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1 The One-Dimensional Ising Model

Ising Hamiltonian:

HN({si}Ni=1) = −J
N∑
i=1

sisi+1 −H
N∑
i=1

si. (1)

(Here sN+1 = s1.) The partition function is defined by

ZN(β) =
∑

s1,...,sN=±1

e−βHN ({si}Ni=1), (2)

where β > 0 is the inverse temperature (setting kB = 1). The thermody-
namics of the model in the thermodynamic limit is then given by the free
energy density

f(β, J,H) = − 1

β
lim
N→∞

1

N
lnZN(β). (3)
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Algebraic solution

Transfer matrix expression:

ZN = eβJN(cosh βH)N Tr(AB)N , (4)

where A = 1 + λσx with λ = e−2βJ , and B = 1 + uσz with u = tanh(βH).
To see this, note that we can write separately the interaction term and

the magnetic field term thus

eβJsisi+1eβHsi+1 .

Then
eβJsisi+1 = eβJ(δsi,si+1

+ λδsi,−si+1
) = eβJ(1 + λσx)si,si+1

,

where λ = e−2βJ , and

eβHsi+1 = cosh(βH)(1 + usi+1) = cosh(βH)(1 + uσz)si+1,si+1
.
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We put ZN = eβJN coshN(βH)Z̃N where

Z̃N = Tr(AB)N = Tr((1 + λσx)(1 + uσz))N . (5)

In deriving an expression for Z̃N , we now simply use the anti-commutation
relations

σxσz + σzσx = 0; (σx)2 = (σz)2 = 1. (6)

We expand the product (AB)N choosing in each of the factors AB of the
product the term 1 or at least one σ operator. There must be an even number
of factors σx because otherwise the diagonal is zero, and there must also be
an even number of factors σz because otherwise the trace is zero. Therefore
let 2k be the number of factors where we choose at least one σ operator.
From those factors we next choose among those the factors containing a σx

at positions i1, . . . , i2p out of the total 2k.
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This yields

Trace(AB)N =

[N/2]∑
k=0

(
N

2k

) k∑
p=0

∑
1≤i1<···<i2p≤2k

λ2pu2k−2p

×Tr
(
(σz)i1−1σx(1 + uσz)(σz)i2−i1−1 · · · (σz)2k−i2p

)
.

(7)

If each second factor 1 + uσz is permuted with the previous factor σx it
becomes 1−uσz. This can then be combined with the previous factor 1+uσz

to give (1 − u2)1, which, in all, results in a factor (1 − u2)p in front of the
trace. The remaining traces are all equal ±2.
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We finally notice that, if we keep the position of the even-numbered σx

factors fixed, and move the odd-numbered ones across the σz, the sign of
the trace alternates. It follows that the sum over the positions of the odd-
numbered factors σx cancels unless all i2j (j = 1, . . . , p) are even, and in
that case, the sum equals 2. There are thus

(
k
p

)
possible choices for the

even-numbered factors, and the result is

Z̃N = 2

[N/2]∑
k=0

(
N

2k

) k∑
p=0

(
k

p

)
λ2p(1− u2)pu2k−2p

= 2

[N/2]∑
k=0

(
N

2k

)
(u2 + (1− u2)λ2)k. (8)
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Finally, we have the expansion

(1 +
√
x)N + (1−

√
x)N = 2

[N/2]∑
k=0

(
N

2k

)
xk, (9)

so that

Z̃N = (1 +
√
u2 + λ2(1− u2))N + (1−

√
u2 + λ2(1− u2))N . (10)

Alternatively, in the thermodynamic limit, we have the variational ex-
pression

lim
N→∞

1

N
ln Z̃N = sup

x∈[0,1]

{
x ln (u2 + (1− u2)λ2)− I(2x)

}
(11)

where I(x) = x lnx+ (1− x) ln(1− x).
The free energy density is

lim
N→∞

1

N
ln Z̃N = ln (1 +

√
u2 + (1− u2)e−4βJ ). (12)
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2 The Ising model on linked chains

In the case of M linked chains, the Hamiltonian reads

HN,M({si,j}N,Mi=1;j=1) = −J1
N∑
i=1

M∑
j=1

si,jsi+1,j − J2
N∑
i=1

M∑
j=1

si,jsi,j+1, (13)

where we set sN+1,j = s1,j and si,M+1 = si,1 for periodic boundary conditions.
(We take H = 0.) The corresponding partition function is

ZN,M(β) =
∑

{si,j}; si,j=±1

e−βHN,M ({si,j}). (14)

The free energy density of the two-dimensional model is given by

f(β, J,H) = − 1

β
lim

N,M→∞

1

NM
lnZN,M(β). (15)
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Transfer matrix expression

Again, we can write a transfer matrix expression for ZN,M analogous to
(4):

ZN,M(β) = eβJ1NM cosh(βJ2)
NM Z̃N,M(β), with Z̃N,M = Tr(AB)N , (16)

where

A =
M∏
j=1

(1 + λσxj ) and

B =
M∏
j=1

(1 + uσzj ⊗ σzj+1). (17)

Here σxj = 1⊗ · · · ⊗ σx⊗ · · · ⊗ 1, with σx at the j-th position, and similarly,
σzj . Moreover, λ = e−2βJ1 and u = tanh(βJ2).
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3 The Ising model on a four-stranded chain

The B-operator now reads

B = (1 + uσz1σ
z
2)(1 + uσz2σ

z
3)(1 + uσz3σ

z
4)(1 + uσz4σ

z
1). (18)

We consider the two eigenspaces of σx ⊗ σx ⊗ σx ⊗ σx. The eigenspace with
eigenvalue +1 now has three invariant subspaces. The relevant symmetric
subspace is spanned by |+ + + +〉, 1

2
(|+ +−−〉+ | −+ +−〉+ | −−+ +〉+

|+−−+〉), 1√
2
(|+−+−〉+ | −+−+〉) and | − − −−〉.

We want to write B as a tensor product on this subspace. We have
obtained B as

cosh(βJ2)
4B = exp[βJ2B0], where

B0 = σz1σ
z
2 + σz2σ

z
3 + σz3σ

z
4 + σz4σ

z
1. (19)

10



On the above 4-dimensional subspace B0 acts as follows.

B0 =


0 2 0 0

2 0 2
√

2 2

0 2
√

2 0 0
0 2 0 0

 .

To bring this into the form B1 ⊗ 1 + 1 ⊗ B2 where Bi =

(
ai bi
bi ci

)
, using

an orthogonal matrix of the form affecting only the states with total spin 0,
we write

B1 ⊗ 1 + 1⊗B2 =


a1 + a2 b2 b1 0
b2 a1 + c2 0 b1
b1 0 c1 + a2 b2
0 b1 b2 c1 + c2

 .

It follows that we must diagonalise the centre matrix, i.e.

(
0 2

√
2

2
√

2 0

)
.
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We obtain

U =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1

 and UB0U =


0
√

2
√

2 0√
2 2
√

2 0
√

2√
2 0 −2

√
2
√

2

0
√

2
√

2 0


and hence

B1 =
√

2(σx + σz) and B2 =
√

2(σx − σz).

It follows that

U B U =
(
(1 + u2)1 +

√
2σz +

√
2σx
)
⊗
(
(1 + u2)1−

√
2σz +

√
2σx
)
. (20)

Note that the matrix of A is unaffected by the transformation U and can be
written as

A =
(
(1 + λ2)1 + 2λσz

)
⊗
(
(1 + λ2)1 + 2λσz

)
. (21)
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Each factor can now be diagonalized individually and the result is

Tr(AB+,even)N =

(∑
±

[
(1 + λ2)(1 + u2) + 2

√
2uλ±

√
∆(

π

4
)

]N)

×

∑
±

[
(1 + λ2)(1 + u2)− 2

√
2uλ±

√
∆(

3π

4
)

]N ,

(22)

where

∆(
π

4
) = [(1 + λ2)(1 + u2) + 2

√
2uλ]2 − (1− u2)2(1− λ2)2 (23)

and

∆(
3π

4
) = [(1 + λ2)(1 + u2)− 2

√
2uλ]2 − (1− u2)2(1− λ2)2. (24)
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4 The two-dimensional Ising model

The general case with M chains is of course equivalent to the 2-dimensional
Ising model. To generalize the above approach, we want to transform B into a
tensor product of 2-dimensional matrices. Equivalently, since cosh(βJ2)

MB =
exp(βJ2B0), we need to find a transformation such that B0 has the form

B0 =

[M/2]∑
i=1

Bi, where Bi = 1⊗ · · · ⊗
(
ai bi
bi −ai

)
⊗ · · · ⊗ 1.

(Here the matrix

(
ai bi
bi −ai

)
is at the i-th position.)

We can subdivide the Hilbert space H = C2M into subspaces Hn where
⊕Mi=1σ

x
i has eigenvalue M − 2n with n ≤ M/2, i.e. in the representation in

which σx is diagonal the number of minuses equals n. On the subspace Hn,
A has the eigenvalue (1 + λ)M−n(1 − λ)n. We can therefore diagonalize the
restriction B̃0 of B0 to each Hn as we did in the case M = 4 above. This
does not affect the matrix A. Note also that B0 only connects Hn with Hn−2
and Hn+2.
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5 The Bethe Ansatz

The operator B̃0 leaves the number of minus signs n invariant. It can be
diagonalized using the Bethe Ansatz.

let ϕ(x1, . . . , xn) denote the basis vector with minus signs at the positions
x1, . . . , xn, where 1 ≤ x1 < · · · < xn ≤M . We write the eigenvectors as

ψ =
∑

1≤x1<···<xn≤M

f(x1, . . . , xn)ϕ(x1, . . . , xn). (25)

where the functions f are assumed to be of the Bethe form:

f(x1, . . . , xn) =
∑
P∈Sn

A(P )
n∏
j=1

ω
xj
P (j). (26)

The coefficients A(P ) are to be determined as well as the numbers ωj (j =
1, . . . , n).
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We first write the general expression for B̃0 on the n-particle space:

B̃nf(x1, . . . , xn) =
n∑
i=1

(1− δxi−xi−1,1) f(x1, . . . , xi − 1, . . . , xn)

+
n∑
i=1

(1− δxi+1−xi,1) f(x1, . . . , xi + 1, . . . , xn)

+δx1,1(1− δxn,M) f(x2, . . . , xn,M)

+δxn,M(1− δx1,1) f(1, x1, . . . , xn−1), (27)

where we set x0 = 0 and xn+1 = M + 1.
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Inserting into the eigenvalue equation for B̃0, one finds that the eigen-
functions of B̃0 are given by

f(x1, . . . , xn) =
1

Mn/2

∑
P∈Sn

(−1)|P |
n∏
j=1

ω
xj
P (j), (28)

where the ωi (i = 1, . . . , n) are distinct M -th roots of (−1)n−1. The corre-
sponding eigenvalues are

B̃0f(x1, . . . , xn) = λ f(x1, . . . , xn); λ =
n∑
j=1

(ωj + ω−1j ).
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Next, we need to compute the matrix elements of B0 connecting Hn and
Hn−2. The corresponding matrix Cn = Pn−2B0

∣∣
Hn

is given by

(Cfn)(x1, . . . , xn−2) =
n−2∑
j=0

xj+1−2∑
x=xj+1

fn(x1, . . . , xj, x, x+ 1, xj+1, . . . , xn−2)

+fn(1, x1, . . . , xn−2,M) (1− δx1,1)(1− δxn−2,M),

(29)

where x0 = 0 and xn−1 = M + 1. We therefore have to compute 〈fn−2 |Cfn〉,
where fn is given by (28) and

fn−2(x1, . . . , xn−2) =
1

M (n−2)/2

∑
Q∈Sn−2

(−1)|Q|
n−2∏
i=1

(ω′Q(i))
xi .
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The result is that the scalar product 〈fn−2 |Cnfn〉 equals zero unless
among the ωj (j = 1, . . . , n) defining fn there are n − 2 which are equal
to the ω′i defining fn−2, and the remaining two are complex conjugates. In
that case, the corresponding matrix element equals ω − ω, where ω and ω
are the remaining two ωj.

The complete matrix for B0.

We can thus write the complete matrix for B0 on the basis of BA eigen-
vectors of B̃0. For the case that M and n are even, it is

〈f ′2k |B0 f2k〉 =

{∑n
p=1(ωjp + ω−1jp ) if ω′jp = ωjp for all p = 1, . . . , k;

0 otherwise;

〈f ′2k−2 |B0 f2k〉 =

{
ωj − ω−1j if {ωjp}kp=1 = {ω′jq}

k−1
q=1 ∪ {ωj}

0 otherwise.

〈f ′2k |B0 f2k−2〉 = 〈f2k−2 |B0 f ′2k〉,
〈f ′2l |B0 f2k〉 = 0 if |k − l| > 1. (30)
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Relabelling the BA eigenvectors

We now label the vectors fn defined by (ωj1 , . . . , ωjn) such that jn+1−p =
jp, (p = 1, . . . , n) by a sequence (s1, . . . , sM/2) where sj is an Ising spin such
that sj = +1 if ωj ∈ {ωj1 , . . . , ωjn} and sj = −1 if ωj /∈ {ωj1 , . . . , ωjn}. We

write this vector as |{sj}M/2
j=1 〉. On this basis, B0 has the matrix elements

〈s′1, . . . , s′M/2 |B0 |s1, . . . , sM/2〉 =



4
∑M/2

j=1 δsj ,1 cos (2j−1)π
M

if s′j = sj for all j = 1, . . . ,M/2;

2 sin (2j−1)π
M

if s′jsj = −1 and s′i = si for i 6= j;

0 otherwise.

(31)
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This is just the matrix

B0 =

M/2∑
j=1

(1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1), (32)

where the factor Bj appears in the j-th position and equals

Bj = 2

(
cos (2j−1)π

M
sin (2j−1)π

M

sin (2j−1)π
M

− cos (2j−1)π
M

)
= 2 cos θ2j−1 σ

z + 2 sin θ2j−1 σ
x, (33)

where
θr =

rπ

M
. (34)
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This reduces the problem to the diagonalization of 2 × 2 matrices. The
resulting contribution to Z̃N,M :

Z̃max,+ =

M/2∏
j=1

(ζN2j−1,+ + ζN2j−1,−), (35)

where{
ζr,± = (1 + λ2)(1 + u2)− 4uλ cos rπ

M
±
√

∆r, where

∆r =
[
(1 + λ2)(1 + u2)− 4uλ cos rπ

M

]2 − (1− λ2)2(1− u2)2.
(36)
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6 Thermodynamic limit

The thermodynamic limit is given by

lim
N,M→∞

1

NM
ln Z̃N,M = lim

M→∞

1

M
max{

[M/2]∑
j=1

ln ζ2j−1,+,

[M/2]∑
j=1

ln ζ2j,+}

=
1

2π

∫ π

0

dθ ln ζ(λ, u; θ), (37)

where

ζ(λ, u; θ) = (1 + λ2)(1 + u2)− 4uλ cos θ

+
√

[(1 + λ2)(1 + u2)− 4uλ cos θ]2 − (1− λ2)2(1− u2)2.
(38)
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