Quantum Version of Shannon's Noisy Coding Theorem

N. Datta

Statistical Laboratory

Centre for Mathematical Sciences

University of Cambridge

Wilberforce Road, Cambridge CB3 0WB

Email: n.datta@statslab.cam.ac.uk

T. C. Dorlas

Dublin Institute for Advanced Studies
School of Theoretical Physics

10 Burlington Road, Dublin 4, Ireland.
Email: dorlas@stp.dias.ie

February 17, 2006

Abstract

We prove an analogue of Feinstein's lemma for a memoryless quantum channel and use it to prove a quantum version of Shannon's noisy coding theorem.

1 A quantum channel with classical memory

Let \mathcal{H} and \mathcal{K} be given finite-dimensional Hilbert spaces and denote by $\mathcal{B}(\mathcal{H})$ the algebra of linear operators on \mathcal{H} . We also consider the tensor product algebras $\mathcal{A}_n = \mathcal{B}(\mathcal{H}^{\otimes n})$ and the infinite tensor product C*-algebra obtained as the strong closure

$$\mathcal{A}_{\infty} = \overline{\bigcup_{n=1}^{\infty} \mathcal{A}_n},\tag{1.1}$$

where we include \mathcal{A}_n into \mathcal{A}_{n+1} in the obvious way. Similarly, we define $\mathcal{B}_n = \mathcal{B}(\mathcal{K}^{\otimes n})$ and \mathcal{B}_{∞} . We denote the states on \mathcal{A}_{∞} by $\mathcal{S}(\mathcal{A}_{\infty})$, etc.

Let there be given a Markov chain on a finite state space I given by transition probabilities $q_{i'|i}$ and let $(q_i)_{i\in I}$ be an equilibrium distribution for this chain, i.e.

$$q_{i'} = \sum_{i \in I} q_i q_{i'|i}. \tag{1.2}$$

Moreover, let $V_i: \mathcal{H} \to \mathcal{K}$ be given isometries for each $i \in I$. Then we define a quantum channel by the completely positive trace-preserving (CPT) map $\Phi_{\infty}: \mathcal{S}(\mathcal{A}_{\infty}) \to \mathcal{S}(\mathcal{B}_{\infty})$ given by

$$\Phi_{\infty}(\phi)(A) = \sum_{i_1,\dots,i_n \in I} q_{i_1} q_{i_2|i_1} \dots q_{i_n|i_{n-1}}
\times \phi_n \left((V_{i_1}^* \otimes \dots \otimes V_{i_n}^*) A \left(V_{i_1} \otimes \dots \otimes V_{i_n} \right) \right)$$
(1.3)

for $A \in \mathcal{B}_n$. Here, ϕ_n is the restriction of ϕ to \mathcal{A}_n . It is easily seen that this defines a CPT map on the states, and moreover, that it is translation-invariant (stationary).

We now define the **product state capacity** of this channel. Suppose that $\{p_j, \rho_j\}_{j=1}^M$ is a sequence of states ρ_j on \mathcal{H} with probabilities p_j , $\sum_{j=1}^M p_j = 1$. For a multi-index $\underline{j} = (j_1, \ldots, j_n)$ we denote $p_{\underline{j}}^{(n)} = p_{j_1} \ldots p_{j_n}$ and $\rho_j^{(n)} = \rho_{j_1} \otimes \cdots \otimes \rho_{j_n}$. Then

$$\bar{\sigma}_n = \sum_{j_1,\dots,j_n=1}^M p_{\underline{j}}^{(n)} \Phi_n(\rho_{\underline{j}}^{(n)}) \tag{1.4}$$

is a projective system of states on \mathcal{B}_{∞} defining a translation-invariant state $\bar{\sigma}_{\infty}$ on \mathcal{B}_{∞} , and the mean entropy

$$S_M(\bar{\sigma}_{\infty}) = \lim_{n \to \infty} \frac{1}{n} S(\bar{\sigma}_n) = \inf_{n \in \mathbb{N}} \frac{1}{n} S(\bar{\sigma}_n)$$
 (1.5)

exists.

2 Quantum Version of Feinstein's Lemma

Theorem 2.1 Let a quantum channel be given by a completely positive map $\Phi: \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{K})$, and define the channel (product state) capacity by

$$\chi(\Phi) = \sup_{\{p_j\}_{j=1}^J, \{\rho_j\}_{j=1}^J} \left\{ S\left(\sum_{j=1}^J p_j \, \Phi(\rho_j)\right) - \sum_{j=1}^J p_j \, S(\Phi(\rho_j)) \right\}, \tag{2.6}$$

where the supremum is taken over all finite sets of states $\rho_j \in \mathcal{B}(\mathcal{H})$ and probability distributions $\{p_j\}_{j=1}^J$. Given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ there exists $N \geq 2^{n(\chi(\Phi)-\epsilon)}$ and there exist states $\tilde{\rho}_1^{(n)}, \ldots, \tilde{\rho}_N^{(n)} \in \mathcal{B}(\mathcal{H})$ and positive operators $E_1, \ldots, E_N \in \mathcal{B}_+(\mathcal{K})$ such that $\sum_{k=1}^N E_k \leq 1$ and

Trace
$$\left[\Phi^{\otimes n}\left(\tilde{\rho}_k^{(n)}\right)E_k\right] > 1 - \epsilon.$$
 (2.7)

Proof. Let the supremum in (2.6) be attained for a collection $\{p_j, \rho_j\}_{j=1}^J$. Denote $\sigma_j = \Phi(\rho_j)$, $\bar{\sigma} = \sum_{j=1}^J p_j \Phi(\rho_j)$, $\sigma_n = \bar{\sigma}^{\otimes n}$, and $\tilde{\sigma}_k^{(n)} = \Phi^{\otimes n}(\tilde{\rho}_k^{(n)})$.

Choose $\delta > 0$. We will relate δ to ϵ at a later stage. There exists $n_1 \in \mathbb{N}$ such that for $n \geq n_1$, there is a typical subspace $\overline{\mathcal{T}}_{\delta,\epsilon}$ with projection P_n such that if $\bar{\sigma}_n$ has a spectral decomposition

$$\bar{\sigma}_n = \sum_{\underline{k}} \bar{\lambda}_{\underline{k}}^{(n)} |\psi_{\underline{k}}^{(n)}\rangle \langle \psi_{\underline{k}}^{(n)}| \qquad (2.8)$$

then

$$\left| \frac{1}{n} \log \bar{\lambda}_{\underline{k}}^{(n)} + S(\bar{\sigma}) \right| < \frac{\epsilon}{3} \tag{2.9}$$

for all \underline{k} such that $|\psi_k^{(n)}\rangle\in\overline{\mathcal{T}}_{\delta,\epsilon}$ and

$$\operatorname{Trace}(P_n \bar{\sigma}_n) > 1 - \delta^2. \tag{2.10}$$

Define

$$\bar{S} = \sum_{j=1}^{J} p_j S(\sigma_j). \tag{2.11}$$

Lemma 2.1 Given a sequence $\underline{j} = (j_1, \ldots, j_n)$ let $P_{\underline{j}}^{(n)}$ be the projection onto the subspace spanned by the eigenvectors of $\sigma_{\underline{j}}^{(n)} = \sigma_{j_1} \otimes \cdots \otimes \sigma_{j_n}$ with eigenvalues $\lambda_{\underline{j},\underline{k}}^{(n)} = \prod_{i=1}^n \lambda_{j_i,k_i}$ such that

$$\left| \frac{1}{n} \log \lambda_{\underline{j},\underline{k}}^{(n)} + \bar{S} \right| < \frac{\epsilon}{3}. \tag{2.12}$$

Let $\delta > 0$. There exists $n_2 \in \mathbb{N}$ such that for $n \geq n_2$,

$$\mathbb{E}\left(\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}P_{\underline{j}}^{(n)}\right)\right) > 1 - \delta^{2}.\tag{2.13}$$

Proof. Define i.i.d. random variables X_1, \ldots, X_n with distribution given by

$$\mathbb{P}(X_i = \lambda_{j,k}) = p_j \,\lambda_{j,k},\tag{2.14}$$

where $\lambda_{j,k}$, $k=1,2,\ldots,d'$ are the eigenvalues of σ_j . By the weak law of large numbers,

$$\frac{1}{n} \sum_{i=1}^{n} \log X_i \to \mathbb{E}(\log X_i) = \sum_{j=1}^{J} \sum_{k=1}^{d'} p_j \lambda_{j,k} \log \lambda_{j,k}$$

$$= -\sum_{j=1}^{J} p_j S(\sigma_j) = -\bar{S}. \tag{2.15}$$

It follows that there exists n_2 such that for $n \geq n_2$, the typical set $T_{\delta,\epsilon}^{(n)}$ of sequences of pairs $((j_1, k_1), \dots, (j_n, k_n))$ such that

$$\left| \frac{1}{n} \sum_{i=1}^{n} \log \lambda_{j_i, k_i} + \bar{S} \right| < \frac{\epsilon}{3} \tag{2.16}$$

satisfies

$$\mathbb{P}\left(T_{\delta,\epsilon}^{(n)}\right) = \sum_{((j_1,k_1),\dots,(j_n,k_n))\in T_{\delta,\epsilon}^{(n)}} \prod_{i=1}^n p_{j_i} \lambda_{j_i,k_i} > 1 - \delta^2.$$
 (2.17)

Obviously,

$$P_{\underline{j}}^{(n)} \ge \sum_{\underline{k}:(\underline{j},\underline{k}) \in T_{\delta,\epsilon}^{(n)}} |\psi_{\underline{j},\underline{k}}^{(n)}\rangle \langle \psi_{\underline{j},\underline{k}}^{(n)}|$$
(2.18)

and

$$\mathbb{E}\left(\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}P_{\underline{j}}^{(n)}\right)\right) \ge \mathbb{P}\left(T_{\delta,\epsilon}^{(n)}\right) > 1 - \delta^{2}.$$
(2.19)

Continuing the proof of the theorem, let N = N(n) be the maximal number for which there exist states $\tilde{\rho}_1^{(n)}, \ldots, \tilde{\rho}_N^{(n)}$ on $\mathcal{H}^{\otimes n}$ and positive operators E_1, \ldots, E_N on \mathcal{K} such that

- (i) $\sum_{k=1}^{N} E_k \leq P_n$ and
- (ii) Trace $[\tilde{\sigma}_k^{(n)} E_k] > 1 \epsilon$ and
- (iii) Trace $[\bar{\sigma}_n E_k] \leq 2^{-n[S(\bar{\sigma}) \bar{S} \frac{2}{3}\epsilon]}$.

For any given j define

$$V_{\underline{j}}^{(n)} = \left(P_n - \sum_{k=1}^{N} E_k\right)^{1/2} P_n P_{\underline{j}}^{(n)} P_n \left(P_n - \sum_{k=1}^{N} E_k\right)^{1/2}.$$
 (2.20)

Clearly, $V_j^{(n)} \leq P_n - \sum_{k=1}^N E_k$, and we also have:

Lemma 2.2 Define

$$W_n = \{ \underline{j} \mid \operatorname{Trace}(\sigma_j^{(n)} P_j^{(n)}) > 1 - \delta \}. \tag{2.21}$$

Then, for all $j \in W_n$,

$$\operatorname{Trace}(\bar{\sigma}_n V_j^{(n)}) \le 2^{-n[S(\bar{\sigma}) - \bar{S} - \frac{2}{3}\epsilon]}.$$
(2.22)

Proof. Put $Q_n = \sum_{k=1}^{N(n)} E_k$. Note that Q_n commutes with P_n . Using the fact that $P_n \bar{\sigma}_n P_n \leq 2^{-n[S(\bar{\sigma}) - \frac{1}{3}\epsilon]}$ by (2.9), we have

$$\operatorname{Trace}(\bar{\sigma}_{n}V_{\underline{j}}^{(n)}) = \operatorname{Trace}\left[\bar{\sigma}_{n}(P_{n} - Q_{n})^{1/2}P_{n}P_{\underline{j}}^{(n)}P_{n}(P_{n} - Q_{n})^{1/2}\right] \\
= \operatorname{Trace}\left[P_{n}\bar{\sigma}_{n}P_{n}(P_{n} - Q_{n})^{1/2}P_{\underline{j}}^{(n)}(P_{n} - Q_{n})^{1/2}\right] \\
\leq 2^{-n[S(\bar{\sigma}_{n}) - \frac{1}{3}\epsilon]}\operatorname{Trace}\left[(P_{n} - Q_{n})^{1/2}P_{\underline{j}}^{(n)}(P_{n} - Q_{n})^{1/2}\right] \\
\leq 2^{-n[S(\bar{\sigma}_{n}) - \frac{1}{3}\epsilon]}\operatorname{Trace}\left(P_{j}^{(n)}\right) \leq 2^{-n[S(\bar{\sigma}_{n}) - \bar{S} - \frac{2}{3}\epsilon]}, \quad (2.23)$$

where, in the last inequality, we used the standard upper bound on the dimension of the typical subspace: $\operatorname{Trace}(P_{\underline{j}}^{(n)}) \leq 2^{n[\bar{S}+\frac{1}{3}\epsilon]}$, which follows from Lemma 2.1.

Since N(n) is maximal it follows that for $j \in W_n$,

Trace
$$\left(\sigma_{\underline{j}}^{(n)}V_{\underline{j}}^{(n)}\right) \le 1 - 2\epsilon.$$
 (2.24)

Lemma 2.3 For all $\eta > 0$, there exists $n_3 \in \mathbb{N}$ such that for all $n \geq n_3$,

$$\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}P_{n}P_{\underline{j}}^{(n)}P_{n}\right]\right) > 1 - \eta. \tag{2.25}$$

Proof. We write

$$\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}P_{n}P_{\underline{j}}^{(n)}P_{n}\right]\right) = \\ = \mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}P_{\underline{j}}^{(n)}\right]\right) - \mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}(\mathbf{1} - P_{n})P_{\underline{j}}^{(n)}\right]\right) \\ - \mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}P_{n}P_{\underline{j}}^{(n)}(\mathbf{1} - P_{n})\right]\right). \tag{2.26}$$

By Lemma 2.1, the first term is $> 1 - \delta^2$ provided $n \ge n_2$. The last two

terms can be bounded using Cauchy-Schwarz as follows:

$$\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}(\mathbf{1}-P_{n})P_{\underline{j}}^{(n)}\right]\right) = \\
= \mathbb{E}\left(\operatorname{Trace}\left[\left(\sigma_{\underline{j}}^{(n)}\right)^{1/2}(\mathbf{1}-P_{n})P_{\underline{j}}^{(n)}\left(\sigma_{\underline{j}}^{(n)}\right)^{1/2}\right]\right) \\
\leq \left\{\mathbb{E}\left(\operatorname{Trace}\left[\left(\mathbf{1}-P_{n}\right)\sigma_{\underline{j}}^{(n)}(\mathbf{1}-P_{n})\right]\right)\right\}^{1/2} \\
\times \left\{\mathbb{E}\left(\operatorname{Trace}\left[\left(\sigma_{\underline{j}}^{(n)}\right)^{1/2}P_{\underline{j}}^{(n)}\left(\sigma_{\underline{j}}^{(n)}\right)^{1/2}\right]\right)\right\}^{1/2} \\
= \left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}(\mathbf{1}-P_{n})\right]\right)\right\}^{1/2} \left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}P_{\underline{j}}^{(n)}\right]\right)\right\}^{1/2} \\
\leq \left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}(\mathbf{1}-P_{n})\right]\right)\right\}^{1/2} \\
= \left(\operatorname{Trace}\left[\bar{\sigma}_{n}(\mathbf{1}-P_{n})\right]\right)^{1/2} \leq \delta \tag{2.27}$$

by (2.10) provided $n \geq n_1$. Similarly,

$$\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}P_{n}P_{\underline{j}}^{(n)}(\mathbf{1}-P_{n})\right]\right) = \\
= \mathbb{E}\left(\operatorname{Trace}\left[\left(\sigma_{\underline{j}}^{(n)}\right)^{1/2}P_{n}P_{\underline{j}}^{(n)}(\mathbf{1}-P_{n})\left(\sigma_{\underline{j}}^{(n)}\right)^{1/2}\right]\right) \\
\leq \left\{\mathbb{E}\left(\operatorname{Trace}\left[P_{\underline{j}}^{(n)}P_{n}\sigma_{\underline{j}}^{(n)}P_{n}P_{\underline{j}}^{(n)}\right]\right)\right\}^{1/2} \\
\times \left\{\mathbb{E}\left(\operatorname{Trace}\left[\left(\sigma_{\underline{j}}^{(n)}\right)^{1/2}(\mathbf{1}-P_{n})\left(\sigma_{\underline{j}}^{(n)}\right)^{1/2}\right]\right)\right\}^{1/2} \\
= \left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}P_{n}P_{\underline{j}}^{(n)}P_{n}\right]\right)\right\}^{1/2} \left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}(\mathbf{1}-P_{n})\right]\right)\right\}^{1/2} \\
\leq \left\{\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}(\mathbf{1}-P_{n})\right]\right)\right\}^{1/2} \leq \delta. \tag{2.28}$$

Choosing $n_3 = n_1 \vee n_2$ and $\delta^2 + 2\delta < \eta$ the result follows.

We now show that the set W_n has high probability:

Lemma 2.4 $\mu(W_n) > 1 - \delta$.

Proof. If
$$\underline{j} \notin W_n$$
 then Trace $\left(\sigma_{\underline{j}}^{(n)} P_{\underline{j}}^{(n)}\right) \leq 1 - \delta$. Hence
$$\sum_{\underline{j} \notin W_n} p_{\underline{j}}^{(n)} \operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)} (\mathbf{1} - P_{\underline{j}}^{(n)})\right) \geq \delta \mu(W_n^c). \tag{2.29}$$

On the other hand,

$$\sum_{j \notin W_n} p_{\underline{j}}^{(n)} \operatorname{Trace} \left(\sigma_{\underline{j}}^{(n)} (\mathbf{1} - P_{\underline{j}}^{(n)}) \right) \leq \mathbb{E} \left(\operatorname{Trace} \left(\sigma_{\underline{j}}^{(n)} (\mathbf{1} - P_{\underline{j}}^{(n)}) \right) \right) < \delta^2. \quad (2.30)$$

It follows that
$$\mu(W_n^c) < \frac{\delta^2}{\delta} = \delta$$
.

Corollary 2.1 Assume $\delta < \frac{1}{2}\epsilon$. Then

$$\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}V_{\underline{j}}^{(n)}\right]\right) < 1 - \frac{1}{2}\epsilon. \tag{2.31}$$

Proof. Using (2.24), we have

$$\mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}V_{\underline{j}}^{(n)}\right]\right) = \\ = \sum_{\underline{j}\in W_n} p_{\underline{j}}^{(n)}\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}V_{\underline{j}}^{(n)}\right] + \sum_{\underline{j}\in W_n^c} p_{\underline{j}}^{(n)}\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)}V_{\underline{j}}^{(n)}\right] \\ \leq 1 - \epsilon + \mu(W_n^c) < 1 - \epsilon \tag{2.32}$$

provided
$$\delta < \epsilon$$
.

Lemma 2.5 Assume $\eta < \frac{1}{6}\epsilon$. Then for $n \geq n_3$,

Trace
$$\left[\bar{\sigma}_n \sum_{k=1}^N E_k\right] = \mathbb{E}\left(\operatorname{Trace}\left[\sigma_{\underline{j}}^{(n)} \sum_{k=1}^N E_k\right]\right) \ge \eta^2.$$
 (2.33)

Proof. Define

$$Q_n' = P_n - (P_n - Q_n)^{1/2}. (2.34)$$

By the above corollary,

$$1 - \frac{1}{2}\epsilon \geq \mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}(P_n - Q'_n)P_{\underline{j}}^{(n)}(P_n - Q'_n)\right)\right\}$$

$$= \mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}P_nP_{\underline{j}}^{(n)}P_n\right)\right\}$$

$$-\mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}Q'_nP_{\underline{j}}^{(n)}P_n\right) + \operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}P_nP_{\underline{j}}^{(n)}Q'_n\right)\right\}$$

$$+\mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}Q'_nP_{\underline{j}}^{(n)}Q'_n\right)\right\}. \tag{2.35}$$

Since the last term is positive, we have, by Lemma 2.3,

$$\mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}Q_n'P_{\underline{j}}^{(n)}P_n\right) + \operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}P_nP_{\underline{j}}^{(n)}Q_n'\right)\right\} \ge \frac{1}{2}\epsilon - \eta > 2\eta. \quad (2.36)$$

On the other hand, using Cauchy-Schwarz for each term, we have

$$\mathbb{E}\left\{\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}Q_{n}'P_{\underline{j}}^{(n)}P_{n}\right) + \operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}P_{n}P_{\underline{j}}^{(n)}Q_{n}'\right)\right\} \leq \\
\leq 2\left\{\mathbb{E}\left[\operatorname{Trace}\left(Q_{n}'\sigma_{\underline{j}}^{(n)}Q_{n}'\right)\right]\right\}^{1/2}\left\{\mathbb{E}\left[\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}P_{n}P_{\underline{j}}^{(n)}P_{n}\right)\right]\right\}^{1/2} \\
\leq 2\left\{\mathbb{E}\left[\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}Q_{n}'^{2}\right)\right]\right\}^{1/2}.$$
(2.37)

Thus,

$$\mathbb{E}\left[\operatorname{Trace}\left(\sigma_{\underline{j}}^{(n)}Q_n'^2\right)\right] \ge \eta^2. \tag{2.38}$$

To complete the proof, we now claim that

$$Q_n \ge (Q_n')^2. \tag{2.39}$$

Indeed, this follows on the domain of P_n from the inequality $1-(1-x)^2 \ge x^2$ for $0 \le x \le 1$.

To complete the proof of the theorem, we now have by assumption,

Trace
$$\left[\bar{\sigma}_n E_k\right] \le 2^{-n\left[S(\bar{\sigma}) - \bar{S} - \frac{2}{3}\epsilon\right]}$$
 (2.40)

for all k = 1, ..., N(n). On the other hand, choosing $\eta < \frac{1}{6}\epsilon$ and $\delta < \frac{1}{3}\eta$, we have by Lemma 2.5,

Trace
$$\left[\bar{\sigma}_n \sum_{k=1}^N E_k\right] \ge \eta^2$$
 (2.41)

provided $n \geq n_3$. It follows that

$$N(n) \ge \eta^2 2^{n[S(\bar{\sigma}) - \bar{S} - \frac{2}{3}\epsilon]} \ge 2^{n[S(\bar{\sigma}) - \bar{S} - \epsilon]}$$
(2.42)

for
$$n \ge n_3$$
 and $n \ge -\frac{6}{\epsilon} \log \eta$.