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1 Existence of the thermodynamic limit

The 6-vertex model is an exactly soluble model of classical statistical me-

chanics introduced and solved in various special cases by Lieb [?, ?, ?]. A

solution of the most general case was obtained by Sutherland [?]. A clear

description of this model and various other soluble models can be found in

Baxter’s book [?]. However, as Baxter remarks, an exact solution is not the

same as a rigorous solution. Already in his first article on the ice model [?],

Lieb initiated the rigorous analysis of the model. A more extensive analysis

was made by Lieb and Wu [?]. One major question was left open, however.
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This concerns the convergence of the distribution of (quasi) wavenumbers to

a continuum measure in the thermodynamic limit. A similar problem was

solved in the case of the nonlinear Schroedinger model in [?]. The 6-vertex

model is more complicated because we cannot in all cases use the convexity

argument of Yang and Yang used there. Instead, we adjust another argument

of theirs [?], and use the index theory of Leray and Schroeder [?] to prove

the existence of solutions to the Bethe Ansatz equations.

We start in this section with the definition of the 6-vertex model and

some general results concerning the existence of the thermodynamic limit.

The transfer matrix formulation of the model and the diagonalisation of the

transfer matrix by means of the Bethe Ansatz are reviewed in Section 2.

The 6-vertex model is a model of classical statistical mechanics where the

configurations are given by arrows on the bonds of a 2-dimensional square

lattice. At each vertex only six different configurations of arrows are allowed:

Each of these vertex configurations is assigned an energy and we assume

spin-flip invariance, so that the first and the second, the third and the fourth

and the fifth and the sixth configuration have the same energy. We denote

these energies by ε1, ε2 and ε3. If β is the inverse temperature, the corre-

sponding Boltzmann weights are: w1 = exp[−βε1], w2 = exp[−βε2] and

w3 = exp[−βε3]. The partition function of the model is a sum over all al-

lowed configurations of a product of the Boltzmann weights of all vertices:

If M is the number of rows and N is the number of columns in the lattice,

and CM,N denotes the allowed configurations and we define the total energy

of a configuration c ∈ CM,N by

E(c) = n1(c) ε1 + n2(c) ε2 + n3(c) ε3, (1.1)

where ni(c) is the number of vertices of type i(a) or i(b) then the partition
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function is given by

ZM,N(w1, w2, w3) =
∑

c∈CM,N

e−βE(c). (1.2)

Solving this model now means: finding an explicit expression for the ther-

modynamic limit of the free energy density, i.e.

f(ε1, ε2, ε3; β) = − 1

β
lim

N,M→∞
1

NM
ln ZN,M(w1, w2, w3) (1.3)

The first question that arises is whether this limit exists. This was solved by

Lieb and Wu [?]. For convenience we repeat their argument here. Although

our proof below for the explicit formula for f includes an independent proof

of the existence of this limit, we shall need the corollary that f is convex as a

function of the density ρ. Here, and in the following, we shall adopt periodic

boundary conditions, which means that the horizontal arrows on the left and

the right boundary of a finite lattice are the same, and similarly, the vertical

arrows on the top and bottom boundaries are the same. (It was proved

by Brascamp et.al. [?] that periodic boundary conditions are equivalent to

free boundary conditions in the thermodynamic limit. In the Appendix,

we outline a simple alternative proof in the case of left-right symmetry, i.e.

ε2 = ε3.) This implies that, in a given configuration, the number of up arrows

in every row of vertical arrows is the same. We shall call this number divided

by the maximum number N , the density ρ. The partition function with fixed

density ρ is given by

Zp
M,N(w1, w2, w3; ρ) =

∑
α,γ

∑

c∈CM,N (α,α,γ,γ)

e−βE(c), (1.4)

where CM,N(α, α′, γ, γ′) denotes the set of configurations with given boundary

arrows: α and α′ for the bottom and top rows of vertical arrows, and γ and

γ′ for the left and right hand columns of horizontal arrows. In the following

we shall write Cp
M,N(α, γ) for CM,N(α, α, γ, γ).

Theorem 1.1 Let Zp
M,N denote the partition function of the six-vertex model

with periodic boundary conditions and let (Ml, Nl) be a sequence tending to

infinity in the sense of Van Hove, and suppose that (ρl)
∞
l=1 is a sequence of

3



numbers ρl ∈ [0, 1] tending to ρ such that ρlNl ∈ N. Then the corresponding

free energy density fp(ε1, ε2, ε3; β, ρ) defined by

f p(ε1, ε2, ε3; β, ρ) = − 1

β
lim
l→∞

1

MlNl

ln Zp
Ml,Nl

(w1, w2, w3; ρl) (1.5)

exists and is independent of the sequences (Ml, Nl) and (ρl). Moreover,

fp(ε1, ε2, ε3; β, ρ) is convex as a function of ρ and concave as a function of

the variables ε1, ε2, ε3 and β.

Proof. We start by considering special sequences. Assume first that

ρ ∈ [0, 1] ∩ Q. Take N0 ∈ N so large that ρN0 ∈ N, and choose M0 ∈ N
arbitrary. Consider the sequence of rectangular boxes of height Ml = 2lM0

and width Nl = 2lN0. One then proves as in Lieb and Wu [?] that the limit

(1.5) exists, using the inequalities

ZMl,Nl
(β, ρ) ≥ ΓMl,Nl

(β, ρ) ≥ (
ΓMl−1,Nl−1

(β, ρ)
)4

≥ (
ZMl−1,Nl−1

(β, ρ)
)
2−4(M0+N0).

(1.6)

(We suppress the dependence on εi and on the periodic boundary conditions.)

This implies that the sequence

fMl,Nl
(β, ρ) = − 1

βMlNl

ln ZMl,Nl
(β, ρ) (1.7)

is essentially decreasing. As it is also bounded below, it converges.

Next we show that this definition is independent of M0 and N0. Let

(N ′
n,M

′
n) be an arbitrary Van Hove sequence such that ρN ′

n ∈ N for all

n = 1, 2, . . . . Let rn,l = [N ′
n/Nl] and sn,l = [M ′

n/Ml]. Given configurations

ci,j ∈ CMl,Nl
(α, γ) i = 1, . . . , rn,l, j = 1, . . . , sn,l on the block (Ml, Nl), fill the

remainder of the block (M ′
n, N ′

n) with vertices of type 2 or 3 such that the

resulting configuration is periodic and has density ρ. (Notice that ρ(N ′
n −

rn,lNl) ∈ N.) Taking the supremum over α and γ it follows that

γM ′
n,N ′

n
(β, ρ) ≥ (ΓMl,Nl

(β, ρ))rn,lsn,l (w2 ∧ w3)
M ′

nN ′
n−rn,lsn,lNlMl . (1.8)

As in [] this implies

fM ′
n,N ′

n
(β, ρ) ≤ αn,lfMl,Nl

(β, ρ) +
1

β
αn,l

(
1

Ml

+
1

Nl

)
ln 2 + 2(1−αn,l)(ε2 ∨ ε3),

(1.9)
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where

αn,l =
rn,lsn,lMlNl

M ′
nN ′

n

. (1.10)

Taking n →∞ and then l →∞ we obtain

lim sup
n→∞

fM ′
n,N ′

n
(β, ρ) ≤ f(β, ρ). (1.11)

Similarly, one obtains the opposite bound:

lim inf
n→∞

fM ′
n,N ′

n
(β, ρ) ≥ f(β, ρ) (1.12)

by filling the boxes (Ml, Nl) with a maximum number of copies of (M ′
n, N

′
n).

We now show that f(β, ρ) is convex as a function of ρ. (Concavity in the

other variables is obvious.) Suppose tρ1 + (1 − t)ρ2 = ρ where t, ρ, ρ1, ρ2 ∈
Q∩[0, 1]. Given sequences (M

(1)
l , N

(1)
l ) and (M

(2)
l , N

(2)
l ) such that ρ1N

(1)
l ∈ N

and ρ2N
(2)
l ∈ N, choose p such that tp ∈ N and let Ml = M

(1)
l M

(2)
l and

Nl = pN
(1)
l N

(2)
l . Then we have

ΓMl,Nl
(β, ρ) ≥

(
Γ

M
(1)
l ,N

(1)
l

(β, ρ1)
)tpM

(2)
l N

(2)
l

(
Γ

M
(2)
l ,N

(2)
l

(β, ρ2)
)(1−t)pM

(1)
l N

(1)
l

.

(1.13)

This implies convexity of f as a function of ρ.

Finally, let ρ0 ∈ [0, 1] be arbitrary and suppose that ρn → ρ0, ρn ∈
Q ∩ [0, 1] and that (Mn, Nn) is a Van Hove sequence such that ρnNn ∈ N.

We want to prove:

f(β, ρ0) ≤ lim inf
n→∞

fMn,Nn(β, ρn) ≤ lim sup
n→∞

fMn,Nn(β, ρn) ≤ f(β, ρ0). (1.14)

Now, since f(β, ρ) is convex in ρ it is continuous and, given η > 0, there

exists ε > 0 such that |f(β, ρ) − f(β, ρ′)| < η if |ρ − ρ′| < ε and ρ, ρ′ ∈
Q ∩ [0, 1]. Choose n0 so large that |ρn − ρ0| < ε/2 for n ≥ n0, and fix

ρ ∈ (ρ0−ε/2, ρ0+ε/2)∩Q. Then |ρn−ρ| < ε and hence |f(β, ρn)−f(β, ρ)| < η.

In filling up a block (Mn, Nn) with elementary blocks (M ′
l , N

′
l ) we have to be

a bit more careful. We define sn,l = [Mn/M
′
l ] and

rn,l =





[
(1−ρn)Nn

(1−ρ)N ′
l

]
if ρn > ρ,[

(1+ρn)Nn

(1+ρ)N ′
l

]
if ρ0 < ρ.

(1.15)
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This choice satisfies the requirement

|ρnNn − ρrn,lN
′
l | < Nn − rn,lN

′
l (1.16)

which means that, given configurations on the blocks (M ′
l , N

′
l ) with density

ρ we can complement these with vertices 2 or 3 on the remainder of (Mn, Nn)

to obtain a configuration with density ρn. We can then repeat the argument

above and write an analogue of (1.8):

ΓMn,Nn(β, ρn) ≥ (
ΓM ′

l ,N
′
l
(β, ρ)

)rn,lsn,l (w2 ∧ w3)
MnNn−rn,lsn,lM

′
lN

′
l . (1.17)

This implies an analogue of (1.18):

fMn,Nn(β, ρn) ≤ αn,lfM ′
l ,N

′
l
(β, ρ)+

1

β
αn,l

(
1

Mn

+
1

Nn

)
ln 2+2(1−αn,l)(ε2∨ε3)

(1.18)

with

αn,l =
rn,lsn,lM

′
lN

′
l

MnNn

. (1.19)

Notice that limn→∞ αn,l = (1± ρ0)/(1± ρ). Hence, taking n →∞ and then

l →∞ in (1.18), we obtain

lim sup
n→∞

fMn,Nn(β, ρn) ≤ f(β, ρ) +
ρ0 ± ρ

1± ρ
(ε2 ∨ ε3). (1.20)

The last term is bounded by a constant times ε so taking η → 0, we arrive

at the right-hand side of the inequality (1.14). The left hand side is proven

in the same way by filling up the block (M ′
l , N

′
l ) with copies of (Mn, Nn).

In the exact solution of the six-vertex model one actually takes the limits

M →∞ and N →∞ consecutively, but it was also shown by Lieb and Wu

[] that, for periodic boundary conditions, this yields the same limit as (1.5):

Proposition 1.1 The double limit

f̃(ε1, ε2, ε3; β, ρ) = − 1

β
lim

N→∞
lim

M→∞
1

NM
ln Zp

M,N(w1, w2, w3) (1.21)

exists and equals f(ε1, ε2, ε3, β, ρ).
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2 The transfer matrix and its diagonalisation

The transfer matrix method for solving models of classical statistical mechan-

ics is common knowledge. Using periodic boundary conditions one writes the

partition function as a trace

ZM,N = Trace (V M
N ), (2.1)

where VN is the transfer matrix with entries between two rows of vertical

arrows α and α′ given by

(VN)α,α′ =
∑

γ

N∏
n=1

exp [−βεα′n
αn

(γn, γn+1)]. (2.2)

The sum runs over a row of horizontal arrows γ = (γ1, . . . , γN), where γn is

the horizontal arrow between the (n − 1)-th and then-th vertex. It follows

that we can take the limit M →∞ to obtain

f(β, ρ) = − 1

β
lim

N→∞
ln Λmax(N), (2.3)

where Λmax(N) is the maximum eigenvalue of the transfer matrix VN which

exists because VN satisfies the conditions of the Perron-Frobenius Theorem.

The transfer matrix can be diagonalised by means of the Bethe Ansatz. If we

write |x1, . . . , xn〉 for the row configuration with n up-arrows then a general

wave function in the subspace with n up-arrows can be expressed as

ψ =
∑

1≤x1<···<xn≤N

ψ(x1, . . . , xn) |x1, . . . , xn〉. (2.4)

The Bethe Ansatz for eigenfunctions of VN then reads:

ψ(x1, . . . , xn) =
∑
σ∈Sn

Aσ exp [i
n∑

j=1

kσ(j)xj]. (2.5)

Here, the sum runs over the set Sn of all permutations of{1, . . . , n} and the

coefficients Aσ and the wave numbers k1, . . . , kn are to be determined by

inserting into the eigenvalue equation. This yields the following conditions:

1. The wave numbers must satisfy the simultaneous nonlinear equations:

eiNkj = (−1)n−1

n∏

l=1;l 6=j

e−iθ(kj ,kl), (2.6)
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where the function θ is defined by

exp [−iθ(k, k′)] =
1− 2∆eik + ei(k+k′)

1− 2∆eik′ + ei(k+k′) (2.7)

with

∆ = (w2
2 + w2

3 − w2
1)/2w2w3. (2.8)

The corresponding eigenvalue is given by

Λ(k1, . . . , kn) = wN
2

n∏
j=1

L(eikj) + wN
3

n∏
j=1

M(eikj), (2.9)

where L(z) and M(z) are given by

L(z) =
w2w3 + (w2

1 − w2
3)z

w2
2 − w2w3z

, (2.10a)

M(z) =
w2

2 − w2
1 − w2w3z

w2w3 − w2
3z

. (2.10b)

Of course, (2.7) only defines the function θ up to a multiple of 2π. In taking

the logarithm of (2.6), we shall assume that −π < θ(k, k′) ≤ π. We obtain

Nkj = 2πIj −
n∑

l=1

θ(kj, kl), (2.11)

where Ij ∈ Z if n is odd, and Ij ∈ Z + 1
2

if n is even. These equations

are identical to the BA equations found by Bethe [] in his solution of the

Heisenberg chain. They were analysed in detail by Yang and Yang [], who

showed that the ground state of the Heisenberg chain is obtained by choosing

Ij = j − 1

2
(n + 1). (2.12)

They also showed that, for this choice, the equations (2.11) have a real so-

lution for k1, . . . , kn. Lieb [] then argued that, as the Heisenberg Hamil-

tonian also satisfies the conditions for the Perron-Frobenius Theorem, the

corresponding eigenfunction must be positive, and hence it must also be the

eigenfunction of the transfer matrix with maximum eigenvalue. We therefore

have

Λmax = Λ(k1, . . . , kn) (2.13)
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where k1, . . . , kn are the solutions of (2.11) in case the Ij are given by (2.12).

In this paper we want to address the question of how to compute the ther-

modynamic limit (2.3). We want to take the limit N →∞, keeping ρ = n/N

fixed. One usually makes the reasonable assumption that, in this limit, the

distribution of the wavenumbers k1, . . . , kn tends to a continuous distribution

with density ρ(k). In the following we shall investigate the validity of this

assumption. Following Yang and Yang [], we consider separately the cases

∆ ∈ [0, 1) and ∆ < 0. (The case ∆ ≥ 1 is trivial. In the attractive case,

∆ ∈ [0, 1), we can apply the same reasoning as in the case of the nonlinear

Schroedinger model (see []) and use the convexity of a certain functional to

prove the existence of a unique solution to (2.11). In the repulsive case, we

extend Yang and Yang’s argument to the continuum, using Leray-Schauder

theory []. The solution is no longer unique, but the existence is sufficient for

our purposes.

3 Thermodynamic limit in the case ∆ ≥ 0.

In taking the thermodynamic limit we distinguish the cases ∆ > 1, ∆ ∈ [0, 1),

∆ ∈ (−1, 0) and ∆ < −1. The case ∆ > 1 is trivial (Cf. Baxter [?])

so we start with the case ∆ ∈ [0, 1). We first prove an analogue of the

existence and uniqueness of a solution to the Bethe Ansatz equations in the

thermodynamic limit. In the present case this is analogous to the nonlinear

Schrödinger problem treated in [?].

Theorem 3.1 Let m ∈ Mb
+

[−π
2
, π

2

]
with ||m|| ≤ 1/2 and supp(m) ⊂

[−π||m||, π||m||]. In case ||m|| = 1
2
, assume that there exists δ0 > 0 such

that for 0 < δ ≤ δ0,

m
({

q ∈ [−π

2
,
π

2
] :

π

2
− |q| ≤ δ

})
≤ 1

π
δ. (3.5)

(Notice that the uniform distribution satisfies this condition.) Let ∆ =

− cos µ with µ ∈ (π/2, π). Then there exists a unique continuous function
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k : [−π/2, π/2] → [−π + µ, π − µ] such that

k(q) = q −
∫ π/2

−π/2

θ(k(q), k(q′)) m(dq′). (3.6)

Proof. Define the new function ρ(q) by

eik(q) =
eiµ − eρ(q)

eiµ+ρ(q) − 1
. (3.7)

Then k(q) = R(ρ(q)) where R : R→ (−π/2, π/2) is an increasing function

given by

R(α) =

∫ α

0

sin µ

cosh β − cos µ
dβ = 2 tan−1 tanh(α/2)

tan(µ/2)
. (3.8)

It follows that ρ(q) must satisfy:

R(ρ(q)) = q −
∫ π/2

−π/2

ω(ρ(q)− ρ(q′)) m(dq′) (3.9)

where

ω(α) = −2 tan−1

(
tanh(α/2)

tan(µ)

)
. (3.10)

Notice that

ω′(α) = − sin(2µ)

cosh α− cos(2µ)
> 0. (3.11)

As in [?], we now define a functional B[ρ] on the space L2(R,m) by

B[ρ] =

∫
S(ρ(q)) m(dq)−

∫
qρ(q)m(dq) (3.12)

+
1

2

∫ ∫
Ω(ρ(q)− ρ(q′)) m(dq)m(dq′), (3.13)

where S(α) =
∫ α

0
R(β)dβ and Ω(α) =

∫ α

0
ω(β)dβ.

This is well-defined because 0 ≤ S(α) ≤ 1
2
R′(0)α2, where R′(0) = sin µ

1−cos µ
,

and similarly, 0 ≤ Ω(α) ≤ 1
2
ω′(0)α2, where ω′(0) = − sin(2µ)

1−cos(2µ)
. It is also easily

seen to be continuous. The Gateaux derivative in the direction of a function

f is given by
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DB[ρ]f =

∫ {
R(ρ(q))− q +

∫
ω(ρ(q)− ρ(q′))m(dq′)

}
f(q)m(dq). (3.14)

It follows that the solution to (3.4) is a stationary point of B. Moreover, B

is convex as

d2

dt2
B[ρ + tf ] =

∫
R′(α(q))f(q)2m(dq)

+
1

2

∫ ∫
ω′(ρ(q)− ρ(q′))(f(q)− f(q′))2m(dq) m(dq′) > 0(3.15)

by (3.6). This proves the uniqueness of the solution. To prove the existence,

we need to find a compact set which contains the minimiser.

Consider first the case that ||m|| < 1
2
. Now, as α → ±∞, R(α) →

±(π−µ) and ω(α) → ±(2µ− π). Let M be so large that π−µ− |R(α)| < ε

and (2µ − π) − ω(α) < ε for |α| > M , where ε is to be determined later.

Consider the set

ΓM = {q ∈ [−π||m||, π||m||] : ρ(q) > M}. (3.16)

For M large enough, we can assume that m(ΓM) < ε. We now replace ρ on

the set Γ2M by ±2M , i.e. we set

ρ̃(q) = sgn (ρ(q))(|ρ(q)| ∧ (2M)). (3.17)

By convexity of the functions Ω and S we then have

B[ρ]−B[ρ̃] =

=

∫
(S(ρ(q))− S(ρ̃(q))) m(dq)−

∫
q (ρ(q)− ρ̃(q)) m(dq)

+
1

2

∫ ∫
(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′)

≥
∫

Γ2M

(|ρ(q)| − 2M)(R(2M)− |q|) m(dq)

+

∫

Γ2M

m(dq)

∫

Γc
2M

m(dq′) (Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ(q′)))(3.18)

where we used the convexity of the function S and the fact that if q, q′ ∈ Γ2M

then the second term is zero whereas the first term is positive since Ω ≥ 0.
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Next using the convexity of Ω and the above bounds on the derivatives we

get

B[ρ]−B[ρ̃] =

≥
∫

Γ2M

(|ρ(q)| − 2M)(R(2M)− |q|) m(dq)

+

∫

Γ2M

m(dq)

∫

Γc
2M

m(dq′)ω(2M − |ρ(q′)|)(|ρ(q)| − 2M)

≥
∫

Γ2M

(|ρ(q)| − 2M)(π − µ− |q| − ε)m(dq)

+

∫

Γ2M

m(dq)

∫

Γc
M

m(dq′) ((2µ− π)− ε) (|ρ(q)| − 2M)

≥
∫

Γ2M

m(dq)(|ρ(q)| − 2M) (π − µ− |q| − ε

+ ((2µ− π)− ε) m(Γc
M))

≥
∫

Γ2M

m(dq)(|ρ(q)| − 2M) (π − µ− |q| − ε

+ ((2µ− π)− ε) (||m|| − ε))

≥
∫

Γ2M

m(dq)(|ρ(q)| − 2M) ((π − µ)(1− 2||m||)− ε(1 + 2µ− π + ||m||)) > 0

(3.19)

provided

ε <
(π − µ)(1− 2||m||)
1 + 2µ− π + ||m|| .

We conclude that the minimiser must satisfy ||ρ||∞ ≤ 2M and is a fortiori

contained in the ball {ρ ∈ L2(m) : ||ρ||2 ≤ 2M}. This ball is bounded and

therefore weakly compact. But the functional B[ρ] is norm continuous and

convex and therefore lower semicontinuous for the weak topology, see e.g. [?],

Prop. 1.5 of Chap. 2. It follows that it attains its minimum on a compact

set.

Next consider the case ||m|| = 1
2
. In that case we cannot prove that the

minimiser is bounded, so we need a more sophisticated bound. We use the

function

f(q) = −2 ln
(π

2
− |q|

)
.
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Given M > 0 and δ > 0, we define the sets

ΓM
0 = {q ∈ [−1

2
π,

1

2
π] : |ρ(q)| > M, |q| < π

2
− δ} (3.20)

and

Γk =

{
q ∈ [

1

2
π,

1

2
π] : |ρ(q)| > f(q),

π

2
− γ−k+1δ ≤ |q| < π

2
− γ−kδ

}
,

(3.21)

where γ > 1 is a parameter to be determined later.

We now write

ΓM = ΓM
0 ∪

⋃

k≥1

Γk

and consider the decomposition

{
(q, q′) : q ∈ ΓM or q′ ∈ ΓM

}
=

=
⋃

k≥0

(
Γk ×

(⋃

l≥k

Γl

)c

∪
(⋃

l≥k

Γl

)c

× Γk ∪ (Γk × Γk)

)
. (3.22)

Note that this is a disjoint union. Replacing now ρ(q) by

ρ̃(q) = sgn (ρ(q))
(
|ρ(q)| ∧

(
f(q)χΓM\ΓM

0
+ 2MχΓM

0

))

we have first of all
∫

(S(ρ(q))− S(ρ̃(q))) m(dq)−
∫

q (ρ(q)− ρ̃(q)) m(dq) ≥

≥
∫

Γ2M
0

m(dq)(|ρ(q)| − 2M)(R(2M)− |q|)

+
∞∑

k=1

∫

Γk

m(dq) (|ρ(q)| − f(q)) (R(f(q))− |q|)

≥
∫

Γ2M
0

m(dq)(|ρ(q)| − 2M)(π − µ− |q| − η)

+
∞∑

k=1

∫

Γk

m(dq) (|ρ(q)| − f(q))

×
(

π − µ− π

tan(µ/2)

(π

2
− |q|

)2

− |q|
)

, (3.23)
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where we used the bound

R(f(q)) > π − µ− 4

tan(µ/2)

(π

2
− |q|

)2

(3.24)

which follows from the inequalities

tan−1(x− δ) > tan−1(x)− δ

and

tanh(x) > 1− 2e−|x|.

For the term

1

2

∫ ∫
(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′)

we consider the contributions from the decomposition (3.22) separately:

∫

ΓM
0

∫

(ΓM )c

(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′)

≥
∫

Γ2M
0

m(dq)(2µ− π − η)m((ΓM)c) (3.25)

as before. Combining this with the first term of (3.23) gives a positive con-

tribution provided M is so large that m(ΓM) < ε and R(2M) > π − µ − η

and ω(M) > 2µ− π − η where 3
2
η + πε < δ.

Next consider a term of the form
∫

Γk

∫

(∪l≥kΓk)c

(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′).

Assuming δ < δ0, this is bounded by

∫

Γk

∫

(∪l≥kΓk)c

(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′) ≥

≥
∫

Γk

m(dq) (|ρ(q)| − f(q))

×
[
2µ− π − 4

tan(π − µ)

(π

2
− |q|

)2
]

m

[(⋃

l≥k

Γl

)c]
. (3.26)
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Since ⋃

l≥k

Γl ⊂
{

q ∈
[
−π

2
,
π

2

]
:

π

2
− γ−k+1δ ≤ |q|

}

we have by the assumption about m,

m

(⋃

l≥k

Γl

)
≤ 1

π
γ−k+1δ. (3.27)

Therefore∫

Γk

∫

(∪l≥kΓk)c

(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′) ≥

≥
∫

Γk

m(dq) (|ρ(q)| − f(q))

×
[
2µ− π − 4

tan(π − µ)

(π

2
− |q|

)2
] (

1

2
− 1

π
γ−k+1δ

)
. (3.28)

Combining this with the corresponding term of (3.23) we have
∫

(S(ρ(q))− S(ρ̃(q))) m(dq)−
∫

q (ρ(q)− ρ̃(q)) m(dq)

+

∫

Γk

∫

(∪l≥kΓk)c

(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′)

≥
∫

Γk

m(dq) (|ρ(q)| − f(q))

×
[
π − µ− π

tan(µ/2)

(π

2
− |q|

)2

− |q|

+

(
2µ− π − 4

tan(π − µ)

(π

2
− |q|

)2
)(

1

2
− 1

π
γ−k+1δ

)]
.(3.29)

Since π
2
− γ−k+1δ ≤ |q| < π

2
− γ−kδ for q ∈ Γk, we have

π − µ− c1

(π

2
− |q|

)2

− |q|

+

(
2µ− π − c2

(π

2
− |q|

)2
)(

1

2
− 1

π
γ−k+1δ

)

≥ π

2
− µ− c1

(
γ−k+1δ

)2
+ γ−kδ

+µ− π

2
− 1

2
c2

(
γ−k+1δ

)2 − 2µ− π

π
γ−k+1δ

=

(
1− 2µ− π

π
γ

)
γ−kδ − cγ−2k+2δ2, (3.30)
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where

c1 =
4

tan(µ/2)
, c2 =

4

tan(π − µ)
, and c = c1 +

1

2
c2.

Hence ∫
(S(ρ(q))− S(ρ̃(q))) m(dq)−

∫
q (ρ(q)− ρ̃(q)) m(dq)

+

∫

Γk

∫

(∪l≥kΓk)c

(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′)

≥
∫

Γk

m(dq) (|ρ(q)| − f(q))

×
[(

1− 2µ− π

π
γ

)
γ−kδ − cγ−2k+2δ2

]
. (3.31)

Finally consider the terms

1

2

∫

Γk

m(dq)

∫

Γk

m(dq′) (Ω(ρ(q)− ρ(q′))− Ω(f(q)− f(q′))) .

Since 0 ≤ Ω(α) ≤ (2µ− π)|α|, these can be bounded by

1

2

∫

Γk

m(dq)

∫

Γk

m(dq′) (Ω(ρ(q)− ρ(q′))− Ω(f(q)− f(q′)))

≥ −(µ− π

2
)

∫

Γk

m(dq)

∫

Γk

m(dq′) |f(q)− f(q′)|

≥ π ln(γ−kδ)m(Γk)
2 ≥ π(γ−kδ)2 ln(γ−kδ). (3.32)

In all, we get
∫

(S(ρ(q))− S(ρ̃(q))) m(dq)−
∫

q (ρ(q)− ρ̃(q)) m(dq)

+

∫

Γk

∫

(∪l≥kΓk)c

(Ω(ρ(q)− ρ(q′))− Ω(ρ̃(q)− ρ̃(q′))) m(dq)m(dq′)

+
1

2

∫

Γk

m(dq)

∫

Γk

m(dq′) (Ω(ρ(q)− ρ(q′))− Ω(f(q)− f(q′)))

≥
∫

Γk

m(dq) (|ρ(q)| − f(q))

×
[(

1− 2µ− π

π
γ

)
γ−kδ − cγ−2k+2δ2 + π(γ−kδ)2 ln(γ−kδ)

]
.(3.33)

Choosing γ < 2µ−π
π

(which is possible as µ < π) and δ small enough, this is

positive.
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Theorem 3. The mapping m 7→ km defined by Theorem 2 is continuous,

that is, if mn → m weakly then kmn → km in norm.

Proof. Let m
(1)
n be a subsequence. Notice that ||kmn || ≤ π − µ and kmn

is also equicontinuous because

∂

∂k
θ(k, k′) = ∆

cos k′ + cos µ

∆2 sin2(k − k′)/2 + [cos(k + k′)/2−∆ cos(k − k′)/2]2
≥ 0

(3.11)

for −π + µ ≤ k′ ≤ π − µ. Hence

k′mn
(q) =

{
1 +

∫
∂θ

∂k
(kmn(q)− kmn(q′))mn(dq′)

}−1

∈ (0, 1) (3.12)

Therefore, |kmn(q)− kmn(q′)| ≤ |q − q′| uniformly in n. It follows that there

exists a subsequence m
(2)
n of m

(1)
n such that k

m
(2)
n

converges to a continuous

function k uniformly on [−π/2, π/2]. We must show that k = km. But

θ is uniformly continuous on [−π + µ, π − µ]2 so θ(k
m

(2)
n

(q) − k
m

(2)
n

(·)) →
θ(k(q)− k(·)) in norm, and hence

∫
θ(k

m
(2)
n

(q)− k
m

(2)
n

(q′))m(2)
n (dq′) →

∫
θ(k(q)− k(q′))m(dq′).

It follows that k(q) = km(q).

Corollary. If mn → m weakly, and m̃n is the image measure of mn

under the mapping kmn then m̃n → m̃ = km(m).

Proof. Let F ∈ C([−π+µ, π−µ]). Then
∫

F (k)m̃n(dk) =
∫

F (kmn(q))mn(dq)

and
∣∣∣∣
∫

F (k)m̃n(dk)−
∫

F (k)m̃(dk)

∣∣∣∣ ≤
∫
|F (k(q))− F (km(q))|mn(dq)

+

∣∣∣∣
∫

F (km(q))mn(dq)−
∫

F (km(q))m(dq)

∣∣∣∣ .

(3.13)

The right-hand side tends to zero as n → ∞ because kmn → km uniformly

and km is continuous.
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Theorem 4. Let

mN =
1

N

nN∑
j=1

δqj
, (3.14)

where qj = 2π
N

(j − 1
2
(nN + 1)) and nN ≤ N/2. Assume that nN/N → ρ

as N → ∞. Then mN → 1
2π

dq on [−πρ, πρ] and m̃n → m̃, where m̃ is

absolutely continuous with respect to the Lebesgue measure and symmetric,

and there exists Q ∈ [0, π − µ] such that supp(m) = [−Q,Q].

Proof. Let F ∈ C([−π/2, π/2]). Then

∫
F (q) mN(dq) =

1

N

nN∑
j=1

F

(
2π

N
(i− 1

2
(nN + 1))

)

→
∫ πρ

−πρ

F (q)
dq

2π
.

(3.15)

Hence m̃N → m̃ and we must show that m̃ is absolutely continuous and

even. To that end, let ε > 0. We must show that there exists δ > 0 such that

m̃(k0−δ, k0+δ) < ε for all k0. Now, m̃(k0+δ, k0+δ) =
∫

k−1
m (k0−δ,k0+δ)

dq
2π

and we

have seen that km is continuous and increasing: [−π/2, π/2] → [−π+µ, π−µ].

Therefore k−1
m is continuous and ∀ε > 0∃δ > 0 : k−1

m (k0 − δ, k0 + δ) ⊂
(q0 − πε, q0 + πε) where km(k0) = q0. Hence

∫
k−1

m (k0−δ,k0+δ)
dq
2π

< ε.
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