \Pi_0\mathfrak{H}_{\mathcal{C}}\Pi_0: \mathit{C}_0^{\infty}(\mathring{\mathcal{L}}_{-}^{\stackrel{\circ}{}}\cup \mathring{\mathcal{C}}\cup \mathring{\mathcal{L}}_{+}^{\stackrel{\circ}{}}) \to \mathcal{H}.$$

The Hamiltonians H and H are two self-adjoint extensions of the same symetric operator

$$\mathcal{K}_{0,\kappa}:= ig(-\Delta_Dig)\otimes 1 + \Pi_0\mathfrak{H}_\mathcal{C}\Pi_0: C_0^\infty(\mathring{\mathcal{L}}_- \cup \mathring{\mathcal{C}} \cup \mathring{\mathcal{L}}_+) o \mathcal{H}.$$

Let K_0^* be its adjoint. It extends both operators H and \tilde{H} so that

$$\left[R(z)-\overset{\circ}{R}(z)\right]\mathcal{H}\subset\mathbb{K}er\left(K_{0}^{*}-z\right).$$

The Hamiltonians \boldsymbol{H} and \boldsymbol{H} are two self-adjoint extensions of the same symetric operator

$$\mathcal{K}_{0,\kappa}:=\big(-\Delta_{\mathcal{D}}\big)\otimes 1+\Pi_{0}\mathfrak{H}_{\mathcal{C}}\Pi_{0}:\mathit{C}_{0}^{\infty}(\mathring{\mathcal{L}_{-}}\cup \overset{\circ}{\mathcal{C}}\cup \mathring{\mathcal{L}_{+}})\rightarrow \mathcal{H}.$$

Let K_0^* be its adjoint. It extends both operators H and \tilde{H} so that

$$\left[R(z)-\overset{\circ}{R}(z)\right]\mathcal{H}\subset\mathbb{K}er\left(K_{0}^{*}-z\right).$$

For elements $u \in \mathbb{K}er(K_0^* - z)$ the distribution $K_0^*u - zu$ has support in the border $\mathcal{D}_- \cup \mathcal{D}_+$ and thus on $\mathcal{L}_- \cup \mathcal{L}_+$ it satisfies:

$$\overset{\circ}{\Delta}_{D,\pm}u=-(z-v_{\pm})u$$

with boundary condition $u_{\pm}|_{\mathcal{I}_{+}\times\partial\mathcal{D}}=0$.

We deduce

Proposition

For any fixed $z \in \mathbb{C} \setminus [0, \infty)$ there exists $\gamma_0(z) > 0$ such that for $0 < \gamma_{\pm} \leq \gamma_0(z)$ we have:

$$\left\|e^{\pm\gamma_{\pm}Q_{1}}\Pi_{\pm}(R(z)-\overset{\circ}{R}(z))\right\|\leq c,$$

We deduce

Proposition

For any fixed $z \in \mathbb{C} \setminus [0, \infty)$ there exists $\gamma_0(z) > 0$ such that for $0 < \gamma_{\pm} \leq \gamma_0(z)$ we have:

$$\left\|e^{\pm\gamma_{\pm}Q_{1}}\Pi_{\pm}\left(R(z)-\overset{\circ}{R}(z)\right)\right\|\leq c,$$

Corollary

For any fixed $z \in \mathbb{C} \setminus [0, \infty)$, for $\alpha < \gamma_0(z)$, let μ_α be a strictly positive smooth function such that $\mu_\alpha(x) \geq 1$ for any $x \in \mathbb{R}$ and $\mu_\alpha(x) = e^{\pm \alpha x}$ for $\pm x \geq 2a$. Then

$$\left\|\mu_{\alpha}(Q_1)(R(z)-\overset{\circ}{R}(z))\right\|\leq c,$$

Proposition

There exists $n_d \in \mathbb{N}$ depending on the dimension d such that for $z \in \mathbb{C} \setminus [0, \infty)$ and $n \geq n_d$ we have $\left[R(z)^n - \overset{\circ}{R}(z)^n\right] \in \mathbb{B}_1(\mathcal{H})$.

Proposition

There exists $n_d \in \mathbb{N}$ depending on the dimension d such that for $z \in \mathbb{C} \setminus [0, \infty)$ and $n \geq n_d$ we have $\begin{bmatrix} R(z)^n - \overset{\circ}{R}(z)^n \end{bmatrix} \in \mathbb{B}_1(\mathcal{H})$.

Proof: For any $p \in \mathbb{N}$:

$$R(z)^{p} - \overset{\circ}{R}(z)^{p} = \sum_{0 \leq j \leq p-1} R(z)^{j} (R(z) - \overset{\circ}{R}(z)) \overset{\circ}{R}(z)^{p-1-j}.$$

Proposition

There exists $n_d \in \mathbb{N}$ depending on the dimension d such that for $z \in \mathbb{C} \setminus [0, \infty)$ and $n \geq n_d$ we have $\lceil R(z)^n - \overset{\circ}{R}(z)^n \rceil \in \mathbb{B}_1(\mathcal{H})$.

Proof: For any $p \in \mathbb{N}$:

$$R(z)^{p} - \overset{\circ}{R}(z)^{p} = \sum_{0 \le j \le p-1} R(z)^{j} (R(z) - \overset{\circ}{R}(z)) \overset{\circ}{R}(z)^{p-1-j}.$$

If $p \ge 2k_d + 1$, then either $j \ge k_d$ or $p - j - 1 \ge k_d$ so that each term is Hilbert-Schmidt by writing:

$$R(z)^{j}(R(z) - \overset{\circ}{R}(z)) = R(z)^{j}\mu_{\alpha}(Q_{1})^{-1}\mu_{\alpha}(Q_{1})(R(z) - \overset{\circ}{R}(z))$$

or

$$\big(R(z) - \overset{\circ}{R}(z)\big)\overset{\circ}{R}(z)^{p-j-1} = \big(R(z) - \overset{\circ}{R}(z)\big)\mu_{\alpha}(Q_1)\mu_{\alpha}(Q_1)^{-1}\overset{\circ}{R}(z)^{p-j-1}.$$

If $\beta>0$ such that $\alpha+\beta<\min\{\alpha(z),\gamma_0(z)\}$ we conclude in a similar way that $\mu_{\beta}(Q_1)\left(R(z)^p-\overset{\circ}{R}(z)^p\right)$ is also Hilbert-Schmidt.

If $\beta>0$ such that $\alpha+\beta<\min\{\alpha(z),\gamma_0(z)\}$ we conclude in a similar way that $\mu_\beta(Q_1)\left(R(z)^p-\overset{\circ}{R}(z)^p\right)$ is also Hilbert-Schmidt. Thus for $p\geq 2k_d+1$ there exist a Hilbert-Schmidt operator $S_p(z)$ such that $R(z)^p=\overset{\circ}{R}(z)^p+S_p(z)$, $\mu_\beta(Q_1)S_p(z)$ is also Hilbert-Schmidt for $\beta<\min\{\alpha(z),\gamma_0(z)\}$ and

$$R(z)^{2p} = \overset{\circ}{R}(z)^{2p} + S_p(z)\overset{\circ}{R}(z)^p + \overset{\circ}{R}(z)^p S_p(z) + S_p(z)^2.$$

If $\beta>0$ such that $\alpha+\beta<\min\{\alpha(z),\gamma_0(z)\}$ we conclude in a similar way that $\mu_\beta(Q_1)\left(R(z)^p-\overset{\circ}{R}(z)^p\right)$ is also Hilbert-Schmidt. Thus for $p\geq 2k_d+1$ there exist a Hilbert-Schmidt operator $S_p(z)$ such that $R(z)^p=\overset{\circ}{R}(z)^p+S_p(z)$, $\mu_\beta(Q_1)S_p(z)$ is also Hilbert-Schmidt for $\beta<\min\{\alpha(z),\gamma_0(z)\}$ and

$$R(z)^{2p} = \overset{\circ}{R}(z)^{2p} + S_p(z)\overset{\circ}{R}(z)^p + \overset{\circ}{R}(z)^p S_p(z) + S_p(z)^2.$$

Here the last three terms are obviously of trace-class due to the properties of $S_p(z)$. Thus we just have to take $n_d = 2(2k_d + 1)$.

If $\beta>0$ such that $\alpha+\beta<\min\{\alpha(z),\gamma_0(z)\}$ we conclude in a similar way that $\mu_\beta(Q_1)\left(R(z)^p-\overset{\circ}{R}(z)^p\right)$ is also Hilbert-Schmidt. Thus for $p\geq 2k_d+1$ there exist a Hilbert-Schmidt operator $S_p(z)$ such that $R(z)^p=\overset{\circ}{R}(z)^p+S_p(z)$, $\mu_\beta(Q_1)S_p(z)$ is also Hilbert-Schmidt for $\beta<\min\{\alpha(z),\gamma_0(z)\}$ and

$$R(z)^{2p} = \overset{\circ}{R}(z)^{2p} + S_p(z)\overset{\circ}{R}(z)^p + \overset{\circ}{R}(z)^p S_p(z) + S_p(z)^2.$$

Here the last three terms are obviously of trace-class due to the properties of $S_p(z)$. Thus we just have to take $n_d = 2(2k_d + 1)$.

We can apply the usual Kato-Birman procedure.

Proposition B - The wave operator $\Xi_{\eta}(t)$

The following limit exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$

and uniformly with respect to $\eta > 0$:

$$s - \lim_{s \searrow -\infty} W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}) =: \Xi_{\eta}(t).$$

Proposition B - The wave operator $\Xi_{\eta}(t)$

The following limit exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$

and uniformly with respect to $\eta > 0$:

$$s - \lim_{s \searrow -\infty} W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}) =: \Xi_{\eta}(t).$$

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^*$.

Proposition B - The wave operator $\Xi_{\eta}(t)$

The following limit exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$

and uniformly with respect to $\eta > 0$:

$$s - \lim_{s \searrow -\infty} W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}) =: \Xi_{\eta}(t).$$

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \mathring{W}_{\eta}(t,s)^*$. We have evidently:

$$\begin{split} &\sigma_{sc}(\overset{\circ}{K}_{\kappa})=\emptyset, \quad \mathcal{H}_{ac}(\overset{\circ}{K}_{\kappa})=\mathcal{H}_{-}\oplus\mathcal{H}_{+}, \quad \mathcal{H}_{pp}(\overset{\circ}{K}_{\kappa})=\mathcal{H}_{0}, \quad \forall \kappa \in [0,1], \\ &\sigma_{ac}(\overset{\circ}{H})=[0,\infty) \text{ has the set of thresholds } \mathcal{T}=\sigma_{pp}(\mathfrak{L}_{\mathcal{D}}). \end{split}$$

Proposition B - The wave operator $\Xi_{\eta}(t)$

The following limit exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$

and uniformly with respect to $\eta > 0$:

$$s - \lim_{s \searrow -\infty} W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}) =: \Xi_{\eta}(t).$$

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \mathring{W}_{\eta}(t,s)^*$. We have evidently:

$$\sigma_{sc}(\overset{\circ}{K}_{\kappa})=\emptyset, \quad \mathcal{H}_{ac}(\overset{\circ}{K}_{\kappa})=\mathcal{H}_{-}\oplus\mathcal{H}_{+}, \quad \mathcal{H}_{pp}(\overset{\circ}{K}_{\kappa})=\mathcal{H}_{0}, \quad \forall \kappa \in [0,1],$$

$$\sigma_{ac}(\overset{\circ}{H})=[0,\infty)$$
 has the set of thresholds $\mathcal{T}=\sigma_{pp}(\mathfrak{L}_{\mathcal{D}}).$

For any $\delta>0$ let \mathcal{V}_{δ} be the set of vectors $f\in\mathcal{H}_{ac}(H)$ with

compact spectral support with respect to H at distance δ from all the thresholds.

If we denote by

$$egin{aligned} \Psi_{\eta}(t,s) &:= W_{\eta}(t,s) \left[\left(\mathcal{K}_{\eta}(s) + 1
ight)^{-1} - \left(\overset{\circ}{\mathcal{K}}_{\eta}(s) + 1
ight)^{-1}
ight] \overset{\circ}{W}_{\eta}(t,s)^* \ & \Phi_{\eta}(t,s) := W_{\eta}(t,s) (\mathcal{K}_{\eta}(s) + 1)^{-1} (\overset{\circ}{\mathcal{K}}_{\eta}(s) + 1)^{-1} \overset{\circ}{W}_{\eta}(t,s)^* \end{aligned}$$

If we denote by

$$egin{aligned} \Psi_{\eta}(t,s) &:= W_{\eta}(t,s) \left[\left(\mathsf{K}_{\eta}(s) + 1
ight)^{-1} - \left(\overset{\circ}{\mathsf{K}}_{\eta}(s) + 1
ight)^{-1}
ight] \overset{\circ}{W}_{\eta}(t,s)^* \ & \Phi_{\eta}(t,s) := W_{\eta}(t,s) ig(\mathsf{K}_{\eta}(s) + 1 ig)^{-1} ig(\overset{\circ}{\mathsf{K}}_{\eta}(s) + 1 ig)^{-1} \overset{\circ}{W}_{\eta}(t,s)^* \end{aligned}$$

we have that

$$egin{aligned} &\Xi_{\eta}(t,s)=\ &=ig(K_{\eta}(t)+1ig)^{-1}ig(\overset{\circ}{K}_{\eta}(t)+1ig)^{-1}+\ &+\int_{t}^{s}\Psi_{\eta}(t,u)\,duig(\overset{\circ}{K}_{\eta}(s)+1ig)^{2}-\Psi_{\eta}(t,s)ig(\overset{\circ}{K}_{\eta}(s)+1ig). \end{aligned}$$

For $f \in \mathcal{H}_- \cap \mathcal{V}_\delta$ of the form $f = v_1 \otimes w$ we have

For $f \in \mathcal{H}_- \cap \mathcal{V}_\delta$ of the form $f = v_1 \otimes w$ we have

$$egin{aligned} \|\Psi_{\eta}(t,s)v\| &= \left\| \left[\left(\mathcal{K}_{\eta}(s) + 1
ight)^{-1} - \left(\overset{\circ}{\mathcal{K}}_{\eta}(s) + 1
ight)^{-1}
ight] \overset{\circ}{W}_{\eta}(t,s)^* v
ight\| \leq \ &\leq \left\| e^{\gamma_-|Q_1|} \Pi_- \left(R_{\chi_{\eta}(s)} - \overset{\circ}{R}_{\chi_{\eta}(s)}
ight)
ight\| \left\| e^{-\gamma_-|Q_1|} \overset{\circ}{W}_{\eta}(t,s)^* v
ight\| \leq \ &\leq c_{\gamma_-} \left\| e^{-\gamma_-|Q_1|} e^{i(t-s)\overset{\circ}{H}} v
ight\|. \end{aligned}$$

For $f \in \mathcal{H}_- \cap \mathcal{V}_\delta$ of the form $f = v_1 \otimes w$ we have

$$egin{aligned} \|\Psi_{\eta}(t,s)v\| &= \left\| \left[\left(\mathcal{K}_{\eta}(s) + 1
ight)^{-1} - \left(\overset{\circ}{\mathcal{K}}_{\eta}(s) + 1
ight)^{-1}
ight] \overset{\circ}{\mathcal{W}}_{\eta}(t,s)^* v
ight\| \leq \ &\leq \left\| e^{\gamma_-|Q_1|} \Pi_- \left(R_{\chi_{\eta}(s)} - \overset{\circ}{R}_{\chi_{\eta}(s)}
ight)
ight\| \left\| e^{-\gamma_-|Q_1|} \overset{\circ}{\mathcal{W}}_{\eta}(t,s)^* v
ight\| \leq \ &\leq c_{\gamma_-} \left\| e^{-\gamma_-|Q_1|} e^{i(t-s)\overset{\circ}{H}} v
ight\|. \end{aligned}$$

But
$$e^{i(t-s)\overset{\circ}{H}}v=e^{i(t-s)\mathfrak{l}_{-}}v_{1}\otimes e^{i(t-s)\mathfrak{L}_{\mathcal{D}}}w$$

where $\left\|e^{i(t-s)\mathfrak{L}_{\mathcal{D}}}w\right\|=\|w\|$

For $t \geq t_0 > 0$ with $t_0 \sqrt{\delta} \geq 2x$, for any $N \in \mathbb{N}$, by integration by parts:

$$\left| \left(e^{it\mathfrak{l}_{-}} v_{1} \right)(x) \right| = \left| \int_{|k| \geq \sqrt{\delta}} dk \, e^{i(tk^{2} + kx)} \widehat{v}_{1}(k) \right| \leq$$

$$\leq C_{N} (t\sqrt{\delta} - |x|)^{-N} \|\mathfrak{l}_{-}^{1 + (N/2)} v_{1}\|_{2}.$$

For $t \geq t_0 > 0$ with $t_0 \sqrt{\delta} \geq 2x$, for any $N \in \mathbb{N}$, by integration by parts:

$$\left| \left(e^{it\mathfrak{l}_{-}} v_{1} \right)(x) \right| = \left| \int_{|k| \geq \sqrt{\delta}} dk \, e^{i(tk^{2} + kx)} \widehat{v}_{1}(k) \right| \leq$$

$$\leq C_{N} (t\sqrt{\delta} - |x|)^{-N} \|\mathfrak{l}_{-}^{1 + (N/2)} v_{1}\|_{2}.$$

Thus, for $t \geq t_0 > 0$, and $N \in \mathbb{N}$ there exists $C_N > 0$ such that

$$\left\| e^{-\gamma_{-}|Q_{1}|} e^{it\overset{\circ}{H}} v \right\|_{2}^{2} \leq$$

$$\leq C_{N} \|w\|_{2}^{2} \left\{ \int_{-\infty}^{-(t\sqrt{\delta})/2} dx \, e^{-2\gamma_{-}|x|} \left| (e^{it\mathfrak{l}} - v_{1})(x) \right|^{2} + \int_{-(t\sqrt{\delta})/2}^{0} dx \, e^{-2\gamma_{-}|x|} \left| (e^{it\mathfrak{l}} - v_{1})(x) \right|^{2} \right\} \leq$$

$$\leq 2C_{N} t^{-2N} \|w\|_{2}^{2} \left\{ (\sqrt{\delta})^{-2N} \left\| < Q_{1} >^{2+N} e^{-\gamma_{-}|Q_{1}|} e^{it\mathfrak{l}} - v_{1} \right\|_{2}^{2} + (\sqrt{\delta}/2)^{-2N} \|\mathfrak{l}_{-}^{1+(N/2)} v_{1}\|_{2}^{2} \right\} \leq$$

$$\leq C_{N,\gamma_{-}}' t^{-2N} \left(\sqrt{\delta} \right)^{-2N} \left\| (\mathfrak{l}_{-}^{1+(N/2)} \otimes 1) v \right\|_{2}^{2}.$$

•
$$\forall t \leq 0$$
, $s - \lim_{s \searrow -\infty} \Psi_{\eta}(t, s) = 0$;

- $\forall t \leq 0$, $s \lim_{s \setminus -\infty} \Psi_{\eta}(t, s) = 0$;
- (taking $N \ge 1$) the function $\Psi_{\eta}(t,u)$ is integrable in norm on $u \in (-\infty,0];$

- $\forall t \leq 0$, $s \lim_{s \to -\infty} \Psi_{\eta}(t, s) = 0$;
- (taking $N \ge 1$) the function $\Psi_{\eta}(t, u)$ is integrable in norm on $u \in (-\infty, 0]$;
- ullet the following limit $\Phi_{\eta}(t,-\infty):= egin{align*} s-\lim_{t\searrow -\infty} \Phi_{\eta}(t,s) \ ext{exists}. \end{array}$

We conclude that:

- $\forall t \leq 0$, $s \lim_{s \setminus -\infty} \Psi_{\eta}(t, s) = 0$;
- (taking $N \ge 1$) the function $\Psi_{\eta}(t, u)$ is integrable in norm on $u \in (-\infty, 0]$;
- the following limit $\Phi_{\eta}(t,-\infty):= s-\lim_{t\searrow -\infty} \Phi_{\eta}(t,s)$ exists.

Conclusion

$$\exists \, \Xi_{\eta}(t) := \underset{s \searrow -\infty}{\text{s} - \lim} \, \Xi_{\eta}(t,s) =$$

$$= \big(K_{\eta}(t) + 1 \big)^{-1} \big(\overset{\circ}{K}_{\eta}(t) + 1 \big)^{-1} + \Phi_{\eta}(t,-\infty) \big(\overset{\circ}{H} + 1 \big)^{2},$$
 uniformly with respect to $\eta > 0$.

Proposition C - The wave operator $\Xi_{\eta}(t)^*$

- For any $\eta>0$ the limit $\underset{s \to -\infty}{s-\lim} W_{\eta}(t,s)W_{\eta}(t,s)^*,$ exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$, and its image is contained in $E_{ac}(\overset{\circ}{H})\mathcal{H}.$
- For any $\eta > 0$, $s \lim_{s \searrow -\infty} \overset{\circ}{W}_{\eta}(t,s) W_{\eta}(t,s)^* = E_{ac}(\overset{\circ}{H}) \Xi_{\eta}(t)^*$ that will be an isometry.

Proposition C - The wave operator $\Xi_{\eta}(t)^*$

- For any $\eta>0$ the limit $\underset{s \to -\infty}{s-\lim} \hat{W}_{\eta}(t,s)W_{\eta}(t,s)^*,$ exists with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$, and its image is contained in $E_{ac}(\overset{\circ}{H})\mathcal{H}$.
- For any $\eta > 0$, $s \lim_{s \to -\infty} \overset{\circ}{W}_{\eta}(t,s) W_{\eta}(t,s)^* = E_{ac}(\overset{\circ}{H}) \Xi_{\eta}(t)^*$ that will be an isometry.

Remark that:

Remark that:

ullet at fixed $\eta > 0$ the first factor converges in operator norm to

$$\left[1+\Pi_{-}\left(e^{iv_{-}\int_{-\infty}^{t}\chi(\eta u)du}\right)+\Pi_{+}\left(e^{iv_{+}\int_{-\infty}^{t}\chi(\eta u)du}\right)\right];$$

(χ is supposed integrable; convergence not uniform in η)

Remark that:

ullet at fixed $\eta > 0$ the first factor converges in operator norm to

$$\left[1+\Pi_{-}\left(e^{iv_{-}\int_{-\infty}^{t}\chi(\eta u)du}\right)+\Pi_{+}\left(e^{iv_{+}\int_{-\infty}^{t}\chi(\eta u)du}\right)\right];$$

 $(\chi$ is supposed integrable; convergence not uniform in $\eta)$

• the middle factor converges strongly to ω_{-} and has the range included in $E_{ac}(\overset{\circ}{H})\mathcal{H}$ (Proposition A);

Remark that:

ullet at fixed $\eta > 0$ the first factor converges in operator norm to

$$\left[1+\Pi_{-}\left(e^{iv_{-}\int_{-\infty}^{t}\chi(\eta u)du}\right)+\Pi_{+}\left(e^{iv_{+}\int_{-\infty}^{t}\chi(\eta u)du}\right)\right];$$

 $(\chi \text{ is supposed integrable; convergence not uniform in } \eta)$

- the middle factor converges strongly to ω_{-} and has the range included in $E_{ac}(\overset{\circ}{H})\mathcal{H}$ (Proposition A);
- the first factor leaves $E_{ac}(H)\mathcal{H}$ invariant;

Remark that:

ullet at fixed $\eta > 0$ the first factor converges in operator norm to

$$\left[1+\Pi_{-}\left(e^{iv_{-}\int_{-\infty}^{t}\chi(\eta u)du}\right)+\Pi_{+}\left(e^{iv_{+}\int_{-\infty}^{t}\chi(\eta u)du}\right)\right];$$

 $(\chi \text{ is supposed integrable; convergence not uniform in } \eta)$

- the middle factor converges strongly to ω_{-} and has the range included in $E_{ac}(\overset{\circ}{H})\mathcal{H}$ (Proposition A);
- the first factor leaves $E_{ac}(\overset{\circ}{H})\mathcal{H}$ invariant;
- the last factor converges in operator norm to $\Omega_{\eta}(t)^*$.

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}).$

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}).$ Then from Proposition B we know that there exists

$$s - \lim_{s \searrow -\infty} \Xi_{\eta}(t,s) = \Xi_{\eta}(t)$$

and hence also

$$w-\lim_{s \to -\infty} \Xi_{\eta}(t,s)^* = \Xi_{\eta}(t)^*.$$

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}).$ Then from Proposition B we know that there exists

$$s - \lim_{s \searrow -\infty} \Xi_{\eta}(t,s) = \Xi_{\eta}(t)$$

and hence also

$$w-\lim_{s\searrow -\infty}\Xi_{\eta}(t,s)^*=\Xi_{\eta}(t)^*.$$

Now, If we denote by $\Theta_{\eta}(t,s) := \overset{\circ}{W}_{\eta}(t,s)W_{\eta}(t,s)^*,$

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}).$ Then from Proposition B we know that there exists

$$s - \lim_{s \searrow -\infty} \Xi_{\eta}(t,s) = \Xi_{\eta}(t)$$

and hence also

$$w-\lim_{s\searrow -\infty}\Xi_{\eta}(t,s)^*=\Xi_{\eta}(t)^*.$$

Now, If we denote by $\Theta_{\eta}(t,s):=\overset{\circ}{W}_{\eta}(t,s)W_{\eta}(t,s)^*$, we observe that $\Xi_{\eta}(t,s)^*=E_{ac}(\overset{\circ}{H})\Theta_{\eta}(t,s)$

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}).$ Then from Proposition B we know that there exists

$$s - \lim_{s \to -\infty} \Xi_{\eta}(t,s) = \Xi_{\eta}(t)$$

and hence also

$$w-\lim_{s\searrow -\infty}\Xi_{\eta}(t,s)^*=\Xi_{\eta}(t)^*.$$

Now, If we denote by $\Theta_{\eta}(t,s) := \overset{\circ}{W}_{\eta}(t,s)W_{\eta}(t,s)^*,$ we observe that $\Xi_{\eta}(t,s)^* = E_{ac}(\overset{\circ}{H})\Theta_{\eta}(t,s)$ and we proved that $\exists s - \varinjlim_{s \sim -\infty} \Theta_{\eta}(t,s) =: \Theta_{\eta}(t) = E_{ac}(\overset{\circ}{H})\Theta_{\eta}(t).$

Let us denote by $\Xi_{\eta}(t,s) := W_{\eta}(t,s) \overset{\circ}{W}_{\eta}(t,s)^* E_{ac}(\overset{\circ}{H}).$ Then from Proposition B we know that there exists

$$s - \lim_{s \searrow -\infty} \Xi_{\eta}(t,s) = \Xi_{\eta}(t)$$

and hence also

$$w-\lim_{s \to -\infty} \Xi_{\eta}(t,s)^* = \Xi_{\eta}(t)^*.$$

Now, If we denote by $\Theta_{\eta}(t,s) := \overset{\circ}{W}_{\eta}(t,s) W_{\eta}(t,s)^*,$ we observe that $\Xi_{\eta}(t,s)^* = E_{ac}(\overset{\circ}{H})\Theta_{\eta}(t,s)$ and we proved that $\exists s - \underset{s \searrow -\infty}{\lim}\Theta_{\eta}(t,s) =: \Theta_{\eta}(t) = E_{ac}(\overset{\circ}{H})\Theta_{\eta}(t).$ Thus $\Theta_{\eta}(t) = \Xi_{\eta}(t)^*,$ which being the strong limit of unitary operators is an isometry.

Proposition D - The wave operator Ξ_{-}

① For any $\kappa \in [0,1]$ the following spectral projections coincide

$$E_{ac}(\overset{\circ}{K}_{\kappa})=E_{ac}(\overset{\circ}{H}).$$

The following wave operators exist and are complete:

$$s - \lim_{s \to -\infty} e^{-isK_1} e^{isK_1} E_{ac}(\overset{\circ}{H}) =: \Xi_-.$$

Proposition D - The wave operator Ξ_{-}

① For any $\kappa \in [0,1]$ the following spectral projections coincide

$$E_{ac}(\overset{\circ}{K}_{\kappa})=E_{ac}(\overset{\circ}{H}).$$

The following wave operators exist and are complete:

$$s - \lim_{s \setminus -\infty} e^{-isK_1} e^{is\overset{\circ}{K_1}} E_{ac}(\overset{\circ}{H}) =: \Xi_-.$$

The first point is evident.

Proposition D - The wave operator Ξ_{-}

① For any $\kappa \in [0,1]$ the following spectral projections coincide

$$E_{ac}(\overset{\circ}{K}_{\kappa})=E_{ac}(\overset{\circ}{H}).$$

The following wave operators exist and are complete:

$$s - \lim_{s \to -\infty} e^{-isK_1} e^{isK_1} E_{ac}(\overset{\circ}{H}) =: \Xi_-.$$

The first point is evident.

Let us consider the second point.

Lemma 1

$$\sigma_{sc}(K_1) = \emptyset$$

Lemma 1

$$\sigma_{sc}(K_1) = \emptyset$$

For s > 1/2 let us consider $< Q_1 >^{-s} R_1(z) < Q_1 >^{-s}$ that we shall compare with a 'quasi-decoupled' rezolvent.

Lemma 1

$$\sigma_{sc}(K_1) = \emptyset$$

For s > 1/2 let us consider $< Q_1 >^{-s} R_1(z) < Q_1 >^{-s}$ that we shall compare with a 'quasi-decoupled' rezolvent. We introduce a quadratic partition of the unity:

$$\chi_{-}^{2} + \chi_{0}^{2} + \chi_{+}^{2} = 1, \quad \chi_{\pm}, \in C^{\infty}(\mathbb{R}),$$
 $\chi_{\pm}(x) = 1 \text{ for } \pm x > 2a, \quad \chi_{\pm}(x) = 0 \text{ for } \pm x < a$ $\chi_{0}, \in C^{\infty}(\mathbb{R}), \quad \chi_{0}(x) = 0 \text{ for } |x| > 2a, \quad \chi_{0}(x) = 1 \text{ for } |x| < a,$

Lemma 1

$$\sigma_{sc}(K_1) = \emptyset$$

For s > 1/2 let us consider $< Q_1 >^{-s} R_1(z) < Q_1 >^{-s}$ that we shall compare with a 'quasi-decoupled' rezolvent. We introduce a quadratic partition of the unity:

$$\chi_-^2 + \chi_0^2 + \chi_+^2 = 1, \quad \chi_\pm, \in C^\infty(\mathbb{R}),$$

$$\chi_\pm(x) = 1 \text{ for } \pm x > 2a, \quad \chi_\pm(x) = 0 \text{ for } \pm x < a$$

$$\chi_0, \in C^\infty(\mathbb{R}), \quad \chi_0(x) = 0 \text{ for } |x| > 2a, \quad \chi_0(x) = 1 \text{ for } |x| < a,$$
 and the operator:
$$\widetilde{R}_1(z) :=$$

$$=\chi_{-}(Q_{1})\overset{\circ}{R}_{1}(z)\chi_{-}(Q_{1})+\chi_{0}(Q_{1})S(z)\chi(Q_{1})+\chi_{+}(Q_{1})\overset{\circ}{R}_{1}(z)\chi_{+}(Q_{1}),$$

• S(z) is the rezolvent of the operator $K_{1,L}$, that is just K_1 with Dirichlet boundary conditions on some L>2a; it clearly has an analytic extension to the plane $\mathbb{C}\setminus\mathfrak{N}$ with $\mathfrak{N}\subset\mathbb{R}_+$ the discret set of eigenvalues of $K_{1,L}$.

- S(z) is the rezolvent of the operator $K_{1,L}$, that is just K_1 with Dirichlet boundary conditions on some L > 2a; it clearly has an analytic extension to the plane $\mathbb{C} \setminus \mathfrak{N}$ with $\mathfrak{N} \subset \mathbb{R}_+$ the discret set of eigenvalues of $K_{1,L}$.
- On the range of $\chi_{\pm}(Q_1)$ the operators K_1 and K_1 coincide. On the range of $\chi_0(Q_1)$ the operators K_1 and $K_{1,L}$ coincide.

- S(z) is the rezolvent of the operator $K_{1,L}$, that is just K_1 with Dirichlet boundary conditions on some L>2a; it clearly has an analytic extension to the plane $\mathbb{C}\setminus\mathfrak{N}$ with $\mathfrak{N}\subset\mathbb{R}_+$ the discret set of eigenvalues of $K_{1,L}$.
- On the range of $\chi_{\pm}(Q_1)$ the operators K_1 and K_1 coincide. On the range of $\chi_0(Q_1)$ the operators K_1 and $K_{1,L}$ coincide.
- Thus we can write $(K_1 z)\widetilde{R}_1(z) = 1 + X(z)$ with X(z) containing on the left side only commutators that have compact support in $x \in \mathbb{R}$.

In conclusion

$$< Q_1 >^{-s} R_1(z) < Q_1 >^{-s} =$$
 $= < Q_1 >^{-s} \widetilde{R}_1(z) < Q_1 >^{-s} [1 - < Q_1 >^s X(z)]^{-1}$

In conclusion

$$< Q_1 >^{-s} R_1(z) < Q_1 >^{-s} =$$

= $< Q_1 >^{-s} \widetilde{R}_1(z) < Q_1 >^{-s} [1 - < Q_1 >^s X(z)]^{-1}$

and we can use the analytic Frdholm alternative on any open set $\{x+iy|x\in I, 0< y<\delta\}$ for intervals $I\subset\mathbb{R}_+\setminus(\{0\}\cup\mathfrak{N}\cup\sigma_{pp}(\mathcal{L}_D)))$ and the continuity to the border of $< Q_1>^{-s}\overset{\circ}{R}_1(z)< Q_1>^{-s}$ (the limiting absorption principle for the Laplace operator) to obtain

In conclusion

$$< Q_1 >^{-s} R_1(z) < Q_1 >^{-s} =$$
 $= < Q_1 >^{-s} \widetilde{R}_1(z) < Q_1 >^{-s} [1 - < Q_1 >^s X(z)]^{-1}$

and we can use the analytic Frdholm alternative on any open set $\{x+iy|x\in I, 0< y<\delta\}$ for intervals $I\subset\mathbb{R}_+\setminus(\{0\}\cup\mathfrak{N}\cup\sigma_{pp}(\mathcal{L}_D)))$ and the continuity to the border of $< Q_1>^{-s}\overset{\circ}{R}_1(z)< Q_1>^{-s}$ (the limiting absorption principle for the Laplace operator) to obtain

LAP for K_1

The Hamiltonian K_1 has no singular spectrum, and its rezolvent verifies the estimation (for any s>1/2)

$$\sup_{z \in \{x+iy \mid x \in I, 0 < y < \delta\}} \| < Q_1 >^{-s} R_1(z) < Q_1 >^{-s} \| \le C(I, \delta, s) < \infty.$$

• We remark that the perturbation V is still relatively bounded with respect to H with 0 relative bound but it is no longer relatively compact with respect to H and its commutator with H defined as a sesquilinear form on the domain $\mathbb{H}_D(\mathcal{L}) \otimes \mathcal{K}$ of H is singular.

- We remark that the perturbation V is still relatively bounded with respect to H with 0 relative bound but it is no longer relatively compact with respect to H and its commutator with H defined as a sesquilinear form on the domain $\mathbb{H}_D(\mathcal{L}) \otimes \mathcal{K}$ of H is singular.
- Nevertheless (V commuting with H), the exponential decay for $\overset{\circ}{R}_1(z)$, the Hilbert-Schmidt property similar to that of $\overset{\circ}{R}(z)$, and the exponential decay of the difference of the rezolvents, can stil be obtained by the same argument as in the proof of Proposition A.

• We shall consider a modified potential $\widetilde{V}(Q_1)$ with $\widetilde{V} \in C^{\infty}(\mathbb{R})$ and $V(x) = v_{\pm}$ for $x \pm x > (a/2)$

- We shall consider a modified potential $\widetilde{V}(Q_1)$ with $\widetilde{V} \in C^{\infty}(\mathbb{R})$ and $V(x) = \underset{\circ}{v_{\pm}}$ for $x \pm x > (a/2)$
- and the rezolvents $\widetilde{R}_1(z)$ and $\overset{\circ}{\widetilde{R}}_1(z)$ associated to the Hamiltonians $H+\overset{\circ}{V}$ and $\overset{\circ}{H}$.

- We shall consider a modified potential $\widetilde{V}(Q_1)$ with $\widetilde{V} \in C^{\infty}(\mathbb{R})$ and $V(x) = v_{\pm}$ for $x \pm x > (a/2)$
- and the rezolvents $\widetilde{R}_1(z)$ and $\overset{\circ}{\widetilde{R}}_1(z)$ associated to the Hamiltonians $H+\widetilde{V}$ and $\overset{\circ}{H}$.

To this pair we can apply exactly the arguments used for the pair H and $\overset{\circ}{H}$ in order to get

Proposition

There exists $k'_d \in \mathbb{N}$ depending on the dimension d such that for any $z \in \mathbb{C} \setminus [0,\infty)$ and any $k \geq k'_d$ we have that $w(Q_1)\widetilde{R}_1(z)^k$, $w(Q_1)\overset{\circ}{\widetilde{R}}_1(z)^k$ and $w(Q_1)\Psi_\alpha(Q_1)\widetilde{R}_1(z)^k\Psi_\alpha(Q_1)^{-1}$, $w(Q_1)\Psi_\alpha(Q_1)\overset{\circ}{\widetilde{R}}_1(z)^k\Psi_\alpha(Q_1)^{-1}$ with $\alpha < \alpha(z)$, are Hilbert-Schmidt operators on \mathcal{H} for any measurable function $w \in L^2(\mathbb{R})$.

The arguments used in the proof of Proposition A may be repeated identically to get

proposition

Let $z \in \mathbb{C} \setminus [0, \infty)$ and $\gamma_{\pm} \in \mathbb{R}_{+} \setminus \{0\}$ be such that $0 < \gamma_{\pm} \leq \gamma_{0}(z)$, then we have:

$$\left\| e^{\pm \gamma_{\pm} Q_1} \Pi_{\pm} \big(\widetilde{R}_1(z) - \overset{\circ}{\widetilde{R}}_1(z) \big) \right\| \leq c,$$

$$\left\|\mu_{lpha}(Q_1)\big(\widetilde{\widetilde{R}}_1(z)-\overset{\circ}{\widetilde{\widetilde{R}}}_1(z)\big)
ight\|\leq c,$$

where for $\alpha < \gamma_0(z)$, μ_α is a strictly positive smooth function such that $\mu_\alpha(x) \ge 1$ for any $x \in \mathbb{R}$ and $\mu_\alpha(x) = e^{\pm \alpha x}$ for $\pm x \ge 2a$.

Thus we can use the Kuroda-Birman theory to get the existence and asymptotic completness of the wave operators for the pait of Hamiltonians $\{H + \widetilde{V}, \overset{\circ}{H} + \widetilde{V}\}.$

Thus we can use the Kuroda-Birman theory to get the existence and asymptotic completness of the wave operators for the pait of Hamiltonians $\{H + \widetilde{V}, \overset{\circ}{H} + \widetilde{V}\}.$

Now we observe that $E_{ac}(\overset{\circ}{H}+V)=E_{ac}(\overset{\circ}{H}+\widetilde{V})=E_{ac}(\overset{\circ}{H})$ and moreover

$$e^{it(\overset{\circ}{H}+\widetilde{V})}E_{ac}(\overset{\circ}{H})=e^{it(\overset{\circ}{H}+V)}E_{ac}(\overset{\circ}{H})$$

so that we deduce the existence and asymptotic completness of the wave operators for the pair $\{H + \widetilde{V}, \overset{\circ}{H} + V\}$.

Thus we can use the Kuroda-Birman theory to get the existence and asymptotic completness of the wave operators for the pait of Hamiltonians $\{H + \widetilde{V}, \overset{\circ}{H} + \widetilde{V}\}$.

Now we observe that $E_{ac}(\overset{\circ}{H}+V)=E_{ac}(\overset{\circ}{H}+\widetilde{V})=E_{ac}(\overset{\circ}{H})$ and moreover

$$e^{it(\overset{\circ}{H}+\widetilde{V})}E_{ac}(\overset{\circ}{H})=e^{it(\overset{\circ}{H}+V)}E_{ac}(\overset{\circ}{H})$$

so that we deduce the existence and asymptotic completness of the wave operators for the pair $\{H+\widetilde{V},\overset{\circ}{H}+V\}$. Now using Proposition LAP-K1 and the fact that $K_1-(H+\widetilde{V}(Q_1)=w(Q_1)$ a bounded function with compact support, we conclude that the wave operators for the pair $\{K_1,H+\widetilde{V}\}$ also exist and are complete.

Thus we can use the Kuroda-Birman theory to get the existence and asymptotic completness of the wave operators for the pait of Hamiltonians $\{H + \widetilde{V}, \overset{\circ}{H} + \widetilde{V}\}$.

Now we observe that $E_{ac}(\overset{\circ}{H}+V)=E_{ac}(\overset{\circ}{H}+\widetilde{V})=E_{ac}(\overset{\circ}{H})$ and moreover

$$e^{it(\overset{\circ}{H}+\widetilde{V})}E_{ac}(\overset{\circ}{H})=e^{it(\overset{\circ}{H}+V)}E_{ac}(\overset{\circ}{H})$$

so that we deduce the existence and asymptotic completness of the wave operators for the pair $\{H+\widetilde{V},\overset{\circ}{H}+V\}$. Now using Proposition LAP-K1 and the fact that $K_1-(H+\widetilde{V}(Q_1)=w(Q_1))$ a bounded function with compact support, we conclude that the wave operators for the pair $\{K_1,H+\widetilde{V}\}$ also exist and are complete. Puting these results together we get the existence and asymptotic

completness of the wave operators for the pair $\{K_1, K_1\}$ and thus we end the proof of Proposition D.

Proposition E - The adiabatic limit

The following limits exist with respect to the strong operator topology on $\mathbb{B}(\mathcal{H})$ and we have the equalities:

$$egin{aligned} s - \lim_{\eta \searrow 0} & = \Xi_{\eta}(t) E_{ac}(\overset{\circ}{H}) = \Xi_{-}, \ & s - \lim_{\eta \searrow 0} & = \Xi_{-}^{*}. \end{aligned}$$

We shall first consider the limit $\eta \searrow 0$ for the operators $\Xi_{\eta}(t)$.

All the estimations in the proof of Proposition B have been independent of the value of $\eta>0$ and we deduce that the limit $s-\lim_{s\searrow -\infty} \Phi_{\eta}(t,s)$ is uniform in $\eta>0$.

All the estimations in the proof of Proposition B have been independent of the value of $\eta>0$ and we deduce that the limit $s-\lim \Phi_{\eta}(t,s)$ is uniform in $\eta>0$.

Repeating the arguments in the proof of Proposition B we denote by

$$\Xi_1(t)=e^{-itK_1}e^{it\overset{\circ}{K_1}},$$

and can write

$$\Xi_1(t) = (K_1+1)^{-1}(\mathring{K}_1+1)u + \int_0^t \Psi(s) \, ds (\mathring{K}_1+1)^2 u - \Psi(t) (\mathring{K}_1+1).$$

All the estimations in the proof of Proposition B have been independent of the value of $\eta > 0$ and we deduce that the limit $s - \lim_{s \to -\infty} \Phi_{\eta}(t,s)$ is uniform in $\eta > 0$.

Repeating the arguments in the proof of Proposition B we denote by

$$\Xi_1(t)=e^{-itK_1}e^{it\overset{\circ}{K_1}},$$

and can write

$$\Xi_1(t) = (K_1 + 1)^{-1} (\mathring{K}_1 + 1) u + \int_0^t \Psi(s) \, ds (\mathring{K}_1 + 1)^2 u - \Psi(t) (\mathring{K}_1 + 1).$$

With similar notations:

$$egin{aligned} \Psi(t) &:= e^{-it\mathcal{K}_1} \left[\left(\mathcal{K}_1+1
ight)^{-1} - \left(\overset{\circ}{\mathcal{K}}_1+1
ight)^{-1}
ight] e^{it\overset{\circ}{\mathcal{K}}_1} \ \Phi(t) &:= e^{-it\mathcal{K}_1} \left(\mathcal{K}_1+1
ight)^{-1} \left(\overset{\circ}{\mathcal{K}}_1+1
ight)^{-1} e^{it\overset{\circ}{\mathcal{K}}_1}. \end{aligned}$$

We repeat the same arguments of the proof of Proposition B to prove that the right-hand side has a strong limit for $t \setminus -\infty$,

We repeat the same arguments of the proof of Proposition B to prove that the right-hand side has a strong limit for $t \setminus -\infty$, while due to Proposition D the left-hand side has strong limit Ξ_- .

We repeat the same arguments of the proof of Proposition B to prove that the right-hand side has a strong limit for $t \setminus -\infty$, while due to Proposition D the left-hand side has strong limit Ξ_- . Starting from the usual approximation of the non-homogeneous propagator by products of unitary groups associated to Hamiltonians at sets of fixed points during the evolution it is easy to see that for any fixed $s \le t \le 0$ we have

$$s - \lim_{\eta \searrow 0} \Psi_{\eta}(t,s) = \Psi(t-s)$$

and this finishes the first part of the Proposition E, concerning the strong limit of $\Xi_{\eta}(t)$ for $\eta \searrow 0$.

• We have just seen that
$$s - \lim_{\eta \searrow 0} \Xi_{\eta}(t) = \Xi_{-}.$$

- We have just seen that $s \lim_{\eta \searrow 0} \Xi_{\eta}(t) = \Xi_{-}.$
- Thus $w \lim_{\eta \searrow 0} \Xi_{\eta}(t)^* = \Xi_{-}^*$.

- We have just seen that $s \lim_{\eta \searrow 0} \Xi_{\eta}(t) = \Xi_{-}.$
- Thus $w \lim_{\eta \searrow 0} \Xi_{\eta}(t)^* = \Xi_{-}^*$.
- The completness of the wave operator Ξ_{-} (Proposition B) implies $\Xi_{-}^{*} = s \lim_{\eta \searrow 0} e^{-is\overset{\circ}{K}_{1}} e^{isK_{1}}$

- We have just seen that $s \lim_{\eta \searrow 0} \Xi_{\eta}(t) = \Xi_{-}.$
- Thus $w \lim_{\eta \searrow 0} \Xi_{\eta}(t)^* = \Xi_{-}^*$.
- The completness of the wave operator Ξ_{-} (Proposition B) implies $\Xi_{-}^{*} = s \lim_{n \to 0} e^{-is\hat{K}_{1}} e^{isK_{1}}$
- Thus Ξ_{-}^{*} is an isometry.

To finish our proof we have to control the limit for $\eta \searrow 0$ of the adjoints $\Xi_{\eta}(t)^*$.

- We have just seen that $s \lim_{\eta \searrow 0} \Xi_{\eta}(t) = \Xi_{-}.$
- Thus $w \lim_{\eta \searrow 0} \Xi_{\eta}(t)^* = \Xi_{-}^*$.
- The completness of the wave operator Ξ_{-} (Proposition B) implies $\Xi_{-}^{*} = s \lim_{n \to 0} e^{-is \overset{\circ}{K}_{1}} e^{is K_{1}}$
- Thus Ξ_{-}^{*} is an isometry.

Now, if the weak limit of a family of operators with norms bounded by 1 is an isometry, then for any $f \in \mathcal{H}$

$$\left\| \left[\Xi_{-}^{*} - \Xi_{\eta}(t)^{*} \right] f \right\|_{\mathcal{H}} \leq 2 \|f\|_{\mathcal{H}} - 2 \Re \left(\left\langle \Xi_{-}^{*} f, \Xi_{\eta}(t)^{*} f \right\rangle \right) \to 0$$

To finish our proof we have to control the limit for $\eta \searrow 0$ of the adjoints $\Xi_{\eta}(t)^*$.

- We have just seen that $s \lim_{\eta \searrow 0} \Xi_{\eta}(t) = \Xi_{-}.$
- Thus $w \lim_{\eta \searrow 0} \Xi_{\eta}(t)^* = \Xi_{-}^*$.
- The completness of the wave operator Ξ_{-} (Proposition B) implies $\Xi_{-}^{*} = s \lim_{n \to 0} e^{-is\hat{K}_{1}} e^{isK_{1}}$
- Thus Ξ_{-}^{*} is an isometry.

Now, if the weak limit of a family of operators with norms bounded by 1 is an isometry, then for any $f \in \mathcal{H}$

$$\left\| \left[\Xi_{-}^{*} - \Xi_{\eta}(t)^{*} \right] f \right\|_{\mathcal{H}} \leq 2 \|f\|_{\mathcal{H}} - 2 \Re \left(\left\langle \Xi_{-}^{*} f, \Xi_{\eta}(t)^{*} f \right\rangle \right) \to 0$$

Thus we have strong convergence of $\Xi_{\eta}(t)^*$ to Ξ_{-}^* when $\eta \searrow 0$.

