Quantum Version of Shannon's Noisy Coding Theorem

N. Datta
Statistical Laboratory Centre for Mathematical Sciences University of Cambridge Wilberforce Road, Cambridge CB3 0WB
Email: n.datta@statslab.cam.ac.uk
T. C. Dorlas
Dublin Institute for Advanced Studies
School of Theoretical Physics
10 Burlington Road, Dublin 4, Ireland.
Email: dorlas@stp.dias.ie

February 17, 2006

Abstract

We prove an analogue of Feinstein's lemma for a memoryless quantum channel and use it to prove a quantum version of Shannon's noisy coding theorem.

1 A quantum channel with classical memory

Let \mathcal{H} and \mathcal{K} be given finite-dimensional Hilbert spaces and denote by $\mathcal{B}(\mathcal{H})$ the algebra of linear operators on \mathcal{H}. We also consider the tensor product algebras $\mathcal{A}_{n}=\mathcal{B}\left(\mathcal{H}^{\otimes n}\right)$ and the infinite tensor product C^{*}-algebra obtained as the strong closure

$$
\begin{equation*}
\mathcal{A}_{\infty}=\overline{\bigcup_{n=1}^{\infty} \mathcal{A}_{n}} \tag{1.1}
\end{equation*}
$$

where we include \mathcal{A}_{n} into \mathcal{A}_{n+1} in the obvious way. Similarly, we define $\mathcal{B}_{n}=\mathcal{B}\left(\mathcal{K}^{\otimes n}\right)$ and \mathcal{B}_{∞}. We denote the states on \mathcal{A}_{∞} by $\mathcal{S}\left(\mathcal{A}_{\infty}\right)$, etc.

Let there be given a Markov chain on a finite state space I given by transition probabilities $q_{i^{\prime} \mid i}$ and let $\left(q_{i}\right)_{i \in I}$ be an equilibrium distribution for this chain, i.e.

$$
\begin{equation*}
q_{i^{\prime}}=\sum_{i \in I} q_{i} q_{i^{\prime} \mid i} . \tag{1.2}
\end{equation*}
$$

Moreover, let $V_{i}: \mathcal{H} \rightarrow \mathcal{K}$ be given isometries for each $i \in I$. Then we define a quantum channel by the completely positive trace-preserving (CPT) map $\Phi_{\infty}: \mathcal{S}\left(\mathcal{A}_{\infty}\right) \rightarrow \mathcal{S}\left(\mathcal{B}_{\infty}\right)$ given by

$$
\begin{align*}
\Phi_{\infty}(\phi)(A)= & \sum_{i_{1}, \ldots, i_{n} \in I} q_{i_{1}} q_{i_{2} \mid i_{1}} \ldots q_{i_{n} \mid i_{n-1}} \\
& \times \phi_{n}\left(\left(V_{i_{1}}^{*} \otimes \cdots \otimes V_{i_{n}}^{*}\right) A\left(V_{i_{1}} \otimes \cdots \otimes V_{i_{n}}\right)\right) \tag{1.3}
\end{align*}
$$

for $A \in \mathcal{B}_{n}$. Here, ϕ_{n} is the restriction of ϕ to \mathcal{A}_{n}. It is easily seen that this defines a CPT map on the states, and moreover, that it is translationinvariant (stationary).

We now define the product state capacity of this channel. Suppose that $\left\{p_{j}, \rho_{j}\right\}_{j=1}^{M}$ is a sequence of states ρ_{j} on \mathcal{H} with probabilities p_{j}, $\sum_{j=1}^{M} p_{j}=1$. For a multi-index $\underline{j}=\left(j_{1}, \ldots, j_{n}\right)$ we denote $p_{\underline{j}}^{(n)}=p_{j_{1}} \ldots p_{j_{n}}$ and $\rho_{\underline{j}}^{(n)}=\rho_{j_{1}} \otimes \cdots \otimes \rho_{j_{n}}$. Then

$$
\begin{equation*}
\bar{\sigma}_{n}=\sum_{j_{1} \ldots, j_{n}=1}^{M} p_{\underline{j}}^{(n)} \Phi_{n}\left(\rho_{\underline{j}}^{(n)}\right) \tag{1.4}
\end{equation*}
$$

is a projective system of states on \mathcal{B}_{∞} defining a translation-invariant state $\bar{\sigma}_{\infty}$ on \mathcal{B}_{∞}, and the mean entropy

$$
\begin{equation*}
S_{M}\left(\bar{\sigma}_{\infty}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} S\left(\bar{\sigma}_{n}\right)=\inf _{n \in \mathbb{N}} \frac{1}{n} S\left(\bar{\sigma}_{n}\right) \tag{1.5}
\end{equation*}
$$

exists.

2 Quantum Version of Feinstein's Lemma

Theorem 2.1 Let a quantum channel be given by a completely positive map $\Phi: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{K})$, and define the channel (product state) capacity by

$$
\begin{equation*}
\chi(\Phi)=\sup _{\left\{p_{j}\right\}_{j=1}^{J},\left\{\rho_{j}\right\}_{j=1}^{J}}\left\{S\left(\sum_{j=1}^{J} p_{j} \Phi\left(\rho_{j}\right)\right)-\sum_{j=1}^{J} p_{j} S\left(\Phi\left(\rho_{j}\right)\right)\right\}, \tag{2.6}
\end{equation*}
$$

where the supremum is taken over all finite sets of states $\rho_{j} \in \mathcal{B}(\mathcal{H})$ and probability distributions $\left\{p_{j}\right\}_{j=1}^{J}$. Given $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ there exists $N \geq 2^{n(\chi(\Phi)-\epsilon)}$ and there exist states $\tilde{\rho}_{1}^{(n)}, \ldots, \tilde{\rho}_{N}^{(n)} \in$ $\mathcal{B}(\mathcal{H})$ and positive operators $E_{1}, \ldots, E_{N} \in \mathcal{B}_{+}(\mathcal{K})$ such that $\sum_{k=1}^{N} E_{k} \leq \mathbf{1}$ and

$$
\begin{equation*}
\text { Trace }\left[\Phi^{\otimes n}\left(\tilde{\rho}_{k}^{(n)}\right) E_{k}\right]>1-\epsilon . \tag{2.7}
\end{equation*}
$$

Proof. Let the supremum in (2.6) be attained for a collection $\left\{p_{j}, \rho_{j}\right\}_{j=1}^{J}$. Denote $\sigma_{j}=\Phi\left(\rho_{j}\right), \bar{\sigma}=\sum_{j=1}^{J} p_{j} \Phi\left(\rho_{j}\right), \sigma_{n}=\bar{\sigma}^{\otimes n}$, and $\tilde{\sigma}_{k}^{(n)}=\Phi^{\otimes n}\left(\tilde{\rho}_{k}^{(n)}\right)$.

Choose $\delta>0$. We will relate δ to ϵ at a later stage. There exists $n_{1} \in \mathbb{N}$ such that for $n \geq n_{1}$, there is a typical subspace $\overline{\mathcal{T}}_{\delta, \epsilon}$ with projection P_{n} such that if $\bar{\sigma}_{n}$ has a spectral decomposition

$$
\begin{equation*}
\bar{\sigma}_{n}=\sum_{\underline{k}} \bar{\lambda}_{\underline{k}}^{(n)}\left|\psi_{\underline{k}}^{(n)}\right\rangle\left\langle\psi_{\underline{k}}^{(n)}\right| \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\frac{1}{n} \log \bar{\lambda}_{\underline{k}}^{(n)}+S(\bar{\sigma})\right|<\frac{\epsilon}{3} \tag{2.9}
\end{equation*}
$$

for all \underline{k} such that $\left|\psi_{\underline{k}}^{(n)}\right\rangle \in \overline{\mathcal{T}}_{\delta, \epsilon}$ and

$$
\begin{equation*}
\operatorname{Trace}\left(P_{n} \bar{\sigma}_{n}\right)>1-\delta^{2} . \tag{2.10}
\end{equation*}
$$

Define

$$
\begin{equation*}
\bar{S}=\sum_{j=1}^{J} p_{j} S\left(\sigma_{j}\right) \tag{2.11}
\end{equation*}
$$

Lemma 2.1 Given a sequence $\underline{j}=\left(j_{1}, \ldots, j_{n}\right)$ let $P_{\underline{j}}^{(n)}$ be the projection onto the subspace spanned by the eigenvectors of $\sigma_{\underline{j}}^{(n)}=\sigma_{j_{1}} \otimes \cdots \otimes \sigma_{j_{n}}$ with eigenvalues $\lambda_{\underline{j}, \underline{k}}^{(n)}=\prod_{i=1}^{n} \lambda_{j_{i}, k_{i}}$ such that

$$
\begin{equation*}
\left|\frac{1}{n} \log \lambda_{\underline{j}, \underline{k}}^{(n)}+\bar{S}\right|<\frac{\epsilon}{3} . \tag{2.12}
\end{equation*}
$$

Let $\delta>0$. There exists $n_{2} \in \mathbb{N}$ such that for $n \geq n_{2}$,

$$
\begin{equation*}
\mathbb{E}\left(\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} P_{\underline{j}}^{(n)}\right)\right)>1-\delta^{2} \tag{2.13}
\end{equation*}
$$

Proof. Define i.i.d. random variables X_{1}, \ldots, X_{n} with distribution given by

$$
\begin{equation*}
\mathbb{P}\left(X_{i}=\lambda_{j, k}\right)=p_{j} \lambda_{j, k}, \tag{2.14}
\end{equation*}
$$

where $\lambda_{j, k}, k=1,2, \ldots, d^{\prime}$ are the eigenvalues of σ_{j}. By the weak law of large numbers,

$$
\begin{align*}
\frac{1}{n} \sum_{i=1}^{n} \log X_{i} \rightarrow \mathbb{E}\left(\log X_{i}\right) & =\sum_{j=1}^{J} \sum_{k=1}^{d^{\prime}} p_{j} \lambda_{j, k} \log \lambda_{j, k} \\
& =-\sum_{j=1}^{J} p_{j} S\left(\sigma_{j}\right)=-\bar{S} \tag{2.15}
\end{align*}
$$

It follows that there exists n_{2} such that for $n \geq n_{2}$, the typical set $T_{\delta, \epsilon}^{(n)}$ of sequences of pairs $\left(\left(j_{1}, k_{1}\right), \ldots,\left(j_{n}, k_{n}\right)\right)$ such that

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{i=1}^{n} \log \lambda_{j_{i}, k_{i}}+\bar{S}\right|<\frac{\epsilon}{3} \tag{2.16}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\mathbb{P}\left(T_{\delta, \epsilon}^{(n)}\right)=\sum_{\left(\left(j_{1}, k_{1}\right), \ldots,\left(j_{n}, k_{n}\right)\right) \in T_{\delta, \epsilon}^{(n)}} \prod_{i=1}^{n} p_{j_{i}} \lambda_{j_{i}, k_{i}}>1-\delta^{2} . \tag{2.17}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
P_{\underline{j}}^{(n)} \geq \sum_{\underline{k}:(\underline{j}, \underline{k}) \in T_{\delta, \epsilon}^{(n)}}\left|\psi_{\underline{j}, \underline{k}}^{(n)}\right\rangle\left\langle\psi_{\underline{j}, \underline{k}}^{(n)}\right| \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left(\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} P_{\underline{j}}^{(n)}\right)\right) \geq \mathbb{P}\left(T_{\delta, \epsilon}^{(n)}\right)>1-\delta^{2} . \tag{2.19}
\end{equation*}
$$

Continuing the proof of the theorem, let $N=N(n)$ be the maximal number for which there exist states $\tilde{\rho}_{1}^{(n)}, \ldots, \tilde{\rho}_{N}^{(n)}$ on $\mathcal{H}^{\otimes n}$ and positive operators E_{1}, \ldots, E_{N} on \mathcal{K} such that
(i) $\sum_{k=1}^{N} E_{k} \leq P_{n}$ and
(ii) Trace $\left[\tilde{\sigma}_{k}^{(n)} E_{k}\right]>1-\epsilon$ and
(iii) Trace $\left[\bar{\sigma}_{n} E_{k}\right] \leq 2^{-n\left[S(\bar{\sigma})-\bar{S}-\frac{2}{3} \epsilon\right]}$.

For any given \underline{j} define

$$
\begin{equation*}
V_{\underline{j}}^{(n)}=\left(P_{n}-\sum_{k=1}^{N} E_{k}\right)^{1 / 2} P_{n} P_{\underline{j}}^{(n)} P_{n}\left(P_{n}-\sum_{k=1}^{N} E_{k}\right)^{1 / 2} . \tag{2.20}
\end{equation*}
$$

Clearly, $V_{\underline{j}}^{(n)} \leq P_{n}-\sum_{k=1}^{N} E_{k}$, and we also have:

Lemma 2.2 Define

$$
\begin{equation*}
W_{n}=\left\{\underline{j} \mid \operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} P_{\underline{j}}^{(n)}\right)>1-\delta\right\} . \tag{2.21}
\end{equation*}
$$

Then, for all $\underline{j} \in W_{n}$,

$$
\begin{equation*}
\operatorname{Trace}\left(\bar{\sigma}_{n} V_{\underline{j}}^{(n)}\right) \leq 2^{-n\left[S(\bar{\sigma})-\bar{S}-\frac{2}{3} \epsilon\right]} \tag{2.22}
\end{equation*}
$$

Proof. Put $Q_{n}=\sum_{k=1}^{N(n)} E_{k}$. Note that Q_{n} commutes with P_{n}. Using the fact that $P_{n} \bar{\sigma}_{n} P_{n} \leq 2^{-n\left[S(\bar{\sigma})-\frac{1}{3} \epsilon\right]}$ by (2.9), we have

$$
\begin{align*}
\operatorname{Trace}\left(\bar{\sigma}_{n} V_{\underline{j}}^{(n)}\right) & =\operatorname{Trace}\left[\bar{\sigma}_{n}\left(P_{n}-Q_{n}\right)^{1 / 2} P_{n} P_{\underline{j}}^{(n)} P_{n}\left(P_{n}-Q_{n}\right)^{1 / 2}\right] \\
& =\operatorname{Trace}\left[P_{n} \bar{\sigma}_{n} P_{n}\left(P_{n}-Q_{n}\right)^{1 / 2} P_{\underline{j}}^{(n)}\left(P_{n}-Q_{n}\right)^{1 / 2}\right] \\
& \leq 2^{-n\left[S\left(\bar{\sigma}_{n}\right)-\frac{1}{3} \epsilon\right]} \operatorname{Trace}\left[\left(P_{n}-Q_{n}\right)^{1 / 2} P_{\underline{j}}^{(n)}\left(P_{n}-Q_{n}\right)^{1 / 2}\right] \\
& \leq 2^{-n\left[S\left(\bar{\sigma}_{n}\right)-\frac{1}{3} \epsilon\right]} \operatorname{Trace}\left(P_{\underline{j}}^{(n)}\right) \leq 2^{-n\left[S\left(\bar{\sigma}_{n}\right)-\bar{S}-\frac{2}{3} \epsilon\right]}, \tag{2.23}
\end{align*}
$$

where, in the last inequality, we used the standard upper bound on the dimension of the typical subspace: $\operatorname{Trace}\left(P_{\underline{j}}^{(n)}\right) \leq 2^{n\left[\bar{S}+\frac{1}{3} \epsilon\right]}$, which follows from Lemma 2.1.

Since $N(n)$ is maximal it follows that for $\underline{j} \in W_{n}$,

$$
\begin{equation*}
\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} V_{\underline{j}}^{(n)}\right) \leq 1-2 \epsilon \tag{2.24}
\end{equation*}
$$

Lemma 2.3 For all $\eta>0$, there exists $n_{3} \in \mathbb{N}$ such that for all $n \geq n_{3}$,

$$
\begin{equation*}
\mathbb{E}\left(\text { Trace }\left[\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)} P_{n}\right]\right)>1-\eta . \tag{2.25}
\end{equation*}
$$

Proof. We write

$$
\begin{align*}
& \mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)} P_{n}\right]\right)= \\
& =\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)} P_{\underline{j}}^{(n)}\right]\right)-\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right) P_{\underline{j}}^{(n)}\right]\right) \\
& \quad-\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right)\right]\right) . \tag{2.26}
\end{align*}
$$

By Lemma 2.1, the first term is $>1-\delta^{2}$ provided $n \geq n_{2}$. The last two
terms can be bounded using Cauchy-Schwarz as follows:

$$
\begin{align*}
\mathbb{E}(& \text { Trace } \left.\left[\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right) P_{\underline{j}}^{(n)}\right]\right)= \\
= & \mathbb{E}\left(\operatorname{Trace}\left[\left(\sigma_{\underline{j}}^{(n)}\right)^{1 / 2}\left(\mathbf{1}-P_{n}\right) P_{\underline{j}}^{(n)}\left(\sigma_{\underline{j}}^{(n)}\right)^{1 / 2}\right]\right) \\
\leq & \left\{\mathbb{E}\left(\text { Trace }\left[\left(\mathbf{1}-P_{n}\right) \sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right)\right]\right)\right\}^{1 / 2} \\
& \times\left\{\mathbb{E}\left(\operatorname{Trace}\left[\left(\sigma_{\underline{j}}^{(n)}\right)^{1 / 2} P_{\underline{j}}^{(n)}\left(\sigma_{\underline{j}}^{(n)}\right)^{1 / 2}\right]\right)\right\}^{1 / 2} \\
= & \left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right)\right]\right)\right\}^{1 / 2}\left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)} P_{\underline{j}}^{(n)}\right]\right)\right\}^{1 / 2} \\
\leq & \left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right)\right]\right)\right\}^{1 / 2} \\
= & \left(\operatorname{Trace}\left[\bar{\sigma}_{n}\left(\mathbf{1}-P_{n}\right)\right]\right)^{1 / 2} \leq \delta \tag{2.27}
\end{align*}
$$

by (2.10) provided $n \geq n_{1}$. Similarly,

$$
\begin{align*}
& \mathbb{E}\left(\text { Trace }\left[\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right)\right]\right)= \\
&= \mathbb{E}\left(\operatorname{Trace}\left[\left(\sigma_{\underline{j}}^{(n)}\right)^{1 / 2} P_{n} P_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right)\left(\sigma_{\underline{j}}^{(n)}\right)^{1 / 2}\right]\right) \\
& \leq\left\{\mathbb{E}\left(\text { Trace }\left[P_{\underline{j}}^{(n)} P_{n} \sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)}\right]\right)\right\}^{1 / 2} \\
& \times\left\{\mathbb{E}\left(\text { Trace }\left[\left(\sigma_{\underline{j}}^{(n)}\right)^{1 / 2}\left(\mathbf{1}-P_{n}\right)\left(\sigma_{\underline{j}}^{(n)}\right)^{1 / 2}\right]\right)\right\}^{1 / 2} \\
&=\left\{\mathbb{E}\left(\text { Trace }\left[\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)} P_{n}\right]\right)\right\}^{1 / 2}\left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right)\right]\right)\right\}^{1 / 2} \\
& \leq\left\{\mathbb{E}\left(\text { Trace }\left[\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{n}\right)\right]\right)\right\}^{1 / 2} \leq \delta . \tag{2.28}
\end{align*}
$$

Choosing $n_{3}=n_{1} \vee n_{2}$ and $\delta^{2}+2 \delta<\eta$ the result follows.
We now show that the set W_{n} has high probability:

Lemma $2.4 \mu\left(W_{n}\right)>1-\delta$.
Proof. If $\underline{j} \notin W_{n}$ then Trace $\left(\sigma_{\underline{j}}^{(n)} P_{\underline{j}}^{(n)}\right) \leq 1-\delta$. Hence

$$
\begin{equation*}
\sum_{\underline{j} \notin W_{n}} p_{\underline{j}}^{(n)} \operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{\underline{j}}^{(n)}\right)\right) \geq \delta \mu\left(W_{n}^{c}\right) \tag{2.29}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\sum_{\underline{j} \notin W_{n}} p_{\underline{j}}^{(n)} \operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{\underline{j}}^{(n)}\right)\right) \leq \mathbb{E}\left(\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}\left(\mathbf{1}-P_{\underline{j}}^{(n)}\right)\right)\right)<\delta^{2} . \tag{2.30}
\end{equation*}
$$

It follows that $\mu\left(W_{n}^{c}\right)<\frac{\delta^{2}}{\delta}=\delta$.

Corollary 2.1 Assume $\delta<\frac{1}{2} \epsilon$. Then

$$
\begin{equation*}
\mathbb{E}\left(\text { Trace }\left[\sigma_{\underline{j}}^{(n)} V_{\underline{j}}^{(n)}\right]\right)<1-\frac{1}{2} \epsilon . \tag{2.31}
\end{equation*}
$$

Proof. Using (2.24), we have

$$
\begin{align*}
& \mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)} V_{\underline{j}}^{(n)}\right]\right)= \\
& \quad=\sum_{\underline{j} \in W_{n}} p_{\underline{j}}^{(n)} \operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)} V_{\underline{j}}^{(n)}\right]+\sum_{\underline{j} \in W_{n}^{c}} p_{\underline{j}}^{(n)} \operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)} V_{\underline{j}}^{(n)}\right] \\
& \quad \leq 1-\epsilon+\mu\left(W_{n}^{c}\right)<1-\epsilon \tag{2.32}
\end{align*}
$$

provided $\delta<\epsilon$.

Lemma 2.5 Assume $\eta<\frac{1}{6} \epsilon$. Then for $n \geq n_{3}$,

$$
\begin{equation*}
\text { Trace }\left[\bar{\sigma}_{n} \sum_{k=1}^{N} E_{k}\right]=\mathbb{E}\left(\text { Trace }\left[\sigma_{\underline{j}}^{(n)} \sum_{k=1}^{N} E_{k}\right]\right) \geq \eta^{2} . \tag{2.33}
\end{equation*}
$$

Proof. Define

$$
\begin{equation*}
Q_{n}^{\prime}=P_{n}-\left(P_{n}-Q_{n}\right)^{1 / 2} \tag{2.34}
\end{equation*}
$$

By the above corollary,

$$
\begin{align*}
1-\frac{1}{2} \epsilon \geq & \mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}\left(P_{n}-Q_{n}^{\prime}\right) P_{\underline{j}}^{(n)}\left(P_{n}-Q_{n}^{\prime}\right)\right)\right\} \\
= & \mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)} P_{n}\right)\right\} \\
& -\mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} Q_{n}^{\prime} P_{\underline{j}}^{(n)} P_{n}\right)+\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)} Q_{n}^{\prime}\right)\right\} \\
& +\mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} Q_{n}^{\prime} P_{\underline{j}}^{(n)} Q_{n}^{\prime}\right)\right\} . \tag{2.35}
\end{align*}
$$

Since the last term is positive, we have, by Lemma 2.3,

$$
\begin{equation*}
\mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} Q_{n}^{\prime} P_{\underline{j}}^{(n)} P_{n}\right)+\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)} Q_{n}^{\prime}\right)\right\} \geq \frac{1}{2} \epsilon-\eta>2 \eta . \tag{2.36}
\end{equation*}
$$

On the other hand, using Cauchy-Schwarz for each term, we have

$$
\begin{align*}
\mathbb{E} & \left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} Q_{n}^{\prime} P_{\underline{j}}^{(n)} P_{n}\right)+\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)} Q_{n}^{\prime}\right)\right\} \leq \\
& \leq 2\left\{\mathbb{E}\left[\operatorname{Trace}\left(Q_{n}^{\prime} \sigma_{\underline{j}}^{(n)} Q_{n}^{\prime}\right)\right]\right\}^{1 / 2}\left\{\mathbb{E}\left[\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} P_{n} P_{\underline{j}}^{(n)} P_{n}\right)\right]\right\}^{1 / 2} \\
& \leq 2\left\{\mathbb{E}\left[\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} Q_{n}^{\prime 2}\right)\right]\right\}^{1 / 2} . \tag{2.37}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} Q_{n}^{\prime 2}\right)\right] \geq \eta^{2} \tag{2.38}
\end{equation*}
$$

To complete the proof, we now claim that

$$
\begin{equation*}
Q_{n} \geq\left(Q_{n}^{\prime}\right)^{2} \tag{2.39}
\end{equation*}
$$

Indeed, this follows on the domain of P_{n} from the inequality $1-(1-x)^{2} \geq x^{2}$ for $0 \leq x \leq 1$.

To complete the proof of the theorem, we now have by assumption,

$$
\begin{equation*}
\text { Trace }\left[\bar{\sigma}_{n} E_{k}\right] \leq 2^{-n\left[S(\bar{\sigma})-\bar{S}-\frac{2}{3} \epsilon\right]} \tag{2.40}
\end{equation*}
$$

for all $k=1, \ldots, N(n)$. On the other hand, choosing $\eta<\frac{1}{6} \epsilon$ and $\delta<\frac{1}{3} \eta$, we have by Lemma 2.5,

$$
\begin{equation*}
\text { Trace }\left[\bar{\sigma}_{n} \sum_{k=1}^{N} E_{k}\right] \geq \eta^{2} \tag{2.41}
\end{equation*}
$$

provided $n \geq n_{3}$. It follows that

$$
\begin{equation*}
N(n) \geq \eta^{2} 2^{n\left[S(\bar{\sigma})-\bar{S}-\frac{2}{3} \epsilon\right]} \geq 2^{n[S(\bar{\sigma})-\bar{S}-\epsilon]} \tag{2.42}
\end{equation*}
$$

for $n \geq n_{3}$ and $n \geq-\frac{6}{\epsilon} \log \eta$.

