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Abstract

We consider a model which interpolates between the totally asymmet-
ric simple exclusion process and the vicious walkers model. We calculate
the survival probability for this model and obtain the scaling function
which describes the transition from one model to another. Via fluctu-
ation dissipation relations the results are applied to study the current
fluctuations in the totally asymmetric simple exclusion process.

1 Introduction.

Exact solutions of 1D many particle stochastic models have given much in-
sight into the physics of non-equilibrium systems in one dimension. They
serve as a testing ground for the macroscopic theories, being able to verify
their predictions. The examples are the description of different kinds of
non-equilibrium phase transitions, calculation of the large deviation func-
tions for the density profile and cumulated current of particles, verification
of the fluctuation dissipation relations and testing of the range of their
validity.

The range of models is very broad. In context of present article we
mention two of them. The first one is the vicious walkers (VW) model that
has been introduced in the physical literature by M. Fisher [?] to describe
the wetting and melting phenomena. This is a random process defined
as many non-interacting random walks on a 1D lattice, whose time-space
trajectories are forbidden to cross each other. The term non-interacting
means that the probability of a particular realization of the process, which
meets the latter constraint, is given by the product of the probabilities
of the random walks performed by each individual walker. As there is
a finite probability for non-interacting random walkers to come to the
same site of the lattice, neglecting these processes violates the probability
conservation. In this sense we say that the dynamics of the model leads
to the probability dissipation.

Another model, the totally asymmetric simple exclusion process (TASEP),
was widely discussed in connection to the Kardar-Parisi-Zhang universal-
ity class. In contrast to VW, this is the model of interacting random
walks. The interaction prevents particles from jumping to occupied sites.
Therefore, similarly to VW the statistical ensemble includes only those
events where the space-time trajectories of particles do not cross. The
difference from VW is that the interaction changes the statistical weights
of particle trajectories, when they pass via neighboring sites, such that
the total probability is conserved.

Plenty results have been obtained on both models. Deep connections
to the random matrix theory, statistics of young diagrams, determinantal
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point processes has been revealed. At the same time it is not clear whether
they have anything in common. Can the results obtained for each of them
be incorporated in a more general framework?

In this article we propose a semi-vicious walkers (SVW) model, which
interpolates between VW and TASEP. It is a model of interacting parti-
cles with, partial repulsion or attraction, where the trajectory crossings
are forbidden. The term partial repulsion (attraction) means that the
probability for the particle to jump to an occupied site is not equal to
zero like in TASEP and can be less (greater) that the one of free particle.
At the same time, the trajectory non-crossing constraint leads to luck of
the probability conservation similarly to VW. The strength of interaction,
which is also characterizes the probability dissipation, is a parameter of
the model, which varying in its range has the TASEP and VW as two
limiting cases. In the article we concentrate on the large time asymp-
totics of the survival probability, i.e. the probability for all particle not
to meet each other in a large time limit. In other words, we calculate
the normalization constant for the statistical ensemble containing only
the processes with noncrossing trajectories. The main asymptotics of the
survival probability for VW has been obtained by M. Fisher for equally
spaced initial positions of walkers. He has shown that the survival prob-

ability for m particles decays with time t as a power law , t−
m(m−1)

4 .
Later, this calculation has been improved in [?] by obtaining also a con-
stant prefactor. In the case of general initial configuration of walkers this
prefactor depends on their initial positions. This case has been studied
in [?]. Note that, due to the probability conservation for the TASEP, the
quantity we are looking for is just a normalization factor equal to one.
Our aim is to find out how the Fisher’s WV asymptotics transforms into
the constant normalization factor in the TASEP. The problem we consider
can be divided into two parts. For generic value of interaction strength
away from the point corresponding to the TASEP the probability dissipa-
tion is finite. It is intuitively clear that the main asymptotics is similar to
the VW one. Indeed we obtain the Fisher’s power law together with the
constant prefactor that depends on the initial positions of particles and
the interaction strength and diverges in the TASEP limit. The prefactor
is obtained in the form of the determinant of m×m matrix for any finite
number of particles m. The second and probably the most interesting
case is the transition region, which interpolates between SW and TASEP
behaviours. To probe into this region, we consider a scaling limit of the
survival probability, where the large time limit and the TASEP limit of
the interaction strength are taken together. In this way we obtain a scal-
ing function of a single parameter that controls the transition from SW to
TASEP. The function is obtained in the form of multiple integral. Inter-
estingly, in the limiting cases of SW and TASEP this integral is reduced
to the Mehta integrals Im,k with k = 1/2 and k = 1 respectively, which
appear as normalization factors of the probability distribution function
of eigenvalues in orthogonal and unitary Gaussian ensembles of random
matrices. Therefore the scaling function we obtain interpolates between
these two objects.

The results on SVW can be applied to study the statistics of the inte-
grated current of particles in TASEP. Specifically, the survival probability
we calculate for SVW turns out to be closely related to the generating
function of the moments of the cumulative particle current in the TASEP.
This relation can be used as a source of the fluctuation dissipation the-
orems, which relate the fluctuations of current in the system where the
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probability is conserved, with statistics of probability dissipation in the
dissipative model. In this way we obtain the generating function of par-
ticle current. Moreover, in some cases the results we obtained allow us
to derive explicit asymptotical formulas for probability distribution of the
particle current in TASEP.

The article is organized as follows. In the Section 2 we formulate the
SVW model, state the results obtained and discuss their interpretation in
terms of the probability distribution of the particle current in TASEP. In
the section 3 we solve the Master equation for SVW model. In the Section
4 we obtain the asymptotic formulas for the transition probabilities. In the
Section 5 we prove the limiting properties of the function characterizing
the SWV-TASEP transition. The Section 6 is Summary and conclusion.

2 Model and results.

2.1 The model.

Consider m particles on 1D infinite lattice. A configuration X of the
system is specified by m-tuple of strictly increasing integers

X = {x1, < x2, · · · , < xm} , (1)

where xi is the coordinate of i-th particle. The strictly increasing order
implies the exclusion condition, i.e. two particles can not occupy the same
site. We say that the relation X ⊆ Y holds if

x1 ≤ y1 ≤ x2 ≤ · · · ≤ xm. (2)

The SVW model is a random process, which is defined on a set of sequences
of configurations X0, X1, · · · , Xt, such that

X0 ⊆ X1 · · · ⊆ Xt. (3)

We refer to such a senescence as a trajectory of the system travelled up
to time t. Every trajectory is realized with the probability

P (X0, . . . , Xt) = T (Xt, Xt−1) · · ·T (X2, X1)T (X1, X0)P0(X0). (4)

P0(X) is the initial probability of the configuration X and the transition
probability T (X, Y ), from the configuration Y to X, is defined as follows

T (X, Y ) = ϑ(xm − ym)

m−1Y
k=1

θ (xi − yi, xi+1 − yi) , (5)

where

ϑ(k) = (1− p) δk,0 + pδk,1, (6)

θ (k, l) = (1− p (1− κδl,1)) δk,0 + pδk,1, (7)

and

0 < p < 1, (8)

1− 1/p ≤ κ ≤ 1. (9)

This is to say that at each time step a particle can jump forward with
probability p or stay with probability (1− p) provided that the next site
is empty. If the next site is occupied the probability for a particle to stay
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is (1− p(1− κ)). The remaining probability p(1 − κ), would correspond
to the process when the particle jumps to the occupied site next to it.
However these processes are forbidden in our consideration. This is where
the probability dissipation comes from. The form of the transition prob-
abilities corresponds to the backward sequential update, i.e. the particles
are updated starting from the m-th particles one by one in backward
direction. In particular limiting cases the model is reduced to

1. κ = 0 - VW, a particle jumps forward with probability p or stays
with probability (1− p), irrespectively of whether the next site is
occupied or not. Then those realization of the process where two
particles come to the same site must be removed from the statistical
ensemble.

2. κ = 1 - TASEP, a particle jumps forward with probability p or
stays with probability (1− p) if the next site is empty. When the
next site occupied it stays with probability 1.

The TASEP with the backward sequential update was studied in [?]
and [?], where it was referred to as a fragmentation model. In the case κ =
(1− 1/p) the probability for particle to stay when the next site occupied is
zero. Therefore, the trajectories of particles passing via the neighboring
sites have zero weight, i.e. are removed from the ensemble as well as
those which meet at the same site. Therefore this situation resembles the
vicious walks of dimers. The range of κ, (9), comes from the requirement
for (1−p(1−κ)) to be a probability. Positive values of κ correspond to the
repulsive interaction, while the negative ones to the attractive one. The
domain κ > 1 is also of interest connection to the current fluctuation in
TASEP, though is does not have a probabilistic sense in context of SVW.

2.2 The results on SVW.

Below we calculate the quantity

Pt

�
X0� =

X
X0⊆X1···⊆Xt

P (X0, . . . , Xt),

where the sum is over all the trajectories of the system starting at the
configuration X0, i.e. P0 (X) = δX,X0 . This quantity is the partition
function of the statistical ensemble of the trajectories with the statistical
weights defined above. In the other hand, if we add the lacking processes
allowing the particles to jump to an occupied site, the value of Pt

�
X0
�

will have the meaning of probability for all the particles not to meet
up to time t. In Fisher’s original formulation of such a process, two
particles annihilate when getting into the same site. Then, Pt

�
X0
�

is the
probability for m particles to survive up to time t. Therefore, we refer to
this quantity as a survival probability.

2.2.1 Generic values of κ < 1.

For generic values of κ < 1, the survival probability Pt

�
X0
�

takes the
following form as t →∞.

Pt

�
X0� = A

�
κ, X0� [tp(1− p)]−

m(m−1)
4

h
1 + O

�
(log t)3 t−1/2

�i
, (10)
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where the prefactor is given by

A(X0; κ) =
2m

(κ− 1)
m(m−1)

2 πm/2

mY
l=1

Γ (l/2 + 1)

l!
det[gi,j(x

0
m−x0

i ; κ)]1≤i,j≤m

(11)
where the function gi,j(x; κ) is defined as

gi,j(x; κ) =

I
C0

dξ

2πi

(1− κ− κξ)i−1 (1 + ξ)x

ξj
. (12)

The superscript swv refers to the SWV model. In the limit κ → 0 one
restores the result for WV up to the rescaling of space and time.

A(X0; 0) =
Y

1≤i<j≤m

�
x0

j − x0
i

�8>><>>:
π−m/42−m2/4+m/2

m/2Q
l=1

1
(2l−1)!

; even m

π1/4−m/4

2(m−1)2/2

(m−1)/2Q
l=1

1
(2l)!

odd m

.

(13)
In the limit κ → 1, corresponding to the TASEP, the asymptotics must
change, as the probability conservation must be restored. The signature
of this fact is the divergence of the constant term that takes place in this
limit, that has an order (1− κ)−m(m−1)/2. Comparing an exponent of
this term with the one of the time decay t−m(m−1)/4, we can guess that
the transition takes place on the scale (1− κ) ∼ 1/

√
t. This hypothesis is

justified by the next result.

2.2.2 Transition regime.

Consider a limit

t →∞, κ → 1, (1− κ)
√

t = const. (14)

We introduce the parameter

α = lim
t→∞

h
(1− κ)

p
2tp (1− p)

i
. (15)

In this limit

Pt = fm (α)

�
1 + O

�
(log t)3√

t

��
, (16)

where the function fm (α) has a form of the multiple integral

fm (α) =
(−2)

m(m−1)
2

π
m
2 2! · · · (m− 2)!

∞Z
−∞

du1

∞Z
u1

du2 · · ·
∞Z

um−1

dum

∞Z
0

dν2 · · ·
∞Z
0

dνm

× e−u2
1

mY
i=2

νi−2
i e−(ui+νi)

2−ανi∆ (u1, ν2 + u2, . . . , νm + um) .(17)

The argument of Pt in (16) is omitted as the dependence on the initial
configuration is lost in the limit under consideration. The limiting behav-
iours of fm(α) must match the TASEP and SW asymptotics. Indeed, we
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obtain

lim
α→∞

α
m(m−1)

2 fm (α) =
2

m(m+1)
4

m!πm/2

mY
l=1

Γ (l/2 + 1) , (18)

lim
α→1

fm (α) = 1 (19)

lim
α→−∞

e−α2 m(m−1)
4 fm (α) =

mm−1

(m− 1)!
(20)

The third line does not have a probabilistic meaning in SVW model.
It, however, is still meaningful for description of current fluctuation in
TASEP. Remarkably, a proof these three limits can be done by reducing
fm (α) to different cases of Mehta integrals, Im,1/2, Im.,1 and Im−1,1 re-
spectively, which play an important role in the theory of random matrices.

2.3 Current fluctuations in TASEP.

Consider the process with the transition weights eT (X, Y ) defined like in
(5) where the functions ϑ(k) and θ (k, l) are replaced byeϑ(k) = (1− ep) δk,0 + eγepδk,1, (21)eθ (k, l) = (1− ep (1− δl,1)) δk,0 + eγepδk,1. (22)

Here 0 < ep < 1 and γ is a complex valued parameter. It is not difficult
to see that these transition weights correspond to the TASEP with the
probability of particle jump ep supplied with an additional factor of eγ for
each particle jump, i.e.

eγYtPTASEP (X0, . . . , Xt) = eT (Xt, Xt−1) · · · eT (X1, X0)P0(X0), (23)

where PTASEP (X0, . . . , Xt) is the probability for the sequence of particle
configurations X0, . . . , Xt, to occur in the TASEP for t successive steps
and Yt is the total number of jumps made by particles when going between
these configurations. Thus, one can calculate the generating function of
the moment of cumulative particle currentD

eγYt

E
TASEP

=
X

X0⊆X1···⊆Xt

eγYtPTASEP (X0, . . . , Xt). (24)

In the other hand we can see that, if we define

κ = e−γ , (25)

p =
ep

(1− ep) e−γ + ep , (26)

then the relation exists between the transition weights eT (X, X ′) defined
in (21,22) and the ones of SWV, (6,7),

(1− ep)−m eT (X, X ′) = (1− p)−m T (X, X ′). (27)

As a result we haveD
eγYt

E
TASEP

= (1 + ep (eγ − 1))mt Pt

�
X0� . (28)

where Pt

�
X0
�

is the survival probability calculated for SVW model, and
the parameters κ and p of SWV are related the parameters ep, γ of TASEP
by (25,26). This function encodes all information about the distribution of
cumulative particle current. Let us apply the results of previous subsection
to obtain the form of this distribution.
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2.3.1 Generic values of γ > 0.

For generic values of γ > 0, away from zero we haveD
eγYt

E
TASEP

=
(1 + ep (eγ − 1))mt+

m(m−1)
2

[teγep(1− ep)]
m(m−1)

4

A
�
e−γ , X0�

This distribution Pt (Yt = Y ) for the particle current can be extracted
from the generating function



eγYt

�
by the inverse Z-transform.

Pt (Yt = Y ) =

πZ
−π

dϕ

2π

D
eiφYt

E
e−iφY .

For large time, t → ∞ this integral can be calculated in the saddle. The
integral can be calculated in the saddle point approximation, which yields

Pt (Yt = vmt) '

��
1−p
1−v

�1−v �
p
v

�v�mt

p
2πv(1− v)mt

A
�

v(1−p)
p(1−v)

, X0
�

[tv (1− v)]
m(m−1)

4

(29)

The first multiple of this expression is exactly the current probability

distribution of m independent Bernoullian random walks, while the second
one is due to the exclusion interaction.

2.3.2 Scaling limit.

The transition regime corresponds to following the scaling limit

t →∞, γ → 0, γ
√

t = const. (30)

To give an interpretation of the results obtained for the transition regime,
consider the random variable

y =
Yt −meptp
2tp (1− p)

. (31)

The result obtained for the transition region

lim
t→∞

〈eαy〉TASEP = emα2/4fm (α) (32)

where α is an arbitrary complex valued parameter obtained from γ by
taking a limit α = limt→∞ γ

p
2tp (1− p). Note that the random vari-

able y is the rescaled deviation of the integrated current Yt from mept,
i.e. from the average value of Yt for m non-interacting particles jumping
with probability ep. By the Central Limit Theorem the limiting prob-
ability distribution of y for such particles is Gaussian, limt→∞ Pm(y =
ξ) = exp

�−ξ2/m
�
/
√

2πm. Correspondingly the generating function of
its moments is limt→∞ 〈eαy〉 = exp

�
mα2/4

�
. Therefore the scaling func-

tion fm(α) characterizes the deviation of the distribution of y from the
Gaussian form. Specifically its derivatives give us the cumulants of y like
the average shift of the center of Gaussian distribution

lim
t→∞

〈y〉 = f ′ (0) ,
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its dispersion

lim
t→∞

�

y2�− 〈y〉2� = f ′′ (0)− �f ′(0)

�2
+ m/2,

the other ones, which characterize the deviation of the distribution form
from the Gaussian. An explicit calculation of the derivatives of fm(α),
requires an analysis of the integrals like (17) and is beyond the goals of
present article. We are able to study the tails of the distribution Pm(y)
asymptotically using the results on the asymptotical behaviour of fm(α),
(18,20) obtained above. The limiting probability distribution Pm(y) of
the random variable y can be obtained from (32) as an inverse Laplace
transform

lim
t→∞

Pm(y = ξ) =

β+i∞Z
β−i∞

emα2/4−αξfm (α)
dα

2π
,

where the parameter β is chosen such that the contour of integration is in
the domain of absolute convergence of fm (α). One could hope to use the
asymptotics of the function fm (α) to calculate this integral in the saddle
point approximation as the number of particles m becomes large. However
the above asymptotical formulas for α → ±∞ are obtained under the
suggestion m = o (|α|). Therefore one needs to consider a double scaling
limit for fm (α) . m →∞ and α → ±∞. We do not do this analysis here.

3 Master equation.

From now on we consider only SVW model dependent on the parame-
ters p and κ. Consider the probability Pt

�
X, X0

�
of transition from the

configuration X0 to X for arbitrary time t.

Pt

�
X, X0� =

X
X0⊆X1···⊆Xt≡X

P (X0, . . . , Xt).

It obeys the Master equation.

Pt

�
X, X0� =

X
X′

T
�
X, X ′�Pt−1(X

′, X0) (33)

the transition weights T (X, X ′) are defined above. The problem of finding
the eigenvectors and eigenvalues of the matrix T (X, X ′) can be solved by
the Bethe ansatz technique. As this technique is rather standard and has
been reviewed in many monographs, we do not pay much attention to its
application here. For details of similar derivation the reader can consult
for example with the review [?] As a result we obtain the solution of the
left and right eigenproblems for the Markov matrix T (X, X ′)

Λ (Z)ΨZ (X) =
X
X′

T
�
X, X ′�ΨZ

�
X ′� , (34)

Λ (Z) ΨZ (X) =
X
X′

T
�
X ′, X

�
ΨZ

�
X ′� (35)

parametrized by m-tuple complex parameter Z = {z1, · · · , zm} . Corre-
sponding eigenvalue is expressed in terms of these parameters

Λ (Z) =

mY
i=1

(1− p + p/zi) (36)
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and the eigenvectors are given by the following determinants

ΨZ (X) = det
�
z

xj

i (1− κzi)
i−j
�

1≤i,j≤m
, (37)

ΨZ (X) = det
�
z
−xj

i (1− κzi)
j−i
�

1≤i,j≤m
. (38)

It is not difficult to check that these two eigenfunctions can be used to
construct the resolution of the identity operator

1

m!

I
ΨZ (X)ΨZ

�
X ′� mY

i=1

dzi

2πizi
= δX,X′ , (39)

where the integration over each zi, i = 1, . . . , m, is along the contour of
integration is required to leave the pole of the wave function z = 1/κ
outside. Then the solution of the initial value problem for the master
equation is given by

Pt

�
X, X0� =

1

m!

I
Λt (Z)ΨZ (X) ΨZ

�
X0� pY

i=1

dzi

2πizi
. (40)

Finally we end up with the following integral expression for the transition
probability

Pt

�
X, X0� =

I
Λt (Z)

mY
i=1

"
z

xi−x0
m

i

(1− κzi)i−1

#
(41)

× det

�
z

x0
m−x0

j

i (1− κzi)
j−1

�
1≤i,j≤m

pY
i=1

dzi

2πizi
.

The integration can easily be performed by counting the residues. The
result is the determinant of m×m matrix of the form similar to the one
obtained for the discrete time TASEP with backward update ( [?] , [?]).
Note that in the case of vicious walkers, κ = 0, the eigenfunctions are of
free fermion type

ΨZ (X) = det
�
z

xj

i

�
1≤i,j≤m

, (42)

ΨZ (X) = det
�
z
−xj

i

�
1≤i,j≤m

. (43)

and the integration yields famous Lindtröm-Gessel-Viennot theorem.

Pt

�
X, X0� = det

�
F0

�
xi − x0

j , t
��

1≤i,j≤m
, (44)

where

F0 (x, t) = px (1− p)T−x

�
t
x

�
, (45)

These formulas serve as a starting point for the asymptotical analysis of
the survival probability.

4 Asymptotical form of survival proba-
bility.

To obtain the survival probability Pt

�
X0
�

for SVW we have to sum the
transition probability Pt

�
X, X0

�
over the set of all final configurations X

Pt

�
X0� =

∞X
{X}

Pt

�
X, X0� . (46)

9



We solve this problem in the limit t → ∞. For pedagogical means we
first outline the derivation for VW model, which mainly reproduce the
Rubey’s arguments. The procedure includes the asymptotical analysis of
the expression for Pt

�
X, X0

�
using the saddle point approximation for the

integral (40), which helps us to reduce the sum over final configurations
to known integrals. The main ingredients of the derivations for VW are
used then for SVW with some modifications.

4.1 Vicious walkers.

In the case of VW, κ = 0, the integral (41) is reduced toI
Λt (Z)

mY
k=1

z
xk−x0

m
k det(z

x0
m−x0

i
i )1≤i,j≤m

pY
l=1

dzl

2πizl
. (47)

Then the determinant under the integral can be expressed

det(z
x0

m−x0
i

i )1≤i,j≤m = ∆ (Z) sχ (Z) , (48)

in terms of the Schur function

sχ(z1, . . . , zm) ≡ det
�
z

χj+m−j

i

�
/∆(Z) . (49)

parametrized by a partition χ = (χ1,≥ χ2, · · · ,≥ 0), which is defined as
follows

χ = (xm − x1 −m + 1, xm − x2 −m + 2, · · · ). (50)

and the Van der Monde determinant

∆ (Z) ≡ det(zm−j
i )1≤i,j≤m =

Y
1≤i<j≤m

(zi − zj) . (51)

Thus (40) can be rewritten in the following form

PT

�
X, X0� =

I
∆(Z) sχ (Z)

pY
i=1

etfi(zi) dzi

2πizi
, (52)

where
fi(z) = log (1− p + p/zi) + vi log z (53)

and

vi =
xi − x0

m

t
. (54)

Now we are ready to estimate the integral under the assumption t →∞,
while vi = const > 0 for i = 1, . . . , m. In addition we assume that the
difference

�
x0

i − x0
j

�
is kept finite for any i and j. The saddle point of the

function under the integral is defined by the equation

f ′i(z
∗
i ) = 0, (55)

which yields

z∗i =
(1− vi) p

(1− p) vi
. (56)

In the vicinity of the saddle point fi(z) has an expansion

fi(z
∗
i + ξ) = log

"�
1− p

1− vi

�1−vi
�

p

vi

�vi
#

(57)

+
1

2

�
1− p

p

�2
v3

i

1− vi
ξ2 + O(ξ3).
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The integration contours can be deformed to the straight line parallel
to the imaginary axis, crossing the real axis at z∗i . Note that the pre-
exponential factor is the polynomial of fixed degree, such that it con-
tributes only a constant prefactor into the highest term. As a result the
integration yields

Pt

�
X, X0� =

�
p

1− p

�m(m−1)
2

mY
i=1

v1−m
i e

tfi

�
(1−vi)p

(1−p)vi

�p
2πTvi(1− vi)

× (58)Y
1≤i<j≤m

(vj − vi) sχ

�
(1− v1) p

(1− p) v1
, . . . ,

(1− vm) p

(1− p) vm

��
1 + O

�
1

t

��
.

The next step is to perform the summation (46) over the range of the final
configurations X ∈ �x0

1 ≤ x1 < · · · < xm < ∞	. It can be shown that the
main contribution to the sum comes from the domain

pt−
√

t log t ≤ x1 < · · · < xm ≤ pt +
√

t log t. (59)

Indeed, fi

�
(1−vi)p
(1−p)vi

�
is a concave function of vi in the domain vi ∈ (0, 1)

with a single maximum vi = p. It follows then for |xi − pt| > √
t log t

e
tfi

�
(1−vi)p

(1−p)vi

�
< e

tfi

�
1−√t log t/(1−p)

1+
√

t log t/p

�
= e

− (log t)2

2p(1−p)

�
1 + O

�
log t√

t

��
(60)

All the other factors in (58) are at most of polynomial order in t, while
the total number of nonzero terms in the sum of interest (46) is O (tm).
Therefore, the contribution from the complement of (59) being of order

of O

�
tse

− (log t)2

2p(1−p)

�
for some constant s is asymptotically negligible com-

paring to the contribution from the interior of (59). In the latter one can

approximate the function fi

�
(1−vi)p
(1−p)vi

�
by the second term of it’s tailor

expansion at vi = p, which yields

Pt

�
X, X0� =

p
3m2−4m

2

(2π)
m
2 t

m(1−2m)
2 (1− p)

m2
2

sχ (1, . . . , 1) (61)

mY
i=1

exp

 
−
�
xi − x0

m − pt
�2

2tp (1− p)

! Y
1≤i<j≤m

(xj − xi)

�
1 + O

�
(log t)3√

t

��
.

Then, we have to evaluate sumX
−√t log t≤x1<···<xm≤

√
t log t

mY
i=1

e
− x2

i
2tp(1−p)

Y
1≤i<j≤m

(xj − xi)

which can be done applying the following Lemma [?]:

Lemma 1 Let r be a nonnegative integer and let b : N → N be an ar-
bitrary function. Furthermore, let h : N→ R be a function of at most
polynomial growth. Then as r tends to infinity ,

∞X
k=b(r)

h(k)e−
k2
r =

∞Z
b(r)

dxh(x)e−
x2
r + O(1),

where O(1) can be chosen independent of b.

11



Applying it to the sum over xm we get

[
√

t log t]X
xm=xm−1

e
− x2

m
2tp(1−p)

Y
1≤i<m

(xm − xi) (62a)

=

0B@ ∞X
xm=xm−1

−
∞X

xm=[
√

t log t ]

1CA e
− x2

m
2tp(1−p)

Y
1≤i<m

(xm − xi) (62b)

=

0BB@ ∞Z
xm−1

dx−
∞Z

[
√

t log t ]

dx

1CCA e
− x2

2tp(1−p)
Y

1≤i<m

(x− xi) + O(1) (62c)

=

∞Z
xm−1

dxe
− x2

2tp(1−p)
Y

1≤i<m

(x− xi) + O(1) (62d)

Going from (62c) to (62d) we dropped one integral which is of order of

O(tse
− (log t)2

2p(1−p) ) for some constant s. Iterating this procedure for all xi,
i = 1, . . . , m we come to the following m-fold integral:

∞Z
−∞

dx1 · · ·
∞Z

xm−2

dxm−1

∞Z
xm−1

dxm

mY
i=1

e
− x2

i
2tp(1−p)

Y
1≤i<j≤m

|xj − xi|

The absolute values under the second product make the expression under
the integral invariant with respect to the variable permutations. Sym-
metrizing it over all the permutations one can extend the lower limits of
integration over all the variables to minus infinity

1

m!

∞Z
−∞

dx1 · · ·
∞Z

−∞

dxm

mY
i=1

e
− x2

i
2tp(1−p)

Y
1≤i<j≤m

|xj − xi| ,

Then, going to rescaled variables yi = xi/
p

tp (1− p) we obtain

Pt

�
X0� =

1

[p(1− p)t]m(m−1)/4

Im,1/2

(2π)
m
2 m!

sχ (1, . . . , 1)

�
1 + O

�
(log t)3√

t

��
,

(63)
where

Im,k ≡
∞Z

−∞

dyp · · ·
−∞Z
−∞

dy2

−∞Z
−∞

dy1 exp

�
−1

2

Xm

i=1
y2

i

� Y
1≤i<j≤m

|yj − yi|2k

= (2π)m/2
mY

l=1

Γ (lk + 1)

Γ(k + 1)
(64)

is the Mehta integral [?], which first appeared in context of Gaussian
random matrix ensembles. Finally one can use the following formula for
Schur function [?]

sχ (1, . . . , 1) =
Y

1≤i<j≤m

χi − i− χj + j

j − i
, (65)

12



which results in the expression for the survival probability.

Pt

�
X0� =

1

[p(1− p)t]m(m−1)/4

2m

πm/2

mY
l=1

Γ (l/2 + 1)

l!
(66)

×
Y

1≤i<j≤m

�
x0

j − x0
i

� �
1 + O

�
(log t)3√

t

��
After reexpressing the gamma functions in terms of the factorials we ob-
tain the form given in (10,13).

4.2 Semi-Vicious walkers.

4.2.1 The case of generic κ < 1.

To study the asymptotic behaviour of the survival probability for the
case of general κ one can use the following integral representation for the
transition probability

Pt

�
X, X0� =

mY
i=1

I
C0

dzi

2πizi

dξi

2πiξi

�
1− κξi

1− κzi

�i−1

ξ
x0

m−x0
i +1

i z
xi−x0

m
i

×Λt (Z)
Y

1≤i,j≤m

1

ξi − zj

Y
1≤i<j≤m

(zj − zi)(ξj − ξi),(67)

where the integration in each variable is along a small circle around zero,
|zi| < |ξj | for any i, j = 1, . . . , m. This representation can be reduced to
the form (41) by the direct integration over each ξj j = 1, . . . , m. This
is done by accounting a contribution to the integral coming from all the
poles ξj = zi i = 1, . . . , m.

Using the representation (67) one can approximate the integral over
zi by its large t saddle point asymptotics.

mY
i=1

I
C0

dzi

2πizi
(1− κzi)

−i z
xi−x0

m
i Λt (Z) (68)

×
pY

1≤i,j≤m

1

ξi − zj

Y
1≤i<j≤m

(zj − zi),

=

�
p

1− p

�m(m−1)
2

mY
i=1

v1−m
i e

tfi

�
(1−vi)p

(1−p)vi

�p
2πtvi(1− vi)

Y
1≤i<j≤m

(vj − vi)

×
Y

1≤i,j≤m

�
ξi − (1− vj) p

(1− p) vj

� mY
i=1

�
1− κ

(1− vj) p

(1− p) vj

�−i+1�
1 + O

�
1

t

��
When κ > (1− p) vj/(p (1− vj)) the contour being deformed to the steep-
est descent one meets the pole z = 1/κ. Therefore, one has to extract the
contribution coming from this pole. It however turns out to be negligible
when κ < 1. Indeed being given by the pole at the point z = 1/κ it
contains the factor etfi(1/κ). Because for (1− p) vi/(p (1− vi)) < κ < 1
the inequality fi (1/κ) < 0 holds, the pole contribution is exponentially
small in t, and, hence, is O(1/t). Now, one has to calculate the sum of
the r.h.s. of (68) over all final configurations X, i.e. over the range of
v1, . . . , νm. As above, we argue that the main contribution into this sum

13



comes from the domain (59). Using the taylor expansion at νi = p and
replacing the sum by the integral we obtain

Pt

�
X0� =

1

[p(1− p)t]m(m−1)/4

Im,1/2

(2π)
m
2 m!

(69)

×
mY

i=1

I
C|ξi|=r>1

dξi

2πiξi

�
1− κξi

1− κ

�i−1 Y
1≤i<j≤m

(ξj − ξi)

×
Y

1≤i,j≤m

(ξi − 1)−m ξ
x0

m−x0
i +1

i

�
1 + O

�
(log t)3√

t

��
,

Note that the r.h.s. of (68) has a pole singularity beyond the range (59) at
vj = pκ/(1− p + pκ), which, at the first glance, could make a summation
over X problematic. It is however ”at the exponential tail”, namely com-
ing with a factor of order of etfi(1/κ), and, as such, is of much smaller order
than any terms we are accounting for. In practice of course there must not
be any singularities in the expression under the sum, which means that the
one in (68) must be compensated by other correction terms of the same
order. This problem can be avoided by expanding the term (1 − κzi)

−i

into the power series in powers of (κzi) before the integration over zi and
then integrating the resulting series term by term. For κ < 1 the conver-
gence of these series will be exponentially fast, i.e. the number of terms,
which will finally contribute into the leading asymptotics is O

�|log κ|−1�.
Thus, for κ < 1 the terms of the expansion of (1− κzi)

−i, which must
be taken into account, are of finite degree. Therefore, these terms do not
affect the location of the saddle point, and their value can be taken as
the leading term of the expansion in the effective summation range (59),
yielding the above result. The only case when this is not true is when κ
approaches one, which is considered in the next subsection. Writing the
above product of integrals in the determinant form we obtain

Pt

�
X0� ' [p(1− p)t]−

m(m−1)
4 (1− κ)−

m(m+1)
2

2m

πm/2
(70)

×
mY

l=1

Γ (l/2 + 1)

l!
det[gi,j(x

0
m − x0

i )]1≤i,j≤m

where the function gi,j(x) is defined as follows

fi,j(x) =

I
C0

dξ

2πi

(1− κ− κξ)i−1 (1 + ξ)x

ξj
.

In the limit κ → 0 the determinant in (70) is reduced to the Schur function

lim
κ→0

det[gi,j(x
0
m − x0

i )] = sχ (1, . . . , 1) , (71)

where χ is the partition (50), which restores the result (66).

4.2.2 The limiting case κ → 1.

Now we consider the limiting case

t →∞, κ → 1, (1− κ)
√

t = const.

14



To this end, we apply the program outlined above. We start with the
formula (41) and expand the term (1− κzi)

−i+1 into the taylor series.

Pt

�
X, X0� =

X
{ni}∈Zm

≥0

mY
i=2

κni

�
i + ni − 1

ni

�
× det

 I
dzi

2πizi

�
1− p +

p

zi

�t

z
xi−x0

m+ni
i z

x0
m−x0

j

i (1− κzi)
j−1

!
1≤i,j≤m

.(72)

An integral in the determinant can be evaluated in the saddle point ap-
proximation, the analysis being similar to the one we did before, (53)-(58),
with the same function fi(z), (53) and vi depending on ni,

vi =
xi + ni − x0

m

t
. (73)

What is special about the limit κ → 1 is that the saddle point can coincide
with a zero of the term (1 − κz)j within the effective range of the sum-
mation over vi. Therefore instead of expanding this term into the Taylor
series, we leave it in the integral as it is, while the rest can be expanded
around the saddle point as usual. Then we use the following formula for
Hermit polynomials

∞Z
−∞

e−x2
(x− β)n dx =

√
π

�
i

2

�n

Hn (iβ) . (74)

As a result we obtainI
dz

2πiz

�
1− p +

p

z

�t

zxi−x0
m+nizx0

m−x0
j (1− κz)j−1 (75)

= e−tfi(z∗) (z∗)x0
m−x0

j−1

Z ∞

−∞

dξ

2π
e−t|f ′′i (z∗)/2|ξ2

(1− κ (z∗ + iξ))j−1

=
e

tfi

�
(1−vi)p

(1−p)vi

�
√

π (2t)j/2
Hj−1

 r
tvi (1− vi)

2

�
1

κ

(1− p) vi

(1− vi) p
− 1

�!
(76)

× κj−1

�
p

1− p

�j−x0
m+x0

j v
x0

m−x0
j−3j/2

i

(1− vi)
x0

m−x0
j−j/2

�
1 + O

�
1

t

��
.

We argue then that the dominant range of the summation over X and
{ni}i=1,...,m is the domain

pt−
√

t log t ≤ xi + ni ≤ pt +
√

t log t, (77)

where xi varies within the range

x0
1 ≤ x1 ≤ · · · ≤ xm ≤ t, (78)

and
0 ≤ ni < ∞. (79)

To this end, consider the integral (76) for some particular i and j. After
expanding (1 − κzi)

j into the binomial sum, it becomes a finite sum of
the terms like

(1− p)t−(ni+xi−x0
j+k) pni+xi−x0

j+k

�
t

ni + xi − x0
j + k

�
,
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where k is a finite integer, 0 ≤ k ≤ j. Beyond the range (77) the Stirling

formula estimates this to be O(t−1/2e
− (log t)2

2p(1−p) ). The summation over xi,
which includes at most t nonzero terms, multiplies this estimate by a
factor of t. Finally the summation over ni yields an additional factor
(1− κ)−i, which shows the order of the contribution from outside of the
domain (77) being

O

�
(1− κ)−i t1/2e

− (log t)2

2p(1−p)

�
. (80)

Below, the leading term of the sum of interest will be shown to decay at
most as a power of t. Therefore, when κ is such that (1− κ) = O(t−s)
with any fixed s > 0, the term (80) is asymptotically negligible. One can
approximate (76) using the Taylor formula, which yields

det

"
Hj−1

 r
tp (1− p)

2

�
vi − p

p (1− p)
− 1 +

1

κ

�!#m

i,j=1

(81)

×

mQ
i=1

e
−t

(vi−p)2

2p(1−p)

π
m
2 [2tp (p− 1)]

m(m+1)
4

�
1 + O

�
(log t)3√

t

��
.

This form can be simplified by adding to every line the lines below it with
such coefficients, that all the terms of the Hermite polynomial except the
highest one cancel.

det [Hj−1 (ai)]
m
i,j=1 = (−2)

m(m−1)
2 ∆(a1, . . . , am)

Thus, the survival probability has the following form

Pt

�
X0� =

X
{xi},{ni}

(−1)
m(m−1)

2
mQ

i=2

κnie
− (xi+ni−x0

m−pt)2
2p(1−p)t

�
i + ni−1

ni

�
(2π)

m
2 t

m(m+1)
2 [p (p− 1)]

m2
2

(82)

×∆(x1, x2 + n2, . . . , xm + nm)

�
1 + O

�
(log t)3√

t

��
,

where the summation is over the domains of {xi}m
i=1 and {ni}m

i=2 de-
fined by the inequalities (77)-(79). Due to the presence of Gaussian term
exp

�−t (vi − p)2 / (2p (1− p) t)
�

the sum over ni converges uniformly in
xi. Therefore one can interchange the order of summations over xi and
over ni. This allows one to apply the Lemma (1) first to the former xi

and then to ni. One also can take a limit t → ∞ in the limits of the
integration, which results in addition of asymptotically negligible terms.
As the characteristic scale of ni is of order of

√
t an approximation of the

binomial coefficient using the Stirling formula,�
i + n

n

�
=

ni−1

(i− 1)!

�
1 + O

�
1

n

��
, (83)

will be exact up to the correction term, which yields the error of order of

O
�
t−1/2

�
in the final result. To write down the final formula for P �X0

�
we introduce the rescaled variables

ui =
(xi − pt)p
2tp (1− p)

, (84)

νi =
nip

2tp (1− p)
. (85)
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and the transition parameter α, (15), which is constant in the limit under
consideration. Then the formula (82) takes the form (16,17).

5 Asymptotical behaviour of fm (α)

The limiting behaviour of fm(α) for α →∞ expressed in terms of t must
match with the results obtained for generic values of κ < 1. In the other
hand the limit α → 0 is just the probability normalization of the ASEP,
i.e. fm (0) must be equal to 1. Another limit α → −∞ though has
no a probabilistic meaning, can be treated as a particular limit of the
generating function of the rescaled particle current in the TASEP, see
Section 2. To study the asymptotical behaviour of the fm (0) we prove
the following three lemmas.

Lemma 2

lim
α→∞

α
m(m−1)

2 fm (α) = C∞Im,1/2, (86)

C∞ =
2

m(m−3)
4

m!πm/2

where Im,1/2 is the Mehta’s integral defined in (64).

Proof. Let us make a variable change under the integral (17) introducing
new integration variables

ϕ1 = u1, (87)

ϕi = νi + ui, i = 2, . . . , m, (88)

µi−1 = ανi, i = 2, . . . , m. (89)

In the new variables the integral (17) can be written as

f (α) =
(−2)

m(m−1)
2

π
m
2 2! · · · (m− 2)!

1

αm(m−1)/2

m−1Y
i=1

∞Z
0

dµiµ
i−1
i e−µig(µ1, . . . , µm−1; α),

(90)
where we introduce the notation

g(µ1, . . . , µm−1; α) =

∞Z
−∞

dϕ1

∞Z
ϕ1+

µ1
α

dϕ2

∞Z
ϕ2+

µ2−µ1
α

dϕ3 (91)

· · ·
∞Z

ϕm−1+
µm−1−µm−2

α

dϕme−(ϕ2
m+···+ϕ2

1)∆ (ϕ1, . . . , ϕm) .

The function g(µ1, . . . , µm−1; α) is bounded uniformly in α ∈ R.

|g(µ1, . . . , µm−1; α)| ≤ 2−m(m+1)/4Im,1/2,

which can be shown by replacing the Van der Monde determinant under
the integral by its absolute value and extending the lower integration
limits to minus infinity. Therefore the function under the integral in (90)
is uniformly bounded and integrable. By the dominating convergence
theorem one can interchange the limit α →∞ and integration. Then, for
the function g(µ2, . . . , µm; α) we have

lim
α→∞

g(µ2, . . . , µm; α) = Im,1/2
(−1)

m(m−1)
2 2−m(m+1)/4

m!
. (92)
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Remarkably the limiting value does not depend on the variables {µ1, . . . , µm−1}.
Therefore the integration in (90) can be performed independently for each
i = 2, . . . , m resulting in (i− 1)!, which yields the result (86).

Lemma 3
lim
α→0

f (α) = C0Im,1 (93)

where

C0 =
h
(2π)

m
2 2! · · ·m!

i−1

Proof. In the domain of integration the absolute value of the expression
under the integral (17) is bounded by its particular case corresponding
to α = 0. Therefore, by the dominating convergence theorem we can
interchange the integration and the limit α → 0 , setting α = 0 directly
under the integral. Let us make the variable change

χ1 = u1

χi = νi + ui, i = 2, . . . , m. (94)

Then the integral takes the form

∞Z
−∞

dχ1

∞Z
χ1

du2

∞Z
u2

du3 · · ·
∞Z

um−1

dum

∞Z
u2

dχ2 · · ·
∞Z

um

dχm (95)

×e−χ2
1

mY
i=2

(χi − ui)
i−2 e−χ2

i ∆(χ1, . . . , χm) .

This integrals over ui, for i = 1, . . . , M can be evaluated step by step.
First for i = m we have

∞Z
um−1

dum

∞Z
um

dχme−χ2
m (χm − um)m−2 ∆(χ1, . . . , χm)

=
1

m− 1

∞Z
um−1

dχme−χ2
m (χm − um−1)

m−1 ∆(χ1, . . . , χm) ,

which can be checked by differentiation of both sides in um−1 and noting
that both sides vanish in the limit um−1 → ∞. On the next step the
integral over um−1 can be calculated by parts.

∞Z
um−2

dum−1

∞Z
um−1

dχm−1

∞Z
um−1

dχme−χ2
m−1−χ2

m

× (χm−1 − um−1)
m−3 (χm − um−1)

m−1 ∆(χ1, . . . , χm)

=
1

m− 2
[

∞Z
um−2

dχm−1

∞Z
um−2

dχme−χ2
m−1−χ2

m

× (χm−1 − um−2)
m−2 (χm − um−2)

m−1 ∆(χ2, . . . , χm)

− (m− 1)

∞Z
um−2

dum−1

∞Z
um−1

dχm−1

∞Z
um−1

dχme−χ2
m−1−χ2

m

× (χm−1 − um−1)
m−2 (χm − um−1)

m−2 ∆(χ1, . . . , χm)].
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The second term cancels because of the antisymmetry of the Van der
Monde determinant with respect to interchange of χm and χm−1. Iterat-
ing this procedure we remove (m− 1) integrals in the variables u2, . . . , uM

.

f (0) =
1

(m− 1)!

∞Z
−∞

dχ1

∞Z
χ1

dχ2 · · ·
∞Z

χ1

dχm (96)

×e−χ2
1

mY
i=2

(χi − χ1)
i−1 e−χ2

i ∆(χ1, . . . , χm)

A symmetrization of the expression under the integral in the variables
χ2, . . . , χm yields another Van der Monde determinant.

f (0) =
(−1)

m(m−1)
2

((m− 1)!)2

∞Z
−∞

dχ1

∞Z
χ1

dχ2 · · ·
∞Z

χ1

dχme−(χ2
1+···+χ2

m) |∆ (χ1, . . . , χm)|2 .

Finally we add this integral to the (m− 1) similar ones, obtained by
interchanging χ1 with each of χ2, . . . , χm, and divide the sum by m.

f (0) =
2

m(m−1)
2

π
m
2 2! · · ·m!

∞Z
−∞

dχ1 · · ·
∞Z

−∞

dχme−(χ2
1+···+χ2

m) |∆(χ1, . . . , χm)|2

This gives us the stated result.

Lemma 4

lim
α→−∞

e−α2m(m−1)/4fm (α) = C−∞Im−1,1 (97)

where

C−∞ =
(π2)

1−m
2 mm−1

2! · · · (m− 2)! ((m− 1)!)2
(98)

Proof. We start from integral in (17) and make the variable change

xi = νi +
α

2
+ u1, i = 1, . . . , m− 1

si = |α| (ui − u1) , i = 1, . . . , m− 1

s1 = u1 − α

2
(m− 1) ,

which yields the integral of the following form.

e
α2m(m−1)

4

|α|m−1

∞Z
−∞

ds1e
−s2

1

∞Z
0

ds2e
−s2

∞Z
s2

ds3e
−s3 · · ·

∞Z
sm−1

dsme−sm

×
∞Z

s1+ αm
2

dx2 · · ·
∞Z

s1+ αm
2

dxm

mY
i=2

�
xi − s1 − αm

2

�i−2

e
−

mP
i=2

�
x2

i +
s2i +2sixi

|α|

�

×∆

�
s1 +

αm

2
, x2 +

s2

|α| . . . , xm +
sm

|α|
�

. (99)

Due to the presence of the Gaussian and exponential terms, the main
contribution to the integral comes from finite values of s1, . . . , sm and
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x2, . . . , xm. Therefore in the leading order, up to the corrections of or-
der of O(1/ |α|), we can neglect the terms divided by |α|, and extend
the lower limits of integration over x2, . . . , xm to −∞. The the integrals
over s2, . . . , sm decouple from the other ones, and we evaluate them to
1/ (m− 1)!. The Van der Monde determinant becomes antisymmetric
with respect to permutations of the variables x2, . . . , xm. As the integra-
tion is over the symmetric domain, we can leave only the antisymmetric
part of the rest of the expression. The product

Qm
i=2

�
xi − s1 − αm

2

�i−2

then results in (−1)
m(m−1)

2 ∆(x2 . . . , xm) /(m − 1)!. After collecting the
leading order terms from the first argument of

∆
�
s1 +

αm

2
, x2 . . . , xm

�
'
�αm

2

�m−1

∆(x2 . . . , xm) ,

the integral over s1 decouples as well, and yields
√

π. We finally obtain

e
α2m(m−1)

4
√

π (−1)
m(m−1)

2

|α|m−1 ((m− 1)!)2

�αm

2

�m−1
∞Z

−∞

dx2 · · ·
∞Z

−∞

dxme
−

mP
i=2

x2
i |∆ (x2, . . . , xm)|2 .

(100)
Using the definition of Mehta integral, (64), and of the function fm (α)
we complete the proof.

The lemmas and the formula fro the Mehta (64) integral prove the
results (18)-(20).

6 Conclusion and perspectives.
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