
The Efficiency of
Feynman’s Quantum Computer

Ralph Jason Costales,1, ∗ Ali Gunning,1, † and Tony Dorlas1

1Dublin Institute for Advanced Studies.
(Dated: September 19, 2023)

Feynman’s circuit-to-Hamiltonian construction enables the mapping of a quantum circuit to a
time-independent Hamiltonian. Here we investigate the efficiency of Feynman’s quantum computer by analysing
the time evolution operator e−iĤt for Feynman’s clock Hamiltonian Ĥ. A general formula is established for the
probability, Pk(t), that the desired computation is complete at time t for a quantum computer which executes
an arbitrary number k of operations. The optimal stopping time, denoted by τ, is defined as the time of the
first local maximum of this probability. We find numerically that there is a linear relationship between this
optimal stopping time and the number of operations, τ = 0.50k + 2.37. Theoretically, we corroborate this linear
behaviour by showing that at τ = 1

2 k + 1, Pk(τ) is approximately maximal. We also establish a relationship
between τ and Pk(τ) in the limit of a large number k of operations. We show analytically that at the maximum,
Pk(τ) behaves like k−2/3. This is further proven numerically where we find the inverse cubic root relationship
Pk(τ) = 6.76 k−2/3. This is significantly more efficient than paradigmatic models of quantum computation.

I. FEYNMAN’S CLOCK HAMILTONIAN

In the circuit model of quantum computing, a calculation
is computed by preparing a set of n logical qubits in the
computational basis state |ΨIN⟩ = |0102...0n⟩ and acting on this
state with a sequence of unitary gates Û1, Û2, . . . , Ûk−1, Ûk
to reach the output state |ΨOUT ⟩ = ÛkÛk−1 · · · Û2Û1 |ΨIN⟩.
Feynman showed that one can map a quantum circuit
to a continuous time evolution with a time-independent
Hamiltonian, while still implementing a discrete sequence of
unitaries [1], [2]. His solution incorporated the composition
of unitary operators outlined below.

Let Û1,Û2...Ûk−1,Ûk be the succession of operations we
want to perform on the input state of the n atoms in our
‘register’ |ΨIN⟩ as shown in Fig.1. Adjacent to the register, we
add an entirely new set of k+1 qubits, called ‘program counter
sites’ which live in a ‘clock space’ separate from the Hilbert
space of the register. The purpose of the clock space is to track
the progress of the computation. The program counter can be
thought of as an electron tunnelling from one empty site to
another. The initial state of the clock space has site 0 of the
program counter occupied and the rest unoccupied, which in
Dirac notation is given by |100...0⟩. During the computation
the program counter evolves to the final state of the clock
space |0...001⟩, having only site k occupied, at which stage
the computation is complete. It is crucial that the register is
observed immediately at this point to ensure that the program
counter does not return back down the program line. The
complete Hamiltonian, describing the evolution of the register
qubits and the clock qubits, is given in (1).

Ĥ =
k−1∑
i=0

q̂†i+1q̂iÛi+1 + H.C. (1)

∗ Presently at Perimeter Institute for Theoretical Physics.
† Presently at Department of Physics, University of Oxford.

FIG. 1. Schematic of a quantum circuit depicting the succession of
Ûk operators we want to perform on the input state, |ΨIN⟩, of n atoms
in our register to arrive at our desired output state, |ΨOUT ⟩.

Here q̂†i and q̂i are creation and annihilation operators at the
i-th clock site, so that q̂†i+1q̂i moves the counter one site to the
right. Note that the Hermitian conjugate term q̂†i q̂i+1 occurring
in the H.C. term moves the counter one site to the left, so that
the clock can also move backwards as time progresses. Our
goal is to compute the probability Pk(t) that the computation is
complete i.e the probability that the program counter reaches
the final state |0 . . . 001⟩ at time t for arbitrary number of
operations k.

Previously, it was shown by Kitaev et al. [3] and Aharonov
et al. [4] that this scheme can be used to implement an
arbitrary quantum circuit efficiently using adiabatic evolution
i.e. the run-time is polynomial in the number of qubits. The
latter authors estimated the spectral gap ∆ to be bounded
below by 1/(72k2) if k is the number of quantum operations
performed. (This bound was improved to π2/(8k2) in [5].) By
the adiabatic theorem (see [6] and [7]) this leads to a running
time of the adiabatic algorithm of O(k5). (According to [6],
the dependence on ∆ is quadratic. The bound in [7] is more
complicated but the example in Section VI suggests that this
is still the case in Feynman’s Hamiltonian.)

ar
X

iv
:2

30
9.

09
33

1v
1

 [
qu

an
t-

ph
]

 1
7

Se
p

20
23

2

Here we consider instead the straightforward evolution
of the Feynman Hamiltonian and demonstrate that the
computation is complete with probability O(k−2/3) in time
τ = O(k). To obtain a success probability of order 1, one
therefore has to repeat the calculation O(k2/3) times, leading
to an estimated run-time of O(k5/3). This is a significant
improvement over adiabatic evolution. However, this is
obviously dependent on whether this can be implemented in
practice, as the stopping time τ is very precisely defined, after
which there are rapid oscillations of the probability amplitude.
Below, in Appendix D, we also estimate the length of the
period of these oscillations.

II. ASSESSING THE PROBABILITY OF COMPUTATION
COMPLETION

It can be shown that Feynman’s Hamiltonian is of the form,

Ĥ =



0 U†1
U1 0 U†2

U2 0 U†3
. . .

. . .
. . .

Uk−1 0 U†k
Uk 0


(2)

The time evolution matrix Ĝ(t) = e−iĤt also follows a
particular structure given in (3). This can be proven by
induction as shown in Appendix B.

Ĝ(t)i j =


ai j(t)Û

†

i · · · Û
†

j−1 if 1 ≤ i < j ≤ k + 1;
aii(t)1̂1 if 1 ≤ i = j ≤ k + 1;
ai j(t)Ûi−1 · · · Û j if 1 ≤ j < i ≤ k + 1.

(3)

Given that Ĝ(t) follows a predictable pattern, the position
of the Û j’s in the matrix are known for all j. We are only
concerned with the Ĝ(k+1)1 element, as it contains the full
list of Û j’s acting in the required order to obtain the desired
computational output state |ΨOUT ⟩. The coefficient a(k+1)1(t)
is all we need to find the probability amplitude Pk(t),

Pk(t) = |⟨k + 1|Ĝ(t) |1⟩ |2

= |a(k+1)1(t)|2
(4)

Pk(t) here is the desired probability amplitude as it is the
time evolution of the clock space from the initial state |1⟩ to
the final state |k + 1⟩.

The optimal stopping time τ for the register, can be found
by maximising a(k+1)1(t). Therefore, P(t = τ) represents the
maximum probability that the computation is complete i.e. all
operations have acted on the register.

Given the predictable structure of Ĝ(t), each Û j matrix
encoded in the Hamiltonian described in (1) can be ignored.
We acquire an effective Hamiltonian that still contains all the
information required to obtain the probability amplitude Pk(τ)
as shown in (5).

Ĥeff =



0 1
1 0 1

1 0 1
. . .

. . .
. . .

1 0 1
1 0


(5)

This matrix obeys the following eigenvalue equation,

Ĥeff
∣∣∣ψ j

〉
= λ j

∣∣∣ψ j

〉
e−iĤefft

∣∣∣ψ j

〉
= e−iλ jt

∣∣∣ψ j

〉
for j = 1, . . . , k + 1.

Using a Fourier transformation, the eigenvalues and
eigenstates of the effective Hamiltonian are found to be,

λ j = 2 cos
π j

k + 2

∣∣∣ψ j

〉
=

2
k + 2


sin π j

k+2
sin 2π j

k+2
...

sin (k+1)π j
k+2

 (6)

The probability amplitude Pk(t) can now be calculated
using (4),

Pk(t) =

∣∣∣∣∣∣∣∣ 2
k + 2

k+1∑
j=1

e−iλ jt sin2 π j
k + 2

(−1) j−1

∣∣∣∣∣∣∣∣
2

(7)

Using (7) for a large number of operations, k >> 1,
the optimal stopping time τ is found to be at the first local
maximum of Pk(t). As shown in Fig.2 there is a small window
to capture the first maximal peak after which there are rapid

FIG. 2. Plot of Pk(t) for k=9999 operators. The first local maximum
of Pk(t) is also the global maximum and can be represented by
Pk(τ). The amplitude of each local maxima decreases with time if
the program is not immediately stopped at t = τ.

3

FIG. 3. Scatter plot of the optimal time τ which is found by
maximising Pk(t) for a given number of operations k. A linear
relationship is observed between τ and k with best fit parameters
τ = 0.50k + 2.37.

oscillations of probability which decrease in amplitude with
time. Numerically, this optimal stopping time is found to be
at τ = 0.50k + 2.37, as shown in Fig.3.

The probability Pk(τ) can be plotted against k to
derive the relationship between probability of computation
completion at the optimal time and the number of operations.
Numerically, we find that there is an inverse cubic relationship
between them, Pk(τ) = 6.76k−2/3, as shown in Fig.4. This
relationship is significantly more efficient than paradigmatic
models of quantum computation such as those based on
adiabatic evolution which were analysed by Aharonov and
coworkers [4] (see also [5]).

Analytically, we find a somewhat smaller coefficient. Using
Taylor expansions of trigonometric functions the relationship

FIG. 4. Log-Log scatter plot of the optimal probability Pk(τ) which
is found by maximising Pk(t) for a given number of operations k. An
inverse cubic relationship is observed between Pk(τ) and k with best
fit parameters Pk(τ) = 6.76k−2/3.

FIG. 5. Log-Log plot of time difference, ∆τ1−2, between the optimal
stopping time, τ1, and the next optimal time τ2 against number of
operations, k.

for Pτ(k) (7) can be transformed into the form,

Pk(τ) =

∣∣∣∣∣∣∣∣ 4
k + 2

k+2
2∑

p=1

cos2
(
π(2p − 1)
2(k + 2)

)

× cos

 π3

6(k + 2)2

(
p −

1
2

)3
∣∣∣∣∣∣∣
2

(8)

This summation form can be approximated by asymptotic
analysis, writing it in the form of a Riemann integral assuming
that we have a large number of operations, k >> 1: see
Appendix C. The result is,

Pk(τ) ≈ 5.14k−2/3. (9)

It is also important to know the period of the oscillations
after the first maximum of Pk(t), as this indicates how
accurately one must be able to determine the stopping time
τ of the computer (to measure the output state). If τ1 ≈

k+2
2

is the time where the first maximum is attained, we write
τ2 =

(k+2)(1+δ)
2 , and ∆τ1−2 = δ × k+2

2 . Numerically plotting
the time difference between the first and second maximum,
we find that ∆τ1−2 = 1.29(k + 2)1/3. In Appendix D we obtain
the analytical prediction ∆τ1−2 = 1.115(k + 2)1/3.

This means that one needs to be able to stop the computer
at a time accurate up to a fraction of k1/3. If the register is not
stopped at the optimal time, τ1, but is instead stopped at the
next optimal time, τ2, then the probability Pk(τ2) is lower, i.e.
it is less likely that the operations have been completed than
at τ1 as can be seen in Fig.2. Nevertheless, it may be more
efficient to capture the second maximum rather than restart
the program.

III. CONCLUSION

We have presented the theory behind Feynman’s theoretical
construction for a quantum computer, wherein a quantum

4

circuit is mapped to a time-independent Hamiltonian by
use of a clock space. A formula is established for the
probability, Pk(t), that the desired computation is complete at
time t for a quantum computer which executes k number of
operations. We demonstrate that the computation is complete
with probability O(k−2/3) in optimal time τ = O(k). For
a success probability of order 1, the calculation must be
repeated O(k2/3) times, leading to an estimated run-time of
O(k5/3). This is a significant improvement over adiabatic
evolution with a run time O(k5).

IV. APPENDIX

Appendix A: Feynman’s Hamiltonian for k = 2

To understand the structure of the Hamiltonian and the
time evolution operator, we look at the simplest example of
having two operations on our register.

For k=2, we add to the n atoms in our register a new set
of 3 atoms, which we call ’program counter sites’. qi and q†i
represent the annihilation and creation operators, respectively,
for the program sites i = 0,1,2.

Our Hamiltonian in matrix form is given by:

ĤTOT =



0 0 0 0 0 0 0 0
0 0 U2 0 0 0 0 0
0 U†2 0 0 U1 0 0 0
0 0 0 0 0 U1 0 0
0 0 U†1 0 0 0 0 0
0 0 0 U†1 0 0 U2 0
0 0 0 0 0 U†2 0 0
0 0 0 0 0 0 0 0


(A1)

This Hamiltonian relates to 2 independent clock spaces.
The first is a program counter where at all times only
one site is occupied, i.e |100⟩,|010⟩,|001⟩. The second
is a program counter where at all times two sites are
occupied, i.e |011⟩,|101⟩,|110⟩. The construction of
Feynman’s Hamiltonian ensures that the number of program
sites occupied is a conserved quantity. This allows us
to block-diagonalize the Hamiltonian into non-interacting
blocks and separate out the part where only one clock site is
occupied.

We will suppose that, in the operation of this computer, only
one site is occupied for all time. We call this Hamiltonian Ĥ
and can extract it from our total Hamiltonian:

Ĥ =

 0 U1† 0
U1 0 U2†

0 U2 0

 (A2)

This Hamiltonian satisfies the relation

Ĥ3 = 2Ĥ (A3)

Using a Taylor expansion, the time evolution operator
reduces to

e−iĤt = Î − i
Ĥ
√

2
sin
√

2t +
Ĥ2

2
(cos
√

2t − 1) (A4)

In matrix form this is

e−iĤt =


1 + cos

√
2t−1

2
i
√

2
sin
√

2tU†1
cos
√

2t−1
2 U†1U†2

−i
√

2
sin
√

2tU1 cos
√

2t −i
√

2
sin
√

2tU†2
cos
√

2t−1
2 U2U1

i
√

2
sin
√

2tU1 1 + cos
√

2t−1
2


(A5)

This matrix is unitary. When the program counter reaches
the final site |001⟩ the data register has been multiplied by the
operators U2U1 as expected. This occurs at t = π

3
√

2
.

Appendix B: Proving the Structure of a Hamiltonian

To prove the structure given in (3), we expand the
time-evolution matrix,

G(t) =
∞∑

m=0

(−it)m

m!
Hm (B1)

Hence it is sufficient to prove that all powers of the
Hamiltonian also follow the structure of (3), which will
be done via a proof of induction. The first power of the
Hamiltonian is, by construction,

Ĥ =



0 U†1
U1 0 U†2

U2 0 U†3
. . .

. . .
. . .

Uk−1 0 U†k
Uk 0


(B2)

Which clearly has the structure in (3). To prove that Hm+1 has
this same structure assuming that Hm does, we approach the
problem case by case. Explicitly, each element is given by

(Hm+1)i j = (H Hm)i j

=

k∑
l

HilHm
l j

= Hi,i−1Hm
i−1, j + Hi,i+1Hm

i+1, j

For i = j, we get

(Hm+1)ii = a(m)
i−1,iUi−1U†i−1 + a(m)

i+1,iU
†

i Ui

= (a(m)
i−1,i + a(m)

i+1,i)I

5

For 1 ≤ i < j ≤ k + 1,

(Hm+1)i j = a(m)
i−1, jUi−1U†i−1U†i . . .U

†

j−1 + a(m)
i+1, jU

†

i . . .U
†

j−1

= (a(m)
i−1, j + a(m)

i+1, j)U
†

i . . .U
†

j−1

For 1 ≤ j < i ≤ k + 1

(Hm+1)i j = a(m)
i−1, jUi−1 . . .U j + a(m)

i+1, jU
†

i UiUi−1 . . .U j

= (a(m)
i−1, j + a(m)

i+1, j)Ui−1 . . .U j

Hence each of power of the Hamiltonian has the same
structure as (3), and therefore G(t) must also have the same
structure. Note that this derivation also proves that the
effective Hamiltonian is given by (5).

Appendix C: Analytic solution of Pk(τ)

Using Ĝ(t) = e−iĤt and the eigenvalues and eigenvectors
given in (6), an analytic solution for Pk(t) can be found,

Pk(t) =
∣∣∣⟨k + 1|Ĝ(t) |1⟩

∣∣∣2
=

∣∣∣∣∣∑
n

∑
j

⟨k + 1|ψn⟩⟨ψn|e−iĤe f f t
∣∣∣ψ j

〉
⟨ψ j|1⟩

∣∣∣∣∣2
=

∣∣∣∣∣∑
n

∑
j

⟨k + 1|ψn⟩⟨ψn|e−iλ jt
∣∣∣ψ j

〉
⟨ψ j|1⟩

∣∣∣∣∣2
=

∣∣∣∣∣∑
j

e−iλ jt⟨k + 1|ψ j⟩⟨ψ j|1⟩
∣∣∣∣∣2

=

∣∣∣∣∣ 2
k + 2

k+1∑
j=1

e−iλ jt sin2 π j
k + 2

(−1) j−1
∣∣∣∣∣2

(C1)

In the following, we assume that k is an odd number. The
derivation for even k is analogous.

Starting from the expression for a(k+1),1(t) given in (7), we
split the sum into two parts,

a(k+1),1 =
2

k + 2

k+1
2∑

j=1

e−iλ jt sin2 π j
k + 2

(−1) j−1

+
2

k + 2

k+1∑
j= k+1

2 +1

e−iλ jt sin2 π j
k + 2

(−1) j−1

(C2)

By a change of variable j = k + 2 − m in the second term,

a(k+1),1 =
2

k + 2

k+1
2∑

m=1

e−iλmt sin2 πm
k + 2

(−1)m−1

−
2

k + 2

k+1
2∑

m=1

e+iλmt sin2 πm
k + 2

(−1)k+1−m

=
2

k + 2

k+1
2∑

m=1

(e−iλmt − eiλmt) sin2 πm
k + 2

(−1)m−1

=
−4i

k + 2

k+1
2∑

m=1

sin λmt sin2 πm
k + 2

(−1)m−1

(C3)

Substituting in (6) the (approximate) optimal time τ = k+2
2 ,

we get

a(k+1),1 =
−4i

k + 2

k+1
2∑

m=1

sin
(
(k + 2) cos

(
πm

k + 2

))
× sin2 πm

k + 2
(−1)m−1

Using another change of variable, we set p = k+1
2 + 1 − m,

a(k+1),1 =
−4i

k + 2

k+1
2∑

p=1

sin
(
(k + 2) sin

(
π(2p − 1)
2(k + 2)

))
× cos2(

π(2p − 1)
2(k + 2)

)(−1)
k+2

2 −p

To estimate this sum, we do a second-order Taylor
expansion of the argumant of the outer sine-function:

(k + 2) sin
(
π(2p − 1)
2(k + 2)

)
≈

(
p −

1
2

)
π −

π3

6(k + 2)2

(
p −

1
2

)3

(C4)
Then noting that sin

(
π
(
p − 1

2

)
− a

)
= (−1)p−1 cos(a), we

obtain

a(k+1)1 =
4i(−1)

k+1
2

k + 2

k+1
2∑

p=1

cos2
(
π(2p − 1)
2(k + 2)

)
(−1)

k+1
2 −p

× cos

 π3

6(k + 2)2

(
p −

1
2

)3 .
(C5)

This is formula (8). We now note that the second cosine
factor is rapidly oscillating for large k. This means that
large p-values make a negligible contribution. For small
values, the first cosine factor is almost equal to 1 and can be
omitted. Introducing the variable x = π

(k+2)2/3

(
p − 1

2

)
, we can

approximate the sum by a Riemann integral:

a(k+1)1 ≈
4i(−1)

k+1
2

π(k + 2)1/3

∫ ∞

0
cos

(
1
6

x3
)

dx. (C6)

6

The integral can be evaluated using integration by parts, and
we obtain

a(k+1)1 ≈ 2.27i(−1)(k+1)/2(k + 1)−1/3. (C7)

Squaring this yields (9).

Appendix D: Predicting the Location of the Second Maximum

In Appendix C, we found that the first maximum occurs
approximately at τ = (k + 2)/2. At this value for t,

2t

 (2p − 1)π
2(k + 2)

−
1
6

(
π(2p − 1)
2(k + 2)

)3 ≈ (
p −

1
2

)
π (D1)

which is an odd multiple of π/2. The next maximum should
occur when

2t

 (2p − 1)π
2(k + 2)

−
1
6

(
π(2p − 1)
2(k + 2)

)3 ≈ (
p +

1
2

)
π. (D2)

Setting t = (k + 2)(1 + δ)/2, this becomes

δ
2p − 1

2
−
π2(2p − 1)3

48(k + 2)2 ≈ 1 (D3)

On the other hand, we want this to remain a good
approximation if we increase or decrease p. This is the case if
we set

2t
d

dp

 (2p − 1)
2(k + 2)

−
π2

6


(
p − 1

2

)
k + 2


3 = 1 (D4)

i.e increasing p by 1 also increases the left-hand side by 1.
Hence,

2t

 1
k + 2

−
π2

2

(
p − 1

2

)2

(k + 2)3

 = 1. (D5)

Inserting 2t = (k + 2)(1 + δ) we get

δ ≈
π2

2

(
p − 1

2

)2

(k + 2)2 . (D6)

Combining this with the previous identity we obtain

π2

24
(2p − 1)3

(k + 2)2 = 1. (D7)

Finally inserting this into δ, we get

δ = 0.5(3π)2/3(k + 2)−2/3 = 2.23(k + 2)−2/3. (D8)

[1] Richard P Feynman, “Quantum mechanical computers,” Optics
news 11, 11–20 (1985).

[2] Richard P. Feynman and Hey Anthony J G., Feynman lectures on
Computation (CRC Press, 2023).

[3] Alexei Yu Kitaev, Alexander Shen, and Mikhail N
Vyalyi, Classical and quantum computation, 47 (American
Mathematical Soc., 2002).

[4] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd,
and O. Regev, “Adiabatic quantum computation is equivalent
to standard quantum computation,” in 45th Annual IEEE
Symposium on Foundations of Computer Science (2004) pp.

42–51.
[5] Shane Dooley, Graham Kells, Hosho Katsura, and Tony C.

Dorlas, “Simulating quantum circuits by adiabatic computation:
Improved spectral gap bounds,” Phys. Rev. A 101, 042302
(2020).

[6] Max Born and Vladimir Fock, “Beweis des adiabatensatzes,”
Zeitschrift für Physik 51, 165–180 (1928).

[7] Sabine Jansen, Mary-Beth Ruskai, and Ruedi Seiler, “Bounds
for the adiabatic approximation with applications to quantum
computation,” Journal of Mathematical Physics 48 (2007).

http://dx.doi.org/10.1109/FOCS.2004.8
http://dx.doi.org/10.1109/FOCS.2004.8
http://dx.doi.org/10.1103/PhysRevA.101.042302
http://dx.doi.org/10.1103/PhysRevA.101.042302

	The Efficiency ofFeynman's Quantum Computer
	Abstract
	Feynman's Clock Hamiltonian
	Assessing the Probability of Computation Completion
	Conclusion
	Appendix
	 Feynman's Hamiltonian for k = 2
	Proving the Structure of a Hamiltonian
	Analytic solution of Pk()
	 Predicting the Location of the Second Maximum
	References

