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Preface

In 2017, I gave a series of 4 lectures on Pirogov-Sinai theory, following the

book by Sinai1 which is based on the two ground-breaking articles by Pirogov

and Sinai2. At the time I was unhappy that there were certain details that I

did not fully understand. During the time in lockdown due to the COVID-19

epidemic in 2020, I therefore decided to write up more detailed notes of these

lectures. In doing so, I discovered that there were in fact more aspects of

the arguments which were rather sketchy. Elaborating these details further,

these notes will hopefully be useful for others who are trying to understand

this important development in the theory of phase transitions. It should

be noted that a slightly different approach to the theory was developed by

Zahradnik3. There are also extensions to certain quantum lattice models4

1Ya. G. Sinai: Theory of Phase Transitions: Rigorous Results. Oxford etc.: Pergamon

Press, 1982
2S. A. Pirogov and Ya. G. Sinai: Phase Diagrams of Classical Lattice Systems I, II,

Teor. Mat. Fiz. 25 358–69 (1975) and Teor. Mat. Fiz. 26, 61–76 (1976). (In Russian)
3M. Zahradnik: An Alternative Version of Pirogov-Sinai Theory. Commun. Math.

Phys. 93, 559–81 (1984).
4See C. Borgs, R. Kotecky and D. Ueltschi: Low Temperature Phase Diagrams for

Quantum Perturbations of Classical Spin Systems. Commun. Math. Phys. 181 409–46

(1996) and N. Datta, R. Fernandez and J. Fröhlich: Low-temperature phase diagrams of

quantum lattice systems. I. Stability for quantum perturbations of classical systems with

finitely many ground states, J. Stat. Phys. 84, 455–534 (1996).
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1 The Peierls Argument

Pirogov-Sinai theory is a generalisation of the Peierls argument to classical

lattice spin models without symmetry. We therefore begin by reviewing the

Peierls argument for the Ising model.

The Ising model is a classical spin system with spins sx = ±1 on Zd with

nearest-neighbour interaction given by a Hamiltonian

HΛ(sΛ) = −J
∑

{x,y}⊂Λ: |x−y|=1

sxsy − h
∑
x∈Λ

sx, (1.1)

where Λ is a (large) finite subset of Zd, and sΛ denotes the spin configuration

{sx}x∈Λ on Λ. h is an external magnetic field. The Gibbs measure µβ at

inverse temperature β corresponding to this Hamiltonian is defined by

µβ
Λ(A) =

1

ZΛ(β)

∑
sΛ∈A

e−βHΛ(sΛ), (1.2)

for any subset A ⊂ Ω(Λ) = {−1,+1}Λ, where

ZΛ(β) =
∑

sΛ∈Ω(Λ)

e−βHΛ(sΛ) (1.3)

is a normalisation factor called the partition function.

Peierls5 showed that in dimensions d ≥ 2, this model has a phase tran-

sition for h = 0 at low temperatures. To be exact, he showed that there

is spontaneous magnetization for low temperatures, in the sense that if we

assume positive boundary conditions, changing the Hamiltonian to

HΛ(sΛ |+) = −J
∑

{x,y}⊂Λ: |x−y|=1

sxsy − J
∑
x∈∂Λ

∑
y∈Λc: |x−y|=1

sx,

then the expected value of the spin s0 (where 0 ∈ Λ) w.r.t. the Gibbs measure

µβ,+
Λ is bounded below by a positive constant m0(β) > 0 as Λ increases in all

directions.
5R. Peierls: On the Ising model of ferromagnetism. Proc. Cambridge Phil. Soc. 32,

477–81 (1936). See also R. B. Griffiths: Peierls proof of spontaneous magnetization in a

two-dimensional Ising ferromagnet, Phys. Rev. A136, 437–9 (1964), and R. L. Dobrushin:

Existence of a phase transition in the two-dimensional and three-dimensional Ising models,

Sov. Phys. Doklady 10, 111–3 (1965).
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In fact, it is known (by a simple compactness argument) that there exist

so-called limit-Gibbs measures µβ on {−1,+1}Z
d

given by limits of Gibbs

measures µβ
Λl

where (Λl)l∈N is a sequence of subsets Λl ⊂ Zd tending to Zd

uniformly in all directions. One can then formulate Peierls’ result in the

following way. There exists β0 > 0 such that for β > β0 there exist two

translationally-invariant limit-Gibbs states µβ
± such that

µβ
±(s0) = ±m0 where m0 > 0.

Peierls’ proof depends on a reformulation of the Ising model in terms of

contours.

Figure 1 Ising model configuration:

Black squares represent minus spins, white ones plus spins.

A configuration of spins on the lattice can equivalently be described by a

collection of contours composed of lines or plaquettes between lattice points

separating opposite spins. A contour is defined as a maximal collection of con-
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nected plaquettes which does not self-intersect. Given positive (or negative)

boundary conditions, these lines/plaquettes form closed curves/surfaces.

Figure 2 Contours for the above Ising configuration.

We denote the contours of a configuration sΛ on Λ by ∂(sΛ). The energy

function is then given by

H+
Λ = −dJ |Λ|+ 2J

∑
γ∈∂(sΛ)

|γ|+ h(
∑

γ∈∂+(sΛ)

|Int(γ)| −
∑

γ∈∂−(sΛ)

|Int(γ)|), (1.4)

where |γ| is the length/area of the contour γ, ∂±(sΛ) denotes the contours

with outer boundary equal to ±1, and |Int(γ)| is the total number of lattice

sites enclosed by the contour. (We use the fact that the total number of pairs

{x, y} with {x, y} ∩ Λ ̸= ∅ equals 2|Λ|.)

Now suppose that h = 0. The corresponding Gibbs measure in Λ is then

given by

µ+
Λ(sΛ) =

1

Z+
Λ (β)

exp

βJ ∑
{x,y}∩Λ̸=∅: ||x−y||=1

sxsy

 , (1.5)
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where sx = +1 if x /∈ Λ.

We claim:

Lemma 1.1 (Peierls) Let γ be a given contour. Then

µ+
Λ({sΛ : γ ∈ ∂(sΛ)}) ≤ e−2βJ |γ|, (1.6)

where |γ| = ℓ(γ) denotes the total length/area of the contour γ.

Proof. Set |∂(sΛ)| =
∑

γ∈∂ |γ|. Then

µ+
Λ({sΛ : γ ∈ ∂(sΛ)}) =

∑
sΛ: γ∈∂(sΛ) e

−2βJ |∂(sΛ)|∑
sΛ
e−2βJ |∂(sΛ)|

. (1.7)

Denote the set of configurations on Λ by Ω(Λ) = {−1,+1}Λ, and let Ωγ(Λ) ⊂
Ω(Λ) be the subset of configurations sΛ such that γ ∈ ∂(sΛ). Then there is a

bijective map πγ between Ωγ(Λ) and its complement defined by flipping all

spins inside γ. Given sΛ ∈ Ωγ(Λ), obviously |∂(sΛ)| = |∂(πγ(sΛ))|+ |γ|, since
in πγ(sΛ) the contour γ is missing. We therefore have

µ+
Λ({sΛ : γ ∈ ∂(sΛ)}) = e−2βJ |γ|

∑
sΛ∈Ωγ(Λ)c

e−2βJ |∂(sΛ)|∑
sΛ
e−2βJ |∂(sΛ)|

≤ e−2βJ |γ|. (1.8)

The existence of spontaneous magnetization now follows by counting con-

tours:

Theorem 1.1 (Peierls) There exists β0 > 0 independent of Λ such that for

all β > β0 there is m0(β) > 0 such that

µ+
Λ({sΛ ∈ Ω(Λ) : s0 = −1}) ≤ 1

2
(1−m0(β)). (1.9)

Proof. If s0 = −1 then the origin must be surrounded by at least one

contour γ. By the lemma, we therefore have

µ+
Λ({sΛ : s0 = −1}) ≤

∑
γ: 0∈Int(γ)

e−2βJ |γ|.
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Clearly, the smallest possible contour surrounding 0 has area 2d, so if Cn is

the number of contours of area n then

µ+
Λ({sΛ : s0 = −1}) ≤

∞∑
n=2d

Cn e
−2βJn.

It is easy to estimate the number Cn of contours. There is a plaquette per-

pendicular to the first coordinate axis crossing that axis at minimal positive

distance r1 from the origin. Obviously, 2(d − 1)r1 < n. Starting from that

plaquette, we can build up the contour by choosing a direction at every edge

of subsequent plaquettes. There are 3 possible directions in which to place

the next plaquette. Therefore Cn ≤ n
2(d−1)

3n. It follows that

µ+
Λ({sΛ : s0 = −1}) ≤

∞∑
n=2d

n

2(d− 1)
3n e−2βJn.

Clearly, the right-hand side converges for βJ > 1
2
ln(3) and tends to 0 for

β → ∞, uniformly in Λ.

At low temperatures the contours are likely to be small:

Corollary 1.1 There is β0 > 0 such that for β > β0 there is a constant

c(β) > 0 such that limβ→+∞ c(β) = 0 and

lim
Λ→Zd

µ+
Λ

[
∃γ ∈ ∂(sΛ) : |γ| > c(β) ln |Λ|

]
= 0.

Proof. As in the above proof, we have

µ+
Λ [∃γ ∈ ∂(sΛ) : |γ| > c(β) ln |Λ|]

≤ |Λ|
∑

n>c(β) ln |Λ|

n

2(d− 1)
3ne−2βJn

≤ c(β)

2(d− 1)
|Λ| ln(|Λ|)e

(ln 3−2βJ)c(β) ln |Λ|

(1− 3e−2βJ)2
→ 0

if (2βJ − ln 3)c(β) > 1.

Note that in Peierls’ proof the spin-flip invariance of the model is an

essential ingredient. Pirogov-Sinai theory is an extension of Peierls’ idea
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of writing the Hamiltonian in terms of contours to more general classical

spin systems. However, because in general the number of spin values is

greater than 2 and the spin-flip symmetry is absent, the phase transition(s)

in general do not occur at zero external field(s). The challenge is then to

determine the critical values of these fields. These can only be obtained in

the thermodynamic limit. We therefore consider first the thermodynamic

limit of classical spin models in general.
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2 Classical Spin Systems

2.1 Invariant states

Pirogov-Sinai theory holds for periodic states, but for simplicity we only

consider translation-invariant Hamiltonians and states here. Some of the

proofs are omitted: see for example Israel or Hugenholtz6. Let the spins

take values in a finite set S = {1, . . . , q} and denote Ω = SZd
. The set

of translation-invariant probability measures on Ω is a compact convex set

(w.r.t. the topology of weak convergence). We denote it by PI . We can

characterize its extremal points as follows.

Theorem 2.1 An invariant probability measure µ ∈ PI is extremal invariant

if and only if the (orthogonal) projection Pµ on the set of invariant functions

f ∈ L2(Ω, µ) is 1-dimensional, i.e.

Pµf =

(∫
f dµ

)
1Ω.

Proof. Suppose that µ is extremal invariant. Then any operator B ∈
B(L2(µ)) commuting with the multiplication operators M = {Mf ; f ∈
C(Ω)} and the translations must be a multiple of the identity. For, if B

is not a multiple of the identity, it has a non-trivial spectral projection P ,

which also commutes with M and the translations. In that can we can define

translation-invariant probability measures µ1 and µ2 by∫
f dµ1 =

∫
|P1|2f dµ∫
|P1|2 dµ

and

∫
f dµ2 =

∫
|(1− P )1|2f dµ∫
|(1− P )1|2 dµ

so that µ = cµ1 + (1− c)µ2 with c =
∫
|P1|2 dµ = ||P1||2 < 1.

Now consider the space Pµ(L
2(µ)). This space is translation-invariant

because Pµ commutes with translations. There are therefore translation-

6R. B. Israel: Convexity in the Theory of Lattice Gases, Princeton University Press,

1979, and N. M. Hugenholtz: C∗-algebras and Statistical Mechanics. In: Operator Algebras

and Applications (Proc. Symp. Pure Math. 38, Part 2. pp. 407–65. R. V. Kadison (ed).

Providence RI: American Mathematical Society).
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invariant functions fn ∈ C(Ω) converging to ψ ∈ Pµ(L
2(µ)). Now Mfn com-

mutes with M and with translations, so must be a multiple of the iden-

tity. Hence fn = λn is a constant and it follows that ψ = λ is also a

constant. Consequently, Pµf = λ(f). Since ⟨Pµf |Pµf⟩ = ⟨f |Pµf⟩, we have

λ(f)2 = λ(f)
∫
f dµ.

Conversely, suppose that Pµ is one-dimensional: Pµf =
∫
f dµ and µ =

λµ1 + (1 − λ)µ2 for µ1, µ2 ∈ PI and λ ∈ (0, 1). Assuming that µ1 ̸= µ2

the measure ν = µ1 − µ2 is neither positive nor negative. By the Hahn

decomposition there exist subset Ω+,Ω− ⊂ Ω such that ν|Ω+ is positive and

ν|Ω− is negative. Moreover, since ν is translation-invariant, Ω± are also

translation-invariant. We can now write µ = µ(Ω+)µ+ + µ(Ω−)µ− where

µ± = 1Ω±µ/µ(Ω±). Now the functions 1Ω± are translation-invariant and

Pµ = P+ + P−, where P± = M1Ω±
are orthogonal projections, i.e. Pµ is not

1-dimensional.

There is another characterization of extremal invariant states as ergodic

states.

First we define an M-net as follows. It is a net (hα) of functions hα :

Zd → [0,+∞) such that∑
x∈Zd

hα(x) = 1 and lim
α

∑
x∈Zd

|hα(x+ y)− hα(x)| = 0

for all y ∈ Zd. An example is hn(x) =
1
nd1Kn(x0) where

Kn(x0) = {x ∈ Zd : − 1
2
n < xi − x0,i ≤ 1

2
n (i = 1, . . . , d)}

is a cube centred at x0 of side n. The mean ergodic theorem states:

Theorem 2.2 (mean ergodic theorem) If x 7→ U(x) is a unitary repre-

sentation of Zd on a Hilbert space H then

lim
α

∑
x∈Zd

hα(x)U(x) = P,

where P is the projection onto the Zd-invariant vectors. Here the convergence

is in the strong operator topology.
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We have

Theorem 2.3 An invariant probability measure µ ∈ PI is extremal invariant

if and only if it is weakly clustering, i.e. for all f, g ∈ C(Ω) and all M-nets

(hα),

lim
α

∑
x∈Zd

hα(x)

∫
(τxf) g dµ =

∫
f dµ

∫
g dµ,

where τx is the translation operator, (τxf)(y) = f(y − x).

Proof. Suppose first that µ is weakly clustering. Then by the mean ergodic

theorem,

lim
α

∑
x∈Zd

hα(x)

∫
(τxf) g dµ =

∫
(Pµf) g dµ =

∫
f dµ

∫
g dµ.

Since this holds for all f, g ∈ C(Ω), it follows that Pµf = (
∫
f dµ)1Ω.

Conversely, suppose that µ is extremal invariant. Then Pµf =
∫
f dµ and

we have

lim
α

∑
x∈Zd

hα(x)

∫
(τxf) g dµ = lim

α

∑
x∈Zd

hα(x)⟨g |U(x)f⟩

= ⟨g |Pµf⟩ = ⟨g | 1⟩
∫
f dµ

=

∫
g dµ

∫
f dµ.

A stronger version of this property is the following. An invariant measure

µ ∈ PI is called strongly clustering if for all f, g ∈ C(Ω),

lim
|x|→∞

∫
(τxf) g dµ =

∫
f dµ

∫
g dµ. (2.1)

It is easy to see that this implies weak clustering. It is this property that we

shall use to prove the existence of pure phases.

9



EXAMPLE 1.1 Example of a mixed state

Consider the following mixture of two measures: µ = 1
2
(µ+ + µ−) where µ±

are product measures given by µ±(ds) =
∏

x∈Zd µ±
ϵ (dsx) and µ

±
ϵ is a measure

on {−1,+1} given by

µ±
ϵ (sx = s) = 1

2
± 1

2
(1− 2ϵ)s =

1− ϵ if s = ±1;

ϵ if s = ∓1.

where we assume ϵ ≪ 1. The measures µ± are extremal invariant. Indeed,

we may assume that f(s) and g(s) only depend on finite sets of spins, i.e.

f(s) = f(sΛ) and g(s) = g(sΛ′) (so-called cylinder functions). This is because

the cylinder functions are dense in C(Ω) and∣∣∣∣∫ (τxf) g dµ

∣∣∣∣ ≤ ||f || ||g||.

But if f only depends on sΛ then for |x| large enough, τxf depends on sΛ+x

where (Λ + x) ∩ Λ′ = ∅. Hence∫
(τxf)(sΛ)g(sΛ′)µ+(ds)

=
∑
s∈Ω

f(sΛ+x)g(sΛ′)
∏
y∈Zd

µ+
ϵ (sy)

=
∑
sΛ+x

f(sΛ+x)
∏

y∈Λ+x

µ+
ϵ (sy)

∑
sΛ′

g(sΛ′)
∏
y∈Λ′

µ+
ϵ (sy)

=

∫
f(s)µ+(ds)

∫
g(s)µ+(ds)

and similarly for µ−. Note that the measure µ± is concentrated on the subset

Ω± of Ω given by the configurations s such that the (average) magnetization

equals

lim
α

∑
x∈Zd

hα(x)sx = ±(1− 2ϵ).

These are disjoint translation-invariant sets, so Pµ is the projection onto the

two-dimensional subspace spanned by 1Ω+ and 1Ω− . The measure µ is not

clustering. For example, for z ̸= 0, Eµ(s0sz) =
1
2

∫
s0sz d(µ++µ−) = (1−2ϵ)2

whereas Eµ(s0) = 0 = Eµ(sz).

10



2.2 Thermodynamic functions

The existence of thermodynamic functions for classical spin systems is quite

standard, so it suffices to be brief. We consider a Hamiltonian given by

HΛ(Φ)(sΛ) =
∑
X⊂Λ

ΦX(sX), (2.2)

where ΦX are a potential functions, ΦX : ΩX → R (where ΩX = SX) which

we assume to be translation-invariant and to satisfy

||Φ||1 =
∑

X⊂Zd: 0∈X

||ΦX ||
|X|

< +∞.

(Here ||ΦX || = max
sX∈ΩX

|ΦX(sX)|.) The Banach space of such potential is

denoted B1. For Φ ∈ B1 we have the useful bound

Lemma 2.1 ||HΛ(Φ)|| ≤ |Λ| ||Φ||1.

Later we need more restricted classes of potentials, for example Bexp given

by

||Φ||exp =
∑
X⊂Zd

exp[|X|] ||ΦX ||

and in particular the finite-range potentials B0 defined by

|∆Φ| < +∞, where ∆Φ =
∪

{X ⊂ Zd : 0 ∈ X, ΦX ̸= 0}.

These are obviously dense in B1.

The free energy for HΛ is defined by

FΛ(β,Φ) = − 1

β
ln
∑

sΛ∈ΩΛ

e−βHΛ(Φ)(sΛ). (2.3)

It follows from lemma 2.1 that FΛ is continuous.

Proposition 2.1 |FΛ(β,Φ)− FΛ(β,Φ
′)| ≤ |Λ| ||Φ− Φ′||1.

11



This implies in particular,∣∣∣∣ 1|Λ|FΛ(β,Φ) + ln q

∣∣∣∣ ≤ ||Φ||1. (2.4)

One can prove the existence of the free energy density in the thermody-

namic limit7:

Theorem 2.4 If Φ ∈ B1 then the thermodynamic limit

lim
n→∞

1

|Λn|
FΛn(β,Φ) = f(β,Φ) (2.5)

exists if Λn → Zd in the sense of Van Hove. Moreover, f is a concave

function of Φ and

|f(β,Φ)− f(β,Φ′)| ≤ ||Φ− Φ′||1.

A similar result holds for the entropy density. Let µ ∈ PI be an invariant

measure. The restriction of µ to Ω(Λ) = SΛ will be denoted µΛ. The local

entropy is defined by

SΛ(µ) = −
∑

sΛ∈ΩΛ

µΛ(sΛ) lnµΛ(sΛ). (2.6)

It has the following basic properties.

Proposition 2.2 SΛ(µ) for µ ∈ PI satisfies

1. 0 ≤ SΛ(µ) ≤ |Λ| ln(q);

2. SΛ(µ) is a concave function of µ;

3. If Λ1 ∩ Λ2 = ∅ then SΛ1∪Λ2(µ) ≤ SΛ1(µ) + SΛ2(µ) (subadditivity);

4. If Λ ⊂ Λ′ then SΛ′(µ)− SΛ(µ) ≤ (|Λ′| − |Λ|) ln(q).
7See R. B. Israel loc. cit. and Hugenholtz loc. cit. or T. C. Dorlas: Statistical Mechanics:

Fundamentals and Model Solutions 2nd edn., Taylor & Francis, 2021.
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5. For arbitrary finite Λ1,Λ2 ⊂ Zd,

SΛ1∪Λ2(µ)− SΛ1(µ)− SΛ2(µ) + SΛ1∩Λ2(µ) ≤ 0. (2.7)

(This is called strong subadditivity.)

Using the (strong) subadditivity property, one can prove that the ther-

modynamic limit exists:

Theorem 2.5 If µ ∈ PI then the entropy density defined by

lim
n→∞

1

|Λn|
SΛn(µ) = s(µ)

exists if Λn → Zd in the sense of Van Hove. Moreover, it satisfies

1. 0 ≤ s(µ) ≤ ln(q);

2. The map µ 7→ s(µ) is affine and upper semi-continuous on PI .

The affine property of s(µ) is proved as follows. By concavity,

λSΛ(µ1) + (1− λ)SΛ(µ2)

≤ SΛ(λµ1 + (1− λ)µ2)

= −λ
∑
sΛ

µ1(sΛ) ln(λµ1(sΛ) + (1− λ)µ2(sΛ))

−(1− λ)
∑
sΛ

µ2(sΛ) ln(λµ1(sΛ) + (1− λ)µ2(sΛ))

≤ −λ
∑
sΛ

µ1(sΛ) ln(λµ1(sΛ))− (1− λ)
∑
sΛ

µ2(sΛ) ln((1− λ)µ2(sΛ))

= λSΛ(µ1) + (1− λ)SΛ(µ2)− λ lnλ− (1− λ) ln(1− λ).

Using the simple bound −λ lnλ − (1 − λ) ln(1 − λ) ≤ ln 2 we obtain, after

dividing by |Λ| and taking the thermodynamic limit,

s(λµ1 + (1− λ)µ2) = λs(µ1) + (1− λ)s(µ2). (2.8)

Finally, we consider the energy density:

13



Theorem 2.6 If µ ∈ PI and Φ ∈ B1 then

lim
n→∞

1

|Λn|

∫
HΛn(Φ) dµ =

∫
AΦdµ, (2.9)

where AΦ is defined by

AΦ(s) =
∑

X⊂Zd: 0∈X

ΦX(sX)

|X|
. (2.10)

This follows from the identity

1

|Λ|

∫
HΛ(Φ)dµ =

1

|Λ|
∑
X⊂Λ

∫
ΦXdµ =

1

|Λ|
∑
x∈Λ

∑
X⊂Λ:x∈X

∫
ΦX

|X|
dµ.

2.3 Translation-invariant equilibrium states

We want to define translation-invariant equilibrium states as minimisers of

the free energy. First consider finite volume.

Proposition 2.3 For any finite Λ ⊂ Zd,

FΛ(β,Φ) ≤
∫

HΛ(Φ)dµ− 1

β
SΛ(µ).

Moreover, there is precisely one probability measure µ for which the equality

holds, namely the Gibbs measure

µΦ
Λ(sΛ) =

1

ZΛ(βΦ)
exp[−βHΛ(Φ)(sΛ)], (2.11)

where ZΛ(βΦ) is the partition function

ZΛ(βΦ) =
∑

sΛ∈ΩΛ

e−βHΛ(Φ)(sΛ). (2.12)

This is a straightforward calculation. The uniqueness follows from the

fact that the entropy SΛ(µ) is a strictly concave function.

It follows that in the thermodynamic limit,

f(β,Φ) ≤
∫
AΦdµ− 1

β
s(µ) (2.13)
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for µ ∈ PI and Φ ∈ B1. We want to prove that there are measures µ ∈ PI for

which equality holds. For this we consider large cubes of side n: Kn(na) for

a ∈ Zd. These cubes are disjoint and constitute a covering of Zd. We define

a product measure

µ̃n =
∏
a∈Zd

µΦ
Kn(na) (2.14)

and average over translates to obtain

µn =
1

nd

∑
x∈Kn(0)

µ̃n ◦ τx. (2.15)

We now compute the corresponding entropy and energy densities. Since s(µ)

is affine, we have, writing Kn = Kn(0),

s(µn) =
1

|Kn|
∑
x∈Kn

s(µ̃n ◦ τx)

= s(µ̃n) = lim
m→∞

SKmn(µ̃n)

|Kmn|
.

But, since Kmn =
∪

a∈Km
Kn(na),

SKmn(µ̃n) = −
∑
sKmn

∏
a∈Km

µΦ
Kn(na)(sKn(na)) ln

∏
a∈Km

µΦ
Kn(na)(sKn(na))

= −md
∑
sKn

µΦ
Kn

(sKn) lnµ
Φ
Kn

(sKn)

and hence

s(µn) =
1

|Kn|
SKn(µ

Φ
Kn

). (2.16)

Next we estimate the energy density of µn. We have∫
AΦdµn =

1

|Kn|
∑
x∈Kn

∫
τx(AΦ) dµ̃n

=
1

|Kn|
∑
x∈Kn

∑
X⊂Zd:x∈X

1

|X|

∫
ΦXdµ̃n

=
1

|Kn|
∑
x∈Kn

∑
X⊂Kn:x∈X

1

|X|

∫
ΦXdµ̃n

+
1

|Kn|
∑
x∈Kn

∑
X⊂Zd:

x∈X;X∩Kc
n ̸=∅

1

|X|

∫
ΦXdµ̃n.

15



The first term equals 1
|Kn|

∑
x∈Kn

∫
HKn(Φ)dµ̃n. The second term is bounded

by
1

|Kn|
∑
x∈Kn

∑
X⊂Zd:x∈X;X∩Kc

n ̸=∅

||ΦX ||
|X|

and tends to zero as n→ ∞ if Φ ∈ B1 because it is a boundary term. Given

ϵ > 0 therefore, if n is large enough,∣∣∣∣∫ AΦdµn −
1

|Kn|

∫
HKn(Φ)dµ̃n

∣∣∣∣ < ϵ. (2.17)

Finally, we know that limn→∞
1

|Kn|FKn(β,Φ) = f(β,Φ), so for n large enough,

also ∣∣∣∣ 1

|Kn|
FKn(β,Φ)− f(β,Φ)

∣∣∣∣ < ϵ. (2.18)

By proposition 2.3 we have

FKn(β,Φ) =

∫
HKn(Φ)dµn −

1

β
SKn(µ

Φ
Kn

),

and combining this with (2.16), (2.17) and (2.18) we conclude that

f(β,Φ) >

∫
AΦ dµn −

1

β
s(µn)− 2ϵ.

Now taking ϵ→ 0, we obtain

f(β,Φ) = inf
µ∈PI

[∫
AΦdµ− 1

β
s(µ)

]
. (2.19)

Together with the fact that s(µ) is lower semicontinuous, it follows from

(2.19) that the infimum is attained for at least one µ. Moreover, since s is

affine, the set of minimisers is convex. Thus we have proved

Theorem 2.7 If Φ ∈ B1, then

f(β,Φ) = min
µ∈PI

[∫
AΦdµ− β−1s(µ)

]
.

The invariant measures for which the minimum is attained are called the

invariant equilibrium states for the interaction potential Φ at inverse

temperature β, and denoted GI(Φ, β). The set GI(Φ, β) is a non-empty closed

convex set.
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The extremal points of the set GI(Φ, β) are the pure states or pure

phases. Clearly, an extremal point of PI belonging to GI(Φ, β) is also an

extremal point of GI(Φ, β). The converse is also true:

Theorem 2.8 Ext(GI(Φ, β)) = Ext(PI).

Proof. Let µ ∈ Ext(GI(Φ, β)) and suppose µ /∈ Ext(PI). Then there are

µ1, µ2 ∈ PI and λ ∈ (0, 1) such that µ1 ̸= µ2 and µ = λµ1+(1−λ)µ2. At least

one of µ1 or µ2 does not belong to GI(Φ, β). Assume µ1 /∈ GI(Φ, β). Then

f(β,Φ) =
∫
AΦdµ− β−1s(µ) = λ(

∫
AΦdµ1 − β−1s(µ1)) + (1− λ)(

∫
AΦdµ2 −

β−1s(µ2)) > f(β,Φ), a contradiction.

2.4 The DLR condition

General, not necessarily translation-invariant equilibrium states are defined

by the Dobrushin-Lanford-Ruelle (DLR) condition8, as follows. Let

B ⊂ B∞ be the Banach space of potentials Φ such that the norm ||Φ|| < +∞
where

||Φ|| =
∑

X⊂Zd: 0∈X

||ΦX ||.

Definition 2.1 (DLR condition) Let Φ ∈ B be a potential function. A

probability measure µ on Ω is an equilibrium state for Φ at inverse tem-

perature β > 0 if for all finite subsets Λ ⊂ Zd, and all boundary conditions

s̃Λc on the compliment of Λ, the conditional measure is given by

µ(sΛ | s̃Λc) =
1

ZΛ(βΦ | s̃)
exp

−β ∑
X⊂Zd:X∩Λ̸=∅

ΦX(sX∩Λ, s̃X\Λ)

 , (2.20)

8R. L Dobrushin: The description of a random field by its conditional distributions

and its regularity conditions. Theor. Veroyatn. Primen. 13, 201–29 (1971), and O. E.

Lanford and D. Ruelle: Observables at infinity and states with short-range correlations.

Commun. Math. Phys. 13, 194–215 (1969).
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where

ZΛ(βΦ | s̃) =
∑

sΛ∈ΩΛ

exp

−β ∑
X⊂Zd:X∩Λ̸=∅

ΦX(sX∩Λ, s̃X\Λ)

 . (2.21)

Here, the conditional measure is defined by the relations∫
B

µ(sΛ | s̃Λc)µΛc(ds̃Λc) = µ({sΛ} ×B), (2.22)

where µΛc is the marginal distribution on Ω)Λc), B ∈ B(Ω(Λc)) is a Borel

set, and we have written µ(sΛ | s̃Λc) = µ({sΛ} | s̃Λc).

The DLR condition can be justified as follows. Let Λn be a sequence

of increasing finite regions of Zd and suppose that the finite-volume Gibbs

measures µΦ
Λn

on ΩΛn converge to an equilibrium measure µ on Ω. If Λ ⊂ Λn

is a given region then the conditional distribution of µΦ
Λn

on Λ is given by

µΦ
Λ(sΛ | s̃Λn\Λ) =

µΦ
Λn
(sΛ × s̃Λn\Λ)∑

sΛ∈ΩΛ
µΦ
Λn
(sΛ × s̃Λn\Λ)

. (2.23)

(This follows from P(A |B) = P(A∩B)/P(B) with A = {sΛn : sΛ = sΛ} and

B = {sΛn : sΛn\Λ = s̃Λn\Λ}.) Inserting the Gibbs distribution

µΦ
Λn
(sΛn) =

1

ZΛn

e−β
∑

X⊂Λn
ΦX(sX)

we get

µΦ
Λ(sΛ | s̃Λn\Λ) =

e−β
∑

X⊂Λn
ΦX(sX∩Λ,s̃X\Λ)∑

sΛ∈ΩΛ
e−β

∑
X⊂Λn

ΦX(sX∩Λ,s̃X\Λ)

=
e−β

∑
X⊂Λn,X∩Λ̸=∅ ΦX(sX∩Λ,s̃X\Λ)∑

sΛ∈ΩΛ
e−β

∑
X⊂Λn,X∩Λ̸=∅ ΦX(sX∩Λ,s̃X\Λ)

. (2.24)

As n→ ∞, the left-hand side tends to µ(sΛ, s̃Λc). This follows from rewriting

(2.23) as

µΦ
Λ(sΛ | s̃Λn\Λ)µ

Φ
Λn\Λ(s̃Λn\Λ) = µΦ

Λn
(sΛ × s̃Λn\Λ)

and summing over a cylinder set s̃Λc ∈ B′, B′ ⊂ ΩΛ′ , with Λ′ ⊂ Λc finite.

This yields the relation (2.22). In the right-hand side,∑
X⊂Λn, X∩Λ̸=∅

ΦX(sX∩Λ, s̃X\Λ) →
∑

X⊂Zd, X∩Λ̸=∅

ΦX(sX∩Λ, s̃X\Λ)
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because Φ ∈ B. For, if
∑

X∋0 ||ΦX || < +∞ then for all ϵ > 0 there exists Λ0

such that
∑

X: 0∈X,X∩Λ0 ̸=∅ ||ΦX || < ϵ. Thus, if n is so large that τx(Λ0) ⊂ Λn

for all x ∈ Λ then
∑

X:X∩Λ ̸=∅,X∩Λn ̸=∅ ||ΦX || < |Λ| ϵ.

We next prove that the DLR condition and the variational condition in

Theorem 2.7 are equivalent for translation-invariant measures µ ∈ PI .

Theorem 2.9 Suppose that Φ ∈ B. Then a measure µ ∈ PI satisfies the

DLR condition if and only if it is an invariant equilibrium state in the sense

of Theorem 2.7.

Proof. Suppose first that µ satisfies the DLR condition. Fix Λ ⊂ Zd finite.

Then

µ(sΛ | s̃Λc) =
e−β

∑
X∩Λ̸=∅ ΦX(sX∩Λ,s̃X∩Λc )

ZΛ(βΦ | s̃Λc)
. (2.25)

We want to compare the restriction of µ to ΩΛ with

µΦ
Λ(sΛ) =

e−β
∑

X⊂Λ ΦX(sX)

ZΛ(βΦ)
. (2.26)

The following identity holds:

lnµ(sΛ | s̃Λc)− lnµΦ
Λ(sΛ) = −β

∑
X∩Λ̸=∅
X∩Λc ̸=∅

ΦX(sX∩Λ, s̃X∩Λc)

− lnZΛ(βΦ | s̃Λc) + lnZΛ(βΦ), (2.27)

and we have ∣∣∣∣ZΛ(βΦ, s̃Λc)

ZΛ(βΦ)

∣∣∣∣ ≤ exp
[
β
∑

X∩Λ ̸=∅
X∩Λc ̸=∅

||ΦX ||
]
. (2.28)

We now use properties of the relative entropy defined by

D(ν1 | ν2) =
∑
sΛ

ν1(sΛ) [ln ν1(sΛ)− ln ν2(sΛ)]

= −S(ν1)−
∑
sΛ

ν1(sΛ) ln ν2(sΛ). (2.29)
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for two probability measures on ΩΛ. It satisfies D(ν1 | ν2) ≥ 0 and it is a

jointly convex function of its arguments.

With ν1 = µΛ(· | s̃Λc) and ν2 = µΦ
Λ, we have by (2.27) and (2.28),

|D(µΛ(· | s̃Λc) |µΦ
Λ)| ≤ 2β

∑
X∩Λ̸=∅
X∩Λc≠∅

||ΦX ||.

By definition, ∫
µΛ(sΛ | s̃Λc)µΛc(ds̃Λc) = µΛ(sΛ).

Therefore, using convexity of the relative entropy,

0 ≤ D(µΛ |µΦ
Λ) ≤

∫
D(µΛ(· | s̃Λc) |µΦ

Λ)µΛc(ds̃Λc)

≤ 2β
∑

X∩Λ̸=∅
X∩Λc ̸=∅

||ΦX ||.

If Φ ∈ B then
1

|Λ|
∑

X∩Λ̸=∅
X∩Λc ̸=∅

||ΦX || → 0.

Inserting the definition (2.26) of µΦ
Λ and taking the logarithm, we have∫

ln(µΦ
Λ) dµΛ = −β

∫
HΛ(Φ) dµΛ − lnZΛ(βΦ) and therefore

0 ≤ −SΛ(µΛ) + β

∫
HΛ(Φ) dµΛ + lnZΛ(βΦ) ≤ ϵ|Λ|

for |Λ| large enough. Dividing by β|Λ| and taking the thermodynamic limit

this becomes

0 ≤ − 1

β
s(µ) +

∫
AΦdµ− f(β,Φ) ≤ ϵ/β.

Then taking ϵ→ 0 we conclude that the variational principle holds.

Conversely, suppose that µ satisfies the variational principle. To prove

that µ satisfies the DLR condition, we need the following proposition, which

follows from an identification of equilibrium states with tangent planes to

the graph of f(β,Φ), but which we shall not prove here.
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Proposition 2.4 If µ ∈ PI is an equilibrium state for Φ ∈ B1 (in then

sense of Theorem 2.7) then µ is contained in the (weakly) closed convex hull

of the set of equilibrium states ν such that f(β,Φ) is differentiable at Φ with

derivative equal to the map Φ 7→
∫
AΦ dν.

Note that a continuous linear form α on B1 is the derivative of a concave

function fβ at Φ if and only if

fβ(Φ + Ψ)− fβ(Φ) ≤ α(Ψ) for all Ψ ∈ B.

(The tangent lies above the graph. We have written fβ for the functional

fβ(Φ) = f(β,Φ).) Inserting the variational equality, f(β,Φ) =
∫
AΦdµ −

β−1s(µ) of Theorem 2.7, we have

fβ(Φ + Ψ)− fβ(Φ) =

∫
AΨ dµ

for an invariant equilibrium state µ. Therefore if fβ is differentiable at Φ, its

derivative at Φ must equal
∫
AΦ dµ.

In the proof of Theorem 2.7 we showed that the measures µn converge

to an equilibrium state µ. If fβ is differentiable at Φ then µ is the only

equilibrium state and we conclude that µ = limn→∞ µn, where µn is given

by (2.15). Now consider a fixed finite subset Λ ⊂ Zd. For n large enough,

Λ ⊂ Kn = Kn(0).

If Λ ⊂ Kn then, since µ̃n is a product measure, µ̃n(sKn | s̃Kc
n
) = µΦ

Kn
(sKn)

and

µ̃n(sΛ | s̃Kn\Λ) = µΦ
Kn

(sΛ | s̃Kn\Λ)

=
e−βHΛ(sΛ)−βWΛ,Kn (sΛ,s̃Kn\Λ)∑
sΛ
e−βHΛ(sΛ)−βWΛ,Kn (sΛ,s̃Kn\Λ)

,

where

WΛ,Kn(sΛ, s̃Kn\Λ) =
∑

X⊂Kn:
X∩Λ̸=∅,X∩Kn\Λ̸=∅

ΦX(sX∩Λ, s̃X∩Kn\Λ). (2.30)

Hence, if we define

νΛ(sΛ | s̃Λc) =
e−βHΛ(sΛ)−βWΛ(sΛ,s̃Λc)∑
sΛ
e−βHΛ(sΛ)−βWΛ(sΛ,s̃Λc )

,
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where

WΛ(sΛ, s̃Λc =
∑

X⊂Zd:
X∩Λ̸=∅,X∩Λc ̸=∅

ΦX(sX∩Λ, s̃X∩Λc)

then

||µ̃n(· | s̃Kn\Λ)− νΛ(· | s̃Λc)|| ≤ e

2β
∑

X⊂Zd:X∩Λ̸=∅
X∩Kc

n ̸=∅
||ΦX ||

− 1. (2.31)

Assuming Φ ∈ B and choosing Λ0 ⊃ Λ so large that∑
X⊂Zd:X∩Λ̸=∅

X∩Λc
0 ̸=∅

||ΦX || < ϵ,

we have, for x ∈ Kn such that τxΛ0 ⊂ Kn,

||µ̃n(· | s̃Kn\τxΛ)− νΛ(· | s̃τxΛc)|| < e2βϵ − 1. (2.32)

On the other hand,

1

|Kn|
#{x ∈ Kn : τxΛ0 ̸= ∅} → 0.

It follows that

||µn(· | s̃Λc)− νΛ(· | s̃τxΛc)|| → 0 as n→ ∞,

which proves that

µ(· | s̃Λc) = νΛ(· | s̃Λc).

This is the DLR condition. By the above proposition, an arbitrary trans-

lation-invariant equilibrium state is a limit of convex combinations of states

at which fβ(Φ) and by continuity they also satisfy the DLR condition.
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3 Contours for the Ising model and the Potts

model

Pirogov-Sinai theory goes beyond the existence of spontaneous magnetiza-

tion, proving that for low temperatures the phase diagram is a continuous

deformation of the zero-temperature phase diagram. In particular, it is shown

that the extremal equilibrium states at low temperature are close to the zero-

temperature ground states in the sense that the large majority of spins is in

the ground state. To show that an equilibrium measure is extremal it is

shown to be clustering. To show clustering of the measure one uses the fact

that the external contours cluster. To be precise, for some τ > 0,

|µ(Θ1 ∪Θ2 ⊂ Θ(s))− µ(Θ1 ⊂ Θ(s))µ(Θ2 ⊂ Θ(s))| ≤ e−τ(|Θ1|+|Θ2|+d(Θ1,Θ2)),

(3.1)

where Θ(s) is the collection of outer contours of the configuration s, and

d(Θ1,Θ2) is the distance between two sets of (external) contours Θ1 and Θ2.

3.1 The Ising model

We define the correlation functions for external contours Θ by

ρ̃Λ(Θ) = µ(Θ ⊂ Θ(s)). (3.2)

They satisfy a set of implicit equations proved in Lemma 4.4 which implies

the existence of the thermodynamic limit and the estimate (3.1) given in

Theorem 4.2 and its corollary. The basic idea is that by the corollary of

Theorem 1.1, the contours are small and rare, so can be considered a gas of

‘particles’ in a sea of plus or minus spins according to the choice of boundary

condition. As in Peierls’ argument, we have

ρ̃(Θ) ≤ e−βJ |Θ|. (3.3)

We can write equation (3.1) as follows

|ρ̃(Θ1 ∪Θ2)− ρ̃(Θ1)ρ̃(Θ2)| ≤ e−τ(|Θ1|+|Θ2|+d(Θ1,Θ2)).
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Now consider the case of positive boundary conditions. To see that equa-

tion (3.1) implies that the measure µ+ is clustering, consider the example of

two points 0 and z, i.e. let us show that Eµ+(s0sz) − Eµ+(s0)Eµ+(sz) → 0

when |z| → ∞. As |z| → ∞, the likelihood is that there is no single contour

enclosing both 0 and z. Let us denote

Cx = {γ : x ∈ Int(γ)}, (3.4)

the set of contours which contain x in their interior. If an exterior boundary

Θ′ contains both points 0 and z then there is a minimal exterior boundary

Θ ⊂ Θ′ consisting of one contour containing both points or two separate

contours containing one each. Similarly, if Θ′ contains one point but not the

other then there is γ ∈ Θ′ ∩ C0 but Θ′ ∩ Cz = ∅ or vice versa. Finally, if Θ′

does not contain either point then Θ ∩ (C0 ∪ Cz) = ∅. Thus we have (writing

ρ̃(γ) = ρ̃({γ}),

Eµ+(s0sz) =
∑

Θ=(Θ∩C0)∪(Θ∩Cz)

ρ̃(Θ)
∏
γ∈Θ

Eµ−
γ (s0 sz)

+
∑

γ0∈C0\Cz

ρ̃(γ0)− ∑
Θ={γ0,γz}: γz∈Cz

ρ̃(Θ)

Eµ−
γ0
(s0)

+
∑

γz∈Cz\C0

ρ̃(γz)− ∑
Θ={γ0,γz}: γ0∈C0

ρ̃(Θ)

Eµ−
γz (sz)

+ 1−
∑

Θ=(Θ∩C0)∪(Θ∩Cz)

ρ̃(Θ)

−
∑

γ0∈C0\Cz

ρ̃(γ0)− ∑
Θ={γ0,γz}: γz∈Cz

ρ̃(Θ)


−

∑
γz∈Cz\C0

ρ̃(γz)− ∑
Θ={γ0,γz}: γ0∈C0

ρ̃(Θ)

 (3.5)

(Here Eµ−
γ is the expectation w.r.t. the conditional measure inside the contour

γ with boundary condition − inside γ. Note that the spin flips from + to −
across the exterior contour γ.) Similarly,

Eµ+(s0) =
∑
γ∈C0

ρ̃(γ)Eµ−
γ (s0) + 1−

∑
γ∈C0

ρ̃(γ) (3.6)
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and

Eµ+(sz) =
∑
γ∈Cz

ρ̃(γ)Eµ−
γ (sz) + 1−

∑
γ∈Cz

ρ̃(γ). (3.7)

Therefore

Eµ+(s0sz)− Eµ+(s0)Eµ+(sz) (3.8)

=
∑

γ∈C0∩Cz

ρ̃(γ)(Eµ−
γ (s0 sz)− 1)

+
∑

Θ={γ0,γz};
γ0∈C0,γz∈Cz

ρ̃(Θ)(Eµ−
γ0
(s0)Eµ−

γz (sz)− Eµ−
γ0
(s0)− Eµ−

γz (sz) + 1)

−
∑

γ0∈C0\Cz

ρ̃(γ0) (1− Eµ−
γ0
(s0))−

∑
γz∈Cz\C0

ρ̃(γz) (1− Eµ−
γz (sz))

+
∑
γ0∈C0

ρ̃(γ0) (1− Eµ−
γ0
(s0)) +

∑
γz∈Cz

ρ̃(γz) (1− Eµ−
γz (sz))

−
∑
γ0∈C0

∑
γz∈Cz

ρ̃(γ0)ρ̃(γz)(Eµ−
γ0
(s0)Eµ−

γz (sz)− Eµ−
γ0
(s0)− Eµ−

γz (sz) + 1)

=
∑

γ∈C0∩Cz

ρ̃(γ) (1 + Eµ−
γ (s0sz)− Eµ−

γ (s0)− Eµ−
γ (sz))

−
∑
γ0∈C0

∑
γz∈Cz

Int(γ0)∩Int(γz) ̸=∅

ρ̃(γ0)ρ̃(γz)(1− Eµ−
γ0
(s0))(1− Eµ−

γz (sz)). (3.9)

In the first term ℓ(γ) > 2|z|, and by (3.3) ρ̃(γ) → 0 as |z| → ∞. Similarly,

in the second term either γ0 or γz has length (area) greater than |z|/2 and

this term also tends to 0.

3.2 The inhomogeneous Potts model

Let us now consider more general lattice spin systems. Pirogov and Sinai

considered general lattice spin systems with periodic finite-range interaction,

i.e. Φ ∈ B0 and periodic states. But the main ideas can be explained in the

case of nearest-neighbour interaction and translation-invariant states. We

therefore consider here models of the Potts type. We assume the spin space

to be a finite set {1, . . . , q}, and

ΦX = 0 unless |X| = 1, 2 and if |X| = 2 then X = {x, y}, |x− y| = 1.
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The 1-point interaction is an external field as in the Ising model, and we

write it explicitly if non-zero. For X = {x, y} we put

Φ{x,y}(sx, sy) = Φx−y(sx, sy).

In the Potts model,

Φx−y(sx, sy) = −J δsx,sy (J > 0). (3.10)

A more general interaction is

Φx−y(sx, sy) =
∑

1≤r<r′≤q

Jr,r′(δsx,r − δsy ,r)
2(δsx,r′ − δsy,r′)

2

=
∑

1≤r<r′≤q

Jr,r′(δsx,rδsy ,r′ + δsx,r′δsy ,r). (3.11)

Note that in the homogeneous case,

J
∑

1≤r<r′≤q

(δsx,rδsy ,r′ + δsx,r′δsy ,r) = J
(
1− δsx,sy

)
,

which differs by an irrelevant constant from (3.10). In all cases Φx−y(sx, sy) =

0 if sx = sy. By adding a constant, we made sure that these ground states

have energy 0. In general, a ground state is defined as a minimiser of the

specific energy AΦ given by (2.10). For the generalized Potts model,

AΦ(s) =
1

2

∑
x: |x|=1

∑
1≤r<r′≤q

Jr,r′(δs0,rδsx,r′ + δs0,r′δsx,r). (3.12)

The ground states of the Hamiltonian are therefore given by the constant

configurations. The corresponding Hamiltonian is

HΛ(sΛ) =
∑

{x,y}⊂Λ
|x−y|=1

Φx−y(sx, sy). (3.13)

Introducing external fields

Φ̃x(sx) = −
q∑

r=1

hrδsx,r, (3.14)
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some of these ground states are lifted in energy and others are lowered.

Define hmin = minq
r=1 hr. If hr > hmin then r is not a ground state for the

interaction Φ + Φ̃. Hence, writing tr = hr − hmin, (r = 1, . . . , q), the map

(h2 − h1, . . . , hq − h1) 7→ (t1, . . . , tq) is a homeomorphism of Rq−1 onto the

boundary of the positive r-dimensional octant,

Oq = {(b1, . . . , bq) :
q

min
r=1

br = 0}

in such a way that the number of ground states equals the number of r such

that tr = 0. The Hamiltonian including external fields will be denoted ĤΛ:

ĤΛ(sΛ) = HΛ(sΛ) +
∑
x∈Λ

Φ̃x(sx). (3.15)

Pirogov and Sinai showed that this map is continuously deformed for low

temperatures.

We now need to generalize the definition of contour. In the case of nearest-

neighbour interaction, we define the boundary of a given configuration s on

Zd by

∂(s) =
∪

x∈Zd:
sK2(x)

not constant

K2(x),

where, as before K2(x) = {z ∈ Zd : xi ≤ zi ≤ xi + 1, (i = 1, . . . , d)}. (Note

that these cubes overlap!) A contour for s is then defined as a pair (Γ, sΓ),

where Γ is a minimal connected subset of ∂(s) such that the restriction sΓ

of the configuration s to Γ is constant on the edges of Γ. (See Figures 3 and

4.) These will be called a boundary values of the contour. Clearly, the set

of contours determines the configuration uniquely. Conversely, a given set

of contours corresponds to a configuration s if they are compatible. Two

adjoining contours can be compatible if they are disjoint and their config-

urations agree on neighbouring edges, that is, if along each connected path

from one contour to another, not intersecting a third, the configuration is

constant.

As in Peierls’ argument, it follows that for large β, contours are finite

with probability 1. The exterior Ext(Γ) of the contour Γ, consisting of all
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Figure 3. A Potts model configuration with q = 3:

The colours represent the spin values.

lattice points outside Γ is then unique. The interior Int(Γ) consisting of all

points not in Γ but surrounded by Γ can be empty, or it can consist of several

disconnected regions. On each connected part of Int(Γ) the configuration is

constant, and the union of interior regions where the configuration is r will

be denoted Intr(Γ).

It terms of the contours we can write the Hamiltonian in a finite region

Λ as

ĤΛ(sΛ) =
∑

Γ⊂∂(sΛ):
Γ connected comp.

(
HΓ(sΓ) +

∑
x∈Γ

Φ̃x(sx)

)
+

∑
x∈Λ\∂(s)

Φ̃x(sx),

(3.16)

where the last term breaks down into terms corresponding to regions where

sx = r, where Φx(sx) = −hr.
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Figure 4. Contours for the above Potts model configuration.

EXAMPLE 3.1. The 3-state inhomogeneous Potts model.

Let us consider the special case of the 3-state Potts model with Hamiltonian

given by (3.11),

Φx−y(sx, sy) =
∑

1≤r<r′≤3

Jr,r′(δsx,rδsy ,r′ + δsx,r′δsy ,r). (3.17)

In particular, assume that J12 = J < J̃ = J13 = J23. The states s = 1 and

s = 2 are then obviously equivalent. We show that for non-zero temperature,

these states are favoured over the state s = 3. For low temperatures, the free

energy will be minimal for configurations near one of the ground states.

Consider first the case of the ground state s = 1 (s = 2 is equivalent).

The low excitations are then single impurities with sx = 2, 3. Since they do

not have the same energy, they need to be considered separately. Let ρ2 be
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the density of impurities sx = 2 and ρ3 that for sx = 3. The entropy is then

s(ρ2, ρ3) = −ρ2 ln ρ2 − ρ3 ln ρ3 − (1− ρ2 − ρ3) ln(1− ρ2 − ρ3)

≈ −ρ2(ln ρ2 − 1)− ρ3(ln ρ3 − 1),

assuming that ρ2 and ρ3 are small. Hence

f1(β, ρ2, ρ3) ≈ 2dJρ2 + 2dJ̃ρ3 −
1

β
s(ρ2, ρ3).

(2dJ and 2dJ̃ are the energies due to the links on either side of the impurity

in each coordinate direction.) Minimising over ρ2 and ρ3 yields ρ2 ≈ e−2βdJ

and ρ3 ≈ e−2dβJ̃ and thus

f1,min(β) ≈ − 1

β
(e−2βdJ + e−2βdJ̃).

Next consider the case of the ground state s = 3. Assume that excitations

are again given by a small density of single sites with spins sx = 1, 2. If this

density is ρ, then this gives rise to an entropy s(ρ) + ρ ln 2, where s(ρ) =

−ρ ln ρ − (1 − ρ) ln(1 − ρ) is the usual entropy per site for a density ρ of

impurities and the term ρ ln 2 is due to the choice of sx = 1, 2 at each of the

impurity sites. The free energy density thus becomes

f3(β, ρ) ≈ 2dρJ̃ − 1

β
s(ρ)− ρ

β
ln 2.

(Here the energy is 2dJ̃ for both types of impurity.) For large β, ρ is again

small and we can approximate s(ρ) by s(ρ) ≈ −ρ(ln ρ − 1). f3 is then

minimized for ρ = 2e−2dβJ̃ . Thus

f3,min(β) ≈ − 2

β
e−2dβJ̃ .

Clearly, f1,min < f3,min and the state s = 1 is favoured over the state

s = 3. In order to restore the s = 3 state to be in equilibrium with the states

s = 1, 2, we need to lower its energy by introducing a field h3 > 0. Then f3

changes to

f3(β, ρ, h3) ≈ 2dJ̃ρ− h3(1− ρ)− 1

β
s(ρ)− ρ

β
ln 2.
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Minimising,

f3,min(β, h3) ≈ −h3 −
2

β
e−2βJ̃−βh3 .

Also,

f1(β, ρ2, ρ3, h3) ≈ 2dJρ2 − h3ρ3 + 2dJ̃ρ3 −
1

β
s(ρ2, ρ3).

Minimising,

f1,min(β, h3) ≈ − 1

β
(e−2βdJ + e−β(2dJ̃−h3)).

The two expressions are equal if

h3 =
1

β

(
e−2βdJ + e−β(2dJ̃−h3) − 2e−β(2dJ̃+h3)

)
≈ 1

β
(e−2βdJ − e−2βdJ̃) + 3e−2βdJ̃h3,

or

h3 ≈
1

β

e−2βdJ − e−2βdJ̃

1− 3e−2βdJ̃
.

On the other hand, if we keep h3 = 0, but impose boundary conditions

sx = 3 for x ∈ Λc, then it is advantageous to have a large contour Γ along

the boundary of Λ, so that sx = 1 (or sx = 2) for x ∈ Int(Γ) except for a

small density of sites where sx = 2(1), 3. The large contour yields an additive

constant to the free energy given by 2dJ̃ |∂Λ| which is negligible in the limit

Λ → Zd. Since sx = 1 for most sites, the magnetization is (almost) equal

1, and the resulting state will be the same as the equilibrium state with

boundary condition 1 (or 2).

Obviously, the above is only an approximate analysis. General contours

can be more complicated even if rare. To include this possibility we introduce

general contour models, which represent single pure phases.
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4 Contour models

4.1 Definitions

We define an abstract contour model to be given by a functional F on a

set of contours C, which are now considered simply as decorated connected

subsets of Zd, unions of cubes of side 2, where F can depend on the deco-

ration. We assume that F is translation-invariant and satisfies the property

that there is a constant τ > 0 (independent of the decoration) such that for

every Γ ∈ C,
F (Γ) ≥ τ |Γ|. (4.1)

This is called the Peierls condition. In the following the decoration plays

no role other than determining the functional F and will not be included

in the notation. Contours Γ and Γ′ will now be called compatible if they

are disjoint. A collection of compatible contours will be denoted ∂ and is

called a boundary. The set of boundaries is denoted D. The set of contours

compatible with ∂ ∈ D we write as Cp(∂). For ∂ ∈ D, we set F (∂) =∑
Γ∈∂ F (Γ). A contour is called an external contour of ∂ if there is no

contour surrounding it, i.e. for all Γ′ ∈ ∂ not equal Γ, Γ ∈ Ext(Γ′). We

denote |∂| = #{Γ ∈ ∂}, the number of contours in ∂, and ||∂|| =
∑

Γ∈∂ |Γ|,
the total area/volume of the contours of ∂.

As in the Peierls argument, we have

Lemma 4.1 There exists a constant cd > 0 such that the number of contours

Γ with area/volume |Γ| = n containing a given point, say 0 ∈ Γ ∪ Int(Γ) is

bounded by ecdn.

Proof. We follow Dorlas9. This is similar to counting the number of contours

containing 0 in Peierls’ argument (cf. the proof of Theorem 1.1). Let x be

the point on the x1-axis with smallest norm, belonging to Γ. If |Γ| = n the

number of possibilities for x is obviously ≤ n. We number the sites of Γ as

follows. First fix an ordering of the unit vectors of Zd from 1 to 2d. Then

9T. C. Dorlas loc. cit.
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Figure 5. Numbering of the sites of a contour.

let x have number 1 and suppose that the first k points of Γ have already

been numbered. Choose the already numbered site of lowest assigned number

which has still got a neighbour in Γ which has not been numbered. Assign the

number k + 1 to its unnumbered neighbour with difference vector of lowest

order. This defines a unique map from the sets Γ containing x with n sites

to numberings of sites in Zd. It is illustrated in Figure 5.

Conversely, suppose the neighbours of the first k − 1 points of Γ have

already been determined. Then k has at most 2d−1 unfilled neighbours left,

for which there are 22d−1 − 1 possible fillings. Therefore the possible number

of choices is certainly bounded by 2(2d−1)(n−1). The total number of sets Γ

is therefore bounded by n2(2d−1)(n−1) ≤ 22dn. For each site in the set, the

number of possible spin values is ≤ q, so we find that cd ≤ 2d ln 2 + ln q.

In the following we put cd = 2d ln 2 + ln q for definiteness.

We now define partition functions as follows
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Definition 4.1 If F is a contour functional then we define the crystal par-

tition function by

Ξ(Γ |F ) = e−F (Γ)
∑

∂⊂Int(Γ)

e−F (∂), (4.2)

for a contour Γ ∈ C, and the dilute partition function for any finite

Λ ⊂ Zd by

ΞΛ(F ) =
∑

∂∈D(Λ)

e−F (∂), (4.3)

where D(Λ) is the set of boundaries ∂ ⊂ Λ.

We also define the corresponding probability measure

µΛ(∂) = µΛ(∂ |F ) =
e−F (∂)

ΞΛ(F )
(4.4)

for ∂ ∈ D(Λ), and the finite-volume correlation functions ρΛ(∂) by

ρΛ(∂) = ρΛ(∂ |F ) =
∑

∂̃∈D(Λ): ∂⊂∂̃

µΛ(∂̃). (4.5)

4.2 Thermodynamic limit of correlation functions

We want to prove that the infinite-volume limit of the correlation functions

exists.

Lemma 4.2 The correlation functions ρΛ(∂) satisfy the condition

ρΛ(∂) ≤ e−F (∂)

and the Mayer-Montroll equations

ρΛ(∂) = χΛ(∂)e
−F (∂)

1 + ∑
∂′∈D(Λ):

∂′⊂Cp(∂)c, ∂′ ̸=∅

(−1)|∂
′|ρΛ(∂

′)

 (4.6)

where χΛ(∂) = 1 if ∂ ⊂ Λ and = 0 otherwise.
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Proof. We have by definition, for ∂ ∈ D,

ρΛ(∂) = χΛ(∂)e
−F (∂)

∑
∂′∈D(Λ): ∂′∪∂∈D

µΛ(∂
′)

= χΛ(∂)e
−F (∂)

1− ∑
∂′∈D(Λ): ∂′∪∂ /∈D

µΛ(∂
′)

 .
It follows immediately that ρΛ(∂) ≤ e−F (∂).

Defining DΓ(Λ) = {∂ ∈ D(Λ) : Γ ∈ ∂}, we have

{∂′ ∈ D(Λ) : ∂′ ∪ ∂ /∈ D} =
∪

Γ∈C:Γ∈Cp(∂)c

DΓ(Λ).

By the inclusion-exclusion principle,

P

(
n∪

k=1

Ak

)
=

∑
I⊂{1,...,n}; I ̸=∅

(−1)|I|−1P

(∩
k∈I

Ak

)
. (4.7)

Applying this in our case we have

∑
∂′∈D(Λ): ∂′∪∂ /∈D

µΛ(∂
′) = µΛ

 ∪
Γ∈C:Γ∈Cp(∂)c

DΓ(Λ)


= −

∑
∂′∈D(Λ): ∂′⊂Cp(∂)c, ∂′ ̸=∅

(−1)|∂
′|µΛ

(∩
Γ∈∂′

DΓ(Λ)

)
= −

∑
∂′∈D(Λ): ∂′⊂Cp(∂)c, ∂′ ̸=∅

(−1)|∂
′|ρΛ(∂

′).

We now define an operator A acting on boundary functionals ξ as follows.

(Aξ)(∂) = e−F (∂)
∑

∂′⊂Cp(∂)c, ∂′ ̸=∅

(−1)|∂
′|ξ(∂′). (4.8)

By the above lemma, ρΛ satisfies the following equation,

ξ = χΛe
−F + χΛAχΛξ. (4.9)
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We may then expect that in the thermodynamic limit, the correlation func-

tions satisfy

ξ = e−F + Aξ. (4.10)

Obviously, for this to hold the operator A must be small in some sense. We

therefore define a norm on the space of boundary functionals as follows.

||ξ||Λ = sup
∂∈D(Λ)

|ξ(∂)| eF (∂)−cd||∂||+(τ−cd)d(∂,Λ
c). (4.11)

Here we assume τ > cd and we denote ||∂|| =
∑

Γ∈∂ |Γ|. We denote the

corresponding Banach space of boundary functionals by EΛ. In particular, if

Λ = ∅,
||ξ||∅ = sup

∂∈D
|ξ(∂)| eF (∂)−cd||∂||.

Lemma 4.3 If τ ≥ 3cd then ||A||Λ ≤ e−cd for all finite Λ ⊂ Zd.

Proof. Assume ||ξ||Λ ≤ 1. Then, by the definition of A and the norm, and

Peierls’ bound (4.1),

|(Aξ)(∂)| ≤ e−F (∂)
∑

∂′⊂Cp(∂)c, ∂′ ̸=∅

e(cd−τ)(||∂′||+d(∂′,Λc)).

We first argue that d(∂′,Λc) ≥ d(∂,Λc)− 4
9
||∂′||. Indeed, there exist Γ′ ∈ ∂′

such that d(Γ′,Λc) = d(∂′,Λc), and there exists Γ ∈ ∂ such that d(Γ,Γ′) ≤ 1,

and therefore

d(∂,Λc) ≤ d(Γ,Λc) ≤ d(Γ,Γ′) + diam(Γ′) + d(Γ′,Λc)

≤ 1 + diam(Γ′) + d(∂′,Λc).

Since Γ′ has walls of thickness at least 2, diam(Γ′) ≤ 1
3
|Γ′| ≤ 1

3
||∂′|| and of

course ||∂′|| ≥ 3d ≥ 9. (The largest diameter is obtained if Γ is a rectangle

of sides 3× L.) We therefore have

|(Aξ)(∂)| ≤ e−F (∂)+(cd−τ)d(∂,Λc)
∑

∂′⊂Cp(∂)c ∂′ ̸=∅

e
5
9
(cd−τ)||∂′||.

To estimate the latter sum we need to estimate the number of possible

boundaries ∂′ with total area ||∂′|| = n incompatible with ∂. Now ∂′ consists
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of a number k of contours Γ′
1, . . . ,Γ

′
k all at distances at least 2 from one

another. For each of these contours Γ′
i to be incompatible with ∂, there must

be a point xi in one of the contours of ∂ such that d(xi,Γ
′
i) ≤ 1. Hence

∑
∂′⊂Cp(∂)c ∂′ ̸=∅

e
5
9
(cd−τ)||∂′|| ≤

||∂||∑
k=1

(
||∂||
k

) k∏
i=1

 ∑
Γ′
i: d(xi,Γ′

i)≤1

e
5
9
(cd−τ)|Γ′

i|


≤

||∂||∑
k=0

(
||∂||
k

)( ∞∑
n=1

ecdne
5
9
(cd−τ)n

)k

=
(
1− e(14cd−5τ)/9

)−||∂||
.

We conclude that

|(Aξ)(∂)| ≤ ecd||∂||−F (∂)+(cd−τ)d(∂,Λc)

(
e−cd

1− e(14cd−5τ)/9

)||∂||

. (4.12)

If τ ≥ 3cd then the last factor is less than e−τ . Indeed, both e−cd and

(1 − e(14cd−5τ)/9)−1 are decreasing in cd, so we only need to check this for

cd = 4 ln 2.

We can now conclude that the thermodynamic limit limΛ→Zd µΛ(· |F )
exists.

Theorem 4.1 Let F be a contour functional satisfying the Peierls condition

with constant τ ≥ 3cd. Then, for every finite boundary ∂ ∈ D, the thermo-

dynamic limit of the correlation function ρ(∂) = limΛ→Zd ρΛ(∂) exists and

satisfies the inequalities ρ(∂) ≤ e−F (∂) and

|ρ(∂)− ρΛ(∂)| ≤ ecd||∂||−F (∂)+(cd−τ)d(∂,Λc)) if ∂ ⊂ Λ. (4.13)

Proof. We expect ρ to satisfy the identity ρ = e−F + Aρ, so we can define

ρ by

ρ =
∞∑
n=0

An e−F .

Clearly, ||e−F ||∅ ≤ 1, so this is well-defined as an element of E∅ by the lemma.
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Now, if ∂ ⊂ Λ, then χΛ(∂)e
−F (∂) = e−F (∂), so

ρ(∂)− ρΛ(∂) = χΛ(∂)((Aρ)(∂)− (AρΛ)(∂))

= χΛ(∂)A(ρ− χΛρ)(∂) + χΛ(∂)A(χΛρ− ρΛ)(∂).

Writing ηΛ = ρ− χΛρ we can write this as

χΛρ− ρΛ = χΛAηΛ + χΛA(χΛρ− ρΛ).

This equation has the solution

χΛρ− ρΛ =
∞∑
n=1

(χΛA)
nηΛ ∈ EΛ

provided the series converges in EΛ. This is the case if ||χΛAηΛ||Λ < +∞
since by the lemma, ||A||Λ ≤ e−cd . However, if ∂ ⊂ Λ, then the inequality

(4.12) still holds even if χΛξ ̸= 0. Indeed, the estimates in the proof of the

previous lemma remain valid if d(∂′,Λc) = 0. However, d(∂′,Λc) = 0 implies

that ||ηΛ||Λ = ||ηΛ||∅ ≤ ||ρ||∅ ≤ ||e−F ||∅(1− ||A||∅)−1 < e−cd

1−e−cd
< 1. It follows

that

||χΛρ− ρΛ||Λ ≤ ||A||Λ
1− ||A||Λ

||ηΛ||Λ < 1.

This is just equation (4.13) and it implies the existence of the thermodynamic

limit.

Corollary 4.1 If ∂1 and ∂2 are compatible boundaries then

|ρ(∂1 ∪ ∂2)− ρ(∂1)ρ(∂2)|
≤ ecd(||∂1||+||∂2||)−F (∂1)−F (∂2)+(cd−τ)d(∂1,∂2). (4.14)

Proof. To prove this mixing condition, let Λ ⊂ Zd be finite and suppose

∂1, ∂2 ⊂ Λ. Set M2 = {x ∈ Λ : d(x,Γ) > 1 ∀Γ ∈ ∂2}. If ∂1 ∪ ∂2 ⊂ Λ then

ρΛ(∂1 ∪ ∂2)
ρΛ(∂2)

= ρΛ(∂1 | ∂2) = ρΛ\M2(∂1).

By the inequality (4.13), we have

|ρΛ\M2(∂1)− ρ(∂1)| ≤ ecd||∂1||−F (∂1)+(cd−τ)d(∂1,Λc∪M2).

Inserting this, and using the fact that |ρΛ(∂2)| ≤ e−F (∂2), we get

|ρΛ(∂1 ∪ ∂2)− ρ(∂1)ρΛ(∂2)| ≤ ecd(||∂1||+||∂2||)−F (∂1)−F (∂2)+(cd−τ)d(∂1,Λc∪M2).

Taking Λ → Zd results in the mixing property (4.14).
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4.3 External boundaries

As remarked, a contour model is an abstract concept independent of the spin

models considered. We have seen in the case of the Ising model that we need

to consider boundary conditions, and contours with different boundary con-

ditions can be incompatible even if they are further than 1 apart. However,

exterior contours with the same external boundary conditions are compatible

if they are disjoint. We therefore want to relate the probability distribution

of the external contours of a spin model with that of a contour model. We

now prove the clustering property (3.1) for the external contours of a contour

model, similar to (4.14).

Given a boundary ∂ ∈ D we denote the set of external contours of ∂ by

Θ(∂). The set of external boundaries Θ ⊂ Λ, i.e. a boundaries consisting

of contours which are all external to each other, will be denoted D̃. For

Θ ∈ D̃(Λ), we define the correlation functions ρ̃Λ(Θ) and ρ̃(Θ) by

ρ̃Λ(Θ) = µΛ({∂ ∈ D(Λ) : Θ ⊂ Θ(∂)})

and

ρ̃(Θ) = µ({∂ ∈ D : Θ ⊂ Θ(∂)}).

They satisfy similar equations to ρΛ and ρ:

Lemma 4.4 The correlation functions ρ̃Λ(Θ) satisfy the condition

ρ̃Λ(Θ) ≤ e−F (Θ)

and the Mayer-Montroll equations

ρ̃Λ(Θ) = χΛ(Θ)e−F (Θ)

1 + ∑
Θ′∈D̃(Λ):Θ′ ̸=∅,
Θ′⊂Cp(Θ)c∪[Θ]Λ

(−1)|Θ
′|ρ̃Λ(Θ

′)

 . (4.15)

Here Cp(Θ) is defined as the set of contours Γ such that {Γ}∪Θ is an external

boundary, and [Θ]Λ = [Θ]∩C(Λ), where [Θ] = {Γ ∈ C : (∃Γ̃ ∈ Θ) Γ̃ ∈ Int(Γ)}.
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Proof. As in Lemma 4.2, we have

ρ̃Λ(Θ) = µΛ({∂ ∈ D(Λ) : Θ ⊂ Θ(∂)})
= e−F (Θ)

∑
∂′∈D(Λ):

∂′⊂Cp(Θ),Θ⊂Θ(∂′∪Θ)

µΛ(∂
′)

= e−F (Θ)

1− µΛ

( ∪
Γ∈Cp(Θ)c∪[Θ]Λ

D̃Γ(Λ)
)

where D̃Γ(Λ) = {∂ ∈ D(Λ) : Γ ∈ Θ(∂)}. Indeed, the complement of the

set of ∂′ ∈ D(Λ) such that ∂′ ⊂ Cp(Θ) and Θ ⊂ Θ(∂′ ∪ Θ) is the set of

∂′ ∈ D(Λ) such that ∂′ ̸⊂ Cp(Θ) or Θ ̸⊂ Θ(∂′ ∪Θ), i.e. those ∂′ ∈ D(Λ) for

which there exists Γ′ ∈ ∂′ such that Γ′ ∈ Cp(Θ)c or there exists Γ̃ ∈ Θ such

that Γ̃ ∈ Int(Γ′). But if there exists Γ′ ∈ ∂′∩Cp(Θ)c then there exists Γ̃ ∈ Θ

such that Γ′ ∈ Cp(Γ̃)c ∩ ∂′, which implies that there exists Γ′′ ∈ Θ(∂′) such

that Γ′′ ∈ Cp(Γ̃)c or Γ̃ ⊂ Int(Γ′′).

The statements of the lemma follow from this and the inclusion-exclusion

principle (4.7).

Lemma 4.5 Define the operator B on external boundary functionals by

(Bξ)(Θ) = e−F (Θ)

[
1 +

∑
Θ′⊂Cp(Θ)c∪[Θ](−1)|Θ′|Θ′ ̸=∅

ξ(Θ′)

]
. (4.16)

If τ ≥ 3cd then ||B||Λ ≤ e−cd for all finite Λ ⊂ Zd.

Proof. Note that there are now two ways in which a contour Γ′ ∈ Θ′ can be

incompatible with Θ: either d(Γ′,Θ) ≤ 1 or there is a Γ ∈ Θ such that Γ ∈
Int(Γ′). In the former case, we have as before d(Θ′,Λc) ≥ d(Θ,Λc)− 4

9
||Θ′||.

In the latter case, d(Θ′,Λc) ≥ d(Θ,Λc)− 1
3
||Θ′|| because Γ′ surrounds Γ and

has thickness at least 2, so |Γ′| > 3d(Γ,Γ′). As in Lemma 4.3, it therefore

suffices to estimate the sum ∑
Θ′⊂Cp(Θ)c

e
5
9
(cd−τ)||Θ′||.
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To estimate the latter sum we need to estimate the number of possible

external boundaries Θ′ with total area n incompatible with Θ. Now Θ′

consists of a number k of external contours Γ′
1, . . . ,Γ

′
k but in this case, the

contours Γ′
i ∈ Θ′ are not necessarily at distance ≤ 1 from a contour Γi ∈ Θ.

There is also the possibility that Γ′
i surrounds a Γi ∈ Θ. In both cases

however, there is a point xi ∈ Γi ∪ Int(Γi). Choosing points x1, . . . , xk ∈∪
Γ∈Θ(Γ ∪ Int(Γ)) and contours surrounding these points therefore certainly

exhausts all possible Θ′ ∈ Cp(Θ)c with |Θ′| = k. The estimate∑
Θ′⊂Cp(Θ)c

e
5
9
(cd−τ)||Θ′|| ≤

(
1− e(14cd−5τ)/9

)−||Θ||
. (4.17)

therefore remains unchanged since the number of such contours of length n

is still bounded by ecdn.

As before, we conclude that the thermodynamic limit of the correlation

functions ρ̃Λ exists.

Theorem 4.2 Let F be a contour functional satisfying the Peierls condition

with constant τ ≥ 3cd. Then, for almost every ∂ ∈ D the set Θ(∂) is complete

in the sense that every Γ ∈ ∂\Θ(∂) is surrounded by a unique external contour

Γ̃ ∈ Θ(∂), i.e. Γ ⊂ Int(Γ̃). Moreover, for every bounded external boundary

Θ, limΛ→Zd ρ̃Λ(Θ) = ρ̃(Θ) exists and satisfies ρ̃(Θ) ≤ e−F (Θ) and

|ρ̃Λ(Θ)− ρ̃(Θ)| ≤ e(cd−τ)(||Θ||+d(Θ,Λc)) (4.18)

if Θ ⊂ Λ.

Proof. The first statement follows from the Borel-Cantelli lemma, using the

fact that if there exists and infinite sequence of contours Γk ∈ ∂ such that

Γk ⊂ Int(Γk+1), then

∞∑
n=1

µ(Γ ⊂ Int(Γn)) ≤
∞∑
n=1

e(cd−τ)|Γn| < +∞

since |Γn| > n.
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We define ρ̃ by the solution of ρ̃ = e−F +Bρ̃ as before, i.e.

ρ̃ =
∞∑
n=0

Bne−F .

This is well-defined as a series in the Banach space with norm || · ||∅. As

in the proof of Theorem 4.1 we conclude using the above lemma that (4.18)

holds.

As for the correlations ρ we have a mixing condition.

Corollary 4.2 ρ̃ satisfies the following exponential mixing condition. If Θ1

and Θ2 are compatible external boundaries then

|ρ̃(Θ1 ∪Θ2))− ρ̃(Θ1)ρ̃(Θ2)|
≤ ecd(||Θ1||+||Θ2||)−F (Θ1)−F (Θ2)+(cd−τ)d(Θ1,Θ2). (4.19)

Proof. To prove the mixing condition, let M =
∪

Γ∈Θ2
(Γ ∪ Int(Γ)). If

Θ1 ∪Θ2 ⊂ Λ then

ρ̃Λ(Θ1 ∪Θ2)

ρ̃Λ(Θ2)
= ρ̃Λ(Θ1 |Θ2) = ρ̃Λ\M(Θ1).

By the inequality (4.18), we have

|ρ̃Λ\M(Θ1)− ρ̃(Θ1)| ≤ ecd||Θ1||−F (Θ1)+(cd−τ)d(Θ1,Λc∪M).

Inserting this, and using the fact that |ρΛ(Θ2)| ≤ e−F (Θ2), we get

|ρ̃Λ(Θ1 ∪Θ2))− ρ̃(Θ1)ρ̃Λ(Θ2)|
≤ ecd(||Θ1||+||Θ2||)−F (Θ1)−F (Θ2)+(cd−τ)d(Θ1,Λc∪M).

Taking Λ → Zd results in the mixing property (4.19).

4.4 Pressure and surface tension

We define the pressure of a contour model with contour functional F by

P (F ) = lim
Λ→Zd

1

|Λ|
ln ΞΛ(F ). (4.20)
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The finite-volume correction will be denoted ∆:

∆Λ(F ) = lnΞΛ(F )− |Λ|P (F ). (4.21)

We now prove that the pressure exists and that ∆ is of order |∂Λ|.

Theorem 4.3 Assume that F satisfies the Peierls condition with constant

τ > 3cd. Then the pressure (4.20) exists as Λ → Zd in the sense of Van

Hove, and is given by the formula

P (F ) =

∫ ∞

1

∑
Γ∈C: 0∈Γ

F (Γ)

|Γ|
ρ(Γ |λF ) dλ, (4.22)

where ρ(Γ |λF ) is the correlation function with contour functional λF . More-

over, 0 ≤ P (F ) ≤ e−τ and |∆Λ(F )| ≤ e−τ |∂Λ|.

Proof. The proof is similar to that of the existence of the energy density

in Theorem 2.6. Let ρΛ(· |F ) denote the correlation function with contour

functional F . Replacing F by a multiple λF and differentiating w.r.t. λ, we

have
d

dλ
ln ΞΛ(λF ) = −

∑
Γ⊂Λ

F (Γ) ρΛ(Γ |λF ),

and since limλ→+∞ ΞΛ(λF ) = 1 (only the empty boundary survives),

ln ΞΛ(F ) =

∫ ∞

1

∑
Γ⊂Λ

F (Γ) ρΛ(Γ |λF ) dλ. (4.23)

Inserting the formula (4.22) and using translation invariance, the difference

∆Λ(F ) = lnΞΛ(F )− |Λ|P (F ) is therefore given by

∆Λ(F ) =

∫ ∞

1

∑
x∈Λ

∑
Γ⊂Λ:x∈Γ

F (Γ)

|Γ|
[ρΛ(Γ |λF )− ρ(Γ |λF )] dλ

−
∫ ∞

1

∑
x∈Λ

∑
Γ∈C:

x∈Γ,Γ∩Λc ̸=∅

F (Γ)

|Γ|
ρ(Γ |λF ) dλ. (4.24)
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Using the inequality (4.13), the first term is bounded by∫ ∞

1

∑
Γ⊂Λ

F (Γ) |ρ(Γ |λF )− ρΛ(Γ |λF )| dλ

≤
∫ ∞

1

∑
Γ⊂Λ

F (Γ)ecd|Γ|−λF (Γ)+(cd−λτ)d(Γ,Λc)dλ

=
∑
Γ⊂Λ

F (Γ)

F (Γ) + τd(Γ,Λc)
ecd|Γ|−F (Γ)+(cd−τ)d(Γ,Λc)

≤
∑
Γ⊂Λ

e(cd−τ)(|Γ|+d(Γ,Λc))

≤ |∂Λ|
∞∑
k=0

∞∑
n=3d

ecdne(cd−τ)(n+k)

≤ |∂Λ| e3
d(2cd−τ)

(1− ecd−τ )(1− e2cd−τ )
<

1

2
e−τ |∂Λ|

if τ > 3cd and cd > 1. The second term is bounded by∫ ∞

1

∑
x∈Λ

∑
Γ∈C:

x∈Γ,Γ∩Λc ̸=∅

F (Γ)

|Γ|
ρ(Γ |λF ) dλ

≤
∫ ∞

1

∑
x∈Λ

∑
Γ∈C:

x∈Γ,Γ∩Λc ̸=∅

F (Γ)

|Γ|
e−λF (Γ) dλ

=
∑
x∈Λ

∑
Γ∈C:

x∈Γ,Γ∩Λc ̸=∅

1

|Γ|
e−F (Γ)

≤
∑
Γ∈C:

Γ∩Λ̸=∅,Γ∩Λc ̸=∅

e−τ |Γ|

≤ |∂Λ|
∞∑

n=3d

e(cd−τ)n <
1

2
e−τ |∂Λ|.

It remains to prove the bound on P (F ). Obviously P (F ) ≥ 0 since

ΞΛ(F ) ≥ 1. On the other hand by the fact that ρ(Γ |F ) ≤ e−F (Γ),

P (F ) ≤
∫ ∞

1

∑
Γ∈C: 0∈Γ

F (Γ)

|Γ|
e−λF (Γ)dλ

=
∑

Γ∈C: 0∈Γ

1

|Γ|
e−F (Γ) ≤

∞∑
n=3d

1

n
e(cd−τ)n < e−τ .
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We need continuity properties w.r.t. the functional F . For this we in-

troduce a norm on contour functionals. In fact, we define two norms on the

contour functionals. The natural norm is given by

||F || = sup
Γ∈C

|F (Γ)|
|Γ|

, (4.25)

and we denote the corresponding space of contour functionals by F . We also

need a weaker norm-topology defined by

||F ||w = sup
Γ∈C

|F (Γ)|
(|Γ|+ |Int(Γ)|)ea δ(Γ)

. (4.26)

Here a ≥ 0 is a constant which we set equal to 2, and we put δ(Γ) =

diam(Int(Γ)). The corresponding space of contour functionals we denote by

Fw. Clearly, F ⊂ Fw.

Theorem 4.4 If F and F ′ are contour functionals in Fw satisfying the

Peierls condition with constant τ > 3cd then

|P (F )− P (F ′)| ≤ e−τ ||F − F ′||w.

Proof. This is similar to the bound on P (F ). We define an interpolation

Ft = tF + (1− t)F ′ and write

d

dt
ln ΞΛ(Ft) =

∑
Γ⊂Λ

(F (Γ)− F ′(Γ)) ρΛ(Γ |Ft).

Since |Int(Γ)| ≤ |Γ|d/(d−1) ≤ |Γ|2 and δ(Γ) ≤ |Γ|,

| ln ΞΛ(F )− ln ΞΛ(F
′)|

≤
∑
Γ∈Λ

e−τ |Γ||F (Γ)− F ′(Γ)|

≤ ||F − F ′||w
∑
Γ⊂Λ

e−τ |Γ|(|Γ|+ |Γ|2)ea |Γ|

≤ |Λ| ||F − F ′||w
∞∑

n=3d

(n+ n2) e(cd−τ)ne2n

≤ |Λ| ||F − F ′||w
e(4+cd−τ)3d

1− e4+cd−τ

≤ |Λ| ||F − F ′||w e−τ .

because τ > 3cd, e
−cd < 0.25 and 3d > 9. (Note that 1 < 3

2
ln 2 so 4 ≤ 3

2
cd.)
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4.5 Parametric contour model

Definition 4.2 Let F be a contour functional satisfying the Peierls condition

with constant τ . If b ≥ 0, we define the parametric partition function

by

ΞΛ(F, b) =
∑
∂⊂Λ

e−F (∂)
∏

Γ∈Θ(∂)

eb |Int(Γ)|.

Clearly,

ΞΛ(F ) ≤ ΞΛ(F, b) ≤ ΞΛ(F )e
b |Λ|.

Hence, by Theorem 4.3,

−b|Λ| − e−τ |∂Λ| ≤ ln ΞΛ(F, b)− (P (F ) + b)|Λ| ≤ e−τ |∂Λ|. (4.27)

We define analogous to ∆Λ(F ),

∆Λ(F, b) = lnΞΛ(F, b)− (P (F ) + b)|Λ|.

It is also continuous in the following sense.

Theorem 4.5 Suppose that F and F ′ are contour functionals with Peierls

constant τ > 3cd, and b, b
′ ≥ 0. Then

|∆Λ(F
′, b′)−∆Λ(F, b)| ≤ 2 |b′ − b| |Λ|

+(
1

6
ea diam(Λ) + e−τ )|Λ| ||F − F ′||w. (4.28)

Proof. The dependence on b follows immediately from∣∣∣∣∂ ln ΞΛ(F, b)

∂b

∣∣∣∣ ≤ |Λ|.

For fixed b we have

|∆Λ(F
′, b)−∆Λ(F, b)| ≤ |P (F ′)− P (F )| |Λ|

+| ln ΞΛ(F
′, b)− ln ΞΛ(F, b)|.

By the previous theorem it now remains to prove that

| ln ΞΛ(F
′, b)− ln ΞΛ(F, b)| ≤

1

6
ea diam(Λ)|Λ| ||F − F ′||w.
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For this we define the parametric contour model by

µΛ(∂ |F, b) =
1

ΞΛ(F, b)
e−F (∂)

∏
Γ∈Θ(∂)

eb |Int(Γ)|.

Introducing the interpolation Ft = tF + (1− t)F ′ as before, we have

d

dt
ln ΞΛ(Ft, b) =

∑
Γ⊂Λ

(F ′(Γ)− F (Γ))ρΛ(Γ |Ft, b),

where

ρΛ(∂ |Ft, b) =
∑

∂′⊂Λ: ∂⊂∂′

µΛ(∂
′ |Ft, b)

is the parametric correlation function. It follows that, for some t ∈ (0, 1),

| ln ΞΛ(F, b)− ln ΞΛ(F
′, b)|

≤
∑
Γ⊂Λ

ρΛ(Γ |Ft, b) |F (Γ)− F ′(Γ)|

≤ ||F − F ′||w
∑
∂⊂Λ

µΛ(∂ |Ft, b)
∑
Γ∈∂

(|Γ|+ |Int(Γ)|)ea δ(Γ)

≤ ||F − F ′||w max
∂⊂Λ

∑
Γ∈∂

(|Γ|+ |Int(Γ)|)ea δ(Γ).

Set

α(Λ) = max
∂⊂Λ

1

|Λ|
∑
Γ∈∂

(|Γ|+ |Int(Γ)|)ea δ(Γ)

and define γ(n) = max
Λ: diam(Λ)≤n

α(Λ). If Γ ⊂ Λ then δ(Γ) ≤ diam(Λ) − 1.

Therefore,∑
Γ∈∂

(|Γ|+ |Int(Γ)|)ea δ(Γ) ≤
∑

Γ∈Θ(∂)

(|Γ|+ |Int(Γ)|)eaδ(Γ)

+
∑

Γ∈Θ(∂)

|Int(Γ)|α(Int(Γ))

≤ |Λ| [ea(diam(Λ)−1) + γ(diam(Λ)− 1)].

Hence α(Λ) ≤ ea(diam(Λ)−1) + γ(diam(λ) − 1) and γ(n) ≤ ea(n−1) + γ(n − 1),

so γ(n) ≤ ean−1
ea−1

< 1
6
ean since e2 > 7.

For a parametric contour model there is likely a large contour inside Λ:

see Figure 6. We prove here that the total volume of contours is large. We
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say that Λ has a regular boundary if there is a constant K > 1 such that

|∂Λ| ≤ K |Λ|δ, where δ = 1− 1/d. (Note that there is also a constant κd > 1

such that |∂Λ| ≥ κd |Λ|δ.)

Lemma 4.6 Given a parametric contour model on a large region Λ with

regular boundary, with contour functional F and parameter b > 0, and given

ϵ ∈ (0, 1/d), let AΛ(ϵ) be the set

AΛ(ϵ) = {∂ ∈ D(Λ) :
∑

Γ∈Θ(∂)

|Int(Γ)| ≥ |Λ| − |Λ|1−ϵ}.

Then, if ||F || < +∞ and Λ is large enough, µΛ (AΛ(ϵ)
c |F, b) < e−τ |∂Λ|.

Proof. The probability is given by

µΛ (AΛ(ϵ)
c |F, b) =

∑
∂∈AΛ(ϵ)c

e−F (∂)
∏

Γ∈Θ(∂) e
b |Int(Γ)|∑

∂∈D(Λ) e
−F (∂)

∏
Γ∈Θ(∂) e

b |Int(Γ)| . (4.29)

The denominator is of course ΞΛ(F, b). The numerator can be bounded

simply by ∑
∂∈AΛ(ϵ)c

e−F (∂)
∏

Γ∈Θ(∂)

eb |Int(Γ)| ≤ eb(|Λ|−|Λ|1−ϵ)
∑

∂∈D(Λ)

e−F (∂)

= eb(|Λ|−|Λ|1−ϵ)ΞΛ(F ). (4.30)

In the denominator, we bound ΞΛ(F, b) by the terms where Θ(∂) consists

of the largest contour Γmax consisting of the inner boundary of Λ as above.

Then

ΞΛ(F, b) =
∑
∂⊂Λ

e−F (∂)
∏

Γ∈Θ(∂)

eb|Int(Γ)|

≥
∑
∂⊂Λ1

e−F (∂)e−F (Γmax)eb(|Λ|−|∂Λ|),

where Λ1 = Λ \ Γmax.

The factor
∑

∂∈D(Λ1)
e−F (∂) = ΞΛ1(F ) is close to ΞΛ(F ):

ΞΛ(F ) =
∑

∂∈D(Λ1)

e−F (∂)

(
1 +

∑
∂∈D(Λ):

(∀Γ∈∂) Γ∩Λ\Λ1 ̸=∅

e−F (∂)

)
, (4.31)
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where the expression in brackets is bounded by

1 +
∑

∂∈D(Λ):
(∀Γ∈∂) Γ∩Λ\Λ1 ̸=∅

e−F (∂)

≤
∞∑
r=0

1

r!

 ∑
Γ⊂Λ,Γ∩Λ\Λ1 ̸=∅

e−F (Γ)

r

≤
∞∑
r=0

1

r!

(
|∂Λ|

∑
Γ∈C: 0∈Γ

e−F (Γ)

)r

≤ exp

(
|∂Λ|

∞∑
n=9

e(cd−τ)n

)

= exp

(
|∂Λ| e

9(cd−τ)

1− ecd−τ

)
. (4.32)

It follows that, writing γ = e9(cd−τ)

1−ecd−τ ,

µΛ(AΛ(c)
c |F, b) ≤ e−b |Λ|1−ϵ

eF (Γmax)eb |∂Λ|eγ|∂Λ|) < e−τ |∂Λ| (4.33)

provided b|Λ|1−ϵ > (τ + ||F ||+ b+ γ)|∂Λ|.

We can strengthen this to show that there is a single large contour if

we assume in addition that F satisfies a generalized Peierls estimate in the

following sense: whenever Γ is a minimal contour given ∂Γ, i.e. it consists

of the cubes of side 2 adjoining the boundary of Γ, then for any contour Γ′

with |Γ′| > |Γ|, F (Γ′)− F (Γ) > τ(|Γ′| − |Γ|).

Lemma 4.7 Let a parametric contour model on a large region Λ be given

by a contour functional F and a parameter b > 0. Let ϵ ∈ (0, 1/d) be given.

Assume that Λ has a regular boundary and, moreover, that F satisfies the

generalized Peierls condition. Define

BΛ(ϵ) = {Θ ∈ D̃(Λ) : (∃Γ ∈ Θ) |Int(Γ)| ≥ |Λ|−|Λ|1−ϵ and |∂Γ| ≤ K|V (Γ)|δ},

where V (Γ) = |Γ| + |Int(Γ)|. Then, if ||F || < +∞ and η > 0, for Λ is large

enough, µΛ ({∂ ∈ D(Λ) : Θ(∂ ∈ BΛ(ϵ)
c |F, b) < η.
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Proof. Choose first ϵ′ ∈ (ϵ, 1/d). By the previous lemma we can assume

that
∑

Γ∈Θ(∂) |Int(Γ)| > |Λ|− |Λ|1−ϵ′ . We first note that we may assume that

there exists Θ′ ⊂ Θ such that for Γ ∈ Θ′, |Γ| > ln |Λ| and
∑

Γ∈Θ′ |Int(Γ)| >
|Λ| − |Λ|1−ϵ. Indeed, if |Γ| ≤ ln |Λ|, then |Int(Γ)| ≤ (κ−1

d |Γ|)d/(d−1) and hence

∑
Γ∈Θ: |Γ|≤ln |Λ|

|Int(Γ)| ≤ κ−1
d

ln |Λ|∑
k=3d

kd/(d−1)nk

≤ κ−1
d (ln |Λ|)1/(d−1)

ln |Λ|∑
k=3d

k nk

≤ κ−1
d (ln |Λ|)1/(d−1)|Λ|1−ϵ′ ≤ |Λ|1−ϵ

for |Λ| large enough. (Here nk is the number of external contours of size k.)

We enumerate contours of size k > ln |Λ| by selecting a random distribu-

tion of nk points in Λ and then estimating the number of contours containing

one of these points by ecdk. This overestimates the number of contours be-

cause we are counting each contour k times and we are disregarding the fact

that contours cannot overlap. The number of possible choices of these points

is bounded as follows.

|Λ|!(∏|Λ|1−ϵ

k=ln(|Λ|)+1 nk!
)
(|Λ| −

∑
k nk)!

≤
|Λ|1−ϵ∏

k=ln |Λ|+1

|Λ|
nk

enk

= exp

− |Λ|1−ϵ∑
k=ln |Λ|+1

nk(ln(nk/|Λ|)− 1)

 . (4.34)

(The exponent is essentially the entropy

s(ρ) = −
∑

k=ln |Λ|+1|Λ|1−ϵ

ρk ln ρk − |Λ|(1−
∑
k

ρk) ln(1−
∑
k

ρk)

≤ −
∑

k=ln |Λ|+1|Λ|1−ϵ

ρk(ln ρk − 1). (4.35)

This is similar to the entropy in Example 6.1.)

Now note that if k > ln |Λ| then nk = 0 or nk > |Λ| e−k and hence

enk(− ln(nk/|Λ|)+1−(τ−cd)k) < e−τ ′k nk ,
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where τ ′ = τ − cd − 1− 3−d.

Since Λ has regular boundary with constant K, there exists a contour

Γn with |Int(Γn)| = n, |Λ| − |Λ|1−ϵ ≤ n < |Λ| such that |∂Γn| < K |Int(Γ)|.
(Reduce the maximal contour Γmax in the direction where Λ is widest.)

The possible Θ′ ⊂ Θ such that for Γ ∈ Θ′, |Γ| > ln |Λ| and such that∑
Γ∈Θ′ |Int(Γ)| > |Λ|− |Λ|1−ϵ, can be enumerated by the choice of points and

the numbers nk with ln |Λ| < k ≤ |Λ|1−ϵ denoting the number of contours

Γ ∈ Θ′ with |Γ| = k. The corresponding Boltzmann factor is bounded by∑
{nk}

e−τ ′
∑

k k nk , (4.36)

where k = ln |Λ| + 1, . . . , |Λ|1−ϵ and
∑

k k nk ≤ |Λ|1−ϵ and since |Int(Γ)| <
(κ−1

d |Γ|)d/(d−1),
∑

k k
d/(d−1)nk ≥ κ

d/(d−1)
d

∑
Γ∈Θ |Int(Γ)| > κ

d/(d−1)
d |Λ|. Let

k1 < · · · < kp be the values of k for which nk ≥ 1. Then

∑
{nk}

e−τ ′
∑

k k nk ≤
|Λ|1−ϵ∑
p=1

∑
ln |Λ|<k1<···<kp<|Λ|1−ϵ

p∏
i=1

e−τ ′ki

1− e−τ ′ki
.

For p = 1, obviously,

|Λ|1−ϵ∑
k1=ln |Λ|

e−τ ′k1 =
e−τ ′ ln |Λ| − e−τ ′(|Λ|1−ϵ+1)

1− eτ ′
<

1

1− e−τ ′
|Λ|−τ ′ .

To estimate this sum in case p = 2, we use the following inequality, valid for

x > 0 and δ ∈ (0, 1),

x+ (1− x1/δ)δ ≥ 1 + λx if 0 ≤ x ≤ 2−δ where λ = 2− 2δ. (4.37)

It follows from the concavity of the left-hand side.

Consider the case p = 2. We first note that k1+k2 ≤ |Λ|1−ϵ and k
d/(d−1)
1 +

k
d/(d−1)
2 = n1/δ ≥ K−d/(d−1)|Λ|. Set x = k1/n in the inequality (4.37). Then
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x ≤ n/2δ and, since k2 = n(1− (k1/n)
1/δ)δ,

∑
ln |Λ|<k1<k2≤|Λ|1−ϵ

k
1/δ
1 +k

1/δ
2 =n1/δ

e−τ ′(k1+k2)

(1− e−τ ′k1)(1− e−τ ′k2)
(4.38)

=

n/2δ∑
k1=ln |Λ|+1

e−τ ′(k1+(n1/δ−k
1/δ
1 )δ)

(1− e−τ ′k1)(1− e−τ ′n(1−(k1/n)1/δ)δ)

≤ (1− |Λ|−τ ′)2
n/2δ∑

k1=ln |Λ|

e−τ ′n(1+λk1/n)

≤ 2e−τ ′n |Λ|−λτ ′

1− e−τ ′λ
. (4.39)

For p > 2 we generalize the inequality (4.37):

Lemma 4.8 Let δ ∈ (0, 1). If 0 ≤ x1 ≤ x2 ≤ · · · ≤ xp and
∑p

i=1 x
1/δ
i = 1

then
p∑

i=1

xi ≥ 1 +

p−1∑
i=1

λp−ixi, (4.40)

where λi = 1 + iδ − (i+ 1)δ for i = 1, . . . , p− 1.

Proof. Again the left-hand side is a concave function of x1, . . . , xp−1, writing

xp = (1 −
∑p−1

i=1 x
1/δ
i )δ. It therefore suffices to check the inequality for the

extremal points of the simplex bounded by the rays x1 = · · · = xj = 0, 0 <

xj+1 ≤ · · · ≤ xp−1 ≤ (p− j)−δ. The extremal points are 0 and (0, . . . , 0, (p−
j)−δ, . . . , (p− j)−δ). In the latter points, the left-hand side equals (p− j)1−δ,

and the right-hand side equals 1+
∑p−1

i=j+1 λp−i(p− j)−δ = 1+
∑p−j−1

i′=1 λi(p−
j)−δ = 1+ (p− j − (p− j)δ)(p− j)−δ = (p− j)1−δ, which proves the lemma.

(Here we used the identity λi = (i+ 1− (i+ 1)δ)− (i− iδ) so that the sum

telescopes.)
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Note also that it follows from the concavity of the function x 7→ xδ that

λi+1 > λi ≥ 2− 2δ. Repeating the above argument for p = 2, we now have

∑
ln |Λ|<k1<···<kp≤|Λ|1−ϵ∑p

i=1 k
1/δ
i =n1/δ

p∏
i=1

e−τ ′ki

1− e−τ ′ki
(4.41)

≤ 2
∑

ln |Λ|≤k1≤···≤kp−1≤n∑p−1
i=1 k

1/δ
i ≤n1/δ/2

e−τ ′(
∑p−1

i=1 ki+(n1/δ−
∑p−1

i=1 k
1/δ
i )δ)

≤ 2
∑

k0≤k1≤···≤kp−1

e−τ ′n(1+
∑p−1

i=1 λp−iki/n))

= 2e−τ ′ne−τ ′k0
∑p−1

i=1 λi

p−1∏
j=1

1

1− e−τ ′
∑j

i=1 λi

≤ 2 e−τ ′n|Λ|−τ ′(p−pδ)

p−1∏
j=1

1

1− e−τ ′
∑j

i=1 λi

. (4.42)

Note that (1− e−τ ′ki)−1 < 1 + 2e−τ ′ki < ee
−τ ′ki and hence

p∏
i=1

(1− e−τ ′ki)−1 < exp[

p∑
i=1

e−τ ′ki ] < 2.

It follows that the sum over p converges and moreover that the term p = 1

dominates as |Λ| → ∞. We have seen above that there is a large contour Γn

with |Γn| ≤ K|Λ|δ. Since F satisfies the generalized Peierls inequality, this

means that large contours Γ with (significantly) larger |Γ| are exponentially

less likely.

The situation is illustrated in Figure 6.

Remark. In fact, Figure 6 is slightly deceptive, because it is advan-

tageous to have a slightly smaller contour. The size |Γ| is then smaller,

whereas the volume |Int(Γ)| is smaller. This is advantageous because in

general τ >> b. The size reduction is only of order 1, however.
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5 Spin models versus contour models

Pirogov-Sinai theory is a generalization of Peierls argument for the existence

of a phase transition at low temperatures to the case of spin models without

symmetry. Remember that Peierls’ argument uses explicitly the spin-flip

symmetry to derive Peierls’ estimate (1.6). This symmetry ensures that the

phase transition occurs at h = 0. In the absence of such symmetry, the value

of the critical external fields is in general dependent on the temperature. This

was illustrated in Example 3.1. To include arbitrary contours, the critical

fields will be determined by a contraction mapping argument.

We consider the inhomogeneous Potts model given by the Hamiltonian

of equation (3.11), i.e.

Φx−y(sx, sy) =
∑

1≤r<r′≤q

Jr,r′(δsx,rδsy,r′ + δsx,r′δsy,r), (5.1)

for |x− y| = 1, and we set for a boundary condition r,

HΛ(sΛ | r) = HΛ(sΛ) +
∑

x∈Λ,y∈Λc: |x−y|=1

Φx−y(sx, r). (5.2)

Given a boundary condition r we define the partition function by

Definition 5.1 The finite-volume partition function Z(r)
Λ (β, h) for the

inhomogeneous Potts model with boundary condition r is given by

Z(r)
Λ (β, h) =

∑
sΛ∈Ω(r)(Λ)

e−βĤΛ(sΛ | r), (5.3)

where

ĤΛ(sΛ | r) = HΛ(sΛ | r)−
∑
x∈Λ

⟨h−hr, δsx⟩ = HΛ(sΛ | r)−
∑
x∈Λ

(hsx −hr) (5.4)

is the relative Hamiltonian.

Note that we have added a constant hr|Λ| to the Hamiltonian, which of

course does not affect the equilibrium state. We want to relate the distribu-

tion of external contours to that of a contour model and therefore define a

corresponding crystal partition function.
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Definition 5.2 For a given (external) contour (Γ, sΓ) with external bound-

ary condition r, we define the crystal partition function by

Zr((Γ, sΓ), β, h) =

e−βĤΓ(sΓ | r)
q∏

m=1

∑
s∈Ω(m)(Intm(Γ))

e−βĤIntm(Γ)(s |m)+β(hm−hr)|Intm(Γ)|. (5.5)

Crucially, the following identity then holds.

Z(r)
Λ (β, h) =

∑
Θ∈D̃r(Λ)

∏
(Γ,sΓ)∈Θ

Zr((Γ, sΓ), β, h), (5.6)

where D̃r(Λ) denotes the set of exterior boundaries with boundary condition

r. We also denote by Cr(Λ) the collection of contours in Λ with exterior

boundary condition r.

We have the following correspondence.

Theorem 5.1 Assume that 3 ||h|| < ρ := d2−dJmin and τ = 1
3
βρ− 1 > 3cd.

Then there exist contour functionals Fr ∈ Fw (r = 1, . . . , q) on contours

(Γ, sΓ) ∈ Cr with boundary condition r respectively, satisfying the Peierls

condition (4.1) and such that

Zr((Γ, sΓ), β, h) = ebr |Int(Γ)|Ξ((Γ, sΓ) |Fr) (5.7)

where

br =M − βhr − P (Fr), (5.8)

with M = maxqr=1(P (Fr) + βhr). Moreover, F1, . . . , Fq are continuous func-

tions of Jr,r′ (1 ≤ r < r′ ≤ q).

55



Proof. First observe that the identities (5.6) and (5.7) imply that

Z(r)
Λ (β, h) =

∑
Θ∈D̃r(Λ)

∏
(Γ,sΓ)∈Θ

Zr((Γ, sΓ), β, h)

=
∑

Θ∈D̃r(Λ)

∏
(Γ,sΓ)∈Θ

ebr|Int(Γ)|Ξ((Γ, sΓ) |Fr)

=
∑

Θ∈D̃r(Λ)

∏
(Γ,sΓ)∈Θ

ebr|Int(Γ)|e−Fr(Γ,sΓ)
∑

∂∈Dr(Int(Γ))

e−Fr(∂)

=
∑

∂∈Dr(Λ)

e−Fr(∂)
∏

(Γ,sΓ)∈Θ(∂)

ebr|Int(Γ)|

= ΞΛ(Fr, br). (5.9)

Conversely, if Z(r)
Λ (β, h) = ΞΛ(Fr, br) then∑
Θ∈D̃r(Λ)

∏
(Γ,sΓ)∈Θ

Zr((Γ, sΓ), β, h)

=
∑

Θ∈D̃r(Λ)

∏
(Γ,sΓ)∈Θ

ebr|Int(Γ)|Ξ((Γ, sΓ) |Fr)

from which it follows that Zr((Γ, sΓ), β, h) = ebr|Int(Γ)|Ξ((Γ, sΓ) |Fr).

Inserting the definition (5.5), we have that for (Γ, sΓ) ∈ Cr,

ebr|Int(Γ)|Ξ((Γ, sΓ) |Fr)

= Zr((Γ, sΓ), β, h)

= e−βĤΓ(sΓ | r)
q∏

m=1

eβ(hm−hr)|Intm(Γ)|Z(m)
Intm(Γ)(β, h)

= e−βĤΓ(sΓ | r)
q∏

m=1

eβ(hm−hr)|Intm(Γ)|ΞIntm(Γ)(Fm, bm). (5.10)

Since by definition 4.1, Ξ((Γ, sΓ) |Fr) = e−Fr(Γ,sΓ)ΞInt(Γ)(Fr), it follows from

(4.21) that

ln Ξ((Γ, sΓ) |Fr) = P (Fr) |Int(Γ)| − Fr(Γ, sΓ) +

q∑
m=1

∆Intm(Γ)(Fr). (5.11)

On the other hand

lnΞIntm(Γ)(Fm, bm) = (P (Fm) + bm) |Intm(Γ)|+∆Intm(Γ)(Fm, bm). (5.12)
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Hence

(P (Fr) + br) |Int(Γ)| − Fr(Γ, sΓ) +

q∑
m=1

∆Intm(Γ)(Fr)

= −βĤΓ(sΓ | r)− βhr|Int(Γ)|

+

q∑
m=1

[
(P (Fm) + bm + βhm) |Intm(Γ)|+∆Intm(Γ)(Fm, bm)

]
.

(5.13)

Inserting the identity (5.8), we have for (Γ, sΓ) ∈ Cr,

Fr(Γ, sΓ) = βĤΓ(sΓ | r) + Tr(F, β, h), (5.14)

where the map Tr(F , β, h) is defined by

Tr(F, β, h) = T̂r(F, b),

in which bm is given by equation (5.8) in terms of hm and P (Fm),

bm = −βhm − P (Fm) +M,

and

T̂r(F, b) =

q∑
m=1

[
∆Intm(Γ)(Fr)−∆Intm(Γ)(Fm, bm)

]
. (5.15)

Note that it follows from the assumption 3||h|| < d2−dJmin = ρ that

ĤΓ(sΓ | r) = HΓ(sΓ)−
∑
x∈Γ

⟨h− hr, δsx⟩ >
1

3
ρ |Γ|

because every cube of side 2 in Γ contains at least one site with a spin different

from the others, giving a contribution dJr,r′ so HΓ(sΓ) > dJmin2
−d|Γ|, and

by assumption, max(hr′ − hr) <
2
3
ρ. Then, by the inequalities (4.27),

T̃r(F, b)(Γ) ≥ −2e−τ

q∑
m=1

|∂(Intm(Γ))| ≥ −2e−τ |Γ|,

and therefore

βĤΓ(sΓ | r) + Tr(F , β, h) ≥ (
1

3
βρ− 2e−τ )|Γ| > τ |Γ|.
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We next prove that the operator T = (Tr)
q
r=1 has small norm, which

implies the existence of a unique solution F . In fact, by Theorem 4.5,

|T̂r(F, b)(Γ)− T̂r(F
′, b′)(Γ)|

≤
q∑

m=1

(
|∆Intm(Γ)(Fr)−∆Intm(Γ)(F

′
r)|

+|∆Intm(Γ)(Fm, bm)−∆Intm(Γ)(F
′
m, b

′
m)|
)

≤ 2

q∑
m=1

|b′r − br| |Intm(Γ)|

+2

q∑
m=1

(
1

6
ea diam(Intm(Γ)) + e−τ )|Intm(Γ)| ||Fm − F ′

m||w

(5.16)

and hence

|Tr(F, β, h)(Γ)− Tr(F
′, β, h′)(Γ)|

≤ 2(||βh− β′h′||+ e−τ ||F − F ′||w) |Int(Γ)|

+(
1

3
eaδ(Γ) + 2e−τ )||F − F ′||w |Int(Γ)|, (5.17)

where we have defined

||F − F ′||w =
q

max
r=1

||Fr − F ′
r||w,

and where we also used the continuity of the pressure, Theorem 4.4. Recalling

the definition of the norm (4.26), we have

||T (F , β, h)−T (F ′, β′, h′)||w ≤ 2 ||βh−β′h′||+(
1

3
+4e−τ )||F −F ′||w. (5.18)

In particular, T is a contraction for fixed h and there exists a unique solution

to the set of equations (5.14). Moreover, the inequality (5.18) also implies

the continuity of the solution in HΓ and h and hence Jr,r′ subject to the

conditions 2||h|| < d3−dJmin = ρ and τ = βρ− 1 > 3cd.

In the following we need to improve the inequality (4.27). In fact the

lower bound is also of order |∂Λ|:
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Corollary 5.1 Assume that ||Fr|| < +∞. Then −βf(β, h) = br + P (Fr).

Moreover, The surface tension of the parametric contour model with br > 0

satisfies

−(br + P (Fr) + ||Φ||+ 2||h||+ e−τ )|∂Λ| ≤ ∆Λ(F, b) ≤ e−τ |∂Λ|. (5.19)

Therefore the solutions Fr in fact belong to F , i.e. ||Fr|| < +∞.

Proof. Since by (5.9),

Z(r)
Λ (β, h) = ΞΛ(Fr, br)

=
∑

∂∈Dr(Λ)

e−Fr(∂)
∏

Γ∈Θ(∂)

ebr|Int(Γ)|

≤ ebr|Λ|
∑

∂∈Dr(Λ)

e−Fr(∂),

we have the upper bound

−βf(β, h) = lim
Λ→Zd

1

|Λ|
lnZ(r)

Λ (β, h) ≤ br + lim
Λ→∞

1

|Λ|
ln ΞΛ(Fr) = br + P (Fr).

On the other hand, if ||Fr|| < +∞, we can choose the maximal contour

consisting of Γmax = {x ∈ Λ : d(x,Λc) = 1} and obtain, writing Λ1 =

Λ \ Γmax,

Z(r)
Λ (β, h) ≥

∑
∂∈Dr(Λ1)

e−Fr(∂)−Fr(Γmax)ebr|Λ1|

≥ e−||Fr|| |Γmax|e(br+P (Fr))|Λ1|+∆Λ1
(Fr)

≥ e−(||Fr||+br+P (Fr)) |Γmax|e(br+P (Fr))|Λ|+∆Λ1
(Fr).

Since |∆Λ1(Fr)| ≤ e−τ |∂Λ1|, it follows that

−βf(β, h) ≥ br + P (Fr).

The upper bound of (5.19) is (4.27). Similarly also the lower bound if

br = 0. To prove the lower bound if br > 0, let Γmax be a maximal contour

given by the inner boundary of Λ with inner boundary condition r̃ where
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br̃ = 0 (this means sΓmax = r̃). Then we have

Z(r)
Λ (β, h) ≥ e−βĤΓmax (r̃ | r)Z(r̃)

Λ1
(β, h)

= e−βĤΓmax (r̃ | r)ΞΛ1(Fr̃)

= e−βĤΓmax (r̃ | r)e|Λ1|P (Fr̃)+∆Λ1
(Fr̃)

= e−βĤΓmax (r̃ | r)e(Pr+br)|∂Λ|+∆Λ1
(Fr̃)e|Λ| (P (Fr)+br).

Since ĤΓ(sΓ | r) ≤ (||Φ|| + 2 ||h||)|Γ| the lower bound follows. Inserting into

the formula (5.15), we conclude that ||Fr|| < +∞.

It follows that in case of a boundary condition r with br > 0, there is a

large contour close to the boundary. This is illustrated in Figure 6 where the

black colour corresponds to a spin value r with br > 0.

Figure 6. A large contour in the Potts model with q = 3.
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6 The low-temperature phase diagram

We are now ready to describe the low-temperature phase diagram in general.

First, however, let us consider again the example of the 3-state Potts model,

Example 3.1.

EXAMPLE 6.1. Phase diagram of the 3-state Potts model.

In order to obtain the complete phase diagram of Example 3.1, we need

to consider also the case where h2 ̸= 0 (we can assume h1 = 0 because adding

a constant to the Hamiltonian does not change its thermodynamics). In that

case, it is also possible that the phases 1 and 3 or 2 and 3 coexist. As in

Example 3.1 we have

f1(ρ2, ρ3) = (2dJ − h2)ρ2 + (2dJ̃ − h3)ρ3 −
1

β
s(ρ2, ρ3),

and minimising,

f1,min = − 1

β
(ρ2 + ρ3),

where

ρ2 = e−β(2dJ−h2) and ρ3 = e−β(2dJ̃−h3).

Similarly,

f2(ρ1, ρ3) = 2dJρ1 − h2(1− ρ1 − ρ3) + (2dJ̃ − h3)ρ3 −
1

β
s(ρ1, ρ3),

and minimising,

f2,min = −h2 −
1

β
(ρ1 + ρ3),

where

ρ1 = e−β(2dJ+h2) and ρ3 = e−β(2dJ̃+h2−h3),

and

f3(ρ1, ρ2) = 2dJ̃(ρ1 + ρ2)− h2ρ2 − h3(1− ρ1 − ρ2)−
1

β
s(ρ1, ρ2),

and minimising,

f3,min = −h3 −
1

β
(ρ1 + ρ2),
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where

ρ1 = e−β(2dJ̃+h3) and ρ2 = e−β(2dJ̃−h2+h3).

We have already seen that the states 1 and 2 coexist if h2 = 0 and

h3 ≤ h3,c ≈
1

β
(e−2βdJ − e−2βdJ̃). (6.1)

Equating f1,min = f3,min, we see that 1 and 3 coexist if

h3 =
1

β

(
e−β(2dJ−h2) + e−β(2dJ̃−h3) − e−β(2dJ̃−h2+h3) − e−β(2dJ̃+h3)

)
. (6.2)

Clearly, for large β, |h2| ≪ 1 and |h3| ≪ 1, so we can approximate this by

h3 ≈ h3,c + h2(e
−2βdJ − e−2βdJ̃). (6.3)

Note that this free energy is minimal only if h2 < 0. It is a straight line with

small slope approximating the negative h2-axis as β → ∞.

Similarly, the states 2 and 3 coexist if f2,min = f3,min, i.e.

h3 = h2 +
1

β

(
e−β(2dJ+h2) + e−β(2dJ̃+h2−h3) − e−β(2dJ̃+h3) − e−β(2dJ̃−h2+h3)

)
.

(6.4)

This is approximately

h3 ≈ h3,c + h2 − h2(e
−2βdJ + 2e−2βdJ̃), (6.5)

which is a straight line to the right of the triple point (0, h3,c) tending to

the line h3 = h2 as β → ∞.

In general, the low-temperature phase diagram can be described as fol-

lows.

Theorem 6.1 (Pirogov-Sinai) For β large enough, there is a neighbour-

hood V0 of 0 ∈ Rq−1 and a homeomorphism Iβ : V0 → U0, a neighbourhood of

0 in Oq = {(b1, . . . , bq) ∈ Rq : minq
m=1 bm = 0} such that if m1 < · · · < mN

are the spin values for which Iβ(h2 − h1, . . . , hq − h1)mi
= 0, then there ex-

ist exactly N translation-invariant limit-Gibbs measures µ
(mi)
β,h representing

distinct co-existing phases.
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Proof. We may assume that h1 = 0 by replacing hr by hr−h1 since adding a
constant to the Hamiltonian does not change the equilibrium states. By the

previous theorem, given Jr,r′ (1 ≤ r < r′ ≤ q) and assuming τ = 1
3
βρ− 1 ≥

3cd, where ρ = d2−dJmin, there is a continuous map from a neighbourhood

of 0 given by 3||h|| < ρ, mapping h to a q-tuple of contour functionals

(F1, . . . , Fq), such that (5.7) holds with br given by (5.8). We therefore set

Iβ(h)r = −βhr − P (Fr) +M . It follows immediately from Theorem 4.4 that

the map Iβ is continuous.

Conversely, given b and Jr,r′ with 1 ≤ r < r′ ≤ q, we can determine

F1, . . . , Fq from a rewriting of equation (5.14) as

Fr(Γ, sΓ) = βHΓ(sΓ)−
∑
x∈Γ

q∑
m=1

(bm + P (Fm)− br − P (Fr)) δsx,m + T̂r(F, b),

(6.6)

with

T̂r(F , b)(Γ) =

q∑
m=1

[
∆Intm(Γ)(Fr)−∆Intm(Γ)(Fm, bm)

]
. (6.7)

By equation (5.16),

||T̂ (F, b)− T̂ (F ′, b′)||w ≤ 2||b− b′||+ 1

2
||F − F ′||w

and in particular, for given b, T̃ is a contraction. We then put

πβ(b)r =
1

β
(−br − P (Fr) + b1 + P (F1))

for r = 1, . . . , q. Then it follows from Theorem 4.4 that

||πβ(b)|| ≤
1

β
(||b− bm||+ e−τ ).

We claim that πβ(Iβ(h)) = h and Iβ(πβ(b)) = b. For, if Iβ(h) = b, then

b = −βh− P (F ) +M , where F1, . . . , Fq satisfy

Fr(Γ, sΓ) = β

(
HΓ(sΓ)−

∑
x∈Γ

(hsx − hr)

)
+ Tr(F , β, h)

= βHΓ(sΓ)−
∑
x∈Γ

q∑
m=1

(bm + P (Fm)− br − P (Fr))δsx,m

+T̃r(F, b),
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and hence πβ(b) = h. The converse is analogous. If ||b|| < 1
3
βρ− βe−τ then

||h|| < 1
3
ρ and the inverse map is well-defined.

Now suppose that for a given boundary condition r, br = 0. Then,

according to the corollary of Theorem 4.2, the correlation of external contours

decays exponentially. As in the case of the Ising model, we show that this

implies that the corresponding equilibrium state µ
(r)
β,h is mixing. Denote µ

(r)
Λ

the Gibbs state on Λ given by

µ
(r)
Λ (sΛ) =

1

Z(r)
Λ (β, h)

exp

[
−βHΛ(sΛ | r) + β

∑
x∈Λ

(hsx − hr)

]
.

The corresponding distribution of external contours is given by

µ
(r)
Λ (Θ) =

1

Z(r)
Λ (β, h)

∏
(Γ,sΓ)∈Θ

Zr((Γ, sΓ), β, h)

for external boundaries Θ ∈ Dr(Λ). By the identification with contour mod-

els in Theorem 5.1, we see that this equals

1

ΞΛ(Fr)

∏
(Γ,sΓ)∈Θ

Ξ((Γ, sΓ) |Fr) = µ̃Λ(Θ),

which is the probability of an external boundary in the contour model. It

follows that the thermodynamic limit of the correlation functions∑
Θ̃⊃Θ

µ
(r)
Λ (Θ̃) = ρ̃Λ(Θ)

exists.

Consider a finite subset A ⊂ Zd. We need to relate the probability of a

given configuration sA to that of exterior contours. If for some x ∈ A, sx = r,

then it is possible that x is not surrounded by a contour. Given an exterior

boundary Θ, let A1 be the subset of A surrounded by a contour and A2 the

subset not surrounded by a contour. Define

D̃x(Θ) = {Θ′ ⊃ Θ : (∃Γ ∈ Θ′)x ∈ Γ ∪ Int(Γ)}.

The complement of the set of Θ′ ⊃ Θ such that for all Γ′ ∈ Θ′, A2 ∩ (Γ′ ∪
Int(Γ′)) = ∅, is the set Θ′ ⊃ Θ such that there exists Γ′ ∈ Θ′ such that
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A2 ∩ (Γ′ ∪ Int(Γ′)) ̸= ∅, i.e. Γ′ ∈
∪

x∈A2
D̃x(Θ). Hence, be the inclusion-

exclusion principle (4.7), the probability of the event that A2∩(Γ∪Int(Γ)) ̸= ∅
for any contour Γ, given that A1 = A ∩

∪
Γ∈Θ(Γ ∪ Int(Γ)), is given by

ρ̃Λ(Θ)−
∑

I⊂A2; I ̸=∅

(−1)|I|−1µ̃Λ

(
∩x∈I D̃x(Θ)

)
.

In terms of correlation functions this can be written as

ρ̃Λ(Θ)−
∑

I⊂A2; I ̸=∅

(−1)|I|−1
∑

Θ′⊃Θ;Θ′∈D̃I

ρ̃Λ(Θ
′),

where

D̃I =

{
Θ′ : ∀Γ′ ∈ Θ′, I ∩ (Γ′ ∪ Int(Γ′)) ̸= ∅

and I ⊂
∪

Γ′∈Θ′

(Γ′ ∪ Int(Γ′))

}
(6.8)

This therefore converges as Λ → Zd. (Note that the sum converges because

the number of Γ′ containing a point of A2 grows like |Γ′|cd whereas ρ̃(Θ′) ≤
e−τ ||Θ′||.) We will denote the limiting probability by ρ̃(Θ;A1, A2), i.e.

ρ̃(Θ;A1, A2) = ρ̃(Θ) +
∑

I⊂A2; I ̸=∅

(−1)|I|
∑

Θ′⊃Θ;Θ′∈D̃I

ρ̃(Θ′). (6.9)

The distribution of sA is then

µ(r)(sA) =
∑
A1⊂A

∑
Θ∈D̃A1

∩
∩

x∈A\A1
D̃c

x

ρ̃(Θ;A1, A \ A1)

×
∏

x∈A\A1

δsx,r
∏
Γ∈Θ

µ
(r)
Γ∪Int(Γ)(sA1), (6.10)

where

D̃x = D̃x(∅) = {Θ : (∃Γ ∈ Θ)x ∈ Γ ∪ Int(Γ)}.

Note that in case A1 = ∅, D̃A1 = ∅, so this contribution to the sum in (6.10)

is

ρ̃(∅; ∅, A)
∏
x∈A

δsx,r
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The correlation function

ρ̃(∅; ∅, A) = 1 +
∑

∅̸=I⊂A

(−1)|I|
∑

Θ′∈D̃I

ρ̃(Θ′)

is the probability that no contour of Θ surrounds a point of A.

Note also that the expression (6.10) agrees with (3.5) in the case of the

Ising model with A = {0, z}.

We next prove that the distribution (6.10) satisfies the mixing property

(2.1). We can take f and g to be of the form f =
∏

x∈A δsx,sx and g =∏
x∈B δsx,sx for fixed sx. Then

Eµ(r)

(τz(f) g) = µ(r)(sτz(A)sB)

=
∑

A1⊂A,B1⊂B

∑
Θ∈D̃τz(A1)∪B1

∩
∩

x∈τz(A2)∪B2
D̃c

x

ρ̃(Θ; τz(A1) ∪B1, τz(A2) ∪B2)

×
∏

x∈A2∪B2

δsx,r
∏
Γ∈Θ

µ
(r)
Γ∪Int(Γ)(sτz(A1)∪B1)

In this expression, the terms where there exists Γ ∈ Θ such that τz(A) ∩
(Γ∪ Int(Γ)) ̸= ∅ and B ∩ (Γ∪ Int(Γ)) ̸= ∅ tend to zero because ρ̃(Γ; τz(A1)∪
B1, τz(A2)∪B2) ≤ e−τ |Γ| ≤ e−τ2d−1(|z|−diam(A∪B)). In the remaining terms, we

can write Θ = Θ1 ∪ Θ2, where Θ1 ∈ D̃τz(A1) and Θ2 ∈ D̃B1 . Moreover, if

Θ1 ∈ D̃τz(A1) and Θ1 ∈ D̃x for some x ∈ B2 then there is a Γ1 ∈ Θ1 such that

τz(A1)∩ (Γ1 ∪ Int(Γ1)) ̸= ∅ and x ∈ Γ1 ∪ Int(Γ1) and hence ρ̃(Θ′) ≤ e−τ |Γ1| ≤
e−τ2d−1(|z|−diam(A∪B)) for all Θ′ ⊃ Θ. We can therefore ignore the condition

Θ1 ∈
∩

x∈B2
D̃c

x, and similarly also the condition Θ2 ∈
∩

x∈τz(A2)
D̃c

x.

The resulting expression is∑
A1⊂A,B1⊂B

∑
Θ=Θ1∪Θ2:

Θ1∈D̃τz(A1)
∩
∩

x∈τz(A2)
D̃c

x,Θ2∈D̃B1
∩
∩

x∈B2
D̃c

x

× ρ̃(Θ; τz(A1) ∪B1, τz(A2) ∪B2)
∏

x∈A2∪B2

δsx,r
∏
Γ∈Θ

µ
(r)
Γ∪Int(Γ)(sτz(A1)∪B1).
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This tends to

Eµ(r)

(f)Eµ(r)

(g) = µ(r)(sA)µ
(r)(sB)

=
∑

A1⊂A,B1⊂B

∑
Θ1∈D̃A1

∩
∩

x∈A2
D̃c

x

∑
Θ2∈D̃B1

∩
∪

x∈B2
D̃c

x

× ρ̃(Θ1;A1, A2)ρ̃(Θ2;B1, B2)

×
∏

x∈A2∪B2

δsx,r
∏
Γ∈Θ1

µ
(r)
Γ∪Int(Γ)(sA1)

∏
Γ∈Θ2

µ
(r)
Γ∪Int(Γ)(sB1)

since by the corollary of Theorem 4.2,

|ρ̃(Θ; τz(A1) ∪B1, τz(A2) ∪B2)− ρ̃(Θ1; τz(A1), τz(A2))ρ̃(Θ2;B1, B2)|
≤ 2|A2|+|B2| e(cd−τ)(||Θ1||+||Θ2||+d(Θ1,Θ2)). (6.11)

(Note that ρ̃(Θ1; τz(A1), τz(A2)) = ρ̃(τ−z(Θ1);A1, A2) and if Γ ∈ Θ1 then

B1 ∩ (Γ ∪ Int(Γ)) = ∅ while µ
(r)
Γ∪Int(Γ)(sτz(A1)) = µ

(r)
τ−z(Γ∪Int(Γ))(sA1).)

It is clear that the measures µ(r) with br = 0 are not identical because

µ(r)(δs0,r) ∼ 1 by Peierls’ argument. Since they are extremal measures, they

must be singular w.r.t. each other.

Now consider values of r such that br > 0. We want to show that such

values do not correspond to different phases. By Lemma 4.7, there is a large

contour with total area/volume almost equal to Λ. (Here we take Λ to be a

large square/cube and assume ϵ < 1/d so that |∂Λ|1+ϵ ≪ |Λ|.)

We still need to show that the internal regions Intm(Γ) with Γ ∈ Θ(∂)

and bm > 0 are insignificant compared to Intr(Γ) with br = 0. By Lemma 4.7

we can consider Int(Γ) as a region Λ′ which also has a regular boundary.

Consider the relation (5.10). We want to show that with high probability,

eβhm|Λ′|ΞΛ′(Fm, bm) ≪ eβhr|Λ′|ΞΛ′(Fr)
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if bm > 0 and br = 0. By Lemma 4.7, we have that with high probability

ΞΛ′(Fm, bm) ≤ (1− η)−1
∑

∂∈D(Λ′):Θ(∂)∈BΛ′ (ϵ)

e−Fm(∂)
∏

Γ∈Θ(∂)

ebm|Int(Γ)|

≤ 2
∑

∂∈D(Λ′):Θ(∂)∈BΛ′ (ϵ)

e−Fm(∂)ebm|Λ′|

≤ 2e(bm+βhm)|Λ′|
∑

∂: Θ(∂)∈BΛ′ (ϵ)

e−Fm(∂)

≤ 2e(bm+βhm)|Λ′|

×
∑

Θ∈BΛ′ (ϵ)

e−Fm(Θ)
∑

∂⊂
∪

Γ∈Θ Int(Γ)

e−Fm(∂)

≤ 2e(M−P (Fm))|Λ′|

×
∑

Θ∈BΛ′ (ϵ)

e−Fm(Θ)
∏
Γ∈Θ

eP (Fm)|Int(Γ)|+∆Int(Γ)(Fm).

≤ 2e(M−P (Fm))|Λ′|

×
∑

Θ∈BΛ′ (ϵ)

e−τ
∑

Γ∈Θ |Γ|eP (Fm)|Λ′|+
∑

Γ∈Θ ∆Int(Γ)(Fm)

≤ 2e(P (Fr)+βhr)|Λ′|
∑

Θ∈BΛ′ (ϵ)

e−(τ−e−τ )
∑

Γ∈Θ |Γ|

= 2eβhr|Λ′|ΞΛ′(Fr)e
−∆Λ′ (Fr)e−(τ−e−τ )κd|Λ′|δ , (6.12)

The resulting bound tends to 0 as |Λ′| → ∞.

This implies that the boundary condition r is much more likely than m

once the area is large.

We now follow Gallavotti and Miracle-Solé10 and use the following lemma.

Lemma 6.1 Let µ be a translation invariant probability measure on ΩZd

q .

Suppose that there is a subset S0 ⊂ {1, . . . , q} such that for any function

f : ΩZd

q → R with bounded support A ⊂ Zd, there exists a family of numbers

αΛ,r ∈ [0, 1] for all finite Λ ⊂ Zd and r ∈ S0 such that

lim
Λ→Zd

∣∣∣∣∣AvEµ
Λ(f)−

∑
r∈S0

αΛ,rEµ(r)

(f)

∣∣∣∣∣ = 0,

10G. Gallavotti and S. Miracle-Solé, Equilibrium states of the Ising model in the two-

phase region, Phys. Rev. B5, 2555–9 (1972)
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where Av is the averaging operator defined by

AvEµ
Λ(f) =

1

|Λ|
∑
z∈Λ

Eµ
Λ(τz(f)).

Then µ belongs to the convex hull of the measures µ(r) with r ∈ S0.

Given f , let a = diam(A) be the diameter of the support of f . Then

τz(f) has support τz(A) which, with high probability, is contained in Int(Γ)

for some Γ ∈ Θ(∂) unless z belongs to an A-neighbourhood of
∪

Γ∈Θ(∂) Γ,

having total volume at most adc |∂Λ| by the above lemma. Analogous to

equation (6.10) the expectation of f is given by

Eµ(f) =
∑
A1⊂A

∑
Θ∈D̃A1

∩
∩

x∈A2
D̃c

x

ρ̃(Θ;A1, A2)

×
∏
x∈A2

δsx,r
∏
Γ∈Θ

Eµ(r)

Γ∪Int(Γ)(f
∣∣
Γ∪Int(Γ)), (6.13)

If τz(A) ⊂ Int(Γ) for a given Γ ∈ Θ(∂) then A1 = A and Θ(∂) = {Γ} and

Eµ(r)

Γ∪Int(Γ)(f) = Eµ(m)

Int(Γ)(f). Since, moreover, ρ̃(Θ;A, ∅) = ρ̃(Θ), it follows that

lim
Λ→Zd

AvEµ
Λ(f) =

∑
m: bm=0

∑
Γ∈

∩
x∈A C(m)

x

ρ̃({Γ};A, ∅)Eµ(m)

Int(Γ)(f), (6.14)

where C(m)
x is the set of contours Γ with inner boundary condition m contain-

ing x, i.e. such that x ∈ Intm(Γ). This completes the proof of Theorem 6.1.

Remark. In fact, the proof is incomplete since we have only considered

uniform boundary conditions. The proof in case of mixed boundary condi-

tions is analogous, however. In that case one needs to consider also contours

which are not closed but connect to the boundary of Λ. This was first done

for the Ising model by Gallavotti and Miracle-Solé11. Indeed, the above proof

in case br > 0 is based on their article. The extension to the general case was

done by Martirosyan12. However, his short note contains only a very brief

outline of the proof, with many essential details omitted.

11G. Gallavotti and S. Miracle-Solé, loc. cit.
12D. G. Martirosyan: On the question of an upper bound on the number of periodic

Gibbs states for models of a lattice gas. Usp. Mat. Nauk 30, 181–2 (1975) (In Russian).
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