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Abstract

In this paper we develop a quantum version of Feinstein’s Lemma
and use it to give a new proof of the direct channel coding theorem
for transmission of classical information through a periodic quantum
channel, when the inputs to multiple uses of the channel are restricted
to product states. Moreover, we also prove the analogue of the con-
verse channel coding theorem for this class of channels.

1 Preliminaries

Let B(H) denote the algebra of linear operators acting on a finite–dimensional
Hilbert space H, and S(H) denote the set of all positive operators of unit
trace in B(H), i.e., states (or density matrices). The von Neumann entropy
of a state ρ is defined as S(ρ) = −Tr ρ log ρ, where the logarithm is taken
to base 2. A general quantum channel is given by completely positive trace–
preserving (CPT) maps Φ(n) : B(H⊗n) → B(K⊗n), where H and K are the
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input and output Hilbert spaces of the channel. Here we consider a periodic
channel of the following form:

Φ(n)(ρ(n)) =
1

L

L−1∑
i=0

(Φi ⊗ Φi+1 ⊗ · · · ⊗ Φi+n−1)(ρ
(n)), (1)

where we assume that a set of CPT maps Φi : B(H) → B(K) (i = 0, . . . , L−1)
is given, and the index is cyclic modulo the period L.

If we denote the Holevo quantity for the i-th branch by χi, i.e.

χi({pj, ρj}) = S

(∑
j

pjΦi(ρj)

)
−

∑
j

pjS(Φi(ρj)),

then we shall prove that the product capacity of the channel (1) is given by

C(Φ) = sup
{pj ,ρj}

1

L

L−1∑
i=0

χi({pj, ρj}). (2)

2 The Quantum Feinstein Lemma

The direct part of the theorem follows from

Theorem 1 Given ε > 0, there exists n0 ∈ N such that for all n ≥ n0 there
exists Nn ≥ 2n(C(Φ)−ε) and there exist product states ρ̃

(n)
1 , . . . , ρ̃

(n)
Nn
∈ S(H⊗n)

and positive operators E
(n)
1 , . . . , E

(n)
Nn

∈ B(K⊗n) such that
∑Nn

k=1 E
(n)
k ≤ In

and
Tr Φ(n)

(
ρ̃

(n)
k

)
E

(n)
k > 1− ε, (3)

for each k.

Proof. We first construct a preamble to the code which serves to identify
the first branch i chosen. To distinguish the initial branch, notice first of all
that the corresponding CPT maps Φi need not all be distinct! However, we
may assume that there is no internal periodicity of these maps; otherwise
the channel be contracted to a single such period. This means, that for any
two states i, i′ ∈ {0, . . . , L − 1} (i < i′) there exists k ≤ L − 1 such that
Φi+k 6= Φi′+k. Then choose ω = ωi,i′ such that

f := F (Φi+k(ω), Φi′+k(ω)) < 1. (4)

In the following we write Φ
(n)
i for the branch of the channel with initial state

i, i.e.
Φ

(n)
i (ρ(n)) = (Φi ⊗ Φi+1 ⊗ · · · ⊗ Φi+n−1)(ρ

(n)). (5)

2



Lemma 1 For any 0 ≤ i < i′ ≤ L− 1, let ω be a state as above. Then

F
(
Φ

(mL)
i (ω⊗mL), Φ

(mL)
i′ (ω⊗mL)

)
→ 0 (6)

as m →∞.

Proof.

F
(
Φ

(mL)
i (ω⊗mL), Φ

(mL)
i′ (ω⊗mL)

)

=
[
F

(
Φ

(L)
i (ω⊗L), Φ

(L)
i′ (ω⊗m)

)]m

≤ [F (Φi+k(ω), Φi′+k(ω))]m = fm → 0. (7)

We now introduce, for any pair of states σ, σ′ on K, and γ, γ′ > 0, the
difference operators

A
(M)
σ,σ′ = γσ⊗M − γ′(σ′)⊗M . (8)

Let Π± be the orthogonal projections onto the eigenspaces of A
(M)
σ,σ′ corre-

sponding to all non-negative, and all negative eigenvalues, respectively. In
[DD] we proved:

Lemma 2 Suppose that for a given δ > 0,

|Tr [|A(M)
σ,σ′ |]− (γ + γ′)| ≤ δ. (9)

Then

|Tr [Π+(σ)⊗M ]− 1| ≤ δ

2γ
(10)

and

|Tr [Π−(σ′)⊗M ]− 1| ≤ δ

2γ′
. (11)

To compare the outputs of all the different branches of the channel, we
define projections Π̃i on the tensor product space

⊗
0≤i<i′<LK⊗M = K⊗ML2

with L2 =
(

L
2

)
as follows:

Π̃i =
⊗

0≤i1<i2<L

Γ
(i)
i1,i2

, where Γ
(i)
i1,i2

=





InM if i1 6= i and i2 6= i
Π−

i1,i if i2 = i
Π+

i,i2
if i1 = i.

(12)

Notice that it follows from the fact that Π+
i,i′Π

−
i,i′ = 0, that the projections

Π̃i are also disjoint:
Π̃iΠ̃i′ = 0 for i 6= i′. (13)
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It now follows easily with the help of the previous lemma and the inequal-
ities [11]

Tr (A1) + Tr (A2)− 2F (A1, A2) ≤ ||A1 − A2||1 ≤ Tr (A1) + Tr (A2) (14)

for any two positive operators A1 and A2, that these projections distin-
guish the relevant initial branches. Indeed, if we introduce the corresponding
preamble state

ω(ML2) =

(⊗
i1<i2

ω⊗M
i1,i2

)
, (15)

then we have

Lemma 3 For all i ∈ {0, . . . , L− 1},

lim
M→∞

Tr
[
Π̃i Φ

(ML2)
i

(
ω(ML2)

)]
= 1. (16)

In the following we fix M so large that

Tr
[
Π̃i Φ

⊗ML2
i

(
ω(ML2)

)]
> 1− δ (17)

for all i ∈ {0, . . . , L − 1}. We also assume that M is a multiple of L so
that (1) applies. The product state ω(ML2), defined through (15) is used as a
preamble to the input state encoding each message, and serves to distinguish
between the different branches, Φ

(n)
i , of the channel. If ρ

(n)
k ∈ B(H⊗n) is a

state encoding the kth classical message in the setMn, then the kth codeword
is given by the product state

ω(ML2) ⊗ ρ
(n)
k .

Note that, since M is a multiple of L, the index of the first channel branch
applying to ρk is also i.

Continuing with the proof of Theorem 1, let the maximum of the mean
Holevo quantity 1

L

∑L−1
i=0 χi be attained for an ensemble {pj, ρj}J(

j=1. Denote

σi,j = Φi(ρj), σ̄i =
∑J

j=1 pjΦi(ρj).
Choose δ > 0. We will relate δ to ε at a later stage. Consider the typical

subspaces T (n)

i,ε of K⊗n, with projection P̄i,n such that if σ̄i has a spectral
decomposition

σ̄i =
∑

k

λ̄i,k|ψi,k〉〈ψi,k| (18)

4



then if k = (k1, . . . , kn), |ψi,k1〉 ⊗ · · · ⊗ |ψi,kn〉 ∈ T
(n)

i,ε if and only if

∣∣∣∣∣
1

n

n∑
j=1

log λ̄i,kj
+ S(σ̄i)

∣∣∣∣∣ <
ε

4
. (19)

Then, for n large enough,

Tr (P̄i,nσ̄
⊗n
i ) > 1− δ2. (20)

For any given initial index i, we let V(n)

i,ε be the subspace of K⊗n spanned by
the vectors |ψi,k1〉 ⊗ |ψi+1,k2〉 ⊗ |ψi+n−1,kn〉, where |ψi,k1〉 ⊗ |ψi,kL+1

〉 ⊗ · · · ⊗
|ψi,k[(n−1)/L]L+1

〉 ∈ T ([(n−1)/L]+1)

i,ε , etc. Clearly, if we denote P̄
(n)
i the projection

onto V(n)

i,ε , then for n large enough,

Tr (P̄
(n)
i σ̄i ⊗ σ̄i+1 ⊗ · · · ⊗ σ̄i+n−1) > 1− δ2. (21)

Moreover, if |ψi,k1〉 ⊗ |ψi+1,k2〉 ⊗ |ψi+n−1,kn〉 ∈ V
(n)

i,ε then

∣∣∣∣∣
1

n

n∑
j=1

log λ̄i+j−1,kj
+

1

L

L−1∑
i=0

S(σ̄i)

∣∣∣∣∣ <
ε

4
. (22)

Let n1 be so large that (21) and (22) hold for n ≥ n1.
We need a similar result for the average entropy

S̄ =
1

L

L−1∑
i=0

J∑
j=1

pj S(σi,j). (23)

Lemma 4 Fix i ∈ {0, . . . , L − 1}. Given a sequence j = (j1, . . . , jn) with

1 ≤ jr ≤ J(i + r − 1), let P
(n)
i,j be the projection onto the subspace of K⊗n

spanned by the eigenvectors of σ
(n)
i,j = σi,j1 ⊗ · · · ⊗ σi+n−1,jn with eigenvalues

λ
(n)
j,k =

∏n
r=1 λi+r−1,jr,kr such that

∣∣∣∣
1

n
log λ

(n)
j,k + S̄

∣∣∣∣ <
ε

4
. (24)

For any δ > 0 there exists n2 ∈ N such that for n ≥ n2,

E
(
Tr

(
σ

(n)
i,j P

(n)
i,j

))
> 1− δ2, (25)

where E denotes the expectation with respect to the probability distribution
{p(n)

j } on the states ρ
(n)
j .
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Proof. Define i.i.d. random variables X1, . . . , Xn with distribution given
by

Prob (Xr = λi+r−1,j,k) = pi+r−1,j λi+r−1,j,k. (26)

By the Weak Law of Large Numbers,

1

n

n∑
r=1

log Xr → 1

L

L−1∑
i=0

J∑
j=1

∑

k

pj λi,j,k log λi,j,k

= − 1

L

L∑
i=1

J(i)∑
j=1

pj S(σi,j) = −S̄. (27)

It follows that there exists n2 such that for n ≥ n2, the typical set T
(n)
i,ε of

sequences of pairs ((j1, k1), . . . , (jn, kn)) such that

∣∣∣∣∣
1

n

n∑
r=1

log λi+r−1,jr,kr + S̄

∣∣∣∣∣ <
ε

3
(28)

satisfies

P
(
T

(n)
i,ε

)
=

∑

((j1,k1),...,(jn,kn))∈T
(n)
ε

n∏
r=1

pjrλi+r−1jr,kr > 1− δ2. (29)

Obviously,

P
(n)
i,j ≥

∑
k=(k1,...,kn)

((j1,k1),...,(jn,kn))∈T
(n)
i,ε

|ψ(n)
j,k 〉〈ψ(n)

j,k | (30)

and
E

(
Tr

(
σ

(n)
j P

(n)
i,j

))
≥ P

(
T

(n)
i,ε

)
> 1− δ2. (31)

The remainder of the proof is essentially the same as that in [DD]. Let

N = Ñ(n) be the maximal number of product states ρ̃
(n)
1 , . . . , ρ̃

(n)
N on H⊗n

(each of which is a tensor product of states in the maximising ensemble

{pj, ρj}J
j=1) for which there exist positive operators E

(n)
1 , . . . , E

(n)
N onK⊗ML2⊗

K⊗n such that

(i) E
(n)
k =

∑L
i=1 Π̃i ⊗ E

(n)
k,i and

∑N
k=1 E

(n)
k,i ≤ P̄

(n)
i and

(ii)
1

L

L∑
i=1

Tr
[ (

Π̃i ⊗ E
(n)
k,i

)
Φ

(ML2+n)
i

(
ω(ML2) ⊗ ρ̃

(n)
k

)]
> 1− ε and
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(iii)
1

L

L∑
i=1

Tr
[ (

Π̃i ⊗ E
(n)
k,i

)
Φ

(ML2+n)
i

(
ω(ML2) ⊗ ρ̄⊗n

)] ≤ 2−n[C(Φ)− 1
2
ε]

where ρ̄ =
∑J

j=1 pjρj.
For each i = 1, . . . , M and j = (j1, . . . , jn) such that 1 ≤ jr ≤ J , we

define, as before,

V
(n)
i,j =

(
P̄

(n)
i −

N∑

k=1

E
(n)
k,i

)1/2

P̄
(n)
i P

(n)
i,j P̄

(n)
i

(
P̄

(n)
i −

N∑

k=1

E
(n)
k,i

)1/2

. (32)

and we put

V
(n)
j :=

M∑
i=1

Π̃i ⊗ V
(n)
i,j . (33)

Clearly V
(n)
i,j ≤ P̄

(n)
i −∑N

k=1 E
(n)
k,i .

V
(n)
j is a candidate for an additional measurement operator, E

(n)
N+1, for

Bob with corresponding input state ρ̃
(n)
N+1 = ρ

(n)
j = ρj1⊗ρj2 . . .⊗ρjn . Clearly,

the condition (i), given above, is satisfied and we also have

Lemma 5

1

L

L∑
i=1

Tr
[(

Π̃i ⊗ V
(n)
i,j

)
Φ

(ML2+n)
i

(
ω(ML2) ⊗ ρ̄⊗n

)
]
]
≤ 2−n[C(Φ)− 1

2
ε]. (34)

Proof. Put Qn,i =
∑N

k=1 E
(n)
k,i . Note that Qn,i commutes with P̄

(n)
i .

Using the fact that P̄
(n)
i Φ

(n)
i (ρ̄⊗n)P̄

(n)
i ≤ 2−n[ 1

L

PL
i=1 S(σ̄i)− 1

4
ε] by (22), we have,

denoting σ̄
(n)
i = Φ

(n)
i (ρ̄⊗n),

Tr (σ̄
(n)
i V

(n)
i,j ) = Tr

[
σ̄

(n)
i (P̄

(n)
i −Qn,i)

1/2P̄
(n)
i P

(n)
i,j P̄

(n)
i (P̄

(n)
i −Qn,i)

1/2
]

= Tr
[
P̄

(n)
i σ̄

(n)
i P̄

(n)
i (P̄

(n)
i −Qn,i)

1/2P
(n)
i,j (P̄

(n)
i −Qn,i)

1/2
]

≤ 2−n[ 1
L

PL
i=1 S(σ̄i)− 1

4
ε]Tr

[
(P̄

(n)
i −Qn,i)

1/2P
(n)
i,j (P̄

(n)
i −Qn,i)

1/2
]

≤ 2−n[ 1
L

PL
i=1 S(σ̄i)− 1

4
ε]Tr (P

(n)
i,j ) ≤ 2−n[ 1

L

PL
i=1 S(σ̄i)−S̄− 1

2
ε], (35)

where, in the last inequality, we used the standard upper bound on the
dimension of the typical subspace: Tr (P

(n)
i,j ) ≤ 2n[S̄+ 1

4
ε], which follows from

Lemma 4.
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By maximality of N it now follows that the condition (ii) above cannot
hold, that is,

1

L

L∑
i=1

Tr
[ (

Π̃i ⊗ V
(n)
i,j

)
Φ

(ML2+n)
i

(
ω(ML2) ⊗ ρ

(n)
j

)]
≤ 1− ε (36)

for every j, and this yields the following:

Corollary 1

1

L

L∑
i=1

E
(
Tr

[ (
Π̃i ⊗ V

(n)
i,j

)
Φ

(ML2+n)
i

(
ω(ML2) ⊗ ρ

(n)
j

)])
≤ 1− ε. (37)

We also need the following lemma:

Lemma 6 For all η′ > δ2 + 3δ,

1

L

L∑
i=1

Tr
[ (

Π̃i ⊗ P̄
(n)
i P

(n)
i,j P̄

(n)
i

)
Φ

(ML2+n)
i

(
ω(ML2) ⊗ Φ

(n)
i (ρ

(n)
j )

)]
> 1− η′

(38)
if n is large enough.

Proof. This is proved as in [DD].

Lemma 7 Assume η′ < 1
3
ε and write

Qn,i =
N∑

k=1

E
(n)
k,i . (39)

Then for n large enough,

1

L

L∑
i=1

E
(
Tr

[ (
Π̃i ⊗Qn,i

)
Φ

(ML2+n)
i

(
ω(ML2) ⊗ ρ

(n)
j

)])
≥ η′2. (40)

Proof. This follows as before from the previous lemma using the Cauchy-
Schwarz inequality.

It now follows that for n large enough, Ñ(n) ≥ (η′)2 2n[C(Φ)− 3
4
ε]. We take

the following states as codewords:

ρ
(ML2+n)
k = ω(ML2) ⊗ ρ̃

(n)
k . (41)
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For n sufficiently large we then have

Nn+ML2 = Ñ(n) ≥ (η′)2 2n[C(Φ)− 3
4
ε] ≥ 2(ML2+n)[C(Φ)−ε]. (42)

To complete the proof we need to show that the set E
(n)
k satisfies (3). But

this follows immediately from condition (ii):

Tr
[
Φ(ML2+n)

(
ρ

(ML2+n)
k

)
E

(n)
k

]
=

=
1

L

L−1∑
i=0

Tr
[
Φ
⊗(ML2+n)
i

(
ω(ML2) ⊗ ρ̃

(n)
k

)(
Π̃i ⊗ E

(n)
i,k

)]
> 1− ε. (43)

3 The Direct Channel Coding Theorem

Theorem 1 can now be used to prove that for any rate R < χ(Φ), where χ(Φ)
is the Holevo capacity defined in (??), there exists a code using product state
inputs, which enables reliable transmission of classical information through
a quantum memoryless channel at a rate R.

Consider the sender Alice to have a classical ergodic information source
with alphabet A and probability distribution µ. Let µn denote the restric-
tion of µ to An. Alice would like to achieve reliable transmission of messages
emitted from her source to Bob, through multiple uses of a memoryless quan-
tum channel Φ, using product state inputs. For this purpose, Alice assigns
a label kx to each message x emitted by her source. By McMillan’s theorem
(see e.g. [3]), for n large enough, there is a set Tn of typical messages, which
has a high probability of occurrence. Moreover, the number, |Tn|, of typical
messages is ' 2nH , where H is the Kolmogorov–Sinai entropy of the ergodic
source (see e.g. [3]).

By Theorem 2, there exists a set of product states ρ̃
(n)
k and a set of

positive operators E
(n)
k with k = 1, . . . , Nn and Nn > 2n(χ(Φ)−ε) such that

Tr [Φ⊗n(ρ
(n)
k )E

(n)
k ] > 1−ε. For each typical message x, Alice chooses a unique

label kx ∈ {2, . . . , Nn}. However, to all messages x which are atypical she
assigns the label kx = 1. Then she associates to each label kx ∈ {1, . . . , Nn}
a unique state ρ̃

(n)
kx

belonging to the above–mentioned set of product states.

The states ρ̃
(n)
kx

, kx ∈ 1, . . . , Nn are the codewords, which are transmitted to
Bob through n uses of the channel Φ. The rate of the corresponding code is
given by Rn = (log(|Tn|+ 1)) /n, since there are (|Tn|+ 1) codewords. If the

codeword ρ̃
(n)
kx

is transmitted, then Bob receives the state σ̃
(n)
kx

:= Φ⊗n(ρ̃
(n)
kx

).

9



To decode the label kx of the message sent by Alice, Bob does a measure-
ment on σ̃

(n)
kx

described by positive operators (POVM elements) E
(n)
1 , . . . , E

(n)
Nn

(where
∑Nn

j=1 E
(n)
j ≤ In) and E

(n)
0 := In −

∑Nn

j=1 E
(n)
j . The POVM element

E
(n)
kx

corresponds to the label kx. The probability of inferring the label kx

correctly is therefore given by Tr
(
σ̃

(n)
kx

E
(n)
kx

)
. If kx is correctly decoded and

found to belong to the set {2, . . . Nn}, then Bob can unambiguously infer the
corresponding classical message x that was sent sent by Alice. This is because
the map x → kx was one–to–one for labels kx in the above set. However, even
if the label kx = 1 is correctly inferred, the corresponding classical message
x cannot be inferred unambiguously. This is because each atypical message
x had been given the same label kx = 1. In this case, Bob fails to decode
Alice’s message. Nevertheless the average probability of error in decoding
still vanishes asymptotically because atypical messages are rarely emitted.
Moreover, from Theorem 1 it follows that for any ε > 0, the probability of
error for each typical message can be made less that ε.

The following theorem is the direct part of the HSW theorem generalized
to an ergodic source.

Theorem 2 Consider a memoryless quantum channel given by a completely
positive trace-preserving map Φ : B(H) → B(K), where H and K are finite-
dimensional Hilbert spaces. Let χ(Φ) be the Holevo capacity of the channel. If
A is the alphabet of a classical ergodic source of information with probability
distribution µ and Kolmogorov–Sinai entropy H < χ(Φ), then there exists for
any given ε > 0, an n0 ∈ N, such that for all n ≥ n0 there exist a code map
Cn : An → S(H⊗n), of rate R < χ(Φ), with image in the product states, and

a decoding Dn : S(K⊗n) → An, corresponding to POVM elements {E(n)
k }Nn

k=0,
such that the average probability of error, pe, in decoding, satisfies pe < 2ε.

Proof. By McMillan’s theorem (see e.g. [3]), for ε > 0 and n large enough,

there exists a typical set Tn ≡ T
(n)
ε in An, such that for all x ∈ Tn, µn(x) >

2−n(H+ε), µn(Tn) > 1−ε and |Tn| < 2n(H+ε), where |Tn| denotes the cardinaliy

of the typical set. By the above Theorem 1, there exist product states ρ̃
(n)
k

and positive operators E
(n)
k with k = 1, . . . , Nn and Nn > 2n(χ(Φ)−ε) such that

Tr [Φ⊗n(ρ̃
(n)
k )E

(n)
k ] > 1 − ε. Choose ε to be so small that H + ε < χ(Φ) − ε.

For this choice, |Tn| < 2n(χ(Φ)−ε), and hence the rate R of the code satisfies
the bound R < χ(Φ) − ε. In this case we can define a one to one map

Cn : Tn → S(H⊗n) by Cn(x) = ρ̃
(n)
kx

for some kx ∈ {2, . . . , Nn}, whereas for all

x /∈ Tn we define Cn(x) := ρ̃
(n)
1 . The average probability of error is given by

pe =
∑
x∈Tn

µn(x)(1− Tr [σ̃
(n)
kx

E
(n)
kx

]) + µn(T c
n) < 2ε, (44)
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where T c
n denotes the atypical set, i.e., the complement of Tn.

3.1 Proof of the converse

In this section we prove that it is impossible for Alice to transmit classical
messages reliably to Bob through the channel Φ defined in (1) at a rate
R > C(Φ). This is the weak converse of Theorem ?? in the sense that the
probability of error does not tend to zero asymptotically as the length of the
code increases, for any code with rate R > C(Φ). To prove the weak converse,
suppose that Alice encodes messages labelled by α ∈ Mn by product states
ρ

(n)
α = ρα,1⊗· · ·⊗ρα,n in B(H⊗n). Let the corresponding outputs for the i-th

branch of the channel be denoted by σ
(n)
α,i , i.e.

σ
(n)
α,i = Φ

(n)
i (ρ(n)

α ) = σi
α,1 ⊗ · · · ⊗ σi+n−1

α,n , σi
α,j = Φi(ρα,j). (45)

Further define

σ̄
(n)
i =

1

|Mn|
∑

α∈Mn

σ
(n)
α,i (46)

and

σ̄i,j =
1

|Mn|
∑

α∈Mn

σi
α,j . (47)

Let Bob’s POVM elements corresponding to the codewords ρ
(n)
α be denoted by

E
(n)
α , α = 1, . . . , |Mn|. We may assume that Alice’s messages are produced

uniformly at random from the set Mn. Then Bob’s average probability of
error is given by

p̄(n)
e := 1− 1

|Mn|
∑

α∈Mn

Tr
[
Φ(n)(ρ(n)

α )E(n)
α

]
. (48)

Let X(n) be a random variable with a uniform distribution over the set
Mn, characterizing the classical message sent by Alice to Bob. Let Y (n) be
the random variable corresponding to Bob’s inference of Alice’s message. It
is defined by the conditional probabilities

P [Y (n) = β |X(n) = α] =
1

L

L−1∑
i=0

Tr [Φ
(n)
i (ρ(n)

α )E
(n)
β ]. (49)

By Fano’s inequality,

h(p̄(n)
e ) + p̄(n)

e log(|Mn| − 1) ≥ H(X(n) |Y (n)) = H(X(n))−H(X(n) : Y (n)).
(50)
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Here h(·) denotes the binary entropy and H(·) denotes the Shannon entropy.
Using the Holevo bound, the subadditivity of the von Neumann entropy and
the convexity of the relative entropy, we have

H(X(n) : Y (n)) ≤ S

(
1

|Mn|L
∑

α∈Mn

L−1∑
i=0

Φ
(n)
i (ρ(n)

α )

)

− 1

|Mn|
∑

α∈Mn

S

(
1

L

L−1∑
i=0

Φ
(n)
i (ρ(n)

α )

)

≤
n∑

j=1

[
S

(
1

|Mn|
1

L

∑
α∈Mn

L−1∑
i=0

Φi+j−1(ρα,j)

)

− 1

|Mn|
∑

α∈Mn

S

(
1

L

L−1∑
i=0

Φi+j−1(ρα,j)

)]

=
n∑

j=1

1

|Mn|
∑

α∈Mn

×S

(
1

L

L−1∑
i=0

Φi+j−1(ρα,j) || 1

|Mn|L
∑
α,i

Φi+j−1(ρα,j)

)

≤ 1

L

L−1∑
i=0

n∑
j=1

1

|Mn|
∑

α∈Mn

×S

(
Φi+j−1(ρα,j) || 1

|Mn|
∑

α

Φi+j−1(ρα,j)

)

=
1

L

L−1∑
i=0

n∑
j=1

χi

({
1

|Mn| , ρα,j

}

α∈Mn

)

≤ nC(Φ). (51)

Fano’s inequality (50) now yields

h(p̄(n)
e ) + p̄(n)

e log |Mn| ≥ log |Mn| − nC(Φ), (52)

Now, if R = 1
n

log |Mn| > C(Φ), we must have

p̄(n)
e ≥ 1− C(Φ) + 1/n

R
> 0. (53)
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