DIAS - School of Theoretical Physics

Mathematical Aspects of Transport in Mesoscopic Systems - Dublin, December 4-7, 2008

Mean-Field Interacting Boson Random Point Processes in Weak (Harmonic) Traps

Valentin A. ZAGREBNOV

Centre de Physique Théorique - Luminy - UMR 6207

- Random Fermion and Boson Processes =
 Random (Quantum) Point Fields or Determinantal and
 Permanental Processes ⊆ Cox Processes (1955).
- Condensation in "Weak Harmonic Traps".

1. Random Point Processes (RPP)

- (a) N.B. Keep in mind just: $\Lambda \subseteq \mathbb{R}^d$ is an open subset, ν is the Lebesgue measure, K(x,y) is a kernel of non-negative self-adjoint locally Tr-class operator on $L^2(\Lambda)$, and $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space with $\omega \in \Omega$.
- (b) Definition: A random point processes in a locally compact (Polish) space Λ is a random integer-valued positive Radon measure μ^{ω} on Λ . For a simple point process the measure μ^{ω} assigns a.-s. $\mu^{\omega}(x) \leq 1$ for any $x \in \Lambda$ and $\mu^{\omega}(D) := N_D^{\omega}$, the number of points that fall in D for locally-finite point configurations $Q(\Lambda)$.
- (c) Example:(The Poisson random point field, intensity $\lambda \geq 0$) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let the random counting measure $\{\mu_{\lambda}^{\omega}(dx)\}_{\omega \in \Omega}$ be such that for $n \in N \cup \{0\}$ and any $k \geq 1$:

$$\mathbb{P}\{\omega \in \Omega : \mu_{\lambda}^{\omega}(D) = n\} = \frac{(\lambda \nu(D))^n}{n!} e^{-\lambda \nu(D)}$$

$$\mathbb{E}(\mu_{\lambda}^{\omega}(D_1) \dots \mu_{\lambda}^{\omega}(D_k) = \lambda^k \nu(D_1) \dots \nu(D_k) (= \mathbb{E}\mu_{\lambda}^{\omega}(D_1) \dots \mathbb{E}\mu_{\lambda}^{\omega}(D_k)).$$

(d) Definition: For any family of mutually disjoint subsets $\{D_n \subset \Lambda\}_{n\geq 1}$ the correlation functions (joint intensities) of the RPP μ^{ω} are defined by the densities $\{\rho_n : \Lambda^n \mapsto \mathbb{R}^1_+\}_{n\geq 1}$ with respect to the measure ν :

$$\mathbb{E}(\mu^{\omega}(D_1)\dots\mu^{\omega}(D_n)) = \int_{D_1\times\dots\times D_n} \nu(dx_1)\dots\nu(dx_n) \ \rho_n(x_1,\dots,x_n)$$

(e) Definition: A RPP is called determinantal with (a *locally* Tr-class) kernel K is it is *simple* and its correlation functions:

$$\rho_k(x_1, \dots, x_k) = \det \|K(x_i, x_j)\|_{1 \le i, j \le n}$$

for any $k \geq 1$ and $x_1, \ldots, x_n \in \Lambda$.

(f) Definition: A RPP is called permanental with (a *locally* Tr-class) kernel K is it is *simple* and its correlation functions:

$$\rho_n(x_1,...,x_n) = \text{per} \|K(x_i,x_j)\|_{1 \le i,j \le n}$$

for any $k \geq 1$ and $x_1, \ldots, x_n \in \Lambda$.

N.B.
$$\det_{\alpha} A := \sum_{\sigma \in \mathfrak{S}_n} \alpha^{n-c(\sigma)} \prod_{1 \leq i \leq n} a_{i\sigma(i)}, \ \alpha = \pm 1 \Leftrightarrow \operatorname{per/det}$$

2. Fermion/Boson Random Point Processes

2.1 Quantum (Statistical) Mechanics: Fermions

• Let $\mathfrak{H}_L:=L^2(\Lambda_L), \Lambda_L=[-L/2,L/2]^d$ and $\Delta_{L,p}$ be Laplacian with *periodic* boundary conditions on $\partial\Lambda_L$, i.e.

$$\operatorname{spec}(-\Delta_{L,p}) = \{ \varepsilon(k) = (2\pi/L)^2 ||k||^2 : k \in \mathbb{Z}^d \}.$$

The Gibbs semigroup kernel has the form:

$$G_L(x,y) := (e^{\beta \Delta_L})(x,y) = \sum_{k \in \mathbb{Z}^d} e^{-\beta \varepsilon(k)} \phi_{k,L}(x) \overline{\phi_{k,L}(y)} = \sum_{k \in \mathbb{Z}^d} G(x,y+kL),$$

where

$$G(x,y) = \lim_{L \to \infty} G_L(x,y) = (4\pi\beta)^{-d/2} \exp(-\|x-y\|^2/4\beta).$$

• Remark: Any *n*-particle free-fermion wave function is the *Slater* determinant:

$$\Psi_{k_1,\dots,k_n}(x_1,\dots,x_n) = \frac{1}{\sqrt{n!}} \det \|\phi_{k_i,L}(x_j)\|_{1 \le i,j \le n}$$

• The corresponding n-point free-fermion joint probability distribution density: $p_{n,L}(x_1,\ldots,x_n):=|\Psi_{k_1,\ldots,k_n}(x_1,\ldots,x_n)|^2$, or

$$p_{n,L}(x_1,\ldots,x_n) = \frac{1}{n!} \det \|\phi_{k_i,L}(x_j)\|_{1 \le i,j \le n} \ \overline{\det \|\phi_{k_i,L}(x_j)\|_{1 \le i,j \le n}}$$

• Since $\det A \det B = \det A B$ one gets:

$$p_{n,L}(x_1,\ldots,x_n) = \frac{1}{n!} \det ||K_{n,L}(x_i,x_j)||_{1 \le i,j \le n},$$

where $K_{n,L}(x,y) = \sum_{1 \leq i \leq n} \phi_{k_i,L}(x) \overline{\phi_{k_i,L}(y)}$ is the kernel of orthogonal projection on the $\mathsf{Env}\{\phi_{k_1,L},\ldots,\phi_{k_n,L}\}$.

Since the k-point marginal correlation functions are

$$p_{n,L}^{(k)}(x_1,\ldots,x_n) := \frac{n!}{(n-k)!} \int p_{n,L}(x_1,\ldots,x_n) dx_{k+1},\ldots,dx_n = \det ||K_{n,L}(x_i,x_j)||_{1 \le i,j \le k},$$

the determinantal RPP $\mu_{n,L}^{\omega,F}$ generated by the joint probability distribution density $p_{n,L}$ is correctly defined for n free fermions in the cube Λ_L .

cubic box $\Lambda = L \times L \times L$, $|\Lambda| = V$ with periodic boundary conditions for single-particle Hamiltonian $t_L := (-\Delta/2)_{\Lambda_L, P}$.

• Generalized BEC - take a prism $\Lambda = L_1 \times L_2 \times L_3$ of the same volume with sides of length $L_j = V^{\alpha_j}$, j = 1, 2, 3, such that $\alpha_1 \geq \alpha_2 \geq \alpha_3 > 0$ and $\alpha_1 + \alpha_2 + \alpha_3 = 1$, with the Periodic boundary conditions for single-particle Hamiltonian $t_L := (-\Delta/2)_{\Lambda_L,P}$ on the boundary of this prism (Casimir boxes (1968)).

• Proposition 1: Generalized BEC \neq Conventional BEC. Rewrite the *finite-volume* equation for a **fixed** *total* particle density ρ (*grand-canonical* ensemble ($\beta \geq 0, \mu < 0$)) in the form:

$$\rho = \frac{1}{V} \frac{1}{e^{-\beta\mu} - 1} + \frac{1}{V} \sum_{k \in \{\Lambda^*: n_1 \neq 0, n_2 = n_3 = 0\}} \sum \frac{1}{e^{\beta(\varepsilon_k - \mu)} - 1} + \frac{1}{V} \sum_{k \in \{\Lambda^*: n_j \neq 0, j = 2 \text{ or } 3\}} \sum \frac{1}{e^{\beta(\varepsilon_k - \mu)} - 1}.$$

• Here the *dual space* Λ^* of momenta w.r.s. to the periodic boundary conditions is:

$$\Lambda^* := \left\{ k_j := \frac{2\pi}{V^{\alpha_j}} n_j : n_j \in \mathbb{Z} \right\}_{j=1}^{d=3} \quad \text{and} \quad \varepsilon_k := \sum_{j=1}^d \frac{k_j^2}{2}$$

• Cube: $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$, $V = L^3$. If $\mu < 0$ and $\Lambda \nearrow \mathbb{R}^3$:

$$\rho = \lim_{\Lambda} \rho_{\Lambda}(\beta, \mu) := \lim_{\Lambda} \frac{1}{V} \left\{ \frac{1}{e^{-\beta\mu} - 1} + \sum_{k \in \{\Lambda^*/0\}} \frac{1}{e^{\beta(\varepsilon_k - \mu)} - 1} \right\}$$

$$= \lim_{L \to \infty} \frac{1}{L^3} \sum_{n_j \in \mathbb{Z} \setminus 0} \left\{ e^{\beta(\sum_{j=1}^d (2\pi n_j V^{-\alpha_j})^2 / 2 - \mu)} - 1 \right\}^{-1}$$

$$= \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} d^3k \left\{ e^{\beta(k^2 / 2 - \mu)} - 1 \right\}^{-1} =: \Im(\beta, \mu).$$

• For d > 2 the free Bose-gas critical density $\rho_c(\beta) := \lim_{\mu \nearrow 0} \Im(\beta, \mu)$ is finite: then if $\rho > \rho_c(\beta) \Rightarrow BEC$ at k = 0, $\rho_0(\beta) := \rho - \rho_c(\beta)$.

• Saturation Mechanism (conventional condensation):

Let $\mu_{\Lambda}(\beta, \rho)$ be solution of the equation

$$\rho = \rho_{\Lambda}(\beta, \mu) \Leftrightarrow \rho \equiv \rho_{\Lambda}(\beta, \mu_{\Lambda}(\beta, \rho)).$$

Then either:

- $\lim_{\Lambda} \mu_{\Lambda}(\beta, \rho < \rho_c(\beta)) = \mu_{\Lambda}(\beta, \rho) < 0$ or
- $\lim_{\Lambda} \mu_{\Lambda}(\beta, \rho \geq \rho_c(\beta)) = 0$, and

$$\rho_{0}(\beta) = \rho - \rho_{c}(\beta) = \lim_{\Lambda} \frac{1}{V} \left\{ e^{-\beta \mu_{\Lambda}(\beta, \rho \geq \rho_{c}(\beta))} - 1 \right\}^{-1} \Rightarrow$$

$$\mu_{\Lambda}(\beta, \rho \geq \rho_{c}(\beta)) = -\frac{1}{V} \frac{1}{\beta(\rho - \rho_{c}(\beta))} + o(1/V)$$

• Since $\varepsilon_k = \sum_{j=1}^d (2\pi n_j/V^{1/3})^2/2$ the BEC is unique (type I):

$$\lim_{\Lambda} \frac{1}{V} \left\{ e^{\beta(\varepsilon_{k} \neq 0 - \mu_{\Lambda}(\beta, \rho))} - 1 \right\}^{-1} = 0.$$

- Saturation Mechanism (generalised condensation):
- The Casimir Box: Let $\alpha_1 = 1/2$, i.e. $\alpha_2 + \alpha_3 = 1/2$. Then

$$\lim_{\Lambda} \frac{1}{V} \left\{ e^{\beta(\varepsilon_{k} \neq 0^{-\mu_{\Lambda}(\beta,\rho)})} - 1 \right\}^{-1} \neq 0, \varepsilon_{k_{1},0,0} = (2\pi n_{1}/V^{1/2})^{2}/2 \sim \mu_{\Lambda}(\beta,\rho).$$

$$\lim_{\Lambda} \frac{1}{V} \left\{ e^{\beta(\varepsilon_{k} \neq 0 - \mu_{\Lambda}(\beta, \rho))} - 1 \right\}^{-1} = 0, \varepsilon_{0, k_{2,3} \neq 0} \sim (2\pi n_j / V^{\alpha_j})^2 / 2 > \mu_{\Lambda}(\beta, \rho)$$

• Hence again the solution $\mu_{\Lambda}(\beta, \rho)$ of the equation

$$\rho = \rho_{\Lambda}(\beta, \mu) \quad \Leftrightarrow \quad \rho \equiv \rho_{\Lambda}(\beta, \mu_{\Lambda}(\beta, \rho)).$$

has the asymptotics $\mu_{\Lambda}(\beta, \rho \geq \rho_c(\beta)) = -A/V + o(1/V), \ A \geq 0.$

• Generalised BEC condensation **type II** [van den Berg-Lewis-Pulé (1978)]:

$$\rho - \rho_c(\beta) = \lim_{L \to \infty} \frac{1}{V} \sum_{n_1 \in \mathbb{Z}} \left\{ e^{\beta((2\pi n_1/V^{1/2})^2/2 - \mu_{\Lambda}(\beta, \rho))} - 1 \right\}^{-1}$$

$$= \sum_{n_1 \in \mathbb{Z}} \frac{1}{(2\pi n_1)^2/2 + A} .$$

Here $A \geq 0$ is a *unique root* of the above equation.

- N.B. For $\alpha_1 = 1/2$ the BEC is still microscopical, but infinitely fragmented. Experiment with rotating condensate (2000).
- The van den Berg-Lewis-Pulé Box: $\alpha_1 > 1/2$.
- N.B. No macroscopic occupation of any level:

$$\lim_{\Lambda} \frac{1}{V} \left\{ e^{\beta(\varepsilon_k - \mu_{\Lambda}(\beta, \rho))} - 1 \right\}^{-1} = 0.$$

Generalised BEC of the type III:

$$\lim_{\delta \to 0^{+}} \lim_{\Lambda} \frac{1}{V} \sum_{\{k \in \Lambda^{*}, 0 \leq ||k|| \leq \delta\}} \left\{ e^{\beta(\varepsilon_{k} - \mu_{\Lambda}(\beta, \rho))} - 1 \right\}^{-1} = \rho - \rho_{c}(\beta)$$

• Chemical potential $(\alpha_1 > 1/2)$:

$$\mu_{\Lambda}(\beta, \rho > \rho_{c}(\beta)) = -\frac{B}{V^{\delta}} + o\left(\frac{1}{V^{\delta}}\right), \ B > 0, \ \delta = 2\left(1 - \alpha_{1}\right) < 1,$$

$$\tag{1}$$

ullet Equation for B

$$\rho - \rho_c(\beta) = (2\pi\beta)^{-1/2} \int_0^{+\infty} d\xi e^{-\beta B\xi} \xi^{-1/2},$$

• ρ_m -PROBLEM: (van den Berg-Lewis-Pulé) $\rho_c \le \rho_m \le \infty$ such that type II or III \to type I, for $\rho \ge \rho_m$? YES!

II Free Bose-Gas

2.1 One-Particle Integrated Density of States

- Let $\Lambda_L \subset \mathbb{R}^d$, with a smooth boundary $\partial \Lambda_L$ and $|\Lambda_L| = V_L$.
- $\mathcal{H}_L:=L^2(\Lambda_L)$, and (free) one-particle Hamiltonian $t_{\Lambda_L}:=(-\Delta/2)_{\Lambda_L,D}=t_{\Lambda_L}^*$, with (for example) D= Dirichlet boundary conditions.
- t_{Λ_L} has a discrete spectrum $\sigma(t_{\Lambda_L}) = \left\{ E_{k,L} \right\}_{k \geq 1}$:

$$t_{\Lambda_L} \psi_{k,L} = E_{k,L} \psi_{k,L}, \quad 0 < E_{1,L} < E_{2,L} \le E_{3,L} \le \dots$$

of finite multiplicity, and $\exp(-\beta t_{\Lambda_L}) \in \text{Tr-class}(\mathcal{H}_L)$ for $\beta > 0$.

Definition 2.1The finite-volume *integrated density of states* (**IDS**) of t_{Λ_L} is the specific (by a *unit* volume) eigenvalue count-

ing function $\mathcal{N}_{\Lambda_L}(E) := \max \left\{ k : E_{k,L} < E \right\} / |\Lambda_L|$.

Proposition 2.2 There exists a *limiting* integrated density of states: $\mathcal{N}^{(0)}(E) = w - \lim_{L \to \infty} \mathcal{N}_{\Lambda_L}(E)$, where $\mathcal{N}^{(0)}(E) = C_d E^{d/2}$.

2.2 BEC of the Free Bose-Gas

- **Definition 2.3** The grand-canonical **non**-interacting bosons without external potential are called the (β, μ) -free Bose-gas.
- Proposition 2.4 By the *Bose-statistics* and by **Definition 1** of the *finite-volume* **IDS**, the *mean value* of the *total* particledensity $\rho_{\Lambda_L}(\beta, \mu)$ in the volume Λ_L is:

$$\rho_{\Lambda_L}(\beta,\mu) = -\int_0^\infty dE \, \mathcal{N}_{\Lambda_L}(E) \, \partial_E \left\{ \frac{1}{e^{\beta(E-\mu)} - 1} \right\} , \, \mu < 0 .$$

• By Proposition 2.5, the limiting density $\rho(\beta, \mu)$ exists for *negative* chemical potentials $\mu \in (-\infty, 0)$:

$$\rho(\beta,\mu) = -\int_0^\infty dE \ \mathcal{N}^{(0)}(E) \ \partial_E \left\{ \frac{1}{e^{\beta(E-\mu)} - 1} \right\} \ .$$

• The critical density $\rho_c(\beta) := \rho(\beta, -0) < \infty$ is finite for $d > d_c = 2$, since $\mathcal{N}^{(0)}(dE) \sim E^{d/2-1}dE$.

We resume the above observations as the main statement about the BEC for the case of the free boson gas:

• Proposition 2.6 Let $\rho_c(\beta) < \infty$ and $\mu_{\Lambda_L}(\beta, \rho)$ be unique root of equation $\rho = \rho_L(\beta, \mu)$. For $\rho \geq \rho_c(\beta)$, $\lim_{L \to \infty} \mu_{\Lambda_L}(\beta, \rho) = 0$ and the BEC density $\rho_0(\beta, \rho) := \rho - \rho_c(\beta) > 0$ is

$$\rho_0(\beta, \rho) = -\lim_{\epsilon \downarrow 0} \lim_{L \to \infty} \int_0^{\epsilon} dE \, \mathcal{N}_{\Lambda_L}(E) \, \partial_E \left\{ \frac{1}{e^{\beta(E - \mu_{\Lambda_L}(\beta, \rho))} - 1} \right\}$$

• N.B. If $\rho_c(\beta) = \infty$, this statement has no sense, **but** the value of critical density $\rho_c(\beta)$ may be **changed**, if the non-interacting gas is placed in an **external potential**: since the value of $\rho_c(\beta)$ is a function of the critical dimensionality d_c and the latter is a functional of the **One-Particle Density of States**: $\mathcal{N}^{(0)}(dE)$.

2.3 Why BEC of the Free Bose-Gas is a Subtle Matter?

• Let $\Lambda_{L,\mathbf{D}} = \times_{j=1}^3 [-L/2,L/2]$ be a **cube**. Then

$$\rho_0(\beta, \rho > \rho_c(\beta)) = \lim_{L \to \infty} \frac{1}{L^3} \left\{ e^{\beta (E_{k,L} - \mu_L(\beta, \rho))} - 1 \right\}^{-1}$$
$$= (\rho - \rho_c(\beta)) \delta_{1,k} , E_{1=(1,1,1),L} = \{3(\pi/L)^2\}/2$$

is the ground-state BEC (type I), $E_{1,L} - \mu_L(\beta, \rho)$) $\sim L^{-3}$.

$$E_{qr} = 0 \bullet -----E_* \bullet ------- \to \blacksquare$$

- Let $\rho_c(\beta) = \int_0^\infty \mathcal{N}^{(0)}(dE) \{e^{\beta E} 1\}^{-1} = \infty \Leftrightarrow \text{high density of states} \quad \mathcal{N}^{(0)}(dE) \text{ at } E = 0 \text{ (e.g. } E^{d/2-1}dE \text{ for } d \leq 2)$ \Leftrightarrow "leaking" of the BEC into excited states \Rightarrow
- Conclusion: To *preserve* the BEC one has to *suppress* density of states in the *vicinity* of the **ground-state** $(E_{gr}=0)$, e.g., a **spectral gap**: $\mathcal{N}^{(0)}(E)=\theta(E-E_{gr})$ for $E<E_*$, where $E_{gr}<E_*$ [Buffet,Pulé,Lauwers,Verbeure,Z].

III Perfect Bose-Gas in Magnetic Field

3.1 Hamiltonian

- Let open $\Lambda_{L=1} \subset \mathbb{R}^{d=3}$ with $|\Lambda_{L=1}| = 1$ and piecewise continuously differentiable boundary $\partial \Lambda_{L=1}$ contain the origin $\{x=0\}$. Put $\Lambda_L := \{x \in \mathbb{R}^3 : L^{-1}x \in \Lambda_{L=1}\}$, L > 0.
- Take a magnetic *vector-potential* in the form: $a(x) = \omega \ a_0(x)$, $\omega \geq 0$. For two types of gauges: symmetric (*transverse*): $a_0(x) = 1/2(-x_2, x_1, 0)$, or *Landau*: $a_1(x) = (0, x_1, 0)$, this generates a unit magnetic field B *parallel* to the third direction.
- The one-particle Hamiltonian with *Dirichlet* boundary conditions (D) on $\partial \Lambda_L$ is defined in $L^2(\Lambda_L)$ by

$$h_{\Lambda_L}(\omega) := (-i\nabla - a)^2 + V_{\Lambda_L} \equiv t_{\Lambda_L}(\omega) + V_{\Lambda_L}$$

where V_{Λ_L} is an external "electric" potential. Then $h_{\Lambda_L}(\omega)$ has purely discrete spectrum.

3.2 No-Go Theorem for BEC in a Constant Magnetic Field

• Let a continuous external potential $V(x) = v(x_1)$ (v is \mathbb{Z} -periodic) and use the Landau gauge $a_1(x) = (0, x_1, 0) \in \mathbb{R}^3$ (a particular gauge is irrelevant since the density of states is gauge invariant). Then the *bulk* Hamiltonian is:

$$h_{\infty}(\omega) = (-i\nabla - \omega a_1)^2 + v = -\partial_{x_1}^2 + v(x_1) + (-i\partial_{x_2} - \omega x_1)^2 - \partial_{x_3}^2$$
, acting in $L^2(\mathbb{R}^3)$, where $\omega \ge 0$.

• Proposition 3.1 Let $E_0(\omega) := \inf \sigma(h_\infty(\omega))$. Then:

$$\mathcal{N}_{\infty,\omega}(E) = B_{\omega,d} \cdot (E - E_0(\omega))^{d/2-1} + o((E - E_0(\omega))^{d/2-1})$$

for $E \setminus E_0(\omega)$. Hence, for d=3 and any $\omega>0$ the critical density

$$\rho_c(\beta) = -\lim_{\mu \nearrow E_0(\omega)} \int_{E_0(\omega)}^{\infty} dE \, \mathcal{N}_{\infty,\omega}(E) \partial_E \left\{ \frac{1}{e^{\beta(E-\mu)} - 1} \right\}$$

is infinite, i.e. the BEC is destroyed.

• Remark 3.2 Operator $h_{\infty}(\omega)$ is unitary equivalent to the sum of ω -harmonic oscillator (Landau levels) and one-dimensional v-Schrödinger operator in the *third direction*. If v=0, then

$$\mathcal{N}_{\infty,\omega}(E) = \omega(E-\omega)^{1/2}/2\pi^2$$

between the first two Landau levels: $E \in (\omega, 3\omega)$, i.e.

$$d=3$$
 and $\omega>0 \Leftrightarrow d=1$ and $\omega=0$

• Proposition 3.3 [BCZ (2004)] Assume that $\omega = 2\pi$. Then there exists an external "electric" potential of the form:

$$V_{\epsilon}(x) = \epsilon \cdot [v_1(x_1) + v_2(x_2)] + v_3(x_3),$$

where $\epsilon > 0$ and small, each of the functions $\{v_j\}_{j=1}^3$ is a smooth \mathbb{Z} -periodic potential, and *neither* one of v_1 and v_2 is constant, that critical density is bounded.

3.3 Another example gives a Generalized BEC (Casimir (1968), van den Berg - Lewis - Pulé (1978))

• Generalized (fragmented) BEC in the Casimir boxes:

$$\Lambda_L = \times_{j=1}^3 [-V^{\alpha_j}/2, V^{\alpha_j}/2]$$
 , $\alpha_1 + \ldots + \alpha_3 = 1$.

- $\alpha_1 < 1/2 \Rightarrow$ BEC type I
- $\alpha_1 = 1/2 \Rightarrow$ BEC type II
- $1 > \alpha_1 > 1/2 \Rightarrow$ BEC type III

IV Bose-Condensation in Random Potentials

4.1 Random Schrödinger Operator (RSO)

• Random Repulsive Impurities: $u(x) \ge 0, x \in \mathbb{R}^d$, continuous function with a *compact* support is a local single-impurity potential. The Random *Poisson* Potential (*RPP*):

$$v^{\omega}(x) := \int_{\mathbb{R}^d} \mu_{\tau}^{\omega}(dy)u(x-y) = \sum_j u(x-y_j^{\omega}) \ge 0,$$

where impurity positions $\left\{y_j^\omega\right\}\subset\mathbb{R}^d$ are the atoms of the random Poisson measure:

$$\mathbb{P}\left(\left\{\omega \in \Omega : \mu_{\tau}^{\omega}(\Lambda) = n\right\}\right) = \frac{(\tau |\Lambda|)^n}{n!} e^{-\tau |\Lambda|}$$

 $n \in \mathbb{N} \cup \{0\}$, $\Lambda \subset \mathbb{R}^d$, $\mathbb{E}(\mu_{\tau}^{\omega}(\Lambda)) = \tau |\Lambda|$, the parameter τ is concentration of impurities.

PROPERTIES:

- This potential is homogeneous and ergodic.
- RSO is a family of random (a.s) self-adjoint operators

$$\{h^{\omega} := t + v^{\omega}\}_{\omega \in \Omega}.$$

Proposition 4.1 For *RSO* with *RPP* the spectrum $\sigma(h^{\omega})$ of h^{ω} is almost-sure (a.s.) nonrandom and coincides with $[0, +\infty)$.

4.2 Self-Averaging of the IDS

• The restriction $h_L^{\omega}:=(-\Delta/2+v^{\omega})_{\Lambda_L,\mathcal{D}}$ has the (random) finite-volume IDS:

$$\mathcal{N}_L^{\omega}(E) := \frac{1}{|\Lambda_L|} \max \left\{ k : E_k^{\omega}(L) < E \right\}, \ \omega \in \Omega$$

Proposition 4.2 There exists a nonrandom distribution $\mathcal{N}(E)$ (measure $\mathcal{N}(dE)$) such that (a.s.)

$$\lim_{L\to\infty} \mathcal{N}_L^{\omega}(E) = \mathcal{N}(E),$$

and $\mathcal{N}(E) = \mathbb{E} \{\mathcal{E}_{h^{\omega}}(E;0,0)\}$, $\mathcal{E}_{h^{\omega}}(E;x,y)$ is the *kernel* of the spectral decomposition measure of the *RSO* h^{ω} . The spectrum $\sigma(h^{\omega}) = \operatorname{supp} \mathcal{N}$ with (*nonrandom*) lower edge $E_0 = 0$.

Proposition 4.3 (*Lifshitz tail*)

The asymptotic behaviour of $\mathcal{N}(E)$ as $E \downarrow 0$:

$$\mathcal{N}(E) \sim \exp\left\{-\tau \left(c_d/E\right)^{d/2}\right\}$$
,

with $c_d > 0$.

- N.B. For the free case, $v^{\omega} = 0$, one has: $\mathcal{N}^{(0)}(E) \sim E^{d/2}, \ E \downarrow 0$.
- The *self-averaging* of the limiting IDS is true for the Poisson *point-impurities*: $u(x) = a \, \delta(x), a > 0$.
- It is known *explicitly* for $a \to +\infty$.

4.3 BEC of the Perfect Bose-Gas in RPP

• The random finite-volume particle density:

$$\rho_L^{\omega}(\beta,\mu) = \int_0^{\infty} \mathcal{N}_L^{\omega}(dE) \frac{1}{e^{\beta(E-\mu)} - 1}$$

for $\beta > 0$, $\mu < 0$ and any realization $\omega \in \Omega$.

Proposition 4.4 By Proposition 3.2

$$a.s. - \lim_{L \to \infty} \rho_L^{\omega}(\beta, \mu) =$$

$$- \int_0^{\infty} dE \ \mathcal{N}(E) \partial_E \ \left\{ \frac{1}{e^{\beta(E - \mu)} - 1} \right\} \equiv \rho(\beta, \mu),$$

uniformly in μ on compacts in $(-\infty,0)$.

• Corollary 4.5 Lifshitz tail implies that $\rho_c(\beta) := \rho(\beta, -0) < \infty$ for d > 0, so there is condensation of the Perfect Bose-Gas at low dimensions d = 1, 2.

Proposition 4.6 [LPZ (2004)] Let $\rho \geq \rho_c(\beta)$ and $\mu_L^{\omega}(\beta, \rho)$ be a unique root of equation $\rho = \rho_L^{\omega}(\beta, \mu)$ for $\omega \in \Omega$. Then $a.s. - \lim_{L \to \infty} \mu_L^{\omega}(\beta, \rho) = 0$, and:

$$\lim_{\epsilon \downarrow 0} \left\{ a.s. - \lim_{L \to \infty} \int_0^{\epsilon} \mathcal{N}_L^{\omega}(dE) \frac{1}{e^{\beta(E - \mu_L^{\omega}(\beta, \rho))} - 1} \right\}$$

$$(a.s.) = \rho - \rho_c(\beta) = \rho_0(\beta, \rho) \ge 0.$$

• A.s. nonrandom $\rho_0(\beta, \rho)$ is the BEC density.

4.4 BEC in One-Dimensional Random Potential: Poisson Point-Impurities

• For d = 1 Poisson point-impurities, a > 0:

$$v^{\omega}(x) := \int_{\mathbb{R}^1} \mu_{\tau}^{\omega}(dy) a \, \delta(x - y) = \sum_j a \, \delta(x - y_j^{\omega})$$

Proposition 4.7 Let $a=+\infty$. Then $\sigma(h^{\omega})$ is a.s. nonrandom, dense *pure-point* spectrum $\overline{\sigma_{p.p.}(h^{\omega})}=[0,+\infty)$, with IDS

$$\mathcal{N}(E) = \tau \frac{e^{-\pi\tau/\sqrt{2E}}}{1 - e^{-\pi\tau/\sqrt{2E}}} \sim \tau e^{-\pi\tau/\sqrt{2E}}, E \downarrow \mathbf{0}$$

· - - - - - - • - - - - • - - - - - • - - - - •

• Spectrum:

$$(a.s.) - \sigma(h^{\omega}) = \bigcup_{j} \left\{ \pi^2 s^2 / 2(L_j^{\omega})^2 \right\}_{s=1}^{\infty}$$

• Intervals $L_j^{\omega}=y_j^{\omega}-y_{j-1}^{\omega}$ are i.i.d.r.v. :

$$dP_{\tau,j_1,...,j_k}(L_{j_1},...,L_{j_k}) = \tau^k \prod_{s=1}^k e^{-\tau L_{j_s}} dL_{j_s}$$

4.5 BEC in One-Dimensional Nonrandom Potential:

Point-Impurities(hierarchical model [LZ (2007)])

- Let $[0, L] = \bigcup_{j=1}^{n} I_j$, $I_j = [y_{j-1}, y_j]$, $y_0 = 0, y_n = L$ and $v(x) := \sum_{j=0}^{n} a \, \delta(x y_j)$, $a = +\infty$
- Let $h_0(I_j) := (-\Delta/2)_{I_j, \mathcal{D}}$. The model: $h_L := (-\Delta/2) + v(x) = \bigoplus_{j=1}^{n-1} h_0(I_j), \ L_j = |I_j|$

$$\sigma(h_L) = \bigcup_{j=1}^{n-1} \left\{ E_s(L_j) \equiv \pi^2 s^2 / 2(L_j)^2 \right\}_{s=1}^{\infty} , (p.p.)$$

• Let $L_{j=2,3,\dots}=(L-L_1)/(n-1)\equiv \tilde{L}$ and $L_1=f(L)< L$: $\lim_{L\to\infty}f(L)/L=0.$

Finite-volume total particle density :

$$\rho_L(\beta, \mu) = \frac{1}{L} \sum_{s=1}^{\infty} \left\{ e^{\beta(E_s(L_1) - \mu)} - 1 \right\}^{-1} + \frac{n-1}{L} \sum_{s=1}^{\infty} \left\{ e^{\beta(E_s(\tilde{L}) - \mu)} - 1 \right\}^{-1} , \ \mu \le 0$$

• For $\tau = \lim_{n,L\to\infty} n/L = \lim_{n,L\to\infty} \tilde{L}^{-1}$ the *critical* density $\rho_c(\beta) := \lim_{\mu \nearrow 0} \lim_{n,L\to\infty} \rho_L(\beta,\mu)$.

$$\rho_c(\beta) = \tau \sum_{s=1}^{\infty} \left\{ e^{\beta E_s(\tau^{-1})} - 1 \right\}^{-1} < \infty$$

4.6 BEC in One-Dimensional Nonrandom Potential (I)

• Let $\rho_L(\beta, \mu_L(\beta, \rho)) = \rho < \rho_c(\beta)$. Then $\lim_{L\to\infty} \mu_L(\beta, \rho) = \tilde{\mu}(\beta, \rho) < 0$ and

$$\rho = \tau \sum_{s=1}^{\infty} \left\{ e^{\beta [E_s(\tau^{-1}) - \tilde{\mu}(\beta, \rho)]} - 1 \right\}^{-1}$$

• $L_1 = L^{1/2-\epsilon}$: Let $\rho_L(\beta, \mu_L(\beta, \rho)) = \rho \ge \rho_c(\beta)$ and $L_1 = f(L) = L^{1/2-\epsilon}$, $\epsilon > 0$. Then

$$\mu_L(\beta, \rho) = \pi^2 / 2L_1^2 - (\beta L(\rho - \rho_c(\beta)))^{-1} + O(L^{-2})$$

• BEC density $\rho_0(\beta, \rho) = \rho - \rho_c(\beta)$:

$$\rho_0(\beta, \rho) = \lim_{n, L \to \infty} \frac{1}{L} \sum_{s=1}^{\infty} \left\{ e^{\beta(E_s(L_1) - \mu_L(\beta, \rho))} - 1 \right\}^{-1}$$

$$= \lim_{n, L \to \infty} \frac{1}{L} \left\{ e^{\beta(E_1(L_1) - \mu_L(\beta, \rho))} - 1 \right\}^{-1}$$

This is the ground-state (type I) BEC, localized in the largest box $L_1 \to \infty$.

• Type II BEC: $L_1 = L^{1/2}$

Then

$$\mu_L(\beta, \rho) = -A(\beta, \rho)/L + O(L^{-2})$$

and BEC is *fragmented* among **infinitely** many levels in *one* largest box.

4.7 BEC in One-Dimensional Nonrandom Potential (II)

 This is the type II generalized BEC in the largest box, with infinitely many (single-particle) levels macroscopically occupied:

$$\rho - \rho_c(\beta) = \lim_{n, L \to \infty} \frac{1}{L} \sum_{s=1}^{\infty} \frac{1}{e^{\beta(E_s(L_1) - \mu_L(\beta, \rho))} - 1}$$
$$= \sum_{s=1}^{\infty} \left\{ \beta(\pi^2 s^2 / 2 + A(\beta, \rho)) \right\}^{-1}, \ A(\beta, \rho) > 0$$

• $L_1 = L^{1/2+\epsilon}$: One gets the **type III** generalized BEC in the largest box: **none** of single-particle levels is **macroscopically** occupied.

Chemical potential:

$$\mu_L(\beta, \rho) = -B(\beta, \rho)/L^{1-2\epsilon} + O(L^{-1})$$

and

$$\rho - \rho_c(\beta) = \lim_{n, L \to \infty} \frac{1}{L} \sum_{s=1}^{\infty} \frac{1}{e^{\beta (E_s(L_1) - \mu_L(\beta, \rho))} - 1}$$
$$= \frac{1}{\sqrt{2\pi\beta}} \int_0^{\infty} dt e^{-\beta t B(\beta, \rho)} t^{-1/2} , B(\beta, \rho) > 0$$

4.8 Nonrandom/Random Potential (III)

• Spatially fragmented type III BEC in the hierarchical model splitted between (infinitely) many different intervals:

$$L_j = \frac{\ln(\lambda L)}{\lambda}, 1 \le j \le [\ln(k+1)] =: M_k,$$
 $L_{j>M_k} = \tilde{L}_k := \frac{L - L_1 M_k}{k - M_k}$

$$\rho_L(\beta, \mu) = \frac{1}{L} \sum_{j=1}^{M_k} \sum_{s=1}^{\infty} \frac{1}{e^{\beta(c^2 s^2 / L_j^2 - \mu)} - 1} + \frac{k - M_k}{L} \sum_{s=1}^{\infty} \frac{1}{e^{\beta(c^2 s^2 / \tilde{L}_k^2 - \mu)} - 1}$$

 $\lim_{L\to\infty} \tilde{L}_k = \lim_{L\to\infty} L/(k-M_k) = 1/\lambda$, condensate $\rho - \rho_c(\beta) = \rho_0(\beta,\rho) > 0$ is equally splitted between *infinitely* many intervals.

• For Poisson Point-Impurities one gets:

$$\mathbb{P}\{\omega: L_{j_1}^{\omega} - L_{j_2}^{\omega} > \delta\} = e^{-\lambda\delta}$$

$$\{L_{j_1}^{\omega} \ge L_{j_2}^{\omega} \ge \ldots \ge L_{j_k}^{\omega} : \sum_{s=1}^k L_{j_s}^{\omega} = L\},$$

$$\mathbb{E}_{\sigma_{\lambda,k}^{>}}(L_{j_{1,2}}^{\omega}) = \frac{1}{\lambda}\ln(k) + \frac{1}{\lambda}P_{1,2} + O(1/k),$$

$$P_2 = P_1 - 1$$
.

V Off-Diagonal-Long-Range-Order (ODLRO)

5.1 BEC of the Free Bose-Gas: ODLRO

PBG one-body reduced density matrix:

$$\rho_L(\beta, \mu; x, y) = \sum_{k>1} \frac{1}{e^{\beta(E_k(L) - \mu)} - 1} \overline{\psi_{k,L}(x)} \psi_{k,L}(y)$$

Its diagonal part is the local particle number density.

Proposition 5.1 For the free Bose-gas $(L \to \infty)$

$$\rho(\beta,\mu(\beta,\rho);x,y) =$$

$$\begin{cases} \sum_{s=1}^{\infty} (2\pi\beta s)^{-d/2} e^{s\beta\mu(\beta,\rho) - \|x-y\|^2/2\beta s}, \rho < \rho_c(\beta) \\ \rho_0(\beta,\rho) \left| \psi_{k,L=1}(0) \right|^2 + \sum_{s=1}^{\infty} \frac{e^{-\|x-y\|^2/2\beta s}}{(2\pi\beta s)^{d/2}}, \rho \ge \rho_c(\beta) \end{cases}$$

Here $\rho_0(\beta, \rho)$ is the condensate density and $\psi_{k=1,L=1}(0)$ is the ground state eigenfunction in domain $\Lambda_{L=1}$ evaluated at the point of dilation x=0.

• **Definition:** The *Off-Diagonal Long-Range Order*:

$$ODLRO(\beta, \rho) := \lim_{\|x-y\| \to \infty} \rho(\beta, \mu(\beta, \rho); x, y)$$

5.2 One-Body Reduced Density Matrix for Random Potentials

Space averaged reduced density matrix

$$\tilde{\rho}_L^{\omega}(\beta,\mu;x,y) := \frac{1}{|\Lambda_L|} \int_{\Lambda_L} da \rho_L^{\omega}(\beta,\mu;x+a,y+a)$$

• For non-negative measurable ergodic random potentials, any $\mu < 0$ and any fixed $x,y \in \mathbb{R}^d$ one gets self-averaging of the reduced density matrix:

$$a.s. - \lim_{L \to \infty} \tilde{\rho}_L^{\omega}(\beta, \mu; x, y) = \tilde{\rho}(\beta, \mu; x - y)$$

Proposition 5.2 Then

$$\rho(\beta, \mu - \tau \tilde{u}; x - y) \le \tilde{\rho}(\beta, \mu; x - y) \le \rho(\beta, \mu; x - y),$$

where $\tilde{u} := \int_{\mathbb{R}^1} dx u(x)$.

Proposition 5.3 Let $\mu < 0$. For one-dimensional Poisson potential with supp $u(x) = [-\delta/2, \delta/2]$

$$\tilde{\rho}(\beta,\mu;x-y) \le \rho(\beta,\mu;x-y)e^{-\tau\tilde{\gamma}(|x-y|-\delta)},$$

where $\tilde{\gamma} := 1 - e^{-\tilde{u}}$.

Corollary 5.4 If impurity concentration $\tau \downarrow 0$:

$$\lim_{\tau \downarrow 0} \tilde{\rho}(\beta, \mu; x - y) = \rho(\beta, \mu; x - y)$$

VI Kac-Luttinger Conjecture [KL (1973-74]

• In the case of the one-dimensional random Poisson potential of point impurities the BEC for the PBG is of the type I and it is localized in one "largest box".

6.1 Statistics of Poisson Intervals:

• Consistent marginals in the (thermodynamic) limit $\lambda = \lim_{L \to \infty} n/L$:

$$d\sigma_{\lambda,k}(L_{j_1},\ldots,L_{j_k}) = \lambda^k \prod_{s=1}^k e^{-\lambda L_{j_s}} dL_{j_s}$$
.

• For ordered intervals: $\left\{L_{j_1}^\omega \geq L_{j_2}^\omega \geq \ldots \geq L_{j_k}^\omega : \sum_{s=1}^k L_{j_s}^\omega = L \simeq k/\lambda \right\}$:

$$d\sigma_{\lambda,k}^{>}(L_{j_1},\ldots,L_{j_k}) := k! \; \theta(L_{j_1}-L_{j_2}) \ldots \theta(L_{j_{k-1}}-L_{j_k}) \; d\sigma_{\lambda,k}(L_{j_1},\ldots,L_{j_k}) \; .$$

- $\mathbb{E}_{\sigma_{\lambda}}(L_{j_s}^{\omega}) = \lambda \int_0^{\infty} dL \, L \, e^{-\lambda L} = \lambda^{-1} \text{ and } L_1^{\omega} \sim \lambda^{-1} \ln(\lambda L) , L \to \infty$.
- Probabilities of the "energies repulsions" in different boxes:

$$\mathbb{P}\{\omega: L_{j_1}^{\omega} - L_{j_2}^{\omega} > \delta\} = e^{-\lambda \delta}, \ \delta > 0.$$

6.2 Application of the Borel-Cantelli Lemma

• Energies in the samples $\left\{|I_j^\omega(k)|=L_j^\omega(k)\right\}_{j=1}^k$:

$$E_s(L_{j_r}^{\omega}(k)) = \frac{c^2 s^2}{(L_{j_r}^{\omega}(k))^2}, \ r = 1, ..., k, \ s = 1, 2,$$

• Let the events $(k = 1, 2, \ldots)$

$$S_k(a > 0, 0 < \gamma < 1) := \{ \omega : E_{s=1}(L_{j_2}^{\omega}(k)) - E_{s=1}(L_{j_1}^{\omega}(k)) > \frac{a}{k^{1-\gamma}} \}$$

• Since $\lim_{k\to\infty} \mathbb{P}\{S_k(a, 0 < \gamma < 1)\} = 1$, one gets *divergence*

$$\lim_{k \to \infty} \sum_{r=1}^{k} \mathbb{P}\{S_k(a, \gamma)\} = \infty.$$

• Then independence of the events $\{S_k(a,\gamma)\}_{k=1}^{\infty}$ and the well-

known Borel-Cantelli lemma imply:

$$\mathbb{P}\left\{\overline{\lim_{k\to\infty}} S_k(a,\gamma)\right\} = 1, \ \overline{\lim_{k\to\infty}} S_k(a,\gamma) = \bigcap_{k=1}^{\infty} \bigcup_{l=k}^{\infty} S_l(a,\gamma)$$

Notice that the event:

$$\overline{\lim} \ S_k(a,\gamma) := \bigcap_{k=1}^{\infty} \bigcup_{l=k}^{\infty} S_l(a,\gamma)$$

means that *infinitely* many events $\{S_k(a,\gamma)\}_{k\geq 1}$ take place.

• This means (in turn) that with the probability 1 the BEC is localized in the thermodynamic limit $\mathbb R$ in a single "largest box", and this condensation is of the type I.

VII Bose Condensation in "Weak" Harmonic Traps

7.1 Harmonic Traps

• Consider in $\mathfrak{H}:=L^2(\mathbb{R}^d)$ a $\kappa-$ parameterized family of *self-adjoint* one-particle Hamiltonians

$$h_{\kappa} := \frac{1}{2} \sum_{j=1}^{d} \left(-\frac{\partial^2}{\partial x_j^2} + \frac{x_j^2}{\kappa^2} - \frac{1}{\kappa} \right), \ \kappa > 0,$$

 $\operatorname{spec}(h_{\kappa}) = \{ \varepsilon_{s,\kappa} := |s|_1/\kappa \mid s = (s_1, \dots, s_d) \in \mathbb{N}^d \}, \ |s|_1 := \sum_{j=1}^d s_j.$

• **Definition 7.1** The global particle "density" in the trap $\kappa > 0$:

$$\rho_{\kappa}(\beta,\mu) := \frac{1}{\kappa^{d}} \sum_{s \in \mathbb{N}^{d}} \frac{1}{e^{\beta(\varepsilon_{s,\kappa}-\mu)} - 1} .$$

Why κ^d (an effective volume) ?

• Ground state: $\phi_{s=0,\kappa}(x) = \frac{1}{(\pi\kappa)^{d/4}} e^{-|x|^2/2\kappa} \Rightarrow \kappa^{d/2}$!

7.2 Weak Harmonic Trap Limit

• Motivation: Total density: $\rho_{\kappa}(\beta, \mu)$ is the Darboux-Riemann sum for the integral in the limit $\kappa \to \infty$ of the weak trap:

$$\rho(\beta,\mu) = \lim_{\kappa \to \infty} \rho_{\kappa}(\beta,\mu) = \int_{[0,\infty)^d} dp \, \frac{1}{e^{\beta(|p|_1 - \mu)} - 1} = \sum_{n=1}^{\infty} \frac{e^{\beta\mu n}}{(\beta n)^d} \, .$$

- Critical density: $\rho_c(\beta) := \sup_{\mu < 0} \rho(\beta, \mu) = \zeta(d)/\beta^d < \infty$, if d > 1.
- Proposition 7.2 Density of states for the weak-trap limit:

$$d\mathcal{N}_{wt}(E) = \frac{E^{d-1}}{\Gamma(d)} dE$$
, and $\rho(\beta, \mu) = \int_0^\infty d\mathcal{N}_{wt}(E) \frac{1}{e^{\beta(E-\mu)} - 1}$.

• Remark 7.3 For the *free* boson gas $(\Lambda = \mathbb{R}^d)$ the *well-known* results are: $\rho_c(\beta) = \zeta(d/2)/(2\pi\beta)^{d/2} < \infty$, if d > 2, and

$$d\mathcal{N}_f(E) = \frac{E^{(d-2)/2}}{(2\pi)^{d/2} \Gamma(d/2)} dE , \quad \rho(\beta, \mu) = \int_0^\infty d\mathcal{N}_f(E) \frac{1}{e^{\beta(E-\mu)} - 1} .$$

7.2 BEC in the Weak Harmonic Trap Limit

• Corollary 7.4 Since the BEC *critical temperature* is defined by equation $\rho_c(\beta_c(\rho)) = \rho$, then for the BEC density $\rho_0(\beta) := \rho - \rho_c(\beta)$ in the Weak Harmonic Trap Limit one has:

$$\frac{\rho_0(\beta)}{\rho} = 1 - \left(\frac{\beta}{\beta_c}\right)^{\frac{d}{\delta}}.$$

- N.B. For the *free* boson gas: $\rho_0(\beta)/\rho = 1 (\beta/\beta_c)^{d/2}$
- Local Particle Density:

$$\rho_{\beta,\mu,\kappa}(x) := \omega_{\beta,\mu,\kappa}(a^*(x)a(x)) = \frac{1}{\kappa^{d/2}} \sum_{s \in \mathbb{N}^d} \frac{|\phi_{s,\kappa=1}(x/\sqrt{\kappa})|^2}{e^{\beta(\varepsilon_{s,\kappa}-\mu)} - 1} .$$

• Proposition 7.5 For $\rho = \rho_{\kappa}(\beta, \overline{\mu}_{\kappa}(\rho))$ and $\rho > \rho_{c}(\beta)$, $\delta > 0$:

$$\lim_{\kappa \to \infty} \frac{1}{\kappa^{d/2}} \rho_{\beta, \overline{\mu}_{\kappa}, \kappa}(|x|^2 < \kappa) = \rho - \rho_c(\beta) \; ; \; \lim_{\kappa \to \infty} \rho_{\beta, \overline{\mu}_{\kappa}, \kappa}(|x|^2 \ge \kappa^{1+\delta}) = 0 \; .$$

This means that BEC is localized in the ball of the radius $\sim \sqrt{\kappa}$.

7.3 Weak Harmonic Trap Limit \neq Thermodynamic Limit

• Proposition 7.5 Let open $\Lambda_{L=1} \subset \mathbb{R}^d$ with $|\Lambda_{L=1}| = 1$ and piecewise continuously differentiable boundary $\partial \Lambda_{L=1}$ contain the origin $\{x=0\}$. Put $\Lambda_L := \{x \in \mathbb{R}^d : L^{-1}x \in \Lambda_{L=1}\}$, L>0. Let $\{h_L := (-\Delta)_L/2\}_{L>0}$ be self-adjoint one-particle operators with a "non-sticky" (e.g. *Dirichlet*) boundary conditions and denote by $h_{L=\infty}$ its strong resolvent limit, when $L \to \infty$. Let $h_{\kappa} \to (-\Delta)_{\kappa=\infty}/2$ (in the strong resolvent sense), for $\kappa \to \infty$, denote the *Weak Harmonic Trap* limit.

Then $h_{L=\infty}=h_{\kappa=\infty}=(-\Delta)/2$, since $C_0^\infty(\mathbb{R}^d)$ is a form-core for $(-\Delta)/2$.

• N.B. But: $\mathcal{N}_{wt}(E) \neq \mathcal{N}_f(E)$, since κ^d is the *effective volume* for the **global** particle density $\rho_{\kappa}(\beta, \mu)$.

END

THANK YOU FOR YOUR ATTENTION!

REFERENCES

- Luttinger J.M. and Sy H.K. Bose-Einstein condensation in a One-Dimentional Model with Random Impurities, *Phys. Rev. A* 7 701-720 (1973)
- Lenoble O., Pastur L.A., and Zagrebnov V.A. Bose-Einstein condensation in random potentials, *Comptes-Rendus de L'Académie des Sciences, Physique* **5**, 129-142 (2004)
- Pulé J.V. and Zagrebnov V.A. The canonical perfect Bose gas in Casimir boxes, *J.Math.Phys* **45**, 3565-3583 (2004)
- Lenoble O. and Zagrebnov V.A. Bose-Einstein condensation in the Luttinger-Sy model, *Markov Process. Rel. Fields* (2007)
- Tamura H. and Zagrebnov V.A. Mean-Field Boson Random Point Fields in Weak Harmonic Traps (in preparation)
- Beau M. and Zagrebnov V.A. Equilibrium boson states in weak harmonic traps (in preparation)
- Jaeck Th. About the nature of BEC in random potentials. (in preparation).