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Classical Capacity of the Lossy Bosonic Channel: The Exact Solution
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The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo
information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of
far-field, free-space optical communications is given as an example.
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mitting coherent states. number sets fNkg that satisfy the energy constraint
A principal goal of quantum information theory is
evaluating the information capacities of important com-
munication channels. At present — despite the many ef-
forts that have been devoted to this endeavor and the
theoretical advances they have produced [1] — exact ca-
pacity results are known for only a handful of channels.
In this Letter we consider the lossy bosonic channel, and
we develop an exact result for its classical capacity C, i.e.,
the number of bits that it can communicate reliably per
channel use. The lossy bosonic channel consists of a
collection of bosonic modes that lose energy en route
from the transmitter to the receiver. Typical examples
are free-space or optical fiber transmission, in which pho-
tons are employed to convey the information. The classi-
cal capacity of the lossless bosonic channel — whose
transmitted states arrive undisturbed at the receiver —
was derived in [2,3]. When there is loss, however, the
received state is in general different from the transmitted
state, and quantum mechanics requires that there be an
accompanying quantum noise source. In [4] a first step
toward the capacity of such channels was given by con-
sidering only separable encoding procedures. Here, on the
contrary, it is proven that the optimal encoding is indeed
separable. We obtain the value of C in the presence of loss
when the quantum noise source is in the vacuum state,
i.e., when it injects the minimum amount of noise into the
receiver. Our derivation proceeds by developing an upper
bound for C and then showing that this bound coincides
with the lower bound on C reported in [5,6]. Our upper
bound results from comparing the capacity of the lossy
channel to that of the lossless channel whose average
input energy matches the average output energy con-
straint for the lossy case [7]. This argument is analogous
to the derivation of the classical capacity of the erasure
channel [8]. The lower bound comes from calculating the
Holevo information for appropriately coded coherent-
state inputs. Thus, because the two bounds coincide, we
not only have the capacity of the lossy bosonic channel,
but we also know that capacity can be achieved by trans-
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Classical capacity.—The classical capacity of a chan-
nel can be expressed in terms of the Holevo information

��pj; �j� � S
�X

j

pj�j

�
�
X
j

pjS��j�; (1)

where pj are probabilities, �j are density operators, and
S�%� � �Tr�%log2%� is the von Neumann entropy. Since
it is not known if � is additive, C must be calculated by
maximizing the Holevo information over successive uses
of the channel, so that C � supn�Cn=n� with

Cn � max
pj;�j

��pj;N �n��j��; (2)

where the states �j live in the Hilbert space H �n of n
successive uses of the channel and N is the completely
positive map that describes the channel [9]. In our case,
H is the Hilbert space associated with the bosonic modes
used in the communication and N is the loss map.
Because H is infinite dimensional, Cn diverges unless
the maximization in Eq. (2) is constrained: here we
assume that the mean energy of the input state in each
of the n realizations of the channel is a fixed quantity E.
For multimode bosonic channels, N is given by

N
kN k,

where N k is the loss map for the kth mode, which can be
obtained, tracing away the vacuum noise mode bk, from
the Heisenberg evolution
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with ak and a0
k being the annihilation operators of the

input and output modes and 0 � �k � 1 is the mode
transmissivity (quantum efficiency).

The main result of this Letter is that the capacity of the
lossy bosonic channel, in bits per channel use, is

C � max
Nk

X
k

g��kNk�; (4)

where g�x� � �x � 1�log2�x � 1� � xlog2x and where the
maximization is performed on the modal average photon-
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h!kNk � E; (5)

(!k is the frequency of the kth mode).
We derive Eq. (4) by giving coincident lower and upper

bounds for C. The right-hand side of Eq. (4) was shown,
in [6], to be a lower bound for C by generalizing the
narrowband analysis of [5]. This expression was obtained
from Eq. (2) by calculating � for n � 1 under the follow-
ing encoding: in every mode k we use a mixture of
coherent states j�ik weighted with the Gaussian proba-
bility distribution

pk��� � exp��j�j2=Nk�=��Nk�: (6)

This corresponds to feeding the channel the input state

% �
O

k

Z
d� pk���j�ikh�j; (7)

which is a thermal state that contains no entanglement or
squeezing. The right-hand side of Eq. (4) is also an upper
bound for C. To see that this is so, let 
ppj, 
��j be the optimal
encoding on n uses of the channel, which gives the
capacity Cn of Eq. (2). The definition of � and the sub-
additivity of the von Neumann entropy allow us to write

Cn < S�N �n� 
���� <
Xn
l�1

X
k

S�N k�%
�l�
k ��; (8)

where 
�� �
P

j 
ppj 
��j and N k�%
�l�
k � is the reduced density

operator of the kth mode in the lth realization of the
channel, which is obtained from N �n� 
��� by tracing
over all the other modes and over the other n � 1 channel
realizations. The first inequality in Eq. (8) comes from
bounding Cn by the amount of information that can be
transmitted through a lossless channel with input state
N �n� 
���, viz., the output of the lossy channel with opti-
mal input state 
�� [7]. Now let N�l�

k be the average photon
number for the state %�l�

k ; the set fN�l�
k g must satisfy the

energy constraint (5) for all l [10]. Moreover, the loss will
leave only �kN

�l�
k photons, on average, in the correspond-

ing output state N k�%
�l�
k �. This implies that

S�N k�%
�l�
k �� < g��kN

�l�
k �; (9)

where the inequality follows from the fact that the term
on the right is the maximum entropy associated with
states that have �kN

�l�
k photons on average [3,11].

Introducing Eq. (9) into (8), we obtain the desired result

Cn <
Xn
l�1

X
k

g��kN
�l�
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X
k

g��kNk�; (10)

where the maximization is performed over the sets fNkg
that satisfy Eq. (5). Because Eq. (10) holds for any n, we
conclude that the right-hand side of (4) is indeed also an
upper bound for C.
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Discussion.—Some important consequences derive
from our analysis. First, capacity is achieved by a single
use of the channel (n � 1) employing random coding —
factorized over the channel modes — on coherent states
as shown in Eq. (7). This means that, at least for this
channel, entangled code words are not necessary and that
the Holevo information is not superadditive. Notice that
the lossy bosonic channel can accommodate entangle-
ment among successive uses of the channel, as well as
entanglement among different modes in each channel use.
Surprisingly, neither of these two strategies is necessary
to achieve capacity. Nor is it necessary to use any non-
classical state, such as a photon-number state or a
squeezed state, to achieve capacity; classical (coherent-
state) light is all that is needed. Classical light suffices
because the loss map N simply contracts coherent-state
code words in phase space toward the vacuum state.
Coherent states retain their purity in this process, and
hence the nonpositive part of the Holevo information —
the second term of the right-hand side of Eq. (1) — retains
its maximum value of zero. Despite the preceding proper-
ties, quantum effects are relevant to communication over
the lossy bosonic channel. For example, our proof does
not exclude the possibility of achieving capacity using
quantum encodings, and such encodings may have lower
error probabilities, for finite-length block codes, than
those of the capacity-achieving coherent-state encoding.
This is certainly true for the lossless case. In particular, it
was already known that C can be achieved with a number-
state alphabet [2,3]; our work shows that there is also a
coherent-state encoding that achieves capacity for this
case. [The two procedures employ the same average input
state, Eq. (7)]. However, the probability of the receiver
confusing any two distinct finite-length number-state
code words is zero in the lossless case, whereas it is
positive for all pairs of finite-length coherent-state code
words. The lossless case also provides an example of the
possible role of quantum effects at the receiver: the opti-
mal coherent-state system uses a classical transmitter, but
its detection strategy, can be highly nonclassical [9]. In
contrast, the optimal number-state system for the lossless
channel requires a nonclassical light source, but its re-
ceiver uses simple modal photon counting.

How well can we approach this capacity using conven-
tional decoding procedures? Using the coherent-state
encoding of Eq. (7) with either heterodyne or homodyne
detection, the amount of information that can be reliably
transmitted is

I � max
Nk

X
k

�log2�1� �kNk=�2�; (11)

where � � 1=2 for homodyne and � � 1 for hetero-
dyne, and where, as usual, the maximization must be
performed under the energy constraint (5). Equation
(11) has been obtained by summing over k the Shannon
capacities for the appropriate detection procedure [3]. In
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FIG. 1 (color online). Capacities of the far-field free-space
optical channel as a function of the input power P [in the plot
P 0 � 2� 
hc2L2=�AtAr�]. The solid curve is the capacity C
from Eq. (16), the other two curves are the capacities I from
Eq. (18) achievable with coherent states and heterodyne detec-
tion (dashed curve) or coherent states and homodyne detec-
tion (dotted curve). Note that the heterodyne detection I
approaches the optimal capacity C in the high-power limit.
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general I < C: heterodyne or homodyne detection can-
not be used to achieve the capacity. However, heterodyne
is asymptotically optimal in the limit of large numbers
of photons in all modes, Nk ! 1 for all k, because
g�x�=log2�x� ! 1 as x ! 1.

The capacity expression C can be simplified by using
standard variational techniques to perform the con-
strained maximization in Eq. (4), yielding [6]

C �
X
k

g��kNk����; (12)

where Nk��� is the optimal photon-number distribution

Nk��� �
1=�k

e� 
h!k=�k � 1
; (13)

with � being a Lagrange multiplier that is determined
through the constraint on average transmitted energy.

In the following sections we calculate the capacities of
some bosonic channels. The first two examples help clar-
ify the derivation of Eq. (4); the last is a realistic model of
frequency-dependent lossy communication, on which we
also evaluate the performance of homodyne and hetero-
dyne detection.

Narrowband channel.—Consider the narrowband
channel in which a single mode of frequency ! is em-
ployed. In this case, Eq. (12) becomes

C � g
�
�E

h!

�
; (14)

where N � E=� 
h!� is the average photon number at the
input. Equation (14) was conjectured in [5], where it was
given as a lower bound on C. The following simple argu-
ment shows that g��N� is also an upper bound for C.
Consider the lossless channel that employs �N photons
on average per channel use. Its capacity is given by
max%S�%�, where the maximization is performed over
input states % with mean energy E0 � � 
h!N [12]. The
maximum, computed through variational techniques, is
g��N� [3,11]. The lossless channel cannot have a lower
capacity than the lossy channel, because both have the
same average received energy, and the set of receiver
density operators achievable over the lossy channel is a
proper subset of those achievable in the lossless system
[7]. This implies that g��N� is an also upper bound on C
and hence equal to C.

Frequency-independent loss.—Now consider a broad-
band channel with uniform transmissivity, �k � �, that
employs a set of frequencies !k � k �! for k 2 N. In
this case, Eq. (12) gives [13]

C �

����
�

p

ln2

��������
�P

3 
h

s
T ; (15)

where T � 2�=�! is the transmission time, and P �
E=T is the average transmitted power. Equation (15) was
derived for the lossless case (� � 1) in [2] and was shown
to provide a lower bound on C in [6]. In order to show that
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the right-hand side of Eq. (15) is also an upper bound,
consider the lossless broadband channel in which the
average input power is equal to �P , viz., the average
output power of the lossy channel. According to [2], the
capacity of this channel is �

�����������������
��P=3

p
�T = ln2, which co-

incides with the right-hand side of Eq. (15). The reason-
ing given above for the single-mode case now implies that
the broadband lossless channel’s capacity cannot be less
than that of the broadband lossy channel, thus completing
the proof.

Far-field, free-space optical communication.—Consi-
der the free-space optical communication channel in
which the transmitter and the receiver communicate
through circular apertures of areas At and Ar that are
separated by an L-m–long propagation path. At frequency
! there will only be a single spatial mode in the trans-
mitter aperture that couples appreciable power to the
receiver aperture when the Fresnel number D�!� �
AtAr�!=2�cL�2 satisfies D�!� � 1 [14]. This is the far-
field power transfer regime at frequency !, and D�!� is
the transmissivity achieved by the optimal spatial mode.
A broadband far-field channel results when the transmit-
ter and receiver use the optimal spatial modes at frequen-
cies up to a critical frequency !c, with D�!c� � 1. In
this case we use �k � D�!k� in Eq. (12), and the capacity
C becomes [13]

C �
!cT

2�y0

Z y0

0
dx g

�
1

e1=x � 1

�
; (16)

where y0 is a dimensionless parameter inversely propor-
tional to the Lagrange multiplier �, which is determined
027902-3



FIG. 2 (color online). Power spectrum S � !kNk for the far-
field free-space channel plotted versus frequency in the con-
tinuum regime [13]. The solid curve is for optimal capacity, the
dotted curve is for homodyne detection, and the dashed curve is
for heterodyne detection. Here P=P 0 � 3. In contrast to the
frequency-independent lossy channel, all of these coherent-
state encodings preferentially employ high frequencies instead
of low frequencies. This marked change in spectral shaping is
due to the transmissivity’s having a quadratic dependence on !.
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from the power constraint

P �
2� 
hc2L2

AtAr

Z y0

0

dx
x

1

e1=x � 1
: (17)

Although C is proportional to the maximum frequency
!c, this factor cannot be increased without bound, for
fixed transmitter and receiver apertures, because of the
far-field assumption. Figure 1 plots C versus P obtained
from numerical evaluation of Eqs. (16) and (17).

To compare the capacity of Eq. (16) with the informa-
tion transmitted using heterodyne or homodyne detec-
tion, we perform the Eq. (11) maximization. The
Lagrange multiplier technique gives the optimal value
Nk��� � maxf1=�� 
h!k� � �2=�k ; 0g, plotted in Fig. 2.
[Notice that the non-negativity of this solution forbids the
use of frequencies lower than !0 � �2� 
h!2

c=D�!c�.]
With this photon-number distribution, Eq. (11) becomes

I � �!cT �1=y0 � 1� lny0�=�2� ln2�; (18)

where y0 is now determined from the condition P �
�22� 
hc2L2�y0 � 1� lny0�=�ArAs�. We have plotted I ver-
sus P in Fig. 1 for heterodyne and homodyne detection. At
low power, the noise advantage of homodyne makes its
capacity higher than that of heterodyne. At high-power
levels heterodyne prevails thanks to its bandwidth advan-
tage, and its capacity approaches C asymptotically.

In conclusion, we have derived the classical capacity
of the lossy multimode bosonic channel when the aver-
age energy devoted to the transmission is bounded.
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Interestingly, quantum features of the signals (such as
entanglement or squeezing) are not required to achieve
capacity, because an optimal coherent-state encoding ex-
ists. At the decoding stage, however, quantum effects
might still be necessary (e.g., in the form of joint mea-
surements on the output) as standard homodyne and
heterodyne measurements are not optimal, except for
the high-photon-number regime where heterodyne detec-
tion is asymptotically optimal. The focus of this Letter
has been the lossy channel with minimal (vacuum state)
noise. A more general treatment would include non-
vacuum noise, and would allow for amplification.
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