
Quantum Version of Shannon’s Noisy Coding

Theorem

N. Datta

Statistical Laboratory

Centre for Mathematical Sciences

University of Cambridge

Wilberforce Road, Cambridge CB3 0WB

Email: n.datta@statslab.cam.ac.uk

T. C. Dorlas

Dublin Institute for Advanced Studies

School of Theoretical Physics

10 Burlington Road, Dublin 4, Ireland.

Email: dorlas@stp.dias.ie

February 17, 2006

Abstract

We prove an analogue of Feinstein’s lemma for a memoryless quan-
tum channel and use it to prove a quantum version of Shannon’s noisy
coding theorem.
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1 A quantum channel with classical memory

Let H and K be given finite-dimensional Hilbert spaces and denote by B(H)

the algebra of linear operators on H. We also consider the tensor product

algebras An = B(H⊗n) and the infinite tensor product C∗-algebra obtained

as the strong closure

A∞ =
∞⋃

n=1

An, (1.1)

where we include An into An+1 in the obvious way. Similarly, we define

Bn = B(K⊗n) and B∞. We denote the states on A∞ by S(A∞), etc.

Let there be given a Markov chain on a finite state space I given by

transition probabilities qi′|i and let (qi)i∈I be an equilibrium distribution for

this chain, i.e.

qi′ =
∑
i∈I

qiqi′|i. (1.2)

Moreover, let Vi : H → K be given isometries for each i ∈ I. Then we define

a quantum channel by the completely positive trace-preserving (CPT) map

Φ∞ : S(A∞) → S(B∞) given by

Φ∞(φ)(A) =
∑

i1,...,in∈I

qi1qi2|i1 . . . qin|in−1

×φn

(
(V ∗

i1
⊗ · · · ⊗ V ∗

in) A (Vi1 ⊗ · · · ⊗ Vin)
)

(1.3)

for A ∈ Bn. Here, φn is the restriction of φ to An. It is easily seen that

this defines a CPT map on the states, and moreover, that it is translation-

invariant (stationary).

We now define the product state capacity of this channel. Sup-

pose that {pj, ρj}M
j=1 is a sequence of states ρj on H with probabilities pj,∑M

j=1 pj = 1. For a multi-index j = (j1, . . . , jn) we denote p
(n)
j = pj1 . . . pjn

and ρ
(n)
j = ρj1 ⊗ · · · ⊗ ρjn . Then

σ̄n =
M∑

j1...,jn=1

p
(n)
j Φn(ρ

(n)
j ) (1.4)
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is a projective system of states on B∞ defining a translation-invariant state

σ̄∞ on B∞, and the mean entropy

SM(σ̄∞) = lim
n→∞

1

n
S (σ̄n) = inf

n∈N

1

n
S (σ̄n) (1.5)

exists.

2 Quantum Version of Feinstein’s Lemma

Theorem 2.1 Let a quantum channel be given by a completely positive map

Φ : B(H) → B(K), and define the channel (product state) capacity by

χ(Φ) = sup
{pj}J

j=1,{ρj}J
j=1

{
S

(
J∑

j=1

pj Φ(ρj)

)
−

J∑
j=1

pj S(Φ(ρj))

}
, (2.6)

where the supremum is taken over all finite sets of states ρj ∈ B(H) and

probability distributions {pj}J
j=1. Given ε > 0, there exists n0 ∈ N such that

for all n ≥ n0 there exists N ≥ 2n(χ(Φ)−ε) and there exist states ρ̃
(n)
1 , . . . , ρ̃

(n)
N ∈

B(H) and positive operators E1, . . . , EN ∈ B+(K) such that
∑N

k=1 Ek ≤ 1 and

Trace
[
Φ⊗n

(
ρ̃

(n)
k

)
Ek

]
> 1− ε. (2.7)

Proof. Let the supremum in (2.6) be attained for a collection {pj, ρj}J
j=1.

Denote σj = Φ(ρj), σ̄ =
∑J

j=1 pjΦ(ρj), σn = σ̄⊗n, and σ̃
(n)
k = Φ⊗n(ρ̃

(n)
k ).

Choose δ > 0. We will relate δ to ε at a later stage. There exists n1 ∈ N
such that for n ≥ n1, there is a typical subspace T δ,ε with projection Pn such

that if σ̄n has a spectral decomposition

σ̄n =
∑

k

λ̄
(n)
k |ψ(n)

k 〉〈ψ(n)
k | (2.8)

then ∣∣∣∣
1

n
log λ̄

(n)
k + S(σ̄)

∣∣∣∣ <
ε

3
(2.9)

for all k such that |ψ(n)
k 〉 ∈ T δ,ε and

Trace(Pnσ̄n) > 1− δ2. (2.10)
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Define

S̄ =
J∑

j=1

pj S(σj). (2.11)

Lemma 2.1 Given a sequence j = (j1, . . . , jn) let P
(n)
j be the projection

onto the subspace spanned by the eigenvectors of σ
(n)
j = σj1 ⊗ · · · ⊗ σjn with

eigenvalues λ
(n)
j,k =

∏n
i=1 λji,ki

such that

∣∣∣∣
1

n
log λ

(n)
j,k + S̄

∣∣∣∣ <
ε

3
. (2.12)

Let δ > 0. There exists n2 ∈ N such that for n ≥ n2,

E
(
Trace

(
σ

(n)
j P

(n)
j

))
> 1− δ2. (2.13)

Proof. Define i.i.d. random variables X1, . . . , Xn with distribution given

by

P(Xi = λj,k) = pj λj,k, (2.14)

where λj,k, k = 1, 2, . . . , d′ are the eigenvalues of σj. By the weak law of

large numbers,

1

n

n∑
i=1

log Xi → E(log Xi) =
J∑

j=1

d′∑

k=1

pj λj,k log λj,k

= −
J∑

j=1

pj S(σj) = −S̄. (2.15)

It follows that there exists n2 such that for n ≥ n2, the typical set T
(n)
δ,ε of

sequences of pairs ((j1, k1), . . . , (jn, kn)) such that
∣∣∣∣∣
1

n

n∑
i=1

log λji,ki
+ S̄

∣∣∣∣∣ <
ε

3
(2.16)

satisfies

P
(
T

(n)
δ,ε

)
=

∑

((j1,k1),...,(jn,kn))∈T
(n)
δ,ε

n∏
i=1

pji
λji,ki

> 1− δ2. (2.17)
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Obviously,

P
(n)
j ≥

∑

k:(j,k)∈T
(n)
δ,ε

|ψ(n)
j,k 〉〈ψ(n)

j,k | (2.18)

and

E
(
Trace

(
σ

(n)
j P

(n)
j

))
≥ P

(
T

(n)
δ,ε

)
> 1− δ2. (2.19)

Continuing the proof of the theorem, let N = N(n) be the maximal num-

ber for which there exist states ρ̃
(n)
1 , . . . , ρ̃

(n)
N on H⊗n and positive operators

E1, . . . , EN on K such that

(i)
∑N

k=1 Ek ≤ Pn and

(ii) Trace[ σ̃
(n)
k Ek] > 1− ε and

(iii) Trace[ σ̄nEk] ≤ 2−n[S(σ̄)−S̄− 2
3
ε].

For any given j define

V
(n)
j =

(
Pn −

N∑

k=1

Ek

)1/2

PnP
(n)
j Pn

(
Pn −

N∑

k=1

Ek

)1/2

. (2.20)

Clearly, V
(n)
j ≤ Pn −

∑N
k=1 Ek, and we also have:

Lemma 2.2 Define

Wn = {j | Trace(σ
(n)
j P

(n)
j ) > 1− δ}. (2.21)

Then, for all j ∈ Wn,

Trace(σ̄nV
(n)
j ) ≤ 2−n[S(σ̄)−S̄− 2

3
ε]. (2.22)
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Proof. Put Qn =
∑N(n)

k=1 Ek. Note that Qn commutes with Pn. Using

the fact that Pnσ̄nPn ≤ 2−n[S(σ̄)− 1
3
ε] by (2.9), we have

Trace(σ̄nV
(n)
j ) = Trace

[
σ̄n(Pn −Qn)1/2PnP

(n)
j Pn(Pn −Qn)1/2

]

= Trace
[
Pnσ̄nPn(Pn −Qn)1/2P

(n)
j (Pn −Qn)1/2

]

≤ 2−n[S(σ̄n)− 1
3
ε] Trace

[
(Pn −Qn)1/2P

(n)
j (Pn −Qn)1/2

]

≤ 2−n[S(σ̄n)− 1
3
ε] Trace (P

(n)
j ) ≤ 2−n[S(σ̄n)−S̄− 2

3
ε], (2.23)

where, in the last inequality, we used the standard upper bound on the

dimension of the typical subspace: Trace(P
(n)
j ) ≤ 2n[S̄+ 1

3
ε], which follows

from Lemma 2.1.

Since N(n) is maximal it follows that for j ∈ Wn,

Trace
(
σ

(n)
j V

(n)
j

)
≤ 1− 2ε. (2.24)

Lemma 2.3 For all η > 0, there exists n3 ∈ N such that for all n ≥ n3,

E
(
Trace

[
σ

(n)
j PnP

(n)
j Pn

])
> 1− η. (2.25)

Proof. We write

E
(
Trace

[
σ

(n)
j PnP

(n)
j Pn

])
=

= E
(
Trace

[
σ

(n)
j P

(n)
j

])
− E

(
Trace

[
σ

(n)
j (1− Pn)P

(n)
j

])

−E
(
Trace

[
σ

(n)
j PnP

(n)
j (1− Pn)

])
. (2.26)

By Lemma 2.1, the first term is > 1 − δ2 provided n ≥ n2. The last two
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terms can be bounded using Cauchy-Schwarz as follows:

E
(
Trace

[
σ

(n)
j (1− Pn)P

(n)
j

])
=

= E

(
Trace

[(
σ

(n)
j

)1/2

(1− Pn)P
(n)
j

(
σ

(n)
j

)1/2
])

≤
{
E

(
Trace

[
(1− Pn)σ

(n)
j (1− Pn)

])}1/2

×
{
E

(
Trace

[(
σ

(n)
j

)1/2

P
(n)
j

(
σ

(n)
j

)1/2
])}1/2

=
{
E

(
Trace

[
σ

(n)
j (1− Pn)

])}1/2 {
E

(
Trace

[
σ

(n)
j P

(n)
j

])}1/2

≤
{
E

(
Trace

[
σ

(n)
j (1− Pn)

])}1/2

= (Trace [σ̄n(1− Pn)])1/2 ≤ δ (2.27)

by (2.10) provided n ≥ n1. Similarly,

E
(
Trace

[
σ

(n)
j PnP

(n)
j (1− Pn)

])
=

= E

(
Trace

[(
σ

(n)
j

)1/2

PnP
(n)
j (1− Pn)

(
σ

(n)
j

)1/2
])

≤
{
E

(
Trace

[
P

(n)
j Pnσ

(n)
j PnP

(n)
j

])}1/2

×
{
E

(
Trace

[(
σ

(n)
j

)1/2

(1− Pn)
(
σ

(n)
j

)1/2
])}1/2

=
{
E

(
Trace

[
σ

(n)
j PnP

(n)
j Pn

])}1/2 {
E

(
Trace

[
σ

(n)
j (1− Pn)

])}1/2

≤
{
E

(
Trace

[
σ

(n)
j (1− Pn)

])}1/2

≤ δ. (2.28)

Choosing n3 = n1 ∨ n2 and δ2 + 2δ < η the result follows.

We now show that the set Wn has high probability:

Lemma 2.4 µ(Wn) > 1− δ.

Proof. If j /∈ Wn then Trace
(
σ

(n)
j P

(n)
j

)
≤ 1− δ. Hence

∑

j /∈Wn

p
(n)
j Trace

(
σ

(n)
j (1− P

(n)
j )

)
≥ δ µ(W c

n). (2.29)
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On the other hand,

∑

j /∈Wn

p
(n)
j Trace

(
σ

(n)
j (1− P

(n)
j )

)
≤ E

(
Trace

(
σ

(n)
j (1− P

(n)
j )

))
< δ2. (2.30)

It follows that µ(W c
n) < δ2

δ
= δ.

Corollary 2.1 Assume δ < 1
2
ε. Then

E
(
Trace

[
σ

(n)
j V

(n)
j

])
< 1− 1

2
ε. (2.31)

Proof. Using (2.24), we have

E
(
Trace

[
σ

(n)
j V

(n)
j

])
=

=
∑

j∈Wn

p
(n)
j Trace

[
σ

(n)
j V

(n)
j

]
+

∑
j∈W c

n

p
(n)
j Trace

[
σ

(n)
j V

(n)
j

]

≤ 1− ε + µ(W c
n) < 1− ε (2.32)

provided δ < ε.

Lemma 2.5 Assume η < 1
6
ε. Then for n ≥ n3,

Trace

[
σ̄n

N∑

k=1

Ek

]
= E

(
Trace

[
σ

(n)
j

N∑

k=1

Ek

])
≥ η2. (2.33)

Proof. Define

Q′
n = Pn − (Pn −Qn)1/2. (2.34)

By the above corollary,

1− 1

2
ε ≥ E

{
Trace

(
σ

(n)
j (Pn −Q′

n)P
(n)
j (Pn −Q′

n)
)}

= E
{

Trace
(
σ

(n)
j PnP

(n)
j Pn

)}

−E
{

Trace
(
σ

(n)
j Q′

nP
(n)
j Pn

)
+ Trace

(
σ

(n)
j PnP

(n)
j Q′

n

)}

+E
{

Trace
(
σ

(n)
j Q′

nP
(n)
j Q′

n

)}
. (2.35)
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Since the last term is positive, we have, by Lemma 2.3,

E
{

Trace
(
σ

(n)
j Q′

nP
(n)
j Pn

)
+ Trace

(
σ

(n)
j PnP

(n)
j Q′

n

)}
≥ 1

2
ε− η > 2η. (2.36)

On the other hand, using Cauchy-Schwarz for each term, we have

E
{

Trace
(
σ

(n)
j Q′

nP
(n)
j Pn

)
+ Trace

(
σ

(n)
j PnP

(n)
j Q′

n

)}
≤

≤ 2
{
E

[
Trace

(
Q′

nσ
(n)
j Q′

n

)]}1/2 {
E

[
Trace

(
σ

(n)
j PnP

(n)
j Pn

)]}1/2

≤ 2
{
E

[
Trace

(
σ

(n)
j Q′2

n

)]}1/2

. (2.37)

Thus,

E
[
Trace

(
σ

(n)
j Q′2

n

)]
≥ η2. (2.38)

To complete the proof, we now claim that

Qn ≥ (Q′
n)2. (2.39)

Indeed, this follows on the domain of Pn from the inequality 1−(1−x)2 ≥ x2

for 0 ≤ x ≤ 1.

To complete the proof of the theorem, we now have by assumption,

Trace [σ̄nEk] ≤ 2−n[S(σ̄)−S̄− 2
3
ε] (2.40)

for all k = 1, . . . , N(n). On the other hand, choosing η < 1
6
ε and δ < 1

3
η, we

have by Lemma 2.5,

Trace

[
σ̄n

N∑

k=1

Ek

]
≥ η2 (2.41)

provided n ≥ n3. It follows that

N(n) ≥ η22n[S(σ̄)−S̄− 2
3
ε] ≥ 2n[S(σ̄)−S̄−ε] (2.42)

for n ≥ n3 and n ≥ −6
ε
log η.
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