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Abstract

We prove an analogue of Feinstein’s lemma for a memoryless quan-
tum channel and use it to prove a quantum version of Shannon’s noisy

coding theorem.



1 A quantum channel with classical memory

Let H and I be given finite-dimensional Hilbert spaces and denote by B(H)
the algebra of linear operators on H. We also consider the tensor product
algebras A, = B(H®") and the infinite tensor product C*-algebra obtained

as the strong closure

n=1

where we include A, into A,,; in the obvious way. Similarly, we define

B, = B(K®") and B,,. We denote the states on A, by S(A), ete.

Let there be given a Markov chain on a finite state space I given by
transition probabilities g;; and let (¢;)ic; be an equilibrium distribution for
this chain, i.e.

4 = Z%’%’/ﬁ- (1.2)
iel
Moreover, let V; : H — K be given isometries for each ¢ € I. Then we define

a quantum channel by the completely positive trace-preserving (CPT) map
O S(Ax) — S(Bw) given by

(I)oo(gb) (A) = Z Qi1Qi2|i1 s Qin|in_1

i1,eyin€l

X (Vi@ VYAV, @ @ Vi,)) (1.3)

i1

for A € B,. Here, ¢, is the restriction of ¢ to A,. It is easily seen that
this defines a CPT map on the states, and moreover, that it is translation-

invariant (stationary).

We now define the product state capacity of this channel. Sup-
pose that {p;, pj}j]‘il is a sequence of states p; on H with probabilities p;,
Z]‘Ai1 pj = 1. For a multi-index j = (j1,...,Jn) We denote pén) = Dj, ---Djn

and Pg;n) = pj1 @+ @ pj,. Then

M
Gu= > P 2u(p") (1.4)

jl---vj’lL:l



is a projective system of states on B, defining a translation-invariant state

0so ON By, and the mean entropy

Sui(6o0) = Tim L5 (5,) = inf S () (1.5)

n—oo 71 neN 1

exists.

2 Quantum Version of Feinstein’s Lemma

Theorem 2.1 Let a quantum channel be given by a completely positive map
O : B(H) — B(K), and define the channel (product state) capacity by

J J

- o {s(Sna) - Ynsewn). e
{piY_idpiti j=1 j=1

where the supremum is taken over all finite sets of states p; € B(H) and

probability distributions {pj}le. Given € > 0, there exists ng € N such that

for alln > ng there exists N > 2"X(®)=9) gqnd there exist states 55”), e ,;353) €

B(H) and positive operators Ey, ..., En € B, (K) such that Z,ivzl E, <1 and

Trace [(P@" (ﬁén)> Ek} >1—ce (2.7)

Proof. Let the supremum in (2.6) be attained for a collection {p;, p;}7_,.
Denote 0; = ®(p;), 0 = Z;I:lpj@(pj), 0, =%, and 5\ = &%),

Choose § > 0. We will relate § to € at a later stage. There exists n; € N
such that for n > ny, there is a typical subspace 7516 with projection P, such

that if 5, has a spectral decomposition

n = > MM (2.8)
k
then .
“log A\ + 55| < < 2.9
1o+ 5(0)| < § (29)
for all k such that ") € T5, and
Trace(P,5,) > 1 — 6°. (2.10)
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Define ;
S=> p;S(oy). (2.11)
j=1

Lemma 2.1 Given a sequence j = (ji,...,Jn) let P](n) be the projection

onto the subspace spanned by the eigenvectors of a](-n) =05, ®- - ® o0y, with

eigenvalues )\572 =TI, A\jik: such that

1 (n) = €
‘Elog)\ﬂC + 5| < 3 (2.12)

Let 6 > 0. There exists ny € N such that for n > nao,

E <Trace <a§-n)Pj(")>> >1 -2 (2.13)
Proof. Define i.i.d. random variables Xy, ..., X,, with distribution given
by
P(Xl = )\j,k) = pj )\ng, (214)
where \;p, k = 1,2,...,d are the eigenvalues of o;. By the weak law of
large numbers,
1 n J d
n ; 0og - (Og ) ;kZI Dj Ay k108 Ajk

= =) p;jS(o;) =-5. (2.15)

It follows that there exists my such that for n > ng, the typical set Té(jz) of
sequences of pairs ((j1, k1), .-, (jn, kn)) such that

€

<
3

(2.16)

1 & ~
. 2 :1Og )‘ji,ki + 5
n =1

satisfies

g <T5(Z)> - Z ﬁpjiAji,ki >1-6 (2.17)

((G1:K1) e (o) ETS i=1
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Obviously,

P> N @y (2.18)
k:(j k)T
and
E <Trace <0£n)Pl-(")>> > P <T5(Z)) > 1§ (2.19)
il

Continuing the proof of the theorem, let N = N(n) be the maximal num-

ber for which there exist states ﬁ(ln), cee ,55\7) on H®" and positive operators

Ey, ..., Ey on K such that

(i) o, Er < P, and
(i) Trace[5"E] > 1 — ¢ and

(ili) Trace[a,Ey] < 27 50@)=5-5d

For any given j define

1/2

N 1/2 N
v = ( Py Ek> P,P"P, (Pn -3 Ek> . (2.20)
k=1 k=1
Clearly, Vj(”) < P, — 3., Ex, and we also have:

Lemma 2.2 Define

Wn={j| Trace(a™ P™) > 1 — 6} (2.21)

2 7

Then, for all j € W,

Trace(&nvj(n)) < 97 nIS(@) =534, (2.22)



Proof. Put Q, = ZkN:(?) E,. Note that @), commutes with P,. Using
the fact that P,5,P, < 2 "S@)-3d by (2.9), we have

Trace(s, V") = Trace [7,(Py = Qu) 2P P PP = Q)]

= Trace [Pnﬁnpn(Pn — Qn>1/2pj(n)(Pn — Qn)l/ﬂ

IN

an[S(&n)f%e] Trace |:(Pn _ Qn)l/QPj(n)(Pn _ Qn)l/Q}

win

< 27n08E)~5d Trace (Pj(n)> < 9 nlS@n)-5-3d (2.23)

where, in the last inequality, we used the standard upper bound on the
dimension of the typical subspace: Trace(Pj(")) < 2715+39 which follows

from Lemma 2.1. (]

Since N(n) is maximal it follows that for j € W,

Trace (aj(»")Vl(n)) <1-2e (2.24)

Lemma 2.3 For all n > 0, there exists n3 € N such that for all n > ng,

E <Trace [a](;n)PnPl-(n)PnD >1—-n. (2.25)

Proof. We write

E (Trace [a](»")Pn Pj(”) P"D —

J

= E (Trace [a<”)}7](")}> —E (Trace a(")(l - P@P(”ﬂ)

—E (Trace [aj(n)PnP-(n)(l — Pn)D . (2.26)

By Lemma 2.1, the first term is > 1 — §2 provided n > ny. The last two



terms can be bounded using Cauchy-Schwarz as follows:

E (Trace [aﬁ")(l — Pn)Pgn)}> —

= 5 (1o (o) " mart? (o))
< {&(Trace [(@ ~ P)ot"(1 - P )D}l/z
[ (e[ (o)1 ()]}
— {a (1sace [0 1 - 2)]) )" {& (Tvace [oP0] )}
< {&(Trace [0 (1 - P, )D}W

= (Trace[5,(1— P,))"* <6 (2.27)

by (2.10) provided n > n,. Similarly,

E <Trace [aén)PnPl-(n)(l - Pn)D =

<

<

Choosing ns = n; V ny and 6% + 2§ < n the result follows.

e (mace | (o) " Pop 0= (7))
[k (Trace [P R0 PP }1/2
X {IE (Trace [(a§”>)1/2( _p) ( j<n>)1/2D}1/2
(s (e [ rort? ] )} fo (e o0 ]}

{& (Trace [of" (1 - P,)]) }1/2 <4, (2.28)

~

We now show that the set 1W,, has high probability:

Lemma 2.4 p(W,)>1—06.

Proof. If j ¢ W, then Trace ( (")Pj(")) < 1-9. Hence

Z p; Trace( (g — Pl(n))> > 6 u(We). (2.29)
JEWn



On the other hand,

Z ;' Trace< ")(1 Pl-("))> <E <Trace< é”)(l — P( ))>) < 8. (2.30)

JEWn

It follows that u(Wy) < % = 9. ]
Corollary 2.1 Assume § < %e. Then
1
E <Trace [a(.">v.("’]) <1--e (2.31)

Proof. Using (2.24), we have

E <Trace [ é ‘/fn)D
— Z (n)
< i —e+u(Wi)<1l—e (2.32)

provided 9 < e. [

Lemma 2.5 Assumen < %e. Then for n > ng,

N N
Trace |6, Y  Ep| =E (Trace "> "B, ) > 2. (2.33)
k=1 k=1
Proof. Define

By the above corollary,

1_%€ > E{Trace a](n)(P - Q, )P(n)< _Q%))}

(7
(

= &{Trace (" PP P, ) }
{Trace ( J(n)Q;Pj(")Pn> + Trace <aj(n)PnP](n)Q;>}
+E {Trace <0](")Q;1PJ(H)Q’H> } (2.35)



Since the last term is positive, we have, by Lemma 2.3,
E{T o PMp) + T mp p™a )l > L =2 (2.36)
race (0, @, P Py race (0" BBy @ ) 1 2 ge—n > 2. (2.
On the other hand, using Cauchy-Schwarz for each term, we have

E {Trace (Uﬁ‘n)Q%]D](n)Pn) + Trace <a(n)PnPj(n)Q/n> } =

]

1/2 1/2
< 2 {IE [Trace (Q;aﬁn)QﬁL)} } {IE [Trace (a](”)PnJDJK”)Pn)} }

< 2 {IE [Trace <a§")Q5>] }1/2. (2.37)

Thus,
E [Trace (05")622)] > n?. (2.38)

To complete the proof, we now claim that
Qn > (@))% (2.39)

Indeed, this follows on the domain of P, from the inequality 1 — (1 —x)% > 22
for0 <z <I1. (]

To complete the proof of the theorem, we now have by assumption,
Trace [0, Fy| < 9 nIS(9)-5-3 (2.40)

forall k=1,...,N(n). On the other hand, choosing 1 < %e and 0 < %n, we
have by Lemma 2.5,

N
Trace |a, Z E| >n? (2.41)
k=1
provided n > n3. It follows that
N(TL) Z 772211[5(6‘)75‘7%6] Z 2n[S(5‘)7§76} (242)
for n > ng anan—glogn. ]



