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e Random Fermion and Boson Processes =

Random (Quantum) Point Fields or Determinantal and
Permanental Processes C Cox Processes (1955).

e Condensation in "Weak Harmonic Traps”.



1. Random Point Processes (RPP)

(a) N.B. Keep in mind just: A C R? is an open subset, v is
the Lebesgue measure, K(x,y) is a kernel of non-negative self-
adjoint locally Tr-class operator on L2(A), and (2, F,P) a prob-
ability space with w € €2.

(b) Definition: A random point processes in a locally compact
(Polish) space A is a random integer-valued positive Radon mea-
sure u“ on A. For a simple point process the measure p“ assigns
a.-s. pu¥(x) <1 for any x € A and p“(D) := N¥, the number of
points that fall in D for locally-finite point configurations Q(A).
(c) Example:( The Poisson random point field, intensity A > 0)
Let (2, F,P) be a probability space and let the random counting
measure {uS(dx)},cq be such that for n € NU{0O} and any k£ > 1:

P{w e Q2: puY(D) =n} = (AV;?))n e~ (D)

E((D1) ... u§ (D) = Mw(D1) ... v(Dy) (= E§ (D1) ... i (Dy)).
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(d) Definition: For any family of mutually disjoint subsets
{Dn C A},>1 the correlation functions (joint intensities) of the
RPP u“ are defined by the densities {pn : A" — RI},>1 with
respect to the measure v:

E(u(D1) .. i (Dn)) = [ v(da1) ... v(den) po(ei, ..., on)

D1 X...XDp

(e) Definition: A RPP is called determinantal with (a locally
Tr-class) kernel K is it is simple and its correlation functions:

pp(x1,. .., x) = det ||K(z;, z5)|1<i j<n

forany £ > 1 and x1,...,xn € A.
(f) Definition: A RPP is called permanental with (a locally
Tr-class) kernel K is it is simple and its correlation functions:

pn(T1, ..., on) = per||K(x;, z;)ll1<ij<n

forany k> 1 and x1,...,xn € A.
N.B. deto A =3 scq, an—e(0) [l1<i<n @ig(i), @ = £1 < per/det
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2. Fermion/Boson Random Point Processes

2.1 Quantum (Statistical) Mechanics: Fermions
o Let = L?(Ar),Ap = [-L/2,L/2]¢ and A, be Laplacian
with periodic boundary conditions on A, i.e.
spec(—Ar,) = {e(k) = (2n/L)?||k||* : k € 2.
The Gibbs semigroup kernel has the form:

Gr(z,y) = (P20 (z,9) = Y e W 1 (@) p(y) =
kc7d

Y G(z,y+ kL),
keZd

where
G(z,y) = lim Gp(z,y) = (4n8)~ 2 exp(~ |z — y|?/45).
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e Remark: Any n-particle free-fermion wave function is the
Slater determinant:
1
Wit kn(Z1, - Tn) = 7 det [|px, r.(zj)l1<i j<n

e T he corresponding n-point free-fermion joint probability distri-

bution density: p, 1(z1,...,2n) = |Wg, g, (@1,...,20)|%, OF
1

P, (%1, .-, on) = —det| gy, 1(z;)]l1<ij<n detlér, L(zj) 1< j<n
n.

e Since detAdetB = detA B one gets:

Pn.L(T1,. .., 2n) = i det || Ky, (x5, 7)) |l1<ij<n

where K, 1(x,y) = Yi1<i<n ®k, 1(x)Pk, (y) is the kernel of or-
thogonal projection on the Env{¢g, -, ¢, L}-



e Since the k-point marginal correlation functions are

n!
(k) (51317...,3371) = (n — k)! /me(:Bl,...,wn)d$k+1,.--,d$n —

det HKnL(fBi,wj)||1<ij<k ,

the determinantal RPP u L generated by the joint probability
distribution density p,, 1, is correctly defined for n free fermions
in the cube Ay.



cubic box N=L x L x L, |\| =V with periodic boundary condi-
tions for single-particle Hamiltonian t; .= (—A/Q)/\L,P-

e Generalized BEC - take a prism N = L1 X L x L3z of the
same volume with sides of length L; = V%, j = 1,2,3, such that
a1 > ar > a3z > 0and ay +ar+az = 1, with the Periodic bound-
ary conditions for single-particle Hamiltonian iy (= (=A/2)5, p
on the boundary of this prism (Casimir boxes (1968)).



e Proposition 1: Generalized BEC #= Conventional BEC.
Rewrite the finite-volume equation for a fixed total particle den-
sity p (grand-canonical ensemble (8> 0,u < 0)) in the form:

1 1 1 1
p = o= +- ) D B
Ve B — 1 4 kE{A*:nl#O,n2=n3=O} eﬂ(ek M) —1
1 1
+V Z Zeﬁ(gk_,u) — 1

ke{A*n;#0,j=2 or 3}



e Here the dual space N* of momenta w.r.s. to the periodic
boundary conditions is:

27 d=3

d L2
and ey i= > L

e Cube: a1 = ap = a3 =1/3, VvV = L3. If w <0 and /\/R3:
1 1 1

p = limpp(B,pn) :=1m —{— + >
A AN Ve Br—1 ke (AT /0)

lim i Z {eﬂ(z;‘izl(anjVaj)Q/Q—,u) B 1}

3
L—oo L Uz EZ\O

1 2 —1
= d3k{ Blk=/2—p) _ 1} =: 3(8, u).
o33 Jos TR 1€ (8. 1)
e For d > 2 the free Bose-gas critical density pc(8) 1= lim,, o JI(8, 1)
is finite: then if p > pe(B) = BEC at k=0, po(B) := p — pc(B).
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e Saturation Mechanism (conventional condensation):
Let ua(3, p) be solution of the equation

p=pAB ) & p=paB,un(B,p)).

T hen either:

o limp upn(B,p < pc(B)) = pua(B,p)< 0 or
o lima pa(B,p > pc(B)) =0, and

p0(8) = p— pe(B) = lim & {e=Brn(Beze@) 1} o
!
> Is P
uA(B, p > pe(B)) V300 = 0803

e Since g, = Z?zl(anj/Vlﬁ)Q/Q the BEC is unique (type I):

+o(1/V)

im = {eBlerro=nn(8:0) _ 1}—1 —_0
NV



e Saturation Mechanism (generalised condensation):

e The Casimir Box: Let a; =1/2, i.e. ap+a3z3=1/2. Then

1 _ —1
lim - {HEkm0 7)) 1} 22 0,64 0,0 = (2mn1/V)2/2 ~ up (B, p).

1 -1
|I/r\ﬂ V {eﬁ(sk;&o—w\(ﬁap)) _ 1} — O7€O,k2’3#0 ~ (Qan/Vaj)Q/Q > ,LL/\(B,,O)

e Hence again the solution upa(3, p) of the equation

p=pAB;pn) <= p=paB,un(B,p)).
has the asymptotics un(3,p > pe(B8)) = —-A/V +0(1/V), A > 0.
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e Generalised BEC condensation type II [van den Berg-Lewis-
Pulé (1978)]:

, 1 1/242 —1
_ il B((2mn1/V22)2/2—pua(B,p)) _ }
o — pc(B) lim nlge {e 1

1
= 2 )22t A

ni1 €L

Here A > 0 is a unique root of the above equation.

e N.B. For a1 = 1/2 the BEC is still microscopical , but
infinitely fragmented. Experiment with rotating condensate
(2000).

e The van den Berg-Lewis-Pulé Box: a1 > 1/2.

e N.B. NO macroscopic occupation of any level:

lim - feBee=tn(.0)) _ 1}—1 —0
NV
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e Generalised BEC of the type III:
1 —1
im lim= ¥ {ePErmrnlr)) — 1177 = p— p. ()
s—ot NV %
{keN*,0<||k||<d}
e Chemical potential (a1 > 1/2):

B 1
MA(B,p>pc(ﬁ))=——+0(W), B>0, 6=2(1-a1)<1,

V5
(1)
e Equation for B

p—pe(B) = (2nB)~1/2 /O e dge BBE1/2,

e p,-PROBLEM: (van den Berg-Lewis-Pulé)
pe < pm < oo such that type II or III — type I, for p > pm 7
YES!



Il Free Bose-Gas

2.1 One-Particle Integrated Density of States

o Let Ay C RY, with a smooth boundary dA; and |Ar| = V7.

o Hy = L?(AL), and (free) one-particle Hamiltonian tp, :=
(=A/2)p, p = t;k\L, with (for example) D=Dirichlet boundary
conditions.

e tp, has a discrete spectrum o(tp,) = {Ek7L}I<:>1:

tA Yk = Ep ¥k, O< Eyrp <Eprp <Ezp<...

of finite multiplicity, and exp(—ptp,) € Tr-class(H) for g > O.
Definition 2.1The finite-volume integrated density of states
(IDS) of tp, is the specific (by a unit volume) eigenvalue count-
ing function N, (E) :=max{k: B, < E}/IAL] .

Proposition 2.2 There exists a limiting integrated density of
states: N(O)(E) = w—limy_,, N, (E), where N(O(E) = C E4/2.
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2.2 BEC of the Free Bose-Gas

e Definition 2.3 The grand-canonical non-interacting bosons
without external potential are called the (3, u)-free Bose-gas.
e Proposition 2.4 By the Bose-statistics and by Definition 1
of the finite-volume IDS, the mean value of the total particle-
density pp, (B, 1) in the volume Ay, is:

00 1
on, (B, 1) = —/O dE N, (E) 8E{65(E_M) — 1} , <0,

e By Proposition 2.5, the limiting density p(8, u) exists for neg-
ative chemical potentials u € (—o0,0):

p(B) == [ a8 NOB) o { s}

e The critical density pc(B) := p(8,—0) < oo is finite for d >
d. = 2, since NOO(dE) ~ E¥/2-14FE.
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We resume the above observations as the main statement
about the BEC for the case of the free boson gas:

e Proposition 2.6 Let p:(8) < oo and pa, (B, p) be unique root

of equation p = pr(B,un). For p > pc(B), limp_ocin, (B,p) = 0
and the BEC density pg(53,p) == p — pc(B8) >0 is

. . € 1
po(B,p) = —lim lim_ /O dE N, (B) OF {65<E—ML<6,p>> _ 1}

e N.B. If p.(8) = o0, this statement has no sense, but the value
of critical density p.(3) may be changed, if the non-interacting
gas is placed in an external potential: since the value of p.(3)
is a function of the critical dimensionality d. and the latter is a
functional of the One-Particle Density of States: N(O)(dE).
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2.3 Why BEC of the Free Bose-Gas is a Subtle Matter ?
o Let App = x3_4[-L/2,L/2] be a cube. Then

: 1 _ —1
po(B,p > pe(B)) = lim — {eﬁ(EkaL L (B:p)) 1]

L—oo

= (p— Pc(ﬁ))fsl,k ; E1:(1,1,1),L — {3(7T/L)2}/2
is the ground-state BEC (type 1), Ey 1 — pr(8,p)) ~ L.

o Let pc(B) = JCNO(E){ePE — 1371 = 0« high den-
sity of states NO)(dE) at E =0 (e.g. EY/2-14E for d < 2)
< "leaking” of the BEC into excited states =

e Conclusion: To preserve the BEC one has to suppress density
of states in the vicinity of the ground-state (Egr = 0), e.g., a
spectral gap: N(O(E) = 0(FE — Egr) for E < By, where Egr < Ex
[Buffet,Pulé,Lauwers,Verbeure,Z].
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IIT Perfect Bose-Gas in Magnetic Field

3.1 Hamiltonian

o Let open Ap—; C R=3 with |A;—1| = 1 and piecewise contin-
uously differentiable boundary 0Aj—1 contain the origin {z = 0}.
Put Ay :={zeR3: L lzen;—1}, L>0.

e Take a magnetic vector-potential in the form: a(x) = w ag(x),
w > 0. For two types of gauges: symmetric (transverse): ag(x) =
1/2(—xp,x1,0), or Landau: a1(x) = (0,z1,0), this generates a
unit magnetic field B parallel to the third direction.

e [ he one-particle Hamiltonian with Dirichlet boundary condi-
tions (D) on AA; is defined in L2(A;) by

ha, (W) 1= (—=iV = a)? + Vp, = ta, (W) + Vp,

where Vj, is an external " electric” potential. Then hp, (w) has
purely discrete spectrum.
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3.2 No-Go Theorem for BEC in a Constant Magnetic Field
e Let a continuous external potential V(z) = v(xz1) (v is Z-
periodic) and use the Landau gauge a1(z) = (0,z1,0) € R3 (a
particular gauge is irrelevant since the density of states is gauge
invariant). Then the bulk Hamiltonian is:

hoo(w) = (—iV —waq)?+v = —(9%1 +v(x1) 4+ (—i0x, —wx1)2—8§3 :
acting in L2(R3), where w > 0.
e Proposition 3.1 Let Fg(w) ;= info(hoo(w)). Then:

Neow(B) = By, 4+ (E — Eg(w))Y?™1 + o((E — Ep(w))¥?™1)
for £ \, Eg(w). Hence, for d = 3 and any w > 0 the critical
density

00 1
AB) = — i dE Neow(E
pel ) 0,/ Eo(w) /Eo(w) Moo )aE{eWE—M) — 1}

is infinite, i.e. the BEC is destroyed.
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e Remark 3.2 Operator hoo(w) is unitary equivalent to the sum

of w-harmonic oscillator (Landau levels) and one-dimensional v-

Schrodinger operator in the third direction. If v = 0, then
Noow(B) = w(BE — w)1/? /272

between the first two Landau levels: F € (w,3w), i.e.

d=3 andw>0«<d=1and w=20

e Proposition 3.3 [BCZ (2004)] Assume that w = 27x. Then
there exists an external " electric” potential of the form:

Ve(z) = € [v1(x1) + vo(z2)] + v3(x3),

where € > 0 and small, each of the functions {Uj}?zl is @ smooth
Z~periodic potential, and neither one of v1 and v, is constant,
that critical density is bounded.
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3.3 Another example gives a Generalized BEC (Casimir
(1968), van den Berg - Lewis - Pulé (1978))

e Generalized (fragmented) BEC in the Casimir boxes:
AL = >x3_1[-V9/2,V9i/2] , a;+...+az3=1.

e 01 <1/2 = BEC typel

e ;1 =1/2 = BEC type 1I

e1>a;>1/2 = BEC type III
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IV Bose-Condensation in Random Potentials

4.1 Random Schrodinger Operator (RSO)

e Random Repulsive Impurities: u(z) > 0, z € R4, continu-
ous function with a compact support is a local single-impurity
potential. The Random Poisson Potential (RPP):

v(2) = [ uf(dy)ule —y) = Y u@ —y5) =0,
J
where impurity positions {y;”} c R are the atoms of the random
Poisson measure:

P({weQ: u(A) = n}) = “'72\!') N

n € NU{0}, A C RY, E (u¥(A)) = 7|A|, the parameter 7 is con-
centration of impurities.
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PROPERTIES:
e T his potential is homogeneous and ergodic.

e RSO is a family of random (a.s) self-adjoint operators

{hw =1 + ?}w}weQ .

Proposition 4.1 For RSO with RPP the spectrum o(h%¥) of A%
is almost-sure (a.s.) nonrandom and coincides with [0, +o00).
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4.2 Self-Averaging of the IDS

e The restriction hf 1= (=A/2 +v¥),, p has the (random) finite-
volume IDS:

1
Y(E) = mmax{lc Ef(L) < E}, we 2
L

Proposition 4.2 There exists a nonrandom distribution N (FE)
(measure N (dE)) such that (a.s.)

lim NF(E) = N(B),

and N(F) = E{&w(F;0,0)}, &w(E;x,y) is the kernel of the
spectral decomposition measure of the RSO h¥. The spectrum
o(h¥) = supp N with (nonrandom) lower edge Eg = 0.
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Proposition 4.3 (Lifshitz tail)
The asymptotic behaviour of N(FE) as E | O:

N(E) ~ exp{—T (cg/ E)¥?}
with ¢; > 0.

e N.B. For the free case, v* = 0, one has: N(O)(E) ~ Ed/2, E | 0.

e [ he self-averaging of the limiting IDS is true for the Poisson
point-impurities: u(x) = ad(x),a > 0.

e It is known explicitly for a — +oc.
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4.3 BEC of the Perfect Bose-Gas in RPP

e The random finite-volume particle density:
B = [ NF@E)
PLAP 1) = |, VL BE—p) _ 1

for 8> 0, u < 0 and any realization w € 2.
e Proposition 4.4 By Proposition 3.2

a.s.— lim p7(B,pn) =
L—o0
" dE N(E)O 1
[T B N { s} = e,
uniformly in u on compacts in (—oo,0).
e Corollary 4.5 Lifshitz tail implies that p.(8) := p(B3, —0) <
for d > 0, so there is condensation of the Perfect Bose-Gas at

low dimensions d =1, 2.

24



Proposition 4.6 [LPZ (2004)] Let p > pc(B) and u¥(8,p) be
a unique root of equation p = p¥(B,u) for w € 2. Then a.s. —

iM Lo 148, p) = 0, and:

. T ¢ w 1
im {a.s. M Jo NEWE) G - 1}

(a.s.) = p—pc(B) = po(B,p) >0 .

e A.s. nonrandom pg(B3, p) is the BEC density.
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4.4 BEC in One-Dimensional Random Potential:
Poisson Point-Impurities

e For d =1 Poisson point-impurities, a > O:
v(2) o= [ e dy)ade —y) = Y ad@ — )
J

Proposition 4.7 Let a = +00. Then o(h%) is a.s. nonrandom,
dense pure-point spectrum op.p. (h%) = [0, 400), with IDS

e~ TT/V2E
— Y o TT/V2E
N(E) Tl—e_ﬂ'T/\/ﬁ Te ,E |10
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e Spectrum:

_ Wy 2.2 w2\
(a.5.) — o(h )—LJJ{W s2/2(L¥) }3:1
e Intervals L;‘-’ = y;" — y;f’_l are i.i.d.r.v. .

k

(Ljys--Ly) = ™™ I e "lisdL;,

dPr J1

J1sesJk
s=1
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4.5 BEC in One-Dimensional Nonrandom Potential:
Point-Impurities(hierarchical model [LZ (2007)])

o Let [OaL] — :;?J:]_ I]! Ij — [yj—17yj]r yo — O7yn = L and /U(':E) L=
Z?:oa5($ - yj) , 0 = 00

o Let ho(Ij) := (=A/2);. p. The model: hy, = (=A/2)+v(z) =

@®'_1ho(Ij), Ly =|I;

n—1
o(hr) = |J {Es(L)) =°s*/2(L))?} ., (p.p.)
j=1
o Let Lj=2,3,... = (L — Ll)/(n — l) = L and L = f(L) < L :

imy o F(L)/L = 0.

28



e Finite-volume total particle density :

1 X —1
pL([j’,Iu) = ZSZ:]- {GB(ES(Ll)_N) _ 1} _I_

" Ly {emEs(E)—m _ 1}‘1 <0

s=1
e For 7 = lim, 1 .oon/L = lim, 1 .o L™1 the critical density
pe(B) == 1imy g limy, 1 oo pL(B; 1)

00 B ~1
pc(B) =7 ) {eﬁES(T D 1} < 00
s=1



4.6 BEC in One-Dimensional Nonrandom Potential (I)

o Let pr,(B,ur(B,p)) = p < pc(B). Then
limy, oo (8, p) = (B, p) <0 and

=13 {eﬁ[Es(Tl)—ﬁ(B,p)] _ 1}‘1
s=1

o L1 =LY27< Let pr(B,ur(8,p) = p > pe(B) and Ly = f(L) =
L1/2=¢ ¢> 0. Then

ur(8,p) = 72/2L3 — (BL(p — pe(8))) "L + O(L72)
e BEC density po(8,p) = p — pc(B):

po(B,p) = lim 1 S {eﬁ(Es(Ll)—ML(ﬁm)) _ 1}—1

n,L—oo L. “—
s=1

— lim l{emEl(Ll)—uL(ﬁ,p))_1}—1

n,L—oo L
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This is the ground-state (type I) BEC, localized in the largest
box L1 — oc.

e Type Il BEC: L = L1/2
Then
ur(B,p) = —A(B,p)/L + O(L™?)

and BEC is fragmented among infinitely many levels in one
largest box.



4.7 BEC in One-Dimensional Nonrandom Potential (II)

e This is the type II generalized BEC in the largest box, with Iin-
finitely many (single-particle) levels macroscopically occupied:

. 1 & 1
prpelB) = ML 2 FEED ) — 1
=Y {8G22/2+ A@B. )}, AB.p) >0

s=1

o I, = L1/2t¢; One gets the type III generalized BEC in the
largest box: none of single-particle levels is macroscopically
occupied.
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e Chemical potential:

ur(B,p) = —B(B3,p)/L 2+ 0O(L™1)
and
] & 1
p=pe(B)= 1M =3 S E I =mGa) 1

n,L—o0 —1€
1

— \/W/O dte—BtB(B,p)y—1/2 . B(8,p) >0
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4.8 Nonrandom/Random Potential (III)

eSpatially fragmented type III BEC in the hierarchical model
splitted between (infinitely) many different intervals:

In(AL :
= ( ),1§]§[In(k—|—1)]::Mk,
. ;o L—LiMy
1 M i 1
pL(ﬁmu):_ 2.2/1,2 —I_
Lo e s L A |
k—Mki
L = PP/ Ii—m) _ 4

lim; oo L = limp_,oo L/(k — M;,) = 1/), condensate p — p.(B) =
po(8,p) > 0 is equally splitted between infinitely many intervals.
32



e For Poisson Point-Impurities one gets:

P{w: Ly — L7, > 6} = e

.k
(152 14> 2 1y T 1y = 1)
EO’ik(L;jl,Q) = $In(k) + $P1 2+ O(1/k),

P,=P; — 1.
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V Off-Diagonal-Long-Range-Order (ODLRO)

5.1 BEC of the Free Bose-Gas: ODLRO
e PBG one-body reduced density matrix:

1
pr(B, i x,y) = k; )y — Ve L@V L)
Its diagonal part is the local particle number density.
Proposition 5.1 For the free Bose-gas (L — o)

p(B, (B, p)ix,y) =
| i (27r58)—d/QBSBu(B,p)—HZC—?/HQ/QﬁS 0 < pe(B)

s=1

5 0 —llz—yl?/28s
po (B, ) [k,L=1(0)| "+ > ongeyiz P 2 P

L s=1
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Here po(B,p) is the condensate density and vp—; 1—1(0) is the
ground state eigenfunction in domain A;—71 evaluated at the

point of dilation x = 0.

e Definition: The Off-Diagonal Long-Range Order:

ODLRO(B,p) := lim  p(B,u(B,p);z,y)

[z —yl|—o0
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5.2 One-Body Reduced Density Matrix
for Random Potentials

e Space averaged reduced density matrix

1

ALl AL
e FOr non-negative measurable ergodic random potentials, any
u < 0 and any fixed x,y € RZ one gets self-averaging of the
reduced density matrix:

T (B, 1 x,y) 1= dap? (B, p; x4+ a,y + a)

L—o0
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Proposition 5.2 Then

p(Byp—T1u,x—y) < p(By sz —y) < p(B, 1 —y),

where @ := [p1 dzu(z).
Proposition 5.3 Let © < 0. For one-dimensional Poisson poten-
tial with suppu(x) = [-6/2,6/2]

5B,z —y) < p(B, p;x —y)e T z—uI=0),

~

where v :=1 —e™ %,
Corollary 5.4 If impurity concentration v | O:

ITi?S p(B, sz —y) = p(B, ;T —y)
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VI Kac-Luttinger Conjecture [KL (1973-74]

e In the case of the one-dimensional random Poisson potential
of point impurities the BEC for the PBG is of the type I and it
is localized in one "largest box".

6.1 Statistics of Poisson Intervals:

e Consistent marginals in the (thermodynamic) limit A = limy_, ., n/L:

k
dO’)\’k(le, e ooy L]k) — )\k H e_ALdeLjS .

s=1

; . w w W - k W — ~ .

e For ordered intervals: {le > Lj2 > . > ij D v 5 =L k/A}.
> -

da}\,k(Ljp .. .,ij) = k! 0(L;,—Lj,) ...H(ij_l—ij) doy ,(Lj;,-- .,ij) .

e Eo\(L¥) = A J§° dLLe M =Xx"1land LY ~ A"t In(AL) , L — .
e Probabilities of the "energies repulsions’ in different boxes:

: — _—A)
P{lw: Ly —Lj >6=e "% &>0.
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6.2 Application of the Borel-Cantelli Lemma

. . k
e Energies in the samples {Ilf(k)| = L;‘-)(k)}jzl

252

(LY (k)2
e Let theevents (k=1,2,...)

r=1,..k, s=172 ...

Es(L% (k) =

Sp(a> 0,0 <v<1) =A{w: Es=1(L},(k)) — Es=1(L}, (k)) > }

Mv
e Since limy_, . P{S,(a,0 <~y < 1)} =1, one gets divergence

k— 00

k
im ) P{S(a,7)} = oc.
r=1

e Then independence of the events {Si(a,v)}72; and the well-

39



known Borel-Cantelli lemma imply:

o0
P4l S =1. | S — S
{lim Si(a,7)} =1, lim Sg(a,7) kD”L:Jk 1(a, )

e Notice that the event:

Iim Si(a,v) := () U Si(a,7)
k=1 [=k

means that infinitely many events {S;(a,v)}r>1 take place.

e This means (in turn) that with the probability 1 the BEC is
localized in the thermodynamic limit R in a single " largest box",
and this condensation is of the type I.



VII Bose Condensation in ”"Weak” Harmonic Traps

7.1 Harmonic Traps
e Consider in  := L2(R% a k—parameterized family of self-
adjoint one-particle Hamiltonians

2j=1 &Cj K
spec(hx) = {es,x = |s|1/r|s = (s1,--- ,8q) € N}, [s[1 =21 s; .
e Definition 7.1 The global particle " density” in the trap « > O:
1 1
pﬁl(ﬁ):u') L= _d

. seNd ePlesm—1) — 1

Why «% (an effective volume) ?

e Ground state: ¢,—g .(z) = We—mp/% — xd/2
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7.2 Weak Harmonic Trap Limit
e Motivation: Total density: px(G, ) is the Darboux-Riemann
sum for the integral in the limit kK — oo of the weak trap:

B.) = Jim pe(B) = [ d =S =
P\&, ) = TN PP, ) = [0,00)4 P eB(pli—p) — 1 —n=1 (Bn)d .

e Critical density: pe(8) 1= sup,<o p(B, p) = ¢(d)/B% < oo,if d > 1.
e Proposition 7.2 Density of states for the weak-trap limit:

Ed-1 1
(d) —u) —1°

e Remark 7.3 For the free boson gas (A = R%) the well-known
results are: pe(8) = ¢(d/2)/(27B)¥2 < o, if d > 2, and

E(d—2)/2 ;
(2m)4/2r (d/2)

det(E) —

dE , and p(B, ) :/o ANt (E) A(E

1
—p) 1

INF(E) = B, pB.m)= [~ dNG(E) =
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7.2 BEC in the Weak Harmonic Trap Limit

e Corollary 7.4 Since the BEC critical temperature is defined
by equation pc.(B:(p)) = p, then for the BEC density pg(B3) =
p — pc(B) in the Weak Harmonic Trap Limit one has:

po(B) _ <5>d
P Be .

e N.B. For the free boson gas: pg(B8)/p=1— (8/8:)%? .
e Local Particle Density:

|¢s,m=1<x/\/g)|2
65(58,&—,“) —1 .

1
pﬁ,,u,/i(aj) L= wﬂ,u,ﬁ(a*(x)a(x)> — d/2 Z
R seNd

e Proposition 7.5 For p = px(3,%.(p)) and p > pc(3), § > O:

. 1 2 Co 2
mleooW Pﬁ,ﬁﬁ,n(|$| < k) = p—pc(B); lim Pﬁ,ﬁmm(m > K

R— 00

1y =0.

This means that BEC is localized in the ball of the radius ~ /k.
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7.3 Weak Harmonic Trap Limit = Thermodynamic Limit

e Proposition 7.5 Let open Ar—; C R% with |[Ar—1| = 1 and
piecewise continuously differentiable boundary 0A;—q contain
the origin {x =0}. Put A ;={zeR4: L7 le e A;_1} , L > 0.
Let {h; := (—A)/2}1~0 be self-adjoint one-particle operators
with a " non-sticky” (e.g.Dirichlet) boundary conditions and de-
note by hy—,, its strong resolvent limit, when L — oo.

Let hy, — (—A)k=c0/2 (in the strong resolvent sense), for kK — oo,
denote the Weak Harmonic Trap limit.

Then hj—o, = hr=cc = (=A)/2 , since CFR?) is a form-core
for (—A)/2.

o N.B. But: Ny(E) # Ny(E), since x? is the effective volume
for the global particle density px(3, ).
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END

THANK YOU FOR YOUR ATTENTION !
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