
The classical capacity of a quantum channel

switching between two depolarizing channels

Ismail Akhalwaya, Nilanjana Datta and Tony Dorlas

Statistical Laboratory

Centre for Mathematical Sciences

Centre for Mathematical Sciences

University of Cambridge

Wilberforce Road, Cambridge CB3 0WB, U.K.

August 7, 2008

Abstract

We explore the classical product state capacity of quantum mem-
ory channels where the memory consists of a Markov chain switching
between two single qubit channels, each of which is a depolarizing
channel.

1

Contents

2

Chapter 1

Introduction

Quantum Mechanics introduces new resources and produces strange new

effects in the field of information and communication. One subject of interest

is the use of a quantum channel to transmit classical information. A lot is

known about simple versions of this setup, for example the channel capacity

for only product state inputs and memoryless channels. But there are still

many more exciting and important extensions.

1.1 Motivation

It is the HSW theorem that gives the classical product state capacity of a

memoryless noisy quantum channel. But real world communication channels

are not memoryless. So one simple extension to the HSW-setup that may be

considered is noise with memory.

One of the simplest examples of noise with memory is Markovian noise,

where the probability of an error depends only on the most recent state of

knowledge and is independent of any older history.

3

1.2 Model

1.2.1 Single Qubit Depolarizing Channel

To keep things simple, our noisy quantum channel with memory is made

up of two single qubit depolarizing channels (Φ1, Φ2). These two channels

represent two possible depolarizing errors which includes the possibility that

one of them may be the no-error option (identity qubit channel).

The exact form of our two single qubit depolarizing channels is:

Φi = ρ 7→ (1− pi)ρ +
pi

2
1

In this form, the noise on this channel can be seen as either nothing or

absolute mixing with the relevant probabilities.

Denoting xi = 1− pi/2, we have

Φi(ρ) = xiρ + (1− xi)(1− ρ) (1.1)

Thus, the noise on the channel can be seen as either doing nothing or

‘flipping’ (orthogonal complement) with the following different probabilities,

xi and 1− xi. Note that xi ≥ 1
2
.

1.2.2 Markov Chain

Now N uses of the overall channel involves randomly switching between Φ1

and Φ2, N times. The chain of switches forms a Markov Chain.

A finite Markov Chain can be characterized by a transition matrix and a

starting distribution γ. Each column of the transition matrix represents the

probability profile of switching from the state numbered by that column to

all other states. Thus each column must sum to one (any matrix with this

property is called stochastic).

4

For simplicity we use a symmetric transition matrix, i.e. for example

Q =
1

3

(
2 1

1 2

)

is used as the transition matrix when doing numerical simulations.

When calculating powers of the transition matrix its symmetric nature

is very useful. We can diagonalize Q and raise just the eigenvalues on the

diagonal.

Q =

(
1− q q

q 1− q

)

=
1

2

(
1 1

1 −1

)(
1 0

0 1− 2q

)(
1 1

1 −1

) (1.2)

(The parameter q must of course satisfy 0 ≤ q ≤ 1.) Now raising Q to

the power n:

Qn =

(
1− q q

q 1− q

)n

=
1

2n

(
1 1

1 −1

)(
1 0

0 (1− 2q)n

)(
1 1

1 −1

) (1.3)

For q = 1/3, 1−2q = 1/3. The unitary matrix U = 1√
2

(
1 1

1 −1

)
, used in

the diagonalization procedure features again later in helping simplify one of

the steps. We also refer to the diagonal elements as d0 = 1 and d1 = 1− 2q.

A Markov Chain has equilibrium probability distributions. For our two-

state symmetric Markov chain the equilibrium distribution is always
(1

2
1
2

)
for

any q. It is of course an eigenvector of Q.

5

1.2.3 Definition of the channel

Now that we have introduced the single channels, (Φ1,Φ2), and the Markov

chain, (Q,γ), we can formally build up our channel.

We choose to set the starting distribution to the equilibrium distribution

γ =
(1

2
1
2

)
, to reflect the idea that we want to treat the channel selection

symmetrically.

We then ask, given this setup, what is the probability of a certain sequence

of switches i = (i1, i2, . . . , in) ∈ {1, 2}n occurring. We use this probability as

the co-efficient of the tensor product of the corresponding sequence of single

qubit channels. Finally we add up all such terms to form our final channel:

Λn : ρ1 ⊗ . . .⊗ ρn 7→
∑

i1,...,in

γi1qi1i2 . . . qin−1inΦi1(ρ1)⊗ . . .⊗ Φin(ρn)

6

Chapter 2

Capacity

We are ultimately interested in calculating the product state classical capac-

ity of our Markovian Switching Depolarizing Channel:

C1
Classical(Λn) = χ∗(Λn),

where χ∗ is the maximization of χ over all possible input distributions

and ensembles:

χ({(pi, Λn(ρ
(n)
i))}) = S(

∑
i

piΛn(ρ
(n)
i))−

∑
i

pi S(Λn(ρ
(n)
i)).

S is the usual von Neuman entropy. This maximization need only be done

over pure state inputs. For now, we consider only the ensemble of pure state

computational basis inputs with the uniform distribution. Then the first term

is just the entropy of the maximally mixed state, which is n (see ??. Ensemble

Output Average on page ??). The second term is the focus of the numerical

simulations.

7

2.1 Output Entropy

Now we look into the second term in more detail. The output entropy of

a computational basis state turns out to be independent of the basis state

itself, so take any one and call it ρ(n):

ρ(n) = |l1>< l1| ⊗ . . .⊗ |ln>< ln|,

where l = (l1, l2, . . . , ln) ∈ {0, 1}n. (The computational basis is denoted

{|0〉, |1〉}.)
Acting with Λn on this ρ(n) and using the form of the depolarizing channels

(??) where the output is either unchanged or flipped, we get

Λn(ρ(n)) =
∑

i1,...,in

γi1qi1i2 . . . qin−1in

× (x
(1)
i1
|l1 ⊕ 0>< l1 ⊕ 0|+ x

(2)
i1
|l1 ⊕ 1>< l1 ⊕ 1|)⊗ . . .

⊗ (x
(1)
in
|ln ⊕ 0>< ln ⊕ 0|+ x

(2)
in
|ln ⊕ 1>< ln ⊕ 1|) (2.1)

Here ⊕ denotes addition modulo 2, that is, li ⊕ 0 = li represents the

unchanged single qubit choice, while li ⊕ 1 = 1 − li is the original choice

flipped. Besides the above clear explanation ⊕ can be used as addition

modulo 2, to give the correct answers.

2.1.1 Eigenvalues and eigenvectors

Now we can expand out the tensor product, using an indices k = (k1, k2, . . . , kn) ∈
{0, 1}n to indicate which term in the bracket is selected:

Λn(ρ(n)) =
∑

i1,...,in;k1,...,kn

γi1qi1i2 . . . qin−1inx
(k1)
i1

. . . x
(kn)
in

n⊗
j=1

|lj⊕kj >< lj⊕kj|

(2.2)

8

where we write x
(0)
i = xi and x

(1)
i = xi = 1− xi.

This step is significant because if we swap the order of the sums, that is

we look at a given k and sum over i, we have written Λn(ρ(n)) as

Λn(ρ(n)) =
∑

k1,...,kn

λn(k)
n⊗

j=1

|lj ⊕ kj >< lj ⊕ kj|,

which is a sum of orthogonal projections with coefficients

λn(k) =
∑

i1,...,in

γi1qi1i2 . . . qin−1inx
(k1)
i1

. . . x
(kn)
in

(2.3)

which are therefore its eigenvalues.

Of course, since Λn(ρ(n)) is a density matrix, if we sum over all k (error

sequences: see later) we get unity,

∑

k

λn(k) = 1. (2.4)

This is easily checked using (??) and the fact that we have a Markov chain.

Note that the eigenvalue spectrum is the same regardless of the input

computational basis (specified by l). But, of course, the output eigenvector

corresponding to k does depend on l. The eigenvector, as we see above, is

the original l tensor product modified by k. To define this neatly let us

introduce a function which takes a sequence and produces the corresponding

computational basis density operator:

Ψ(s) =
n⊗

j=1

|sj >< sj| (2.5)

Here, n, is the length of the sequence s.

Then in this notation, the output eigenvector, call it el(k), can be written:

el(k) = Ψ(l ⊕ k) (2.6)

9

Note, the ⊕ represents pair-wise addition modulo 2.

To give meaning to the k sequence, note that it represents the choices of

whether or not there was a ‘flip’, regardless of which channel was selected

(which is why we sum over i in the λn expression). Thus the number of 1’s in

k is the Hamming distance between the input computational state and the

particular output eigenvector (el(k)).

In the above introduced notation, the action of the channel can be rep-

resented as:

Λn(Ψ(l)) =
∑

k

λn(k)el(k) (2.7)

2.1.2 Average output ensemble

From (??) it is clear that for each k sequence we get a unique eigenvector

(a computational basis state). Combined with (??), we see that for each l

input state we get the same eigenvalue spectrum but attached to different

eigenvectors, a mere reshuffling of all computational basis states. That is,

each basis state will get associated once and only once in turn with each

eigenvalue in the spectrum as we vary l or k. This observation gives us the

earlier mentioned result that if we look at the entropy of the average output

ensemble we get the maximally mixed state. That is, each computational

basis state (specified by l′), will get a single λn(k) contribution when the

input state, l and the k modification satisfies l′ = l ⊕ k. That is we work

backwards by looking for an input state that is the right error vector away

from the output. Using (??), but now across the uniform input ensemble, we

get that the average output state is the maximally mixed state.

Putting all this together we have the following proof that

S(
∑

i

piΛn(ρ
(n)
i)) = n,

given that pi = 1
2n and ρ

(n)
i = Ψ(Binary(i)):

10

S

(∑
i

piΛn(ρ
(n)
i)

)
= S


∑

l

1

2n
Λn(Ψ(l))




= S


∑

l

1

2n

∑

k

λn(k)el(k)




= S


 1

2n

∑

l

∑

k

λn(k)Ψ(l ⊕ k)




= S


 1

2n

∑

k

∑

l

λn(k)Ψ(l ⊕ k)




= S


 1

2n

∑

k


λn(k)

∑

l

Ψ(l ⊕ k)







= S


 1

2n


∑

k

λn(k)





∑

l′
Ψ(l′)







= S


 1

2n

∑

l′
Ψ(l′)




= n

(2.8)

The last line is because the entropy of the maximally mixed state is log2

of the dimension, giving log2(2
n) = n.

2.1.3 Diagonalization

The next step is to better understand the eigenvalues and its sum over i.

If we only look at the product of the transition probabilities and the initial

probability distribution we see that we have a simple Markov chain. The

diagonalization tools mentioned in the Markov Chain section (see ??. Markov

Chain on page ??) would be useful and in fact if we look at the sum we would

get unity. However, for each path through possible transitions we still have

11

to take into account the contribution from the x
(km)
im

factors. These factors

represent the probability of a km modification being done to the mth qubit

by the ithm single qubit channel. We have already seen that taken all together

(including summing over k) we do still get unity (see ??. Sum Eigenvalues

on page ??).

We need to rewrite this sum over i, to better understand λn(k)’s depen-

dence on k. We use the Markov diagonalization tools, but now to try and

reduce the x
(km)
im

factors dependence on a specific path. After all, many paths

may have the same contribution and we are summing over all paths.

To this end recall that qrs =
∑

j urjdjujs r, s, j ∈ {0, 1}. Substitute this

form into (??):

λn(k) =
∑

i1,...,in;j1,...,jn−1

γi1ui1j1dj1uj1i2 . . . uin−1jn−1djn−1ujn−1inx
(k1)
i1

. . . x
(kn)
in

(2.9)

Now we group neighbouring ujmim and uimjm+1 and also x
(km)
im

and note

that these factors contain the only im dependence. So we evaluate this sum

for im ∈ {0, 1} and get:

∑
im

ujmimuimjm+1x
(km)
im

=
1

2
(x

(km)
1 + (−1)jm+jm+1x

(km)
2)

(Note that, for a simple Markov Chain, there would be no x
(km)
im

factor

and the remainder of the expression would evaluate to 1 if jm = jm+1 and to

0 otherwise. Showing that in the basis of the eigenvectors of the transition

matrix, repeated application of the transition matrix is simply the repeated

multiplication of the relevant eigenvalue.)

The outer two u factors can be put into a similar form as the inner n− 2

pairs of factors:

∑
i1

ui1j1x
(k1)
i1

=
1√
2
(x

(k1)
1 + (−1)j1x

(k1)
2)

12

and

∑
in

ujn−1inx
(kn)
in

=
1√
2
(x

(kn)
1 + (−1)jn−1x

(kn)
2)

Thus putting it all together and using the fact that γi = 1
2

is the stationary

state,

λn(k) =
∑

j1,...,jn−1

1

2n
dj1 . . . djn−1(x

(k1)
1 + (−1)j1x

(k1)
2)

× . . . (x
(km)
1 + (−1)jm+jm+1x

(km)
2) . . . (x

(kn)
1 + (−1)jn−1x

(kn)
2) (2.10)

We now observe that there is a single term in the j sum which makes

the largest contribution by far; this is the jm = 0 ∀ m. This is because

for that assignment all the djm = d0’s are equal to 1. For all other j terms

there is at least one factor d1 so that the contribution is multiplied by 1/3.

In addition, some of the exponents jm + jm+1 are odd which also makes the

corresponding term relatively smaller.

To properly see this latter point, let us look at four possibilities for the

pair (km, (−1)jm+jm+1) and its effect on the general term. Firstly, (0, 1):

(x
(1)
1 + x

(1)
2) = 1− p1/2 + 1− p2/2 = 2− (p1 + p2)/2

Secondly, (0,−1):

(x
(1)
1 − x

(1)
2) = 1− p1/2− 1 + p2/2 = (p2 − p1)/2

Thirdly, (1, 1):

(x
(2)
1 + x

(2)
2) = p1/2 + p2/2 = (p1 + p2)/2

Fourthly, (1,−1):

(x
(2)
1 − x

(2)
2) = p1/2− p2/2 = (p1 − p2)/2

13

Here it can be seen that the largest term is the first option and the second

largest is the third option. Both occur when jm + jm+1 is even, corroborating

the earlier point.

Now the largest term occurs when km = 0, that is, there is no error on

the mth qubit. So λn(k)’s primary dependence is on the Hamming weight

of the k sequence. That is for low Hamming weight, corresponding to few

errors, λn(k) is relatively high.

This last point coupled with the first observation lend themselves to a

rough analytic expression for the λn in terms of the number of 1’s (call it h)

in the k sequence:

λn(h) =
1

2n
[2− (p1 + p2)/2]n−h [(p1 + p2)/2]h

=
1

2n

[
4− p1 − p2

2

]n [
p1 + p2

4− p1 − p2

]h (2.11)

2.2 Transfer matrices

The expression we want to compute is:

S̄ = − 1

n
E [λn log λn],

where I now write n instead of n, and where

λn =
1

2n

∑
j1,...,jn−1=0,1

dj1 . . . djn−1(x1(k1) + (−1)j1x2(k1))

×(x1(k2) + (−1)j1+j2x2(k2)) . . . (x1(kn−1) + (−1)jn−2+jn−1x2(kn−1))

×(x1(kn) + (−1)jn−1x2(kn)).

I now label the states (k1, . . . , k2) by the first element k1 = 0, 1 and the

lengths of the subsequent rows of 0’s and 1’s. Thus, if k1 = 0, n1 is the length

of the first set of 0’s, i.e. k1, . . . , kn1 = 0 and kn1+1 = 1, etc. Assuming that

k1 = 0 for the moment, we have

λn =
1

2n

∑

j′1,...,j′m−1=0,1

(T n1)0,j′1

(
T

n2
)

j′1,j′2
(T n3)j′2,j′3

. . . , (2.12)

14

where

(T n)j,l =
∑

j1,...,jn−1

d
1/2
j dj1 . . . djn−1d

1/2
l (x1 + (−1)j+j1x2)

×(x1 + (−1)j1+j2x2) . . . (x1 + (−1)jn−1+lx2),

and similarly for T . This is indeed the n-th power of a transfer matrix:

Tj,l = d
1/2
j (x1 + (−1)j+lx2)d

1/2
l

or

T =

(
x1 + x2

1√
3
(x1 − x2)

1√
3
(x1 − x2)

1
3
(x1 + x2)

)
.

The corresponding eigenvalues are

λ± =
2

3
(x1 + x2)± 1

3

√
∆,

where

∆ = (x1 + x2)
2 + 3(x1 − x2)

2.

It is now easily shown that we can write

T n =
1

2
√

∆

(√
∆(λn

+ + λn
−) + (x1 + x2)(λ

n
+ − λn

−)√
3(x1 − x2)(λ

n
+ − λn

−)
√

3(x1 − x2)(λ
n
+ − λn

−)√
∆(λn

+ + λn
−)− (x1 + x2)(λ

n
+ − λn

−)

)
. (2.13)

So far so good. But now comes a BIG leap of faith! The distribution of

the lengths of 0’s and 1’s in k is exponential, i.e. nr = n with probability

2−n. It therefore seems that the factor (T n)0,0 should occur approximately

2−n n
8

times, etc. This would yield the answer:

− 1

n
E [λn log λn] ≈ −1

8

∞∑
n=1

2−n [(T n)0,0 log(T n)0,0

+2(T n)0,1 log(T n)0,1 + (T n)1,1 log(T n)1,1

+ (T
n
)0,0 log(T

n
)0,0 + 2(T

n
)0,1 log(T

n
)0,1 + (T

n
)1,1 log(T

n
)1,1

]
.(2.14)

15

However, this is incorrect because there is correlation between the sub-

sequent matrix elements. We need to count. Divide the jr into groups of

length m1,m2, . . . , mp. Then T0,0 and (T)0,0 occur approximately 1
2
(m1−1+

m3 − 1 + . . . times, T1,1 and (T)1,1 occur about 1
2
(m2 − 1 + m4 − 1 + . . .)

times, and T0,1, T1,0, (T)1,0 and (T)0,1 occur approximately p/4 times each.

Thus,

λn ≈
m∑

k=1

k∧(m−k)∑
p=1

(
k

p

)(
m− k

p

)
(T0,0(T)0,0)

k−p
2 (T1,1(T)1,1)

m−k−p
2

×(T0,1T1,0(T)0,1(T)1,0)
p
4 . (2.15)

Here each T and T stands for one of the operators T n and T
n
. Note that

it does not matter in which position so we can simply count their average

number. This is determined by the distribution of k1, . . . , kN . The expression

(4) is analogous to the Ising model and can be evaluated by the transfer

matrix method again: λn ≈ Λm
max, where

Λmax =
1

2

[
(T0,0(T)0,0)

1/2 + (T1,1(T)1,1)
1/2

+

√(
(T0,0(T)0,0)1/2 − (T1,1(T)1,1)1/2

)2
+ 4(T0,1T1,0(T)0,1(T)1,0)1/2

]

(2.16)

We now have to replace each T and T by the appropriate occurrence of

T n resp. T
n
. Assuming that a sequence of n zeros in k1, . . . , kN occurs with

frequency pn and a sequence of n ones with frequency qn we have
∞∑

n=1

n(pn + qn) = 1 (2.17)

and we must replace T0,0 by
∏∞

n=1(T
n
0,0)

pn and similarly T 0,0 by
∏∞

n=1(T
n

0,0)
qn .

Denoting the resulting expression by λn({pn, qn}) the final answer is

1

n

n∑
r1=0

n−r1∑
s1=0

[(n−r1−s1)/2]∑
r2=0

[(n−r1−s1−2r2)/2]∑
s2=0

. . . λn({r1

n
,
r2

n
, . . . ,

s1

n
,
s2

n
, . . . })

× log λn({r1

n
,
r2

n
, . . . ,

s1

n
,
s2

n
, . . . })

≈ sup
{pn,qn}

(∞∑
n=1

(pn + qn)

)
λn({pn, qn}) log λn({pn, qn}). (2.18)

16

Note that this result is easily computed because the sum converges very

rapidly. It is also quite efficiently checked numerically, using the exact for-

mula (2), because of the exponential distribution of the lengths. The best

way is probably to compute the values of (T n)j,l for low values of n (say up

to 20), and tabulate them first. Higher values of n are extremely unlikely

and can be ignored. Then simply do a sum over m and a multiple sum over

the individual nr ≥ 1 with conditions such that their sum is n and each is no

greater than 20 (perhaps it is better to first take a smaller number, say 10).

The sum over j can perhaps also be simplified by first counting the number

of equal nr’s. All the same, this is a non-trivial exercise.

17

