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Preface

The two-dimensional Ising model without external field was solved by On-

sager in 19441. This was a very important result, because it showed that

mathematically, the phase transition comes about in the thermodynamic

limit. Moreover, his solution showed that the phase transition is second-

order and that the specific heat diverges logarithmically at the critical point.

Since then many different derivations of his solution have been published.

First the Onsager solution was simplified by Kauffman2. We mention a few

other approaches. A combinatorial solution based on an expansion was de-

veloped by Kac and Ward3. Another ingenious solution was proposed by

Feynman4. The assumptions made in this proposal were proved by Sher-

man5. Another approach, related to quantum field theory as it relies on the

Jordan-Wigner transformation, is due to Schultz, Mattis and Lieb6. This

solution also clearly demonstrates that the 2-dimensional Ising model can

be considered a free fermion field theory. However, there is a twist, in the

form of a phase transition. It was shown7 that this has a topological origin

1L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder

Transition. Phys. Rev. 65, 117–149.
2B. Kauffman, Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis.

Phys. Rev. 76, 1232–1243 (1949).
3M. Kac and J. C. Ward, A Combinatorial Solution of the Two-Dimensional Ising

Model. Phys. Rev. 88, 1332–1337 (1952). See also: R. B. Potts and J. C. Ward, The

Combinatorial Method and the Two-dimensional Ising Model. Progr. Theor. Phys. 13,

38–46 (1955); and C. A. Hurst and H. S. Green, New Solution of the Ising Problem for a

Rectangular Lattice. J. Chem. Phys. 33, 1059–1063 (1960); and P. W. Kasteleyn, Dimer

Statistics and Phase Transitions. J. Math. Phys. 4, 287–293 (1963).
4R. P. Feynman, Statistical Mechanics. A Set of Lectures., Chapter 5, Frontiers in

Physics; Benjamin/Cummings Publ. Comp., 1972.
5S. Sherman, Combinatorial Aspects of the Ising Model for Ferromagnetism. I. A

Conjecture of Feynman on Paths and Graphs. J. Math. Phys. 1, 202–217 (1960) and

Addendum: 4, 1213 (1963).
6T. D. Schultz, D. C. Mattis and E. H. Lieb, Two-Dimensional Ising Model as a Soluble

Problem of Many Fermions. Rev. Mod. Phys. 36, 856–871 (1964).
7J. T. Lewis & P. N. M. Sisson, Commun. Math. Phys. 44, 279–292 (1975) and J.

T. Lewis & M. Winnink, The Ising model phase transition and the index of states of

the Clifford algebra. Colloquia Mathematica Societatis Janos Bolyai 27: Random Fields.
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by reformulating the model on an infinite lattice in terms of a C∗-algebra.

The simplest approach is probably via the introduction of Grassmann vari-

ables: see Samuel8 and Ytzykson9 and the particularly simple approach of

Plechko10. Although Onsager already proposed a formula for the sponta-

neous magnetization, a derivation was only published by Yang11. Finally, let

me mention the solution by Baxter12 which uses his star-triangle transfor-

mation and the related Yang-Baxter equation, which he also used to solve

several other models, notably the 8-vertex model and the XYZ Heisenberg

chain13.

Here we consider still another approach, which relies on the original Bethe

Ansatz, which was introduced by Bethe14 in his celebrated paper of 1931. In

this work Bethe succeeded in computing the eigenvalues of the homogeneous

quantum Heisenberg model in one dimension (XXX model) using an Ansatz

for the eigenfunctions. The Bethe Ansatz has led to a veritable revolution in

mathematics. A large number of different models, both classical and quan-

Esztergom, Hungary 1979.
8S. Samuel, The use of anticommuting variable integrals in statistical mechanics. I.

The computation of partition functions; II. The computation of correlation functions. J.

Math. Phys. 21, 2806–2814 and 2815–2819. (1980).
9C. Ytzykson, Ising Fermions (I) and (II). Nuclear Phys. B210, 448–476; and 477–498

(1982).
10V. N. Plechko, Grassmann Variable Analysis for 1D and 2D Ising Models. Commun.

DIAS 31, 2019. See also V. N. Plechko, Simple Solution of Two-Dimensional Ising Model

on a Torus in Terms of Grassmann Integrals. Teor. Mat. Fiz. 64 150–162 (1985) (Transl.

Sov. Phys.-Theor. Math. Phys. 64, 748–756 (1985).
11C. N. Yang, The Spontaneous Magnetization of a Two-Dimensional Ising Model. Phys.

Rev. 85, 808–816 (1952). A combinatorial derivation using Szégö’s Theorem, was obtained

by E. W. Montroll, R. B. Potts and J. C. Ward, Correlations and Spontaneous Magneti-

zation of the Two-Dimensional Ising Model. J. Math. Phys. 4, 308–322 (1963).
12R. J. Baxter, Exactly Solved Models in Statistical Mechanics. Chapter 7. Acad. Press,

1982 and Dover Publ. Inc. 2007.
13R. J. Baxter, Partition Function of the Eight-Vertex lattice Model. Ann. Phys. 70,

193–228 (1972) and One-Dimensional Anisotropic Heisenberg Chain. Ann. Phys. 70,

323–337 (1972). See also: R. J. Baxter, Exactly Solved Models in Statistical Mechanics.

Acad. Press, 1982 and Dover Publ. Inc. 2007.
14H. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen

Atomkette. Z. f. Physik 71, 205–226 (1931). (Transl. on my website: On the Theory of

Metals. I. Eigenvalues and Eigenfunctions of a Linear Chain of Atoms.)
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tum, is now known that can be solved using this method or the extension

introduced by Baxter and developed further by the St. Petersburg school of

Faddeev et al.15. It is now often referred to as the algebraic Bethe Ansatz. The

first application of the Bethe Ansatz to a model other than the Heisenberg

model is due to Lieb16, who computed the residual entropy of square ice. He

then extended this to the more general 6-vertex model17. Another application

is the solution of the non-linear Schrödinger model, or one-dimensional Bose

gas with δ-interaction18. Their solution for the eigenvalues was extended to

a calculation of the thermodynamics by Yang and Yang19. This was made

rigorous by Dorlas, Lewis and Pulé20. The Yang-Yang derivation was gen-

eralized to the Heisenberg model by Takahashi21 and also to other models,

and is now know as the thermodynamic Bethe Ansatz.

Fortunately, we shall see that for the 2-dimensional Ising model, the Bethe

Ansatz solutions are quite simple and explicit. In these notes, we start by

considering the 1-dimensional Ising model. We give in fact 3 different solu-

tions: the standard solution using the diagonalization of the transfer matrix,

the combinatorial solution given by Ising himself, and another, quite simple

approach, which might be new and is also based on the transfer matrix, but

15L. D. Faddeev and L. A. Takhtadzhyan, The Quantum Method of the Inverse Problem

and the Heisenberg XYZ Model. Russian Math. Surveys 34, 11–68 (1979). See also: E.

K. Sklyanin, L. A. Takhtadzhyan and L. D. Faddeev, Quantum Inverse Problem Method.

I. Theor. Math. Phys. 40, 688–706 (1979).
16E. H.Lieb, Residual Entropy of Square Ice. Phys. Rev. 162, 162–172 (1966).
17E. H. Lieb, Exact solution of the F model of an antiferroelectric. Phys. Rev. Lett. 18,

1046–1048 and ‘Exact solution of the two-dimensional Slater KDP model of a ferroelectric.’

Phys. Rev. Lett. 20, 1445–1448 (1967). See also E. H. Lieb and F. Y. Wu, Two-

dimensional Ferroelectric Models. In: Phase Transitions and Critical Phenomena, Vol. 1,

pp. 331–490. Eds. C. Domb and M. S. Green. Acad. Press, 1972.
18E. H. Lieb and W. Liniger, ‘Exact analysis of an interacting Bose gas. I. General

solution and the ground state. II. The excitation spectrum.’ Phys. Rev. 130, 1605–1624

(1963).
19C. N. Yang and C. P. Yang, Thermodynamics of a one-dimensional system of Bosons

with repulsive delta-function interaction. J. Math. Phys. 10, 1115–1122 (1969).
20T. C. Dorlas, J. T. Lewis and J. V. Pulé, The Yang-Yang Thermodynamic Formalism

and Large Deviations. Commun. Math. Phys. 124, 365–402 (1989).
21M. Takahashi, One-Dimensional Heisenberg Model at Finite Temperature. Progr.

Theor. Phys. 46, 401–415 (1971).
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without diagonalization. Next we consider the Ising model on 2, 3 and 4

linked chains respectively. This should set the scene for the general solution.

Adding extra chains introduces new complications at each of these stages and

prepares the way for the general solution using Bethe Ansatz diagonalization

of a submatrix.

T. C. Dorlas, April 2022.
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1 The Ising chain

The Ising chain is a model of spin variables si = ±1 (i = 1, . . . , N) arranged

on a line with nearest-neighbour interaction. Assuming periodic boundary

conditions, the interaction Hamiltonian is given by

HN({si}Ni=1) = −J
N∑
i=1

sisi+1 −H
N∑
i=1

si, (1.1)

where we set sN+1 = s1. The coupling constant J will be assumed to be

positive (ferromagnetic). H is an external magnetic field. The corresponding

partition function is defined by

ZN(β) =
∑

s1,...,sN=±1

e−βHN ({si}Ni=1), (1.2)

where β > 0 is the inverse temperature (setting kB = 1). The thermody-

namics of the model in the thermodynamic limit is then given by the free

energy density22

f(β, J,H) = − 1

β
lim

N→∞

1

N
lnZN(β). (1.3)

In the following we give 3 different ways of computing ZN and the corre-

sponding free energy density for this simple model.

1.1 Transfer matrix solution

This solution is given in many textbooks23. We write the partition function

as a trace of the N -th power of the so-called transfer matrix. Consider two

neighbouring spins si and si+1. Dividing the magnetic field equally over the

two spins, the corresponding factor in the partition function equals eβ(J+H)

22See for example T. C. Dorlas, Statistical Mechanics, Fundamentals and Model Solu-

tions (2nd Ed.), Taylor and Francis, 2021.
23See for example K. Huang, Statistical Mechanics. J. Wiley and Sons, 1963. Section

16.5, or R. J. Baxter, loc. cit. Chapter 2, or T. C. Dorlas, loc. cit. Chapter 28.
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is si = si+1 = +1, e−βJ if sisi+1 = −1, and eβ(J−H) if si = si+1 = −1.

Introducing the transfer matrix

T =

(
eβ(J+H) e−βJ

e−βJ eβ(J−H)

)
,

we can then express ZN as follows:

ZN =
∑

s1,...,sN=±1

Ts1,s2Ts2,s3 · · ·TsN−1,sNTsN ,s1 = Tr (TN). (1.4)

If λ± are the eigenvalues of the matrix T , then it follows that

ZN = λN+ + λN− , (1.5)

and hence

f(β, J,H) = − 1

β
lnλ+, (1.6)

assuming that λ+ > λ−. It is easy to determine λ±:

λ± = eβJ cosh βH ±
√
e2βJ sinh2 βH + e−2βJ . (1.7)

Thus,

f(β, J,H) = − 1

β
ln

{
eβJ cosh βH ±

√
e2βJ sinh2 βH + e−2βJ

}
= −J − 1

β
ln cosh(βH)− 1

β
ln
(
1 +

√
u2 + (1− u2)e−4βJ

)
,

(1.8)

where we put

u = tanh(βH). (1.9)

1.2 Ising’s combinatorial solution

We now present Ising’s combinatorial derivation of the formula for ZN . Con-

sider a configuration with N+ +-spins and N− = N −N+ −-spins, e.g.

+ + − − + − − − − + + + − + + − −−

2



Assume that the first spin is +. The minus spins are divided over a number of

separate intervals p. The number of possibilities for choosing these intervals

(4 in the above case) is
(
N+

p

)
. Given the intervals we can divide the −-spins

over them in
(
N−−1
p−1

)
ways (provided N− ≥ 1). (To divide the − spins, we

put division marks in p−1 positions among the N−−1 possible places.) The

corresponding energy (Hamiltonian) is then −J(N − 4p)−H(N+ −N−).

The resulting expression for ZN is

ZN = eβ(J+H)N + eβ(J−H)N

+
N−1∑
N+=1

N+∧N−∑
p=1

[(
N+

p

)(
N− − 1

p− 1

)
eβJ(N−4p)+βH(N+−N−)

+

(
N−

p

)(
N+ − 1

p− 1

)
eβJ(N−4p)+βH(N+−N−)

]
.(1.10)

(The first two terms correspond to all spins being + or all −; the last term

corresponds to the case where the first spin is −.) To evaluate these sums,

we consider the generating function
∑∞

N=0 ZNx
N . Using the formula

∞∑
N=p

(
N

p

)
xN =

xp

(1− x)p+1
, (1.11)

3



we have

∞∑
N=0

ZNx
N =

1

1− xeβ(J+H)
+

1

1− xeβ(J−H)

+
∞∑
p=1

e−4βJp

∞∑
N+=p

∞∑
N−=p

xN++N−eβ(J+H)N+eβ(J−H)N−

×

[(
N+

p

)(
N− − 1

p− 1

)
+

(
N−

p

)(
N+ − 1

p− 1

)]
=

1

1− xeβ(J+H)
+

1

1− xeβ(J−H)

+
∞∑
p=1

e−4βJp

{
xpeβ(J+H)p

(1− xeβ(J+H))p+1

xpeβ(J−H)p

(1− xeβ(J−H))p

+
xpeβ(J+H)p

(1− xeβ(J+H))p
xpeβ(J−H)p

(1− xeβ(J−H))p+1

}
=

{
1

1− xeβ(J+H)
+

1

1− xeβ(J−H)

}
×

∞∑
p=0

{
x2e−2βJ

(1− xeβ(J+H))(1− xeβ(J−H))

}p

= 2
1− xeβJ cosh βH

1− 2xeβJ cosh βH + 2x2 sinh 2βJ
. (1.12)

Then, using the formula

∞∑
N=0

[
(a+

√
b )N + (a−

√
b )N

]
xN = 2

1− ax

(1− ax)2 − bx2
(1.13)

it follows that

ZN = λN+ + λN− , (1.14)

where λ± are given by equation (1.7).

Note that the combinatorial expression (1.10) also gives rise to a varia-

4



tional expression for the free energy:

f(β) = − 1

β
sup

x∈[0,1]
sup

0≤u≤x∧(1−x)

{
β(J −H) + 2βHx− 4βJu

−2u ln
u

x
− (x− u) ln

x− u

x

−u ln u

1− x
− (1− x− u) ln

1− x− u

1− x

}
= −J +H − 1

β
sup

x∈[ 1
2
,1]

sup
u∈[0,1−x]

{
2βHx− 4βJ u− 2u lnu

− (x− u) ln(x− u)− (1− x− u) ln(1− x− u)

+x lnx+ (1− x) ln(1− x)
}
. (1.15)

Maximising over x yields

(1− x)(x− u)

x(1− x− u)
= e2βH , (1.16)

and maximising over u yields

(x− u)(1− x− u) = u2e4βJ . (1.17)

Solving for u from (1.16) and substituting in (1.17) yields

e2βH

(e2βH − 1)2
(2x− 1)2

x(1− x)
= e4βJ (1.18)

and hence

x =
1

2

{
1 +

sinh βH√
sinh2 βH + e−4βJ

}
. (1.19)

Inserting into the expression for u gives

u =
1

2

e−4βJ(
cosh βH +

√
sinh2 βH + e−4βJ

)√
sinh2 βH + e−4βJ

. (1.20)
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Inserting these expressions into (1.15) finally leads to

f(β) = −J +H − 1

β

{
2βH − 1

β
ln
x− u

x

}
= −J −H − 1

β
ln

{
1− e−4βJ

sinh βH +
√

sinh2 βH + e−4βJ

× 1

cosh βH +
√
sinh2 βH + e−4βJ

}
= −J −H − 1

β
ln

{
1−

√
sinh2 βH + e−4βJ − sinh βH√
sinh2 βH + e−4βJ + cosh βH

}

= −J −H − ln
eβH

cosh βH +
√

sinh2 βH + e−4βJ

= −J − 1

β
ln

(
cosh βH +

√
sinh2 βH + e−4βJ

)
. (1.21)

1.3 Algebraic solution

We can derive the expression (1.5), where λ± is given by (1.7), algebraically

as follows. First we write

ZN = eβJN(cosh βH)N Tr (AB)N , (1.22)

where A = 1 + λσx with λ = e−2βJ , and B = 1 + uσz. To see this, note

that instead of (1.4) we can also write separately the interaction term and

the magnetic field term thus

eβJsisi+1eβHsi+1 .

Then

eβJsisi+1 = eβJ(δsi,si+1
+ λδsi,−si+1

) = eβJ(1+ λσx)si,si+1
,

where λ = e−2βJ , and

eβHsi+1 = cosh(βH)(1 + usi+1) = cosh(βH)(1+ uσz)si+1,si+1
.

We put

Z̃N = Tr (AB)N = Tr ((1+ λσx)(1+ uσz))N , (1.23)

6



so that

ZN = eβJN coshN(βH)Z̃N . (1.24)

In deriving an expression for Z̃N , we now simply use the anti-commutation

relations

σxσz + σzσx = 0; (σx)2 = (σz)2 = 1. (1.25)

We expand the product (AB)N choosing in each of the factors AB of the

product the term 1 or at least one σ operator. There must be an even number

of factors σx because otherwise the diagonal is zero, and there must also be

an even number of factors σz because otherwise the trace is zero. Therefore

let 2k be the number of factors where we choose at least one σ operator.

From those factors we next choose among those the factors containing a σx

at positions i1, . . . , i2p out of the total 2k. This yields

Tr (AB)N =

[N/2]∑
k=0

(
N

2k

) k∑
p=0

∑
1≤i1<···<i2p≤2k

λ2pu2k−2p

×Tr
(
(σz)i1−1σx(1+ uσz)(σz)i2−i1−1 · · · (σz)2k−i2p

)
.

(1.26)

If each second factor 1 + uσz is permuted with the previous factor σx it

becomes 1−uσz. This can then be combined with the previous factor 1+uσz

to give (1 − u2)1, which, in all, results in a factor (1 − u2)p in front of the

trace. The remaining traces are all equal ±2. We finally notice that, if we

keep the position of the even-numbered σx factors fixed, and move the odd-

numbered ones across the σz, the sign of the trace alternates. It follows that

the sum over the position of the odd-numbered factors σx cancels unless all

i2j (j = 1, . . . , p) are even, and in that case, the sum equals 2. There are

thus
(
k
p

)
possible choices for the even-numbered factors, and the result is

Z̃N = 2

[N/2]∑
k=0

(
N

2k

) k∑
p=0

(
k

p

)
λ2p(1− u2)pu2k−2p

= 2

[N/2]∑
k=0

(
N

2k

)
(u2 + (1− u2)λ2)k. (1.27)

7



Finally, we have the expansion

(1 +
√
x)N + (1−

√
x)N = 2

[N/2]∑
k=0

(
N

2k

)
xk, (1.28)

so that

Z̃N = (1 +
√
u2 + λ2(1− u2))N + (1−

√
u2 + λ2(1− u2))N . (1.29)

Alternatively, in the thermodynamic limit, we have the variational ex-

pression

lim
N→∞

1

N
ln Z̃N = sup

x∈[0,1]

{
x ln (u2 + (1− u2)λ2)− I(2x)

}
(1.30)

where I(x) = x lnx+ (1− x) ln(1− x). The supremum is attained at

x =
1

2

√
u2 + (1− u2)e−4βJ

1 +
√
u2 + (1− u2)e−4βJ

and equals

lim
N→∞

1

N
ln Z̃N = ln (1 +

√
u2 + (1− u2)e−4βJ ). (1.31)
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2 The Ising model on linked chains

In the case of M linked chains, the Hamiltonian reads

HN,M({si,j}N,M
i=1;j=1) = −J1

N∑
i=1

M∑
j=1

si,jsi+1,j − J2

N∑
i=1

M∑
j=1

si,jsi,j+1, (2.1)

where we set sN+1,j = s1,j and si,M+1 = si,1 for periodic boundary conditions.

The coupling constants J1, J2 will be assumed to be positive (ferromagnetic).

Note that we consider only the case where the external magnetic field equals

zero. The corresponding partition function is defined by

ZN,M(β) =
∑

{si,j}; si,j=±1

e−βHN,M ({si,j}). (2.2)

The free energy density is given by

f(β, J,H) = − 1

β
lim

N,M→∞

1

NM
lnZN,M(β). (2.3)

Again, we can write a transfer matrix expression for ZN,M analogous to (1.22):

ZN,M(β) = eβJ1NM cosh(βJ2)
NM Z̃N,M(β), with Z̃N,M = Tr (AB)N , (2.4)

where

A =
M∏
j=1

(1+ λσx
j ) and

B =
M∏
j=1

(1+ uσz
j ⊗ σz

j+1). (2.5)

Here σx
j = 1⊗ · · · ⊗ σx ⊗ · · · ⊗ 1, with σx at the j-th position, and similarly,

σz
j . Moreover, λ = e−2βJ1 and u = tanh(βJ2).

2.1 Two chains

In the case of two linked chains (M = 2), note that we have double the

interaction 2J2 between two vertically connected spins due to the periodic

9



boundary conditions. This may be unnatural but it is more consistent with

the case of M > 2. We consider the eigenspaces of σx ⊗ σx.

On the eigenspace H+ of σx ⊗ σx with eigenvalue +1 consider the basis

1√
2
(|++⟩ ± | − −⟩), (2.6)

where |±⟩ denote the eigenstates of σx (NOT σz). Since σz ⊗σz maps |++⟩
to | − −⟩ and vice versa, it acts like σz on this space. Moreover, σx ⊗ 1 and

1⊗σx both act like σx on this space. On the + eigenspace we therefore have

the effective trace expression

Tr
[
(1+ λσx)2(1+ uσz)2

]N
=

= (1 + λ2)N(1 + u2)N Tr

[
(1+

2λ

1 + λ2
σx)(1+

2u

1 + u2
σz)

]N
. (2.7)

This trace expression is similar to the expression for the partition function

of the 1-dimensional Ising model with field.

Replacing λ by 2λ
1+λ2 and u by 2u

1+u2 in (1.29), we get immediately,

Tr
[
(1+ λσx)2(1+ uσz)2

]N
=

∑
±

(1 + λ2)N(1 + u2)N

×

{
1±

√
4u2

(1 + u2)2
+

4λ2

(1 + λ2)2

(
1− 4u2

(1 + u2)2

)}N

=
∑
±

(
(1 + λ2)(1 + u2)±

√
4u2(1 + λ2)2 + 4λ2((1 + u2)2 − 4u2)

)N
=

∑
±

(
(1 + λ2)(1 + u2)± 2

√
u2(1 + λ4) + λ2(1 + u4)

)N
. (2.8)

The − eigenspace H− of σx ⊗ σx is spanned by

1√
2
(|+−⟩ ± | −+⟩), (2.9)

where |±⟩ again denote the eigenstates of σx. Then σz ⊗ σz acts like σz,

whereas A(| + −⟩ ± | − +⟩) = (1 − λ2)(| + −⟩ ± | − +⟩), i.e. A acts like

10



(1−λ2)1. The two operators therefore commute and we get the contribution

(1− λ2)N [(1− u)2N + (1 + u)2N ]. (2.10)

In total we therefore have

Z̃N,2 = [(1 + u)2N + (1− u)2N ](1− λ2)N

+
[
(1 + λ2)(1 + u2) + 2

√
λ2(1 + u4) + u2(1 + λ4)

]N
+
[
(1 + λ2)(1 + u2)− 2

√
λ2(1 + u4) + u2(1 + λ4)

]N
. (2.11)

It is easily seen that the second term is largest, so that

lim
N→∞

1

N
ln Z̃N,2 = lnλmax

where

λmax = (1 + λ2)(1 + u2) + 2
√
λ2(1 + u4) + u2(1 + λ4).

Remark. Note that the operator AB is nonnegative in the sense that

AB v⃗ ≥ 0 if v⃗ ≥ 0, and AB is also irreducible because all matrix elements are

positive. It follows from the Perron-Frobenius theorem (See Appendix

A) that the eigenvector corresponding to the maximal eigenvalue is positive

(up to a multiplicative factor). However, on the basis corresponding the

eigenvectors of A (more precisely, the σx
j ) one has to distinguish the space

H+ and the space H−. On these individual spaces, AB is again positive, so

the maximal eigenvalue corresponds to the positive vector in H+ or that in

H−.

Note that the interaction between the chains effectively acts like an ex-

ternal magnetic field. We might then speculate that the case of more chains

can also be decomposed in terms of effective fields.

2.2 The Ising model on a three-stranded chain

We write again

Z̃N,3 = Tr (AB)N , (2.12)
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where in this case

A = (1+ λσx)⊗ (1+ λσx)⊗ (1+ λσx), (2.13)

and

B = (1+ uσz ⊗ σz ⊗ 1)(1+ uσz ⊗ 1⊗ σz)(1+ u1⊗ σz ⊗ σz). (2.14)

The latter can be written in the form

B = (1 + u3)1+ (u+ u2)(σz
1σ

z
2 + σz

2σ
z
3 + σz

3σ
z
1). (2.15)

Analogous to the two-chain case, we can reason as follows: On the eigenspace

of σx ⊗ σx ⊗ σx with eigenvalue +1 there are two invariant subspaces: that

spanned by |+++⟩ and 1√
3
(|+−−⟩+ |−+−⟩+ |−−+⟩), and that consisting

of the vectors a1|+−−⟩+ a2| −+−⟩+ a3| −−+⟩ with a1 + a2 + a3 = 0. On

the latter, the operator

B = (1 + u)
[
(1− u+ u2)1+ u(σz

1σ
z
2 + σz

2σ
z
3 + σz

3σ
z
1)
]

(2.16)

reduces to

B+,odd = (1 + u)[(1− u+ u2)1− u1] = (1 + u)(1− u)2 1. (2.17)

Since moreover, A is also diagonal with eigenvalue (1 − λ)2(1 + λ) on this

subspace, we obtain the contribution 2(1− λ)2(1 + λ)(1 + u)(1− u)2.

On the first subspace, the operator B reduces to

B+,even = (1 + u)[(1− u+ u2)1+ u(1− σz) +
√
3uσx], (2.18)

and A reduces to

A+,even = (1 + λ)[(1 + λ2)1+ 2λσz]. (2.19)

On this subspace we therefore have to compute

Tr

[(
((1 + u2)1− uσz +

√
3uσx)((1 + λ2)1+ 2λσz)

)N]
. (2.20)

This is similar to the one-dimensional chain. We prove for future reference:

12



Lemma 2.1 Define, for any θ ∈ [0, 2π],

B(θ) = (1 + u2)1+ 2u cos(θ)σz + 2u sin(θ)σx, (2.21)

and let

A = (1 + λ2)1+ 2λσz. (2.22)

Then

Tr (AB(θ))N = (ζ+(θ))
N + (ζ−(θ))

N (2.23)

where

ζ±(θ) = (1 + λ2)(1 + u2) + 4uλ cos(θ)±
√

∆(θ), (2.24)

and

∆(θ) = [(1 + λ2)(1 + u2) + 4 cos(θ)uλ]2 − (1− u2)2(1− λ2)2. (2.25)

Proof. In expanding the product, we first choose the sites where there

is either no σ-operator or two factors σz. These factors commute with the

others and yield factors (1 + λ2)(1 + u2) + 4λu cos(θ). The remaining sites

must either have a factor σx or a single σz. Each must occur an even number

of times. The result is

Tr (AB(θ))N =

=

[N/2]∑
k=0

(
N

2k

)
[(1 + λ2)(1 + u2) + 4λu cos(θ)]N−2k

×
k∑

p=0

∑
1≤i1<···<i2p≤2k

[(2λ(1 + u2) + 2u cos(θ)(1 + λ2)]2k−2p(2u sin(θ))2p

×Tr
[
(σz)i1−1σx((1 + λ2)1+ 2λσz)(σz)i2−i1−1 . . . (σz)2k−i2p

]
. (2.26)

The factors (1+λ2)1+2λσz combine as in the one-chain case to give a factor

(1 − λ2)2p. As before the remaining traces yield the condition that each ir

must be even and the result is:

Tr (AB(θ))N = 2

[N/2]∑
k=0

(
N

2k

)
[(1 + λ2)(1 + u2) + 4λu cos(θ)]N−2k

×
k∑

p=0

(
k

p

)
[(2λ(1 + u2) + 2u cos(θ)(1 + λ2)]2k−2p

×(2u sin(θ))2p(1− λ2)2p. (2.27)
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The sum over p can be evaluated to give{
[(2λ(1 + u2) + 2u cos(θ)(1 + λ2)]2 + (2u sin(θ))2(1− λ2)2

}k
=

{
[(1 + λ2)(1 + u2) + 4uλ cos θ]2 − (1− u2)2(1− λ2)2

}k
= ∆(θ)k. (2.28)

Inserting this, the sum over k can be evaluated using the expansion (1.28)

and yields the formula (2.23).

Taking θ = 2π/3 we obtain the contribution

(1 + λ)N(1 + u)N
∑
±

[
(1 + λ2)(1 + u2)− 2uλ±

√
∆−

]N
, (2.29)

where

∆− = [(1 + λ2)(1 + u2)− 2uλ]2 − (1− u2)2(1− λ2)2. (2.30)

On the eigenspace of σx ⊗ σx ⊗ σx with eigenvalue −1 there are similarly

two invariant subspaces: that spanned by |−−−⟩ and 1√
3
(|++−⟩+|+−+⟩+

|−++⟩), and that consisting of the vectors a1|++−⟩+a2|+−+⟩+a3|−++⟩
with a1 + a2 + a3 = 0. On the latter, the operator

B = (1 + u)
[
(1− u+ u2)1+ u(σz

1σ
z
2 + σz

2σ
z
3 + σz

3σ
z
1)
]

(2.31)

again reduces to

B−,odd = (1 + u)[(1− u+ u2)1− u1] = (1 + u)(1− u)2 1. (2.32)

Moreover, A is diagonal on this space with degenerate eigenvalue (1+λ)2(1−
λ). On this subspace, we therefore obtain the contribution 2(1+λ)2(1−λ)(1+
u)(1− u)2.

On the other subspace, the operator B reduces to

B−,even = (1 + u)[(1− u+ u2)1+ u(1+ σz) +
√
3uσx], (2.33)

and A reduces to

A−,even = (1− λ)[(1 + λ2)1+ 2λσz]. (2.34)
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On this subspace we therefore have to compute (1 + u)N(1− λ)N×

Tr

[(
((1 + u2)1+ uσz +

√
3uσx)((1 + λ2)1+ 2λσz)

)N]
. (2.35)

Using the lemma above with θ = π/3 we get the contribution

(1− λ)N(1 + u)N
∑
±

[
(1 + λ2)(1 + u2) + 2uλ±

√
∆+

]N
, (2.36)

where

∆+ = [(1 + λ2)(1 + u2) + 2uλ]2 − (1− u2)2(1− λ2)2. (2.37)

The complete result is thus

Z̃N,3 = 2(1− u2)N(1− λ2)N(1− u)N [(1 + λ)N + (1− λ)N ]

+(1 + u)N(1 + λ)N(ζN1,+ + ζN1,−)

+(1 + u)N(1− λ)N(ζN2,+ + ζN2,−), (2.38)

where

ζ1,± = (1 + u2)(1 + λ2)− 2uλ±
√
∆− (2.39)

and

ζ2,± = (1 + u2)(1 + λ2) + 2uλ±
√

∆+. (2.40)

In the thermodynamic limit we get

lim
N→∞

1

N
ln Z̃N,3 = ln(1 + u)(1 + λ) + ln

[
(1 + λ2)(1 + u2)− 2λu

+2
√

(λ2 + u2 + λu)(1 + λ2u2 + λu)

]
. (2.41)

2.3 The Ising model on a four-stranded chain

The B-operator now reads

B = (1+ uσz
1σ

z
2)(1+ uσz

2σ
z
3)(1+ uσz

3σ
z
4)(1+ uσz

4σ
z
1). (2.42)

We consider again the eigenspaces of σx⊗σx⊗σx⊗σx. The eigenspace with

eigenvalue +1 now splits into a 4-dimensional space spanned by |++++⟩,
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1
2
(|++−−⟩+ |−++−⟩+ |−−++⟩+ |+−−+⟩), 1√

2
(|+−+−⟩+ |−+−+⟩)

and |−−−−⟩, a 3-dimensional space of vectors a1|++−−⟩+a2|−++−⟩+
a3|−−++⟩+a4|+−−+⟩ with a1+a2+a3+a4 = 0 and a one-dimensional

space spanned by 1√
2
(|+−+−⟩− |−+−+⟩). On the latter the operator B

reduces to (1−u2)21 and A has eigenvalue (1−λ2)2 so that the contribution

is (1− u2)2(1− λ2)2. On the second space B also reduces to (1− u2)21 and

A also has eigenvalue (1− λ2)2 so the contribution is 3(1− u2)2(1− λ2)2.

Finally consider the first subspace. On this space B has the matrix rep-

resentation

B =


1 + u4 2u(1 + u2) 2

√
2u2 2u2

2u(1 + u2) 1 + u4 + 6u2 2
√
2u(1 + u2) 2u(1 + u2)

2
√
2u2 2

√
2u(1 + u2) 1 + u4 + 2u2 2

√
2u2

2u2 2u(1 + u2) 2
√
2u2 1 + u4

 . (2.43)

We change basis by multiplying left and right by the unitary matrix

U = U∗ =


1 0 0 0

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1

 . (2.44)

The resulting matrix is

U B U =


1 + u4

√
2u(1 +

√
2u+ u2)√

2u(1 +
√
2u+ u2) 1 +

√
2u+ 4u2 +

√
2u3 + u4√

2u(1−
√
2u+ u2) 2u2

2u2
√
2u(1 +

√
2u+ u2)

√
2u(1−

√
2u+ u2) 2u2

2u2
√
2u(1 +

√
2u+ u2)

1−
√
2u+ 4u2 −

√
2u3 + u4

√
2u(1−

√
2u+ u2)√

2u(1−
√
2u+ u2) 1 + u4


(2.45)

16



This can be written as

U B U =

(
1 +

√
2u+ u2

√
2u√

2u 1−
√
2u+ u2

)

⊗

(
1−

√
2u+ u2

√
2u√

2u 1 +
√
2u+ u2

)
=

(
(1 + u2)1+

√
2σz +

√
2σx
)
⊗
(
(1 + u2)1−

√
2σz +

√
2σx
)
.

(2.46)

Notice that the matrix of A is unaffected by the transformation U and can

be written as

A =
(
(1 + λ2)1+ 2λσz

)
⊗
(
(1 + λ2)1+ 2λσz

)
. (2.47)

We can thus apply the lemma to both factors and obtain the contribution

Tr (AB+,even)
N =

(∑
±

[
(1 + λ2)(1 + u2) + 2

√
2uλ±

√
∆(

π

4
)

]N)

×

∑
±

[
(1 + λ2)(1 + u2)− 2

√
2uλ±

√
∆(

3π

4
)

]N ,

(2.48)

where

∆(
π

4
) = [(1 + λ2)(1 + u2) + 2

√
2uλ]2 − (1− u2)2(1− λ2)2 (2.49)

and

∆(
3π

4
) = [(1 + λ2)(1 + u2)− 2

√
2uλ]2 − (1− u2)2(1− λ2)2. (2.50)

The representation (2.46) can in fact be derived more simply as follows.

We have obtained B as

cosh(βJ2)
4B = exp[βJ2B0], where

B0 = σz
1σ

z
2 + σz

2σ
z
3 + σz

3σ
z
4 + σz

4σ
z
1. (2.51)
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On the 4-dimensional subspace B0 acts as follows.

B0 =


0 2 0 0

2 0 2
√
2 2

0 2
√
2 0 0

0 2 0 0

 .

To bring this into the form B1 ⊗ 1 + 1 ⊗ B2 where Bi =

(
ai bi

bi ci

)
, using

an orthogonal matrix of the form affecting only the states with total spin 0,

we write

B1 ⊗ 1+ 1⊗B2 =


a1 + a2 b2 b1 0

b2 a1 + c2 0 b1

b1 0 c1 + a2 b2

0 b1 b2 c1 + c2

 .

It follows that we must diagonalize the centre matrix, i.e.

(
0 2

√
2

2
√
2 0

)
,

which leads to the unitary matrix U above. We obtain

UB0U =


0

√
2

√
2 0√

2 2
√
2 0

√
2√

2 0 −2
√
2

√
2

0
√
2

√
2 0


and hence

B1 =

( √
2

√
2√

2 −
√
2

)
=

√
2(σx + σz)

and

B2 =

(
−
√
2

√
2√

2
√
2

)
=

√
2(σx − σz).

Now, σx ± σz =
√
2U±σ

zU± for some orthogonal matrices U±, so

exp(βJ2
√
2(σx ± σz)) = U±(cosh(2βJ2) + sinh(2βJ2)σ

z)U±

= cosh(2βJ2)1+
1√
2
(σx ± σz) sinh(2βJ2)

= cosh2(βJ2)[(1 + tanh2(βJ2))1+
√
2 tanh(βJ2)(σ

x ± σz)]. (2.52)
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This implies (2.46).

Next consider the eigenspace with eigenvalue −1. This space decomposes

into two two-dimensional spaces and four one-dimensional spaces. The first

two-dimensional space is spanned by the vectors

1

2
(|+++−⟩+ |++−+⟩+ |+−++⟩+ | −+++⟩)

and
1

2
(|+−−−⟩+ | −+−−⟩+ | − −+−⟩+ | − − −+⟩);

the second is spanned by the vectors

1

2
(|+++−⟩ − |++−+⟩+ |+−++⟩ − | −+++⟩)

and
1

2
(|+−−−⟩ − | −+−−⟩+ | − −+−⟩ − | − − −+⟩).

The one-dimensional spaces are spanned by the vectors

1

2
(|+++−⟩ − |+−++⟩ ± (|++−+⟩ − | −+++⟩))

and
1

2
(|+−−−⟩ − | − −+−⟩ ± (| −+−−⟩ − | − −−+⟩))

respectively.

On the first space the operator B reduces to

Bred,1 = (1 + u4)1+ 2u(1 + u2)(1+ σx) + 2u2(1+ 2σx)

= (1 + u)2
[
(1 + u2)1+ 2uσx

]
. (2.53)

The operator A on the other hand reduces to

Ared,1 = (1− λ2)[(1 + λ2)1+ 2λσz]. (2.54)

We can thus apply the lemma with θ = π/2 to obtain the contribution

(1 + u)2N(1− λ2)N
∑
±

[
(1 + λ2)(1 + u2)±

√
∆(π/2)

]N
, (2.55)
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where

∆(π/2) = [(1+ λ2)(1+ u2)]2 − (1− λ2)21− u2)2 = 4u2(1+ λ4) + 4λ2(1+ u4).

(2.56)

Similarly, on the second space, B reduces to

Bred,2 = (1 + u4)1− 2u(1 + u2)(1− σx) + 2u2(1− 2σx)

= (1− u)2
[
(1 + u2)1+ 2uσx

]
. (2.57)

and A reduces to

Ared,2 = (1− λ2)[(1 + λ2)1+ 2λσz] (2.58)

as before. The resulting contribution is

(1− u)2N(1− λ2)N
∑
±

[
(1 + λ2)(1 + u2)±

√
∆(π/2)

]N
. (2.59)

On the one-dimensional spaces, B reduces to (1−u2)21. On the first two

spaces, A = (1+ λ)3(1− λ), on the other two, A = (1+ λ)(1− λ)3. We thus

obtain the contributions

2(1− u2)2N(1− λ2)N [(1 + λ)2N + (1− λ)2N ]. (2.60)

In total, we obtain the following expression for Z̃N,4.

Z̃N,4 = 4ρ2N + 2ρNγN,− + γN,+(ζ
N
2,+ + ζN2,−)

+(ζN1,+ + ζN1,−)(ζ
N
3,+ + ζN3,−), (2.61)

where

ρ = (1− u2)(1− λ2), (2.62)

and

γN,+ = (1− λ2)N [(1 + u)2N + (1− u)2N ]

γN,− = (1− u2)N [(1 + λ)2N + (1− λ)2N ], (2.63)

and

ζj,± = ζ±(jπ/4) = (1 + u2)(1 + λ2)− 4uλ cos
jπ

4
±
√

∆(jπ/4). (2.64)

In the thermodynamic limit,

lim
N→∞

ln Z̃N,4 = ln ζ1,+ + ln ζ3,+. (2.65)
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3 The 2-dimensional Ising model

The general case with M chains is of course equivalent to the 2-dimensional

Ising model. To generalize the above approach, we want to transform B into a

tensor product of 2-dimensional matrices. Equivalently, since cosh(βJ2)
MB =

exp(βJ2B0), we need to find a transformation such that B0 has the form

B0 =

[M/2]∑
i=1

Bi, where Bi = 1⊗ · · · ⊗

(
ai bi

bi −ai

)
⊗ · · · ⊗ 1.

(Here the matrix

(
ai bi

bi −ai

)
is at the i-th position.)

Note that A =
⊗M

i=1(1 + λσx
i ) =

1
cosh(γ)M

eγ⊕
M
i=1σ

x
i if λ = tanh(γ). There-

fore we can subdivide the Hilbert space H = C2M into subspaces Hn where

⊕M
i=1σ

x
i has eigenvalue M − 2n with n ≤ M/2, i.e. in the representation in

which σx is diagonal, the number of minuses equals n. On the subspace Hn,

A has the eigenvalue (1 + λ)M−n(1 − λ)n. We can therefore diagonalize the

restriction B̃0 of B0 to each Hn as we did in the caseM = 4 above. This does

not affect the matrix A. Note also that B0 only connects Hn with Hn−2 and

Hn+2. We shall see below that the connections are in fact more restricted.

In order to diagonalize B̃0 on Hn we need a more general approach. Con-

sider first again the case of 2 negative signs (n = 2). We restrict ourselves to

the translation-invariant states. For the case of 8 linked chains for example,

Hn,sym is spanned by

ψ+,1 =
1√
8

7∑
k=0

τ k|++++++−−⟩,

ψ+,2 =
1√
8

7∑
k=0

τ k|+++++−+−⟩,

ψ+,3 =
1√
8

7∑
k=0

τ k|++++−++−⟩ and

ψ+,4 =
1

2

3∑
k=0

τ k|+++−+++−⟩, (3.1)
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where τ is the (periodized) translation operator. (For example, τ |+++++

+ − −⟩ = | − + + + + + + −⟩.) The matrix B̃ acts as follows: B̃ψ+,1 =

2ψ+2; B̃ψ+,2 = 2ψ+,1 + 2ψ+,3; B̃ψ+,3 = 2ψ+,2 + 2
√
2ψ+,4; B̃ψ+,4 =

2
√
2ψ+,3, i.e. the matrix is

B̃ = 2


0 1 0 0

1 0 1 0

0 1 0
√
2

0 0
√
2 0

 .

The factor
√
2 is obviously due to the normalization of ψ+,4. Replacing ψ+,4

by ψ′
+,4 =

√
2ψ+,4 the matrix becomes

B̃′ = 2


0 1 0 0

1 0 1 0

0 1 0 1

0 0 2 0

 .

We can rewrite the eigenvalue equation as

2



0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0





v1

v2

v3

v4

v3

v2

v1


= λ



v1

v2

v3

v4

v3

v2

v1


.

The latter matrix can be diagonalized by Fourier transformation, but

with a zero boundary condition, i.e. setting vk = ωk − ω−k (k = 1, . . . , 7).

Then

2



0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0





v1

v2

v3

v4

v5

v6

v7


= 2(ω + ω−1)



v1

v2

v3

v4

v5

v6

v7


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provided ω16 = 1. But v5 = v3, i.e. ω5 − ω−5 = ω3 − ω−3, if ω4 + ω2 +

1 + ω−2 + ω−4 = ω2 + 1 + ω−2, so ω4 + ω−4 = 0, i.e. ω8 = −1. In that

case also ω6 − ω−6 = ω2 − ω−2 and ω7 − ω−7 = ω − ω−1. Taking the

renormalization of ψ+,4 into account, the eigenvectors of B̃ are given by

(ω − ω−1, ω2 − ω−2, ω3 − ω−3, 1√
2
(ω4 − ω−4))T , where ω = e(2j−1)π/8, where

j = 1, 2, 3, 4. (Note that replacing ω by ω one obtains the same eigenvector

but with opposite sign.) Normalizing the vectors and multiplying by i, we

obtain the following unitary matrix.

U =
1√
2


sin π

8
sin 3π

8
sin 3π

8
sin π

8
1√
2

1√
2

− 1√
2

− 1√
2

sin 3π
8

− sin π
8

− sin π
8

sin 3π
8

1√
2

− 1√
2

1√
2

− 1√
2

 . (3.2)

This easily generalizes to arbitrary M .

3.1 Bethe Ansatz approach

In the case of higher numbers of minus signs n > 2, there are more boundary

conditions, corresponding to the case where several minuses are adjacent.

This can be solved using the Bethe Ansatz.

Note that the introduction of a factor
√
2 in ψ+,4 above just corresponds

to the different normalization of ψ+,4, which has only 4 terms rather than the

8 terms of the other basis vectors. This suggests that we need to introduce

the Fourier transform for the original basis vectors, but with equal coefficients

for translates. Moreover, the boundary conditions generalize to the case of

higher numbers of minus signs. To deal with this , let φ(x1, . . . , xn) denote

the basis vector with minus signs at the positions x1, . . . , xn, where 1 ≤ x1 <

· · · < xn ≤M . We write the eigenvectors as

ψ =
∑

1≤x1<···<xn≤M

f(x1, . . . , xn)φ(x1, . . . , xn). (3.3)

In the case n = 2 we then put

f(x1, x2) = Aωx1
1 ω

x2
2 +Bωx2

1 ω
x1
2 , (3.4)
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where ω1, ω2 and the ratio of the coefficients A and B have to be determined.

We first write the general expression for B̃n on the n-particle space:

B̃nf(x1, . . . , xn) =
n∑

i=1

(1− δxi−xi−1,1) f(x1, . . . , xi − 1, . . . , xn)

+
n∑

i=1

(1− δxi+1−xi,1) f(x1, . . . , xi + 1, . . . , xn)

+δx1,1(1− δxn,M) f(x2, . . . , xn,M)

+δxn,M(1− δx1,1) f(1, x1, . . . , xn−1), (3.5)

where we set x0 = 0 and xn+1 =M + 1.

3.1.1 The case n = 2

Let us apply this to the Bethe Ansatz expression (3.4). Assuming first 1 <

x1 < x2 − 1 < M − 1, we see easily that

B̃2f(x1, x2) = λ f(x1, x2), where λ = ω1 + ω−1
1 + ω2 + ω−1

2 .

We then have to consider the boundary conditions. First assume x2 = x1 +

1 < M and x1 > 1. Then

B̃2f(x1, x1 + 1) = Aωx1−1
1 ωx1+1

2 +Bωx1−1
2 ωx1+1

1

+Aωx1
1 ω

x1+2
2 +Bωx1

2 ω
x1+2
1 .

For this to equal λ f(x1, x1 + 1) we need the missing terms to add to 0, i.e.

(ω1 + ω−1
2 )Aωx1

1 ω
x1+1
2 + (ω−1

1 + ω2)Bω
x1+1
1 ωx1

2 = 0,

i.e. (ω1ω2 + 1)(A+B) = 0. Thus ω1ω2 = −1 and λ = 0 or A+B = 0.

Next consider the case that 1 < x1 < M − 1 and x2 =M . In that case

B̃2f(x1,M) = Aωx1
1 ω

M
2 (ω1 + ω−1

1 ) +Bωx1
2 ω

M
1 (ω2 + ω−1

2 )

+Aωx1
1 ω

M−1
2 + Aω1ω

x1
2 +Bωx1

2 ω
M−1
1 +Bω2ω

x1
1 .

This equals λ f(x1,M) provided

Aω1ω
x1
2 +Bω2ω

x1
1 = Aωx1

1 ω
M+1
2 +Bωx1

2 ω
M+1
1 .
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If A+B = 0 this leads to

ω1ω
x1
2 − ω2ω

x1
1 = ωx1

1 ω
M+1
2 − ωx1

2 ω
M+1
1 ,

so (
ω1

ω2

)x1−1

=
1 + ωM

1

1 + ωM
2

or ωM
2 = −1.

Since ω1 ̸= ω2 and x1 is arbitrary, we conclude that ωM
1 = ωM

2 = −1.

If ω1ω2 = −1 and λ = 0 then we have

f(x1, x2) = Aωx1−x2
1 (−1)x2 +Bωx2−x1

1 (−1)x1 ,

and the boundary condition becomes

A((−1)x1ω1−x1
1 + (−1)Mωx1−M−1

1 ) = B(ωx1−1
1 + (−1)x1ωM+1−x1

1 )

or

(A−BωM
1 )(−1)x1ω1−x1

1 + (A(−1)Mω−M
1 −B)ωx1−1

1 = 0.

Again, since x1 is arbitrary, we need A = BωM
1 = (−1)MBωM

1 , and in

particular M must be even.

Similarly, if x1 = 1 and 2 < x2 < M , we have the condition

Aωx2
1 ω

M
2 +Bωx2

2 ω
M
1 = Aωx2

2 +Bωx2
1 .

If A+B = 0 this again implies ωM
1 = ωM

2 = −1. If ω1ω2 = −1, we obtain

(A(−1)Mω−M
1 −B)ωx2

1 = (A−BωM
1 )(−1)x2ω−x2

1

and hence A = (−1)MωM
1 B = ωM

1 B as above.

Finally, the case x1 = 1 and x2 = M we have (1 + ω1ω2)ω
M = (1 +

ω1ω2)ω
M
1 and hence ωM

1 = ωM
2 or ω1ω2 = −1, i.e. it does not lead to any

new conditions.

In the first case we therefore obtain the eigenfunctions∑
1≤x1<x2≤M

f(x1, x2)φ(x1, x2),
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where

f(x1, x2) = ωx1
1 ω

x2
2 − ωx1

2 ω
x2
1 , (3.6)

and where ω1 ̸= ω2 are M -th roots of −1. There are obviously exactly
1
2
M(M−1) such pairs of roots. We compute the scalar products of functions

f and g of this form:

⟨f | g⟩ =
∑

1≤x1<x2≤M

(ωx1
1 ω

x2
2 − ωx1

2 ω
x2
1 )((ω′

1)
x1(ω′

2)
x2 − (ω′

2)
x1(ω′

1)
x2)

=
1

2

M∑
x1,x2=1

(ωx1
1 ω

x2
2 − ωx1

2 ω
x2
1 )((ω′

1)
x1(ω′

2)
x2 − (ω′

2)
x1(ω′

1)
x2)

=
M∑

x1,x2=1

(ωx1
1 ω

x2
2 (ω′

1)
x1(ω′

2)
x2 − ωx1

2 ω
x2
1 (ω′

1)
x1(ω′

2)
x2)

= M2(δω1ω′
1,1
δω2ω′

2,1
− δω2ω′

1,1
δω1ω′

2,1
)

= M2(δω1,ω′
1
δω2,ω′

2
− δω2,ω′

1
δω1,ω′

2
).

Assuming a given ordering of the M -th roots of −1, the eigenfunctions are

therefore orthogonal and should be normalized with a factor 1/M . These

eigenfunctions then form an orthonormal basis for a 1
2
M(M−1)-dimensional

space, and since the space spanned by φ(x1, x2) with 1 ≤ x1 < x2 ≤ M is

also 1
2
M(M − 1)-dimensional, these functions already span this space. The

other eigenfunctions obtained in case ω1ω2 = −1 must therefore be linear

combinations of the functions (3.6). To see this explicitly, note that the

former are of the form

f(x1, x2) = (−1)x2λM+x1−x2 + (−1)x1λx2−x1 ,

whereM is even and λ ̸= 0 is arbitrary. This only depends on x2−x1 and the

sign of (−1)x2 . Moreover, if x2 − x1 > M/2 then x1 < M/2 and x2 > M/2,

so we can set x′2 = x1 +M/2 and x′1 = x2 −M/2. Then

f(x′1, x
′
2) = (−1)x1+M/2λx2−x1 + (−1)x2−M/2λM+x1−x2 = (−1)M/2f(x1, x2).

It follows that there are M/2 independent values, i.e. these functions span

an M/2-dimensional space. A basis for this space is obtained by taking

λ = e(2j−1)πi/M with j = 1, . . . ,M/2. Then λM = −1 and we can write

f(x1, x2) = (−1)x2λx1−x2 − (−1)x1λx2−x1 ,

26



where we have also multiplied by a minus sign. This is exactly of the form

(3.6) with ω1 = λ and ω2 = −λ−1. (Note that this also proves that these func-

tions are orthogonal and hence indeed form a basis for the M/2-dimensional

space.)

To summarize, the functions

f(x1, x2) =
1

M
(ωx1

1 ω
x2
2 − ωx1

2 ω
x2
1 ) (3.7)

form an orthonormal basis for H2. Moreover, the translation-invariant eigen-

functions are given by those where ω2 = ω1. Indeed,

f(x1 + 1, x2 + 1) = ωx1+1
1 ωx2+1

2 − ωx1+1
2 ωx2+1

1 = ω1ω2f(x1, x2),

so we need ω1ω2 = 1.

3.1.2 Higher numbers of minuses

For larger numbers of minuses we put

f(x1, . . . , xn) =
∑
P∈Sn

A(P )
n∏

j=1

ω
xj

P (j). (3.8)

If xj+1 > xj − 1 for all j = 0, . . . , n, then we get

B̃nf(x1, . . . , xn) = λ f(x1, . . . , xn); λ =
n∑

j=1

(ωj + ω−1
j ).

If xj+1 = xj for some j then the missing terms must vanish:

∑
P∈Sn

A(P )
n∏

i=1

ωxi

P (i)(ωP (j) + ω−1
P (j+1)) = 0.

Combining P with P (j) = p, P (j+1) = q and P ′ with P ′(j) = q, P ′(j+1) =

p, we have the condition

A(P )(ωp + ω−1
q )ωxj

p ω
xj+1
q + A(P ′)(ωq + ω−1

p )ωxj
q ω

xj+1
p = 0,
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which holds if either ωpωq = −1, or A(P )+A(P ′) = 0. Moreover, if xn =M ,

we have

B̃nf(x1, . . . , xn−1,M)

=
∑
P∈Sn

A(P )

{
n−1∏
j=1

ω
xj

P (j)

(
n−1∑
k=1

(ωP (k) + ω−1
P (k))ω

−1
P (n)

)
ωM
P (n)

∑
P∈Sn

A(P )

(
n−1∏
j=1

ω
xj

P (j)ω
M−1
P (n) + ωP (1)

n−1∏
j=1

ω
xj

P (j+1)

)}
.

We therefore have the condition

∑
P∈Sn

A(P )
n−1∏
j=1

ω
xj

P (j+1)ωP (1) =
∑
P∈Sn

A(P )
n−1∏
j=1

ω
xj

P (j)ω
M+1
P (n) .

For P = (p1, . . . , pn) and P
′ = (pn, p1, . . . , pn−1) we get A(P

′)
∏n−1

j=1 ω
xj
pj ωpn =

A(P )
∏n−1

j=1 ω
xj
pj ω

M+1
pn . Therefore ωM

pn = (−1)n−1. The eigenfunctions therefore

are given by

f(x1, . . . , xn) =
∑
P∈Sn

(−1)|P |
n∏

j=1

ω
xj

P (j), (3.9)

where the ωi (i = 1, . . . , n) are distinctM -th roots of (−1)n−1. For translation-

invariant states we have in addition that
∏n

i=1 ωi = 1.

Example 3.1: M = 8; n = 4. For n = 4, the ωj are 8-th roots of

−1. These are e±πi/8, e±3πi/8, e±5πi/8 and e±7πi/8. Denote ωj = e(2j−1)πi/8

(j = 1, 3, 5, 7). The possible quadruples satisfying the condition
∏
ωi = 1

are

(ω1, ω2, ω3, ω4), (ω1, ω2, ω2, ω1)

(ω1, ω3, ω3, ω1), (ω1, ω4, ω3, ω2)

(ω1, ω4, ω4, ω1), (ω2, ω3, ω4, ω1)

(ω2, ω3, ω3, ω2), (ω2, ω4, ω4, ω2)

(ω3, ω4, ω4, ω3), (ω4, ω3, ω2, ω1).

There are exactly 10 states, corresponding to the 10-dimensional space con-

sidered previously. There are 4 states with non-zero eigenvalues: (ω1, ω2, ω2, ω1),
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(ω1, ω3, ω3, ω1), (ω2, ω4, ω4, ω2) and (ω3, ω4, ω4, ω3) with eigenvalues

2(ω1 + ω1) + 2(ω2 + ω2) = λ1 + λ2,

2(ω1 + ω1) + 2(ω3 + ω3) = λ1 − λ2,

2(ω2 + ω2) + 2(ω4 + ω4) = −λ1 + λ2,

2(ω3 + ω3) + 2(ω4 + ω4) = −λ1 − λ2.

(Here λ1 = 4 cos π
8
and λ2 = 4 cos 3π

8
.)

We compute the scalar products:

⟨f | g⟩ =
∑

1≤x1<···<xn≤M

∑
P,Q∈Sn

(−1)|P |+|Q|
n∏

j=1

(ωP (j))
xj(ω′

Q(j))
xj

=
1

n!

M∑
x1,...,xn=1

∑
P,Q∈Sn

(−1)|P |+|Q|
n∏

j=1

(ωP (j))
xj(ω′

Q(j))
xj

=
1

n!
Mn

∑
P,Q∈Sn

(−1)|P |+|Q|
n∏

j=1

δωP (j)ω
′
Q(j)

,1

= Mn
∑
P∈Sn

(−1)|P |
n∏

j=1

δωP (j),ω
′
j
.

Therefore two Bethe Ansatz eigenstates are orthogonal unless upon reorder-

ing the ωj are the same as the ω′
j. Assuming a given ordering of the M -th

roots of ±1, the eigenstates have to be normalized with a factor 1/Mn/2. The

normalized eigenfunctions are thus

f(x1, . . . , xn) =
1

Mn/2

∑
P∈Sn

(−1)|P |
n∏

j=1

ω
xj

P (j), (3.10)

where the ωi (i = 1, . . . , n) are distinct M -th roots of (−1)n−1.

Next, we need to compute the matrix elements of B0 connecting Hn and

Hn−2. The corresponding matrix Cn = Pn−2B0

∣∣
Hn

is given by

(Cfn)(x1, . . . , xn−2) =
n−2∑
j=0

xj+1−2∑
x=xj+1

fn(x1, . . . , xj, x, x+ 1, xj+1, . . . , xn−2)

+fn(1, x1, . . . , xn−2,M) (1− δx1,1)(1− δxn−2,M),

(3.11)

29



where x0 = 0 and xn−1 =M +1. We therefore have to compute ⟨fn−2 |Cfn⟩,
where fn is given by (3.10) and

fn−2(x1, . . . , xn−2) =
1

M (n−2)/2

∑
Q∈Sn−2

(−1)|Q|
n−2∏
i=1

(ω′
Q(i))

xi .

We have

⟨fn−2 |Cfn⟩ =
1

M (n−2)/2

∑
1≤x1<···<xn−2≤M

∑
Q∈Sn−2

(−1)|Q|

×
n−2∏
i=1

(ω′
Q(i))

xi(Cfn)(x1, . . . , xn−2)

=
1

Mn−1

∑
1≤x1<···<xn−2≤M

∑
Q∈Sn−2

(−1)|Q|
n−2∏
i=1

(ω′
Q(i))

xi

∑
P∈Sn

(−1)|P |

×


n−2∑
j=0

xj+1−2∑
x=xj+1

j∏
i=1

ωxi

P (i)ω
x
P (j+1)ω

x+1
P (j+2)

n−2∏
i=j+1

ωxi

P (i+2)

+ (1− δx1,1)(1− δxn−2,M)ωP (1)

n−2∏
i=1

ωxi

P (i+1)ω
M
P (n)

}

=
1

Mn−1

1

(n− 2)!

M∑
x1,...,xn−2=1

M∑
x=1

∑
Q∈Sn−2

(−1)|Q|
∑
P∈Sn

(−1)|P |

×
n−2∏
i=1

{
(ω′

Q(i))
xi
ωxi

P (i)

}
ωx
P (n−1)ω

x+1
P (n)

=
1

Mn−1

1

(n− 2)!

∑
Q∈Sn−2

(−1)|Q|
∑
P∈Sn

(−1)|P |

×Mn−2

n−2∏
i=1

δω′
Q(i)

,ωP (i)

M∑
x=1

ωx
P (n−1)ω

x+1
P (n)

=
∑
P∈Sn

(−1)|P |
n−2∏
i=1

δω′
i,ωP (i)

δωP (n−1)ωP (n),1ωP (n).

The third equality is obtained as follows. We can interchange the xj at

the cost of a factor 1/(n − 2)!. The terms where two xi = xj for some

i ̸= j vanish because of the factor (−1)|Q|, and similarly the terms where

x = xj or x + 1 = xj because of the factor (−1)|P |. In the terms with
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j = 0, . . . , n− 2 it is obvious that we can move the factors ωx
P (j+1)ω

x+1
P (j+2) to

ωx
P (n−1)ω

x+1
P (n) since it involves an even number of transpositions. In the last

term we distinguish the cases where n is even and odd. If n is even, we can

interchange ωP (1) and
∏n−2

i=1 ω
xi

P (i+1) to get
∏n−2

i=1 ω
xi

P (i)ωP (n−1). Then using the

fact that ωM
j = −1, we have ωP (n−1)ω

M
P (n) = −ωP (n−1) = −ωM

P (n)ω
M+1
P (n−1) and

interchanging P (n − 1) and P (n) the minus sign cancels. If n is odd, then

ωM
j = 1 and we have −ωP (n−1)ω

M
P (n) = −ωP (n−1) = −ωM

P (n)ω
M+1
P (n−1) after which

we again interchange P (n− 1) and P (n).

This means that the scalar product ⟨fn−2 |Cfn⟩ equals zero unless among

the ωj (j = 1, . . . , n) defining fn there are n − 2 which are equal to the

ω′
i defining fn−2, and the remaining two are complex conjugates. In that

case, the corresponding matrix element equals ω−ω, where ω and ω are the

remaining two ωj.

Example 3.2: M = 8. The only translation-invariant eigenstates with

n = 4 for which ⟨f2 |Cf4⟩ ̸= 0 are those given by two pairs of complex

conjugate roots of −1, i.e.

f(x1, . . . , x4) =
1

M2

∑
P∈S4

(−1)|P |ω
xP (1)

1 ω1
xP (2)ω

xP (3)

2 ω2
xP (4) ,

where

(ω1, ω2) = (eπi/8, e3πi/8), (eπi/8, e5πi/8), (eπi/8, e7πi/8),

(e3πi/8, e5πi/8), (e3πi/8, e7πi/8), (e5πi/8, e7πi/8).

We can label the Bethe Ansatz eigenfunction (3.10) by the M -th roots of

±1 defining it, i.e. by (ωj1 , . . . , ωjn), where

ωj = e(2j−1)πi/M , j = 1, . . . ,M, (3.12)

for n even, and

ωj = e2jπi/M , j = 0, . . . ,M − 1, (3.13)

for n odd, and where we assume 1 ≤ j1 < · · · < jn ≤M .
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3.2 The maximal eigenvalue and contribution to Z̃.

Note that the eigenvalues of A are all positive and that B restricted to

the subspaces H± is a strictly positive matrix on the basis {φ(x1, . . . , xn) :
0 ≤ n ≤ M ; 1 ≤ x1 < · · · < xn ≤ M} of eigenvectors of A, where H±

are the subspaces of C2M given by the eigenvalue ±1 of σx ⊗ · · · ⊗ σx,

that is, with with even, respectively odd, numbers of minuses. Note that

a matrix exp(B0) is (strictly) positive if B0 is nonnegative and irreducible.

Now, the general expression (3.5) for B̃0 shows that any two basis vectors

φ(x1, . . . , xn) and φ(x′1, . . . , x
′
n) such that x′i = xi except for i = j, and

x′j = xj ± 1 are connected by a positive matrix element in B̃0, so by re-

peated application, any two vectors φ(x1, . . . , xn) and φ(x
′
1, . . . , x

′
n) are con-

nected by positive matrix elements of B̃m
0 for some m. Moreover, looking

at the expression for Cn = Pn−2B0

∣∣
Hn

given by (3.11), we see that vec-

tors φ(x1, . . . , xn) and φ(x′1, . . . , x
′
n−2) are connected by positive matrix el-

ements provided that either xj + 1 = xj+1 for some j = 1, . . . ,M − 1 and

x1 = x′1, . . . , xj−1 = x′j−1, xj+2 = x′j, . . . , xn = x′n−2, or x1 = 1 and xn = M

and x2 = x′1, . . . , xn−1 = x′n−2. Again, by iterating, we find that all basis

vectors of Hn are connected by positive matrix elements of powers of B0 to

vectors of Hn−2.

It follows from the Perron-Frobenius theorem (see Appendix A), that the

eigenvector with maximum eigenvalue of AB must be either a vector with

positive components on the eigenbasis of A in H+, or a vector with positive

components in H− (both up to a multiplicative factor). Since A and B are

both translation-invariant, it follows that these eigenvectors must belong to

the subspaces of translation-invariant vectors. We now consider separately

the cases H+ and H−.

3.2.1 The case of even n.

The space H+ corresponds to the case of even n, namely

H+ =

[M/2]⊕
k=0

H2k. (3.14)
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Note that the maximal eigenvector ψ must have positive components in each

H2k. We consider first the case that M is also even.

The case that M is even.

Then HM is 1-dimensional, and the Bethe Ansatz vector fM is defined by the

sequence ω1, . . . , ωM , where ωj is given by (3.12) for the case n even. Note

that ωM+1−j = ωj. Now, by the fact that ⟨fn−2 |B0 fn⟩ = 0 unless fn−2 is

defined by a sequence ωj′1
, . . . , ωj′n−2

obtained from the sequence ωj1 , . . . , ωjn

defining fn by omitting a conjugate pair, it follows that the projection P2kψ

of ψ onto H2k must be spanned by Bethe Ansatz vectors f2k defined by

sequences ωj1 , . . . , ωj2k such that ωj2k+1−p
= ωjp , i.e. j2k+1−p =M +1− jp for

p = 1, . . . , k. (see Example 3.1.)

On this basis, B0 has the matrix elements

⟨f ′
2k |B0 f2k⟩ =


∑n

p=1(ωjp + ω−1
jp
) if ω′

jp = ωjp for all p = 1, . . . , k;

0 otherwise;

⟨f ′
2k−2 |B0 f2k⟩ =

ωj − ω−1
j if {ωjp}kp=1 = {ω′

jq}
k−1
q=1 ∪ {ωj}

0 otherwise.

⟨f ′
2k |B0 f2k−2⟩ = ⟨f2k−2 |B0 f ′

2k⟩,
⟨f ′

2l |B0 f2k⟩ = 0 if |k − l| > 1. (3.15)

In particular, ⟨f0 |B0f0⟩ = 0 and also ⟨fM |B0 fM⟩ = 0 since

M∑
j=1

ωj = 0. (3.16)

At this stage it is convenient to multiply the basis vectors f2k by (−i)k.
This does not change the diagonal elements of B, but the off-diagonal ele-

ments are multiplied by −i.

Moreover, we now label the vectors fn defined by (ωj1 , . . . , ωjn) such

that jn+1−p = jp, (p = 1, . . . , n) by a sequence (s1, . . . , sM/2) where sj is

an Ising spin such that sj = +1 if ωj ∈ {ωj1 , . . . , ωjn} and sj = −1 if
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ωj /∈ {ωj1 , . . . , ωjn}. We write this vector as |{sj}M/2
j=1 ⟩. Thus,

|s1, . . . , sM/2⟩ = (−i)n/2fn;ωj1
,...,ωjn

, where

jn+1−p = jp and sj =

+1 if j ∈ {j1, . . . , jn/2};

−1 if j ∈ {j1, . . . , jn/2}.
(3.17)

On this basis, B0 has the matrix elements

⟨s′1, . . . , s′M/2 |B0 |s1, . . . , sM/2⟩ =



4
∑M/2

j=1 δsj ,1 cos
(2j−1)π

M

if s′j = sj for all j = 1, . . . ,M/2;

2 sin (2j−1)π
M

if s′jsj = −1 and s′i = si for i ≠ j;

0 otherwise.

(3.18)

This is just the matrix

B0 =

M/2∑
j=1

(1⊗ · · · ⊗Bj ⊗ · · · ⊗ 1), (3.19)

where the factor Bj appears in the j-th position and equals

Bj = 2

(
cos (2j−1)π

M
sin (2j−1)π

M

sin (2j−1)π
M

− cos (2j−1)π
M

)
= 2 cos θ2j−1 σ

z + 2 sin θ2j−1 σ
x, (3.20)

where

θr =
rπ

M
. (3.21)

To see this, note that

⟨s1, . . . , sM/2 |B0 |s1, . . . , sM/2⟩

=

M/2∑
j=1

2(δsj ,1 cos θ2j−1 − δsj ,−1 cos θM+1−2j

= 4

M/2∑
j=1

δsj ,1 cos θ2j−1. (3.22)
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Indeed, note that, by (3.16),

M/2∑
j=1

cos
(2j − 1)π

M
= 0. (3.23)

Example 3.3. Consider the case M = 6. Then (3.19) reads

B0 =



0 1 2 0 1 0 0 0

1 2
√
3 0 2 0 1 0 0

2 0 0 1 0 0 1 0

0 2 1 2
√
3 0 0 0 1

1 0 0 0 −2
√
3 1 2 0

0 1 0 0 1 0 0 2

0 0 1 0 2 0 −2
√
3 1

0 0 0 1 0 2 1 0


.

Indeed,

B1 =

( √
3 1

1 −
√
3

)
, B1 =

(
0 2

2 0

)
, B1 =

(
−
√
3 1

1
√
3

)
.

The entries are in the order +++, ++−, +−+, +−−, −++, −+−, −−
+, −−−. Thus, on the diagonal, the entries are

0, −4 cos
5π

6
, −4 cos

π

2
, 4 cos

π

6
,−4 cos

π

6
, 4 cos

π

2
, 4 cos

5π

6
, 0.

Exponentiating, we find that the matrix of B given by coshM(βJ2)B =

eβJ2B0 on the Bethe basis is

B =
1

coshM(βJ2)

M/2⊗
j=1

eβJ2Bj , (3.24)

where

eβJ2Bj

cosh2(βJ2)
= (1 + u2)1+ 2u cos θ2j−1 σ

z + 2u sin θ2j−1 σ
x, (3.25)

where θr is given by (3.21).
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On this same basis, the matrix A is diagonal with diagonal elements

(1− λ)n(1 + λ)M−n. Thus,

A =

M/2⊗
j=1

Aj, where

Aj =

(
(1− λ)2 0

0 (1 + λ)2

)
= (1 + λ2)1− 2λσz. (3.26)

Applying Lemma 2.1 we obtain the following contribution to Z̃N,M :

Z̃max,+ =

M/2∏
j=1

(ζN2j−1,+ + ζN2j−1,−), (3.27)

whereζr,± = (1 + λ2)(1 + u2)− 4uλ cos rπ
M

±
√
∆r, where

∆r =
[
(1 + λ2)(1 + u2)− 4uλ cos rπ

M

]2 − (1− λ2)2(1− u2)2.
(3.28)

The case that M is odd.

In this case, HM−1 is M -dimensional, but the translation-invariant Bethe

Ansatz vector fM−1 is unique, and defined by the sequence

ω1, . . . , ω(M−1)/2, ω(M+3)/2, . . . , ωM .

(Note that ω(M+1)/2 = −1 is excluded. Thus, jM−1 =M . Also, ωM+1−j = ωj

for j = 1, . . . , M−1
2

.) The matrix elements of B0 on the Bethe Ansatz vectors

f2k defined by (ωj1 , . . . , ωj2k) such that ωj2k+1−p
= ωjp , i.e. j2k+1−p =M +1−

jp, are again given by (3.15). However, there is no symmetry, since in this

case

⟨fM−1 |B0 fM−1⟩ = 2

(M−1)/2∑
j=1

(ωj + ωj) = 2
M∑
j=1

ωj − 2ω(M+1)/2 = 2.

We introduce again spin variables s1, . . . , s(M−1)/2 such that sj = +1 if j ∈
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{j1, . . . , jk} and sj = −1 otherwise. The matrix B0 on this basis becomes

⟨s′1, . . . , s′(M−1)/2 |B0 |s1, . . . , s(M−1)/2⟩

=



4
∑(M−1)/2

j=1 δsj ,1 cos
(2j−1)π

M

if s′j = sj for all j = 1, . . . , (M − 1)/2;

2 sin (2j−1)π
M

if s′jsj = −1 and s′i = si for i ̸= j;

0 otherwise.

(3.29)

Using the identity (3.16) we can now write

(M−1)/2∑
j=1

δsj ,1 cos
(2j − 1)π

M
=

1

2
−

(M−1)/2∑
j=1

δsj ,−1 cos
(2j − 1)π

M
.

It follows similarly to (3.22) that

B0 = 12(M−1)/2 +

(M−1)/2∑
j=1

(12 ⊗ · · · ⊗Bj ⊗ · · · ⊗ 12), (3.30)

where Bj is given by (3.20).

Example 3.4. Consider the case M = 5. Then B0 is a 4 × 4 matrix:

f0 and f4 are unique, and there are two Bethe Ansatz vectors f2 defined by

(ω1, ω5) and (ω2, ω4) respectively. Thus,

B0 =


0 2 sin π

5
2 sin 3π

5
0

2 sin π
5

4 cos π
5

0 2 sin 3π
5

2 sin 3π
5

0 4 cos 3π
5

2 sin π
5

0 2 sin 3π
5

2 sin π
5

2

 .

Using the fact that 2(cos π
5
+ cos 3π

5
) = 1, this can be written as

B0 = 1+


−1 2 sin π

5
2 sin 3π

5
0

2 sin π
5

2(cos π
5
− cos 3π

5
) 0 2 sin 3π

5

2 sin 3π
5

0 2(cos 3π
5
− cos π

5
) 2 sin π

5

0 2 sin 3π
5

2 sin π
5

1

 ,
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and using this identity once more, we have B0 = 14 + B1 ⊗ 12 + 12 ⊗ B2,

where

B1 = 2 sin
3π

5
σx − 2 cos

3π

5
σz and

B2 = 2 sin
π

5
σx − 2 cos

π

5
σz.

Noting that
eβJ2

cosh(βJ2)
= 1 + u,

we find that the matrix of B on the Bethe basis is given by

B =
eβJ2

coshM(βJ2)

(M−1)/2⊗
j=1

eβJ2Bj

= (1 + u)

(M−1)/2⊗
j=1

[(1 + u2)1+ 2u cos θ2j−1σ
z + 2u sin θ2j−1σ

x].(3.31)

On this same basis, the matrix A is diagonal with diagonal elements

(1− λ)n(1 + λ)M−n. Thus,

A = (1 + λ)

(M−1)/2⊗
j=1

Aj, where

Aj =

(
(1− λ)2 0

0 (1 + λ)2

)
= (1 + λ2)1− 2λσz. (3.32)

Applying Lemma 2.1 we obtain the following contribution to Z̃N,M :

Z̃max,+ = (1 + u)N(1 + λ)N
(M−1)/2∏

j=1

(ζN2j−1,+ + ζN2j−1,−), (3.33)

whereζr,± = (1 + λ2)(1 + u2)− 4uλ cos rπ
M

±
√
∆r, where

∆r =
[
(1 + λ2)(1 + u2)− 4uλ cos rπ

M

]2 − (1− λ2)2(1− u2)2.
(3.34)
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3.2.2 The case of odd n.

Similarly to the even case, the maximal eigenvector ψ ∈ H− must be a vector

in the space spanned by the Bethe Ansatz vectors fn with n = 2k − 1, such

that each fn is defined by a sequence ωj0 , . . . , ωjn−1 where apart from ωj0 all

other ωj occur together with their complex conjugates. Again we distinguish

the cases M even and odd.

In case that M is even, then

H− = ⊕M/2
k=1H2k−1.

The highest space HM−1 isM -dimensional but the translation-invariant sub-

space is 1-dimensional and spanned by the vector fM−1 defined by

(1, ω1, . . . , ωM/2−1, ωM/2+1, . . . , ωM−1),

where

ωj = e2πji/M (j = 0, 1, . . . ,M − 1) (3.35)

are the M -th roots of 1 (see (3.13)). Indeed, the only missing root of

unity must be real-valued, and since
∏M

p=1 ωj = 1, the missing root must

be −1. Similarly, f1 ∈ H1 is also unique and given by f1(x1) = 1/
√
M.

We have ⟨f1 |B0 f1⟩ = ⟨fM−1 |B0 fM−1⟩ = 2. In general, f2k−1 is defined by

(1, ωj1 , . . . , ωj2k−2
) such that ωj2k−1−p

= ωjp for p = 1, . . . , (n−1)/2 = k−1. In-

troducing again a sequence of spin variables s1, . . . , sM/2−1 such that sj = +1

if j ∈ {j1, . . . , jk−1} and sj = −1 otherwise, we have

⟨s′1, . . . , s′M/2−1 |B0 |s1, . . . , sM/2−1⟩

=



2 + 4
∑M/2−1

j=1 δsj ,1 cos
2jπ
M

if s′j = sj for all j = 1, . . . ,M/2− 1;

2 sin 2jπ
M

if s′jsj = −1 and s′i = si for i ̸= j;

0 otherwise.

(3.36)

Note that in this case, we have

M/2−1∑
j=1

cos
2πj

M
= 0. (3.37)
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Therefore,

4

M/2−1∑
j=1

δsj ,1 cos
2jπ

M
= 2

M/2−1∑
j=1

sj cos
2jπ

M
.

This implies that B0 can be written as

B0 = 212M/2−1 +

M/2−1∑
j=1

(12 ⊗ · · · ⊗Bj ⊗ · · · ⊗ 12), (3.38)

where there are M/2 − 1 factors. Moreover, the eigenvalues of A are (1 −
λ)2k−1(1 + λ)M+1−2k = (1− λ2)(1− λ)2(k−1)(1 + λ)2(M/2−k), so that A can be

written as

A = (1− λ2)⊗M/2−1
j=1 ((1 + λ2)12 − 2λσz). (3.39)

Applying Lemma 2.1, we get the contribution

Z̃max,− = (1 + u)2N(1− λ2)N
M/2−1∏
j=1

(ζN2j,+ + ζN2j,−), (3.40)

whereζr,± = (1 + λ2)(1 + u2)− 4uλ cos rπ
M

±
√
∆r, where

∆r =
[
(1 + λ2)(1 + u2)− 4uλ cos rπ

M

]2 − (1− λ2)2(1− u2)2.
(3.41)

If M is odd, then

H− = ⊕(M+1)/2
k=1 H2k−1.

The highest space HM is 1-dimensional and is given by fM defined by the se-

quence of all roots (1, ω1, . . . , ωM−1). The corresponding diagonal element of

B0 is zero. The space H1 has one translation-invariant element, ⟨f1 |B0 f1⟩ =
2. For other n = 2k − 1, fn is defined by a sequence (1, ωj1 , . . . , ωj2k−2

) with

ωj2k−1−p
= ωjp . Introducing spin variables s1, . . . , s(M−1)/2, the matrix ele-
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ments of B0 are

⟨s′1, . . . , s′(M−1)/2 |B0 |s1, . . . , s(M−1)/2⟩

=



2 + 4
∑(M−1)/2

j=1 δsj ,1 cos
2jπ
M

if s′j = sj for all j = 1, . . . , (M − 1)/2;

2 sin 2jπ
M

if s′jsj = −1 and s′i = si for i ̸= j;

0 otherwise.

(3.42)

In this case,

1

2
+

(M−1)/2∑
j=1

cos
2πj

M
= 0. (3.43)

Therefore we can write

2 + 4

(M−1)/2∑
j=1

δsj ,1 cos
2jπ

M
= 1 + 2

(M−1)/2∑
j=1

sj cos
2jπ

M
.

We conclude that

B0 = 12(M−1)/2 +

(M−1)/2∑
j=1

(12 ⊗ · · · ⊗Bj ⊗ · · · ⊗ 12). (3.44)

Also, the eigenvalues of A are (1−λ)2k−1(1+λ)M+1−2k = (1−λ)(1−λ)2k−2(1+

λ)M−1−(2k−2), so we have

A = (1− λ)⊗(M−1)/2
j=1 ((1 + λ2)12 − 2λσz). (3.45)

The resulting contribution is

Z̃max,− = (1 + u)N(1 + λ)N
(M−1)/2∏

j=1

(ζN2j,+ + ζN2j,−). (3.46)

Remark. In the same way one can of course obtain all contributions to

Z̃ since all Bethe Ansatz eigenstates are given. We give the general result in

Appendix B.
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3.3 The thermodynamic limit.

The thermodynamic limit is given by

lim
N,M→∞

1

NM
ln Z̃N,M = lim

M→∞

1

M
max{

[M/2]∑
j=1

ln ζ2j−1,+,

[M/2]∑
j=1

ln ζ2j,+}

=
1

2π

∫ π

0

dθ ln ζ(λ, u; θ), (3.47)

where

ζ(λ, u; θ) = (1 + λ2)(1 + u2)− 4uλ cos θ

+
√

[(1 + λ2)(1 + u2)− 4uλ cos θ]2 − (1− λ2)2(1− u2)2.

(3.48)

We want to rewrite this in terms of the original variables. Let K1 = βJ1 and

K2 = βJ2. Note that
1

NM
lnZN,M(K1, K2) = K1+ln cosh(K2)+

1
NM

ln Z̃N,M .

Moreover,

e2K1(1 + λ2) = 2 cosh(2K1) and cosh2(K2)(1 + u2) = cosh(2K2),

and e2K1λ = 1 and cosh2(K2)u = 1
2
sinh(2K2), and finally,

e2K1(1− λ2) = 2 sinh(2K1) and cosh2(K2)(1− u2) = 1.

Therefore, we have for the free energy density,

−βf(β, J1, J2) =
1

2π

∫ π

0

dθ ln z(βJ1, βJ2; θ), (3.49)

where

z(K1, K2; θ) = 2[cosh(2K1) cosh(2K2)− sinh(2K2) cos(θ)]

+ 2

√
[cosh(2K1) cosh(2K2)− sinh(2K2) cos(θ)]2 − sinh2(2K1). (3.50)

This can be expressed more elegantly in terms of a double integral. First

note that the inverse hyperbolic cosine function is given by

cosh−1(x) = ln[x+
√
x2 − 1].
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We can thus express ln z(K1, K2; θ) in terms of this function:

ln z(K1, K2; θ)

= ln sinh(2K1)

+ ln

{
2[coth(2K1) cosh(2K2)−

sinh(2K2)

sinh(2K1)
cos(θ)]

+2

√[
coth(2K1) cosh(2K2)−

sinh(2K2)

sinh(2K1)
cos(θ)

]2
− 1


= ln 2 sinh(2K1)

+ cosh−1

(
coth(2K1) cosh(2K2)−

sinh(2K2)

sinh(2K1)
cos(θ)

)
.

(3.51)

We next use the following remarkable identity:

|z| = 1

π

∫ π

0

dt ln[2 cosh(z)− 2 cos(t)]. (3.52)

This can be proved as follows. Differentiating, we have,

d

dz

1

π

∫ π

0

dt ln[2 cosh(z)− 2 cos(t)] =
1

π

∫ π

0

dt
sinh(z)

cosh(z)− cos(t)
.

This integral can be evaluated using the substitution tan 1
2
t = x, which yields

1

π

∫ π

0

dt
sinh(z)

cosh(z)− cos(t)
=

2

π

∫ ∞

0

sinh(z) dx

cosh(z)− 1 + (cosh(z) + 1)x2

=
2

π

sinh(z)√
cosh2(z)− 1

∫ ∞

0

dy

1 + y2
= sgn(z),

where y =
√

cosh(z)+1
cosh(z)−1

x. To fix the constant, note that, as |z| → ∞,

1

π

∫ π

0

dt ln[2 cosh(z)− 2 cos(t)] = ln 2 cosh(z) +
1

π

∫ π

0

dt ln

(
1− cos(t)

cosh(z)

)
∼ ln(2 cosh(z))− 1

π

∫ π

0

dt
cos(t)

cosh(z)

∼ |z|+O(e−2z).
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Setting z = cosh−1(u), we have

cosh−1(u) =
1

π

∫ π

0

dt ln[2u− 2 cos(t)],

and therefore

ln z(K1, K2; θ) = ln 2 sinh(2K1)

+
1

π

∫ π

0

dt ln

(
2 coth(2K1) cosh(2K2)− 2

sinh(2K2)

sinh(2K1)
cos(θ)− 2 cos(t)

)
.

Inserting this into the formula (3.49) we obtain the well-known expression

−βf(β, J1, J2) = ln 2 +
1

2π2

∫ π

0

dθ1

∫ π

0

dθ2 ln [cosh(2βJ1) cosh(2βJ2)

− sinh(2βJ1) cos(θ1)− sinh(2βJ2) cos(θ2)] . (3.53)

This result is analyzed in24 in the case J1 = J2. There it was shown that

there is a second-order phase transition at the critical temperature Tc given

by sinh(2βcJ) = 1, with βc = 1/(kBTc. In the inhomogeneous case, we see

that there can be a singularity when the argument of the logarithm becomes

zero. Now cosh(2βJ1) cosh(2βJ2) ≥ sinh(2βJ1)+sinh(2βJ2). Indeed, writing

a = 2βJ1 and b = 2βJ2, we have

cosh2(a) cosh2(b)− (sinh(a) + sinh(b))2

= sinh2(a) sinh2(b)− 2 sinh(a) sinh(b) + 1

= (sinh(a) sinh(b)− 1)2 ≥ 0.

This also shows that the singularity must occur for θ1 = θ2 = 0 and for

sinh(2βJ1) sinh(2βJ2) = 1.

24T. C. Dorlas, loc. sit., Chapter 28.
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A The Perron-Frobenius Theorem

A vector v⃗ ∈ Rn is called nonnegative if vi ≥ 0 for all i = 1, . . . , n. A

matrix B ∈ Mn(R) is said to be nonnegative if its entries Bij ≥ 0. B is

called positive if Bij > 0 for all i, j = 1, . . . , n.

Lemma A.1 A matrix B ∈ Mn(R) is nonnegative if and only if Bv⃗ ≥ 0

whenever v⃗ ≥ 0. Moreover, B is positive if and only if Bv⃗ > 0 whenever

v⃗ ≥ 0 and v⃗ ̸= 0.

Proof. The ‘if’ part of these statements follows because we can take v⃗ to be

a standard basis vector. It is also clear that if B is nonnegative then Bv⃗ ≥ 0

once v⃗ ≥ 0. Now suppose that B is positive. Suppose that vi ≥ 0 for all

i = 1, . . . , n and vj > 0. Then

(Bv⃗)i =
n∑

k=1

Bikvk ≥ Bijvj > 0

since Bij > 0.

A matrix B ∈ Mn(R) is said to be reducible if there exists a partition

of {1, . . . , n} into non-empty subsets I and J such that Bij = 0 for all i ∈ I

and j ∈ J . Otherwise B is said to be irreducible. Note that B is irreducible

if and only if for all i, j ∈ {1, . . . , n}, there is a sequence j0 = i, . . . , jk = j

such that Bjp−1,jp ̸= 0 for p = 1, . . . , k. In particular, a symmetric matrix

B is irreducible if the graph on the vertices 1, . . . , n formed by connecting i

and j if Bij ̸= 0 is connected.

Lemma A.2 If B ∈ Mn(R) is an irreducible nonnegative matrix then

(1+B)n−1 is positive.

Proof. Fix v⃗ ≥ 0 with vk > 0. Clearly, ((1 + B)mv⃗)j ≥ 0 for all m ≥ 0

and j = 1, . . . , n. For m ≥ 0, let Jm be the set of indices j such that

((1 + B)mv⃗)j > 0. Then |J0| > 0 since k ∈ J0. Moreover, since B is

nonnegative, ((1+B)u⃗)i ≥ ui for all vectors u⃗, and therefore Jm ⊂ Jm+1 and
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hence |Jm+1| ≥ |Jm|. Now suppose Jm ̸= {1, . . . , n}. We want to show that

in that case, |Jm+1| > |Jm|. Suppose Jm+1 = Jm. Let I = J c
m. Because B is

irreducible, there exist j ∈ Jm, and i ∈ I such that Bij > 0. But then

((1+B)m+1v⃗)i ≥ Bij((1+B)mv⃗)j > 0,

so that i ∈ Jm+1, contradicting Jm+1 = Jm. We conclude that |Jm| ≥
min{m+ 1, n} and hence |Jn−1| = n.

Remark. Note that eB ≥ 1
m!
(1+B)m, so that eB is also positive once B

is nonnegative and irreducible.

Lemma A.3 Let B ∈ Mn(R) be an irreducible nonnegative matrix. Then a

nonnegative eigenvector v⃗ of B is in fact positive, and, moreover, the corre-

sponding eigenvalue is positive.

Proof. If v⃗ is a nonnegative eigenvector with eigenvalue λ then λ ≥ 0. In

addition, v⃗ is also an eigenvector of (1 + B)n−1 with eigenvalue (1 + λ)n−1,

and therefore

v⃗ =
1

(1 + λ)n−1
(1+B)n−1v⃗.

By the previous lemma, (1 + B)n−1 is positive, and since v⃗ ̸= 0, it follows

that v⃗ is positive. Since B is irreducible, we conclude that also Bv⃗ is positive,

which implies that λ > 0.

The Perron-Frobenius Theorem reads as follows.

Theorem A.1 (Perron-Frobenius) Let B ∈ Mn(R) be an irreducible non-

negative n× n matrix. Then the spectral radius ρ(B) is an eigenvalue of B,

and there is a corresponding positive eigenvector v⃗ such that Bv⃗ = ρ(B)v⃗.

Moreover, ρ(B) > 0.

Proof. 25 It is convenient to use the 1-norm on Rn defined by

||v⃗||1 =
n∑

i=1

|vi|.

25See: D. Serre: Matrices. Theory and Applications. Second Ed. Graduate Texts in

Mathematics 216. Springer, 2010.
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For r ≥ 0, define the set Cr ⊂ Rn by

Cr = {x⃗ ∈ Rn : x⃗ ≥ 0, ||x⃗||1 = 1, Bx⃗ ≥ rx⃗}.

Then Cr is a convex compact set. Moreover, Cρ(B) ̸= ∅. Indeed, if v⃗ is an

eigenvector with eigenvalue λ and ||v⃗||1 = 1 then B |v⃗| = |Bv⃗| = |λv⃗| =
|λ| |v⃗|, i.e. |v⃗| is a nonnegative eigenvector with eigenvalue |λ|. There is an

eigenvalue λ with |λ| = ρ(B) and therefore ρ(B) is also an eigenvalue with

nonnegative eigenvector. Conversely, if Cr ̸= ∅ then for x⃗ ∈ Cr,

r = r||x⃗||1 = ||rx⃗||1 ≤ ||Bx⃗||1 ≤ ||B||1||x⃗||1 = ||B||1.

Therefore, Cr = ∅ for r > ||B||1. If R = sup{r ≥ 0 : Cr ̸= ∅}, then

R ∈ [ρ(B), ||B||1]. Obviously, Cr′ ⊂ Cr for r′ > r. Therefore, if r < R then

Cr ̸= ∅. More precisely, CR =
⋂

r<R Cr, because if (rp)p∈N is an increasing

sequence converging toR and x⃗p ∈ Crp then there is a converging subsequence

x⃗′p, the limit of which lies in CR. This also shows that CR ̸= ∅. Let v⃗ ∈ CR.

We claim that v⃗ is an eigenvector with eigenvalue R. Indeed, suppose the

contrary. Set u⃗ = (1 + B)n−1v⃗. Since B is irreducible and v⃗ is nonnegative

and nonzero, it follows that u⃗ is positive. Since B commutes with 1+B, we

have (B − R)u⃗ = (1 + B)n−1(Bv⃗ − Rv⃗) > 0. Define r′ = minn
j=1(Bu⃗)j/uj.

Then r′ > R and Cr′ ̸= ∅ since Bu⃗ ≥ r′u⃗. This contradicts the definition of

R. Therefore R is an eigenvalue with eigenvector v⃗ and since Bv⃗ ≥ ρ(B)v⃗,

we conclude that R = ρ(B). Positivity of v⃗ and ρ(B) now follow from

Lemma A.3.

Remark. One can prove that ρ(B) is in fact a non-degenerate eigenvalue

of B.
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B Complete Solution

B.1 The case M odd.

Consider first the case that M is odd. In that case we have the following

expression for Z̃N,M :

Z̃N,M =

(M−1)/2∑
k=0

(2ρN)
M−1

2
−k

∑
1≤j1<···<jk≤M−1

2

×

{
ζ
N/2
M,±

k∏
r=1

(ζN2jr−1,+ + ζN2jr−1,−) + ζ
N/2
2M,±

k∏
r=1

(ζN2jr,+ + ζN2jr,−)

}
,

(B.1)

where the index ± is + if M−1
2

− k is even and − if M−1
2

− k is odd. Here

ρ = (1− λ2)(1− u2), (B.2)

and ζr,± are given by

ζr,± = (1 + λ2)(1 + u2)− 4uλ cos
rπ

M
±
√

∆r, where (B.3)

∆r = ((1 + λ2)(1 + u2)− 4uλ cos
rπ

M
)2 − ρ2. (B.4)

In particular,

ζM,± = (1± λ)2(1± u)2 and ζ2M,± = (1± u)2(1∓ λ)2. (B.5)

B.2 Example: M = 5.

For M = 5 we get:

Z̃N,5 = (1 + u)N(1 + λ)N(ζN1,+ + ζN1,−)(ζ
N
3,+ + ζN3,−)

+(1 + u)N(1− λ)N(ζN2,+ + ζN2,−)(ζ
N
4,+ + ζN4,−)

+2(1− u2)N(1− λ2)N(1− u)N(1− λ)N(ζN1,+ + ζN1,− + ζN3,+ + ζN3,−)

+2(1− u2)N(1− λ2)N(1− u)N(1 + λ)N(ζN2,+ + ζN2,− + ζN4,+ + ζN4,−)

+4(1− u2)2N(1− λ2)2N(1 + u)N [(1 + λ)N + (1− λ)N ]. (B.6)
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Here

ζr,± = (1 + λ2)(1 + u2)− 4uλ cos
rπ

5

±
√[

(1 + λ2)(1 + u2)− 4uλ cos
rπ

5

]2
− (1− λ2)2(1− u2)2.

(B.7)

B.3 The case M even.

In this case we have

Z̃N,M =

M/2∑
k=0

M/2−k even

(2ρN)
M
2
−k

∑
1≤j1<···<jk≤M

2

k∏
r=1

(ζN2jr−1,+ + ζN2jr−1,−) +

+

1
2
M−1∑
k=0

(2ρN)
M
2
−k−1γ±

∑
1≤j1<···<jk≤ 1

2
M−1

k∏
r=1

(ζN2jr,+ + ζN2jr,−),

(B.8)

where the sign ± is + if M
2
− k − 1 is even and − if M

2
− k − 1 is odd. Here

γ± are defined by

γ+ = ζ
N/2
M,+ζ

N/2
2M,+ + ζ

N/2
M,−ζ

N/2
2M,− = (1− λ2)N [(1 + u)2N + (1− u)2N ] (B.9)

and

γ− = ζ
N/2
M,+ζ

N/2
2M,− + ζ

N/2
M,−ζ

N/2
2M,+ = (1− u2)N [(1 + λ)2N + (1− λ)2N ]. (B.10)

B.4 Example: M = 6.

For M = 6 we get
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Z̃N,6 = 4(1− λ2)2N(1− u2)2N(ζN1,+ + ζN1,− + ζN3,+ + ζN3,− + ζN5,+ + ζN5,−)

+(ζN1,+ + ζN1,−)(ζ
N
3,+ + ζN3,−)(ζ

N
5,+ + ζN5,−)

+4(1− λ2)3N(1− u2)2N((1 + u)2N + (1− u)2N)

+2(1− λ2)N(1− u2)2N((1 + λ)2N + (1− λ)2N)
{
ζN2,+ + ζN2,− + ζN4,+ + ζN4,−

}
+(1− λ2)N((1 + u)2N + (1− u)2N)(ζN2,+ + ζN2,−)(ζ

N
4,+ + ζN4,−). (B.11)

B.5 Example: M = 8.

For M = 8 we have

Z̃N,8 = 16(1− λ2)4N(1− u2)4N

+4(1− λ2)2N(1− u2)2N
{
(ζN1,+ + ζN1,−)(ζ

N
3,+ + ζN3,−)

+(ζN1,+ + ζN1,−)(ζ
N
5,+ + ζN5,−) + (ζN1,+ + ζN1,−)(ζ

N
7,+ + ζN7,−)

+(ζN3,+ + ζN3,−)(ζ
N
5,+ + ζN5,−) + (ζN3,+ + ζN3,−)(ζ

N
7,+ + ζN7,−)

+(ζN5,+ + ζN5,−)(ζ
N
7,+ + ζN7,−)

}
+(ζN1,+ + ζN1,−)(ζ

N
3,+ + ζN3,−)(ζ

N
5,+ + ζN5,−)(ζ

N
7,+ + ζN7,−)

+8(1− λ2)4N(1− u2)3N((1 + u)2N + (1− u)2N)

+4(1− λ2)2N(1− u2)3N((1− λ)2N + (1− λ)2N)
{
ζN2,+ + ζN2,−

+ζN4,+ + ζN4,− + ζN6,+ + ζN6,−
}

+2(1− λ2)2N(1− u2)N((1 + u)2N + (1− u)2N)

×
{
(ζN2,+ + ζN2,−)(ζ

N
4,+ + ζN4,−)

+(ζN2,+ + ζN2,−)(ζ
N
6,+ + ζN6,−) + (ζN4,+ + ζN4,−)(ζ

N
6,+ + ζN6,−)

}
+(1− u2)N((1− λ)2N + (1− λ)2N)

×(ζN2,+ + ζN2,−)(ζ
N
4,+ + ζN4,−)(ζ

N
6,+ + ζN6,−). (B.12)
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