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Summary

The purpose of this thesis is to argue that N-point functions of holomorphic fields

in rational conformal field theories can be calculated by methods from algebraic ge-

ometry. We establish explicit formulae for the 2-point function of the Virasoro field

on hyperelliptic Riemann surfaces of genus g ≥ 1. N-point functions for higher N are

obtained inductively, and we show that they have a nice graphical representation. We

discuss the Virasoro 3-point function with application to the Virasoro (2, 5) minimal

model.

The formulae involve a finite number of parameters, notably the 0-point function

and the Virasoro 1-point function, which depend on the moduli of the surface and

can be calculated by differential equations. We propose an algebraic geometric ap-

proach that applies to any hyperelliptic Riemann surface. Our discussion includes a

demonstration of our methods to the case g = 1.
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Introduction

Quantum field theories are a major challenge for mathematicians. Apart from cases

without interaction, the theories best understood at present are conformally invariant

and do not contain massive particles. In dimension two, such conformal field theories

(CFTs) are naturally defined on compact Riemann surfaces. This is the only case we

will consider.

In order to actually compute the functions occurring in CFTs (like N-point func-

tions 〈φ1 . . . φN〉 of holomorphic fields, and more specifically the partition function

〈1〉 for N = 0, where 1 is the identity field), one has to study their behaviour under

changes of the conformal structure. This is done conveniently by first considering

arbitrary changes of the metric. Such a change of 〈φ1 . . . φN〉 is described by the

corresponding (N + 1)-point function containing a copy of the Virasosoro field T .

For this reason we shall investigate in Part I of this thesis the N-point functions of T

(rather than of more general fields). These will then be available to our discussion of

the metric dependence of N-point functions in Part II of the thesis.

The space of all possible conformal structures on the genus g surface is called

the moduli space Mg. Thus conformal quantum field theory is closely related to the

study of functions onMg. For an important special class of CFTs (the rational ones)

one obtains functions which are meromorphic on a compactification of Mg or of a

finite cover.

One also needs the following generalisation: Conformal structures occur as equiv-

alence classes of metrics, with equivalent metrics being related by Weyl transforma-

tions. The N-point functions of a CFT do depend on the Weyl transformation, but

only in a way which can be described by a universal automorphy factor.

For g = 1 this can be made explicit as follows. The Riemann surfaces can be

described as quotients C/Λ, with a lattice Λ generated over Z by 1 and τ with τ ∈ H+.

The upper half plane H+ is the universal cover ofM1, in other words its Teichmüller

space. One has M1 = S L(2,Z) \ H+. Meromorphic functions on finite covers of
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M1 are called (weakly) modular. They can be described as functions on H+ which

are invariant under a subgroup of S L(2,Z) of finite index. S L(2,Z) has therefore

received the name full modular group.

Maps in S L(2,Z) preserve the standard lattice Z2 together with its orientation and

so descend to self-homeomorphisms of the torus. Inversely, every self-homeomorphism

of the torus is isotopic to such a map. A modular function is a function on the space

L of all lattices in C satisfying [38]

f (λΛ) = f (Λ) , ∀Λ ∈ L, λ ∈ C∗ . (1)

L can be viewed as the space of all tori with a flat metric.

Conformal field theories on the torus provide many interesting modular functions,

and modular forms. (The latter transform as f (λΛ) = λ−k f (Λ) for some k ∈ Z which

is specific to f , called the weight of f .)

Little work has been done so far on analogous functions for g > 1. The present

thesis develops methods in this direction. The basic idea is that many of the relevant

functions are algebraic. In order to proceed step by step, we will restrict our investi-

gations to the locus of hyperelliptic curves, though the methods work in more general

context as well.

We shall derive the ordinary differential equations that allow to compute the Vi-

rasoro N-point function on any hyperelliptic Riemann surface. For an important class

of CFTs (the minimal models), the vector space of solutions is finite dimensional. It

is shown that in the (2, 5) minimal model, our approach reproduces the known result.
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Notations and conventions

For any k ≥ 0 and any rational function R(x) of x with Laurent expansion

R(x) =
∑
i∈Z

aixi

for large |x|, we define the polynomial

[R(x)]>k :=
∑
i>k

aixi . (2)

Let H+ := {z ∈ C| =(z) > 0} be the complex upper half plane. H+ is acted upon by the

full modular group Γ1 = S L(2,Z) with fundamental domain

F :=
{

z ∈ H+
∣∣∣∣ |z| > 1, |<(z)| <

1
2

}
.

The operation of Γ1 on H+ is not faithful whence we shall also consider the modular

group Γ1 := Γ1/{±I2} = PS L(2,Z), (here I2 ∈ GL(2,Z) is the identity matrix). We

refer to S ,T as the generators of Γ1 (or of Γ1) given by the transformations

S : z 7→ −1/z

T : z 7→ z + 1 .

We shall use the convention [38]

G2k(z) =
1
2

∑
n,0

1
n2k +

1
2

∑
m,0

∑
n∈Z

1
(mz + n)2k ,

and define E2k by Gk(z) = ζ(k)Ek(z) for ζ(k) =
∑

n≥1
1
nk , so e.g.

G2(z) =
π2

6
E2(z) ,

G4(z) =
π4

90
E4(z) ,

G6(z) =
π6

945
E6(z) .

Let (q)n :=
∏n

k=1(1 − qk) be the q-Pochhammer symbol. The Dedekind η function is

η(z) := q
1

24 (q)∞ = q
1
24

(
1 − q + q2 + q5 + q7 + . . .

)
, q = e2πi z .
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〈1〉 and 〈T 〉 (or A1, . . .) are parameters of central importance to this exposition.

For better readibility, they appear in bold print (〈1〉 and 〈T〉, or A1, . . .) throughout.
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hyperelliptic Riemann surfaces

1





Chapter 1

Introduction

Conformal Field Theories (CFTs) can be defined over arbitrary Riemann surfaces. A

theory is considered to be solved once all of its N-point functions are known. We re-

strict our consideration to meromorphic CFTs [14] which are defined by holomorphic

fields, and a rather specific class of Riemann surfaces.

The case of the Riemann sphere Σ0 is easy, and for the torus Σ1, one can use

the standard tools of doubly periodic and modular functions ([41],[3] and more re-

cently, e.g. [4],[29]). The case g > 1 is technically more demanding, however. Some

progress has been made in the Vertex Operator Algebra (VOA) formalism by sewing

surfaces of lower genus. There is no canonical way to do this and two different sewing

procedures have been explored. Explicit formulae could be established for the genus

two N-point functions for the free bosonic Heisenberg VOA and its modules ([24],

[25]), and for the free fermion vertex operator superalgebra [35].

Instead, quantum field theory on a compact Riemann surface of any genus can

be approached differently using methods from algebraic geometry ([30], [34], [10])

and complex analysis. N-point functions of holomorphic fields are meromorphic

functions. That is, they are determined by their poles. By compactness of Σg, these

functions are rational.

The present paper establishes explicit formulae for the 2-point functions of the

Virasoro field over hyperelliptic genus-g Riemann surfaces Σg, where g ≥ 1. N-point

functions for N ≥ 3 are obtained inductively from these, up to a finite number of

parameters which in general cannot be determined by the methods presented in this

paper. In comparison, the formulae given by the work of Mason, Tuite, and Zuevsky

determine all constants, but are given in terms of infinite series.

We show that the N-point functions can be written in terms of a list of oriented

3



4

graphs. For g = 1 the result reduces to a formula which is very similar to eq. (3.19)

in [19]. The method we used is essentially the one developed in [19] though it was

found independently.

Although we deal with the Virasoro field, our method applies to more general

holomorphic fields.

The material of the Chapters 2, 4, 5, and 6 is published in [22].



Chapter 2

The Virasoro OPE

In this chapter we define a global theory, a meromorphic conformal field theory on a

Riemann surface, by glueing local data. For brevity, the global and the local theories

will be treated on an equal footing. In order to consider the local data for them-

selves, it suffices to consider the Riemann surface given by the open unit disc, with

its standard coordinate.

2.1 The vector bundle of holomorphic fields

For any Riemann surface S (not necessarily compact), we assume that the holomor-

phic fields of a meromorphic CFT on S form a vector bundle F over S with a distin-

guished trivialisation on every parametrized open set. More specifically, let (U, z) be

a chart on S : The holomorphic map

U
z
→ C

is called a coordinate on U, and U will be referred to as a coordinate patch. We

postulate that (U, z) induces a trivialization

F |U
z∗
→ F × U ,

where F is the standard fiber of F .

Remark 1. An example is F = T ∗S , the cotangent bundle of S : Any chart (U, z) on

S defines a nowhere vanishing section dz in T ∗U and thus a trivialisation of T ∗U. A

different coordinate z′ = f (z) on U defines a different trivialisation (given by dz′).

5
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In the present case, the fiber F is the infinite dimensional complex vector space of

holomorphic fields. For U′ ⊆ U, the trivialization corresponding to (U′, z) is induced

by the one for (U, z). For any coordinate patch U with coordinate z, elements of F |U
can be written as

ϕz(u) = (z∗)−1(ϕ × {u}) ,

with ϕ ∈ F, u ∈ U. Abusing notations, we shall simply write ϕ(z) where we actu-

ally mean ϕz(u). (This will entail notations like ϕ̂(ẑ) instead of ϕẑ(u) etc.). Thus an

isomorphism between two coordinate patches on S induces an isomorphism between

the corresponding fields. We postulate that the standard fiber F has an ascending

filtration.

Remark 2. It has been suggested to introduce the component of L0 of the Virasoro

field at this stage as F is filtrated as a result of the grading defined by the diagonali-

sation of L0. As we shall see in the following section, however, L0 is defined in terms

of local coordinates while the filtration is postulated to be universal. Once everything

is said and done, the two definitions are of course equivalent.

As the base point u ∈ S is varied, the filtration of the fibers Fu of F gives rise to a

totally ordered set of finite rank subvector bundles ofF . On P1
C

, every such finite rank

bundle admits a splitting into a direct sum of line bundles (Birkhoff-Grothendieck

theorem). For C ⊂ P1
C

, the degrees of the line bundles figuring in any such decom-

position of finite rank subbundels of F define a Z grading on the fiber F. Thus to

every (nonzero) homogeneous element ϕ ∈ F there is associated the (holomorphic)

dimension h(ϕ) of ϕ. For quasi-primary (non-derivative) fields ϕ the degree of the

corresponding line bundle is 2h(ϕ).

Remark 3. All holomorphic fields can be obtained from differentiating quasi-primary

fields, which implies that the action of L0 is encoded by the line bundle structure.

We shall assume that

h(ϕ) ≥ 0 , ∀ ϕ ∈ F , (2.1)

so that

F =
⊕
h∈N0

F(h) ,

where F(0) � C is spanned by the identity field 1, and we assume that for any
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h ∈ N0, the dimension of F(h) is finite. Since in a conformal field theory fields of

finite dimension only are considered, it is sufficient to deal with finite sums.

It may be useful to compare our formalism to the approach by P. Goddard [14]

where only the case g = 0 is discussed in detail. Goddard interprets F as a dense

subspace of a space of states H using the field-state correspondence. He works on

C ⊂ P1
C

. In our notation this corresponds to the identity map id : U → C. Our

field ψid(z) is Goddard’s V(ψ, z). We will not use the field-state correspondence and

reserve the word state for something different. Our notion of state on a Riemann

surface S is a map 〈 〉 from products of fields Ψ = ψz1(p1) ⊗ . . . ⊗ ψzN (pN) to

numbers 〈Ψ〉 ∈ C, in analogy to the language of operator algebra theory. We will not

use the interpretation of fields as operators, however, since the necessary ordering is

unnatural for g > 1.

2.2 Meromorphic conformal field theories

Let S g be a connected Riemann surface of genus g ≥ 1 (when the genus is fixed, we

shall refer to S g simply as S ). We don’t give a complete definition of a meromorphic

conformal field theory here, but the most important properties are as follows [28]:

1. For i = 1, 2, let S i be a Riemann surface and let Fi be a rank ri vector bundle

over S i. Let p∗iFi be the pullback bundle of Fi by the morphism pi : S 1×S 2 →

S i. Let

F1 � F2 := p∗1F1 ⊗ p∗2F2

be the rank r1r2 vector bundle whose fiber at (z1, z2) ∈ S 1 × S 2 is F1,z1 ⊗ F2,z2 .

We are now in position to define N-point functions for bosonic fields. Let F be

the vector bundle introduced in section 2.1. A state on S is a multilinear map

〈 〉 : S∗(F ) → C,

where S∗(F ) denotes the set obtained by restricting the symmetric algebra

S(F ) to fibers away from the partial diagonals

∆N := {(z1 . . . , zN) ∈ S N | zi = z j, for some i , j},

for any N ∈ N. For ease of notations, when writing ⊗ and � we shall in the

following actually mean the respective symmetrized product.
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Locally, over any UN ⊆ S N \∆N such that (U, z) defines a chart on S , a state is

the data for any N ∈ N of an N-linear holomorphic map

〈 〉 : F⊗N × UN → C

(ϕ1, z1) � . . . � (ϕN , zN) 7→ 〈ϕ1(z1) ⊗ . . . ⊗ ϕN(zN)〉

satisfying the following conditions:

(a) 〈 〉 is compatible with the Operator Product Expansion (OPE). (The

OPE is defined below in point 3, and the compatibility condition is ex-

plained in point 4.)

(b) For ϕ1 = 1 ∈ F(0), the identity field, we have

〈1(z1) ⊗ ϕ2(z2) ⊗ . . . ⊗ ϕN(zN)〉 = 〈ϕ2(z2) ⊗ . . . ⊗ ϕN(zN)〉 .

Remark 4. In standard physics’ notation the symbol for the symmetric tensor

product is omitted. We shall adopt this notation and write

〈ϕ1(z1) . . . ϕN(zN)〉

instead of 〈ϕ1(z1) ⊗ . . . ⊗ ϕN(zN)〉 but keep in mind that each zi lies in an in-

dividual copy of U whence the ϕi(zi) are elements in different copies of F and

multiplication is meaningless.

Since each ϕi is defined over U, we may view 〈ϕ1(z1) . . . ϕn(zN)〉 as a function

of (z1, . . . , zN) ∈ UN . We call it the N-point function of the fields ϕ1, . . . , ϕN

over U. For example, the zero-point function1 〈1〉 is a complex number.

Remark 5. One can make contact to the notion of N-point function used in

[14] by considering states for manifolds with boundary (see G. Segal’s axioms)

[32].

2. Fields are understood by means of their N-point functions. A field φ is zero if

all N-point functions involving φ vanish. That is, for any N ∈ N, N ≥ 2, and

any set {φ2, . . . φN} of fields,

〈φ(z1) φ2(z2) . . . φN(zN)〉 = 0 .

1henceforth denoted by 〈1〉



9

3. We assume the existence of an OPE on F, in particular for any m ∈ Z of a

linear degree m map

Nm : F ⊗ F → F .

Nm has degree m if for any ϕ1, ϕ2 ∈ F, Nm(ϕ1, ϕ2) has holomorphic dimension

m + h(ϕ1) + h(ϕ2) .

Note that the degree condition is void when Nm(ϕ1, ϕ2) is the zero field.

Remark 6. For ϕ ∈ F, the family of induced linear maps Nm(ϕ, ) : F → F

indexed by m ∈ Z span a vertex operator algebra (VOA) (in particular a Lie

algebra), with

Y(ϕ, z) =
∑
m∈Z

Nm(ϕ, ) zm

being the vertex operator associated with ϕ [11]. In particular, L0 = N−2(T, ).

4. While fields and coordinates are local objects, states should contain global

information. A state is said to be compatible with the OPE if for any N ∈ N,

N ≥ 2, and whenever ϕ1, . . . , ϕN are holomorphic fields over a coordinate patch

U ⊂ S , the corresponding N-point function has a Laurent series expansion in

z1 about z1 = z2 given by

〈ϕ1(z1) ϕ2(z2) . . . ϕN(zN)〉

=
∑

m≥m0

(z1 − z2)m〈Nm(ϕ1, ϕ2)(z2) ϕ3(z3) . . . ϕN(zN)〉,

for some m0 ∈ Z. Symbolically we write

ϕ1(z1) ϕ2(z2) 7→
∑

m≥m0

(z1 − z2)mNm(ϕ1, ϕ2)(z2) .

This arrow defines the OPE of ϕ1, ϕ2 ∈ F |U . We postulate that every OPE

admits compatible states.

Remark 7. Physicists write an equality here. Recall however that ⊗ is under-

stood on the l.h.s.

5. We have Nm(ϕ,1) = 0 for ϕ ∈ F and m < 0. Define the derivative of a field ϕ
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by

∂ϕ := N1(ϕ,1) .

Equivalently, ∂ϕ is defined by prescribing

〈∂ϕ(z)ϕ2(z2) . . . ϕN(zN)〉 := ∂z〈ϕ(z) ϕ2(z2) . . . ϕN(zN)〉 ,

for all N-point functions involving ϕ.

6. In conformal field theories, one demands the existence of a Virasoro field T ∈

F(2) which satisfies

N−1(T, ϕ) = ∂ϕ , (2.2)

whenever ϕ is a holomorphic section in U × F.

In standard textbooks (e.g. [11]) the Virasoro algebra is required in addition to

eq. (2.2) and h(T ) = 2. The latter is equivalent to the Virasoro OPE [20], which is

the specific arrow for the fields ϕ1 = ϕ2 = T in point 4. The Virasoro OPE actually

follows from the assumptions made in Section 2.1 and the properties 1-6 above:

Lemma 8. In local coordinates z and w, the Virasoro OPE has the form

T (z)T (w) 7→
c/2

(z − w)4 .1 +
1

(z − w)2 (T (z) + T (w)) + Φ(w) + O(z − w) , (2.3)

for some c ∈ C.

The constant c is called the central charge of the theory. Note that

Φ = N0(T,T ) −
∂2T

2
.

Proof. (e.g. [20]) By assumption (2.1), all holomorphic fields have non-negative di-

mension, and h(T ) = 2. This yields the lowest order term, since F(0) is spanned

by the identity field 1. Symmetry (point 1) implies the existence of a field Ω, of

dimension 2, and of a constant c ∈ C, such that

T (z)T (w) 7→
c
2 .1

(z − w)4 +
Ω(z) + Ω(w)

(z − w)2 + O(1)

=

c
2 .1

(z − w)4 +
2Ω(w)

(z − w)2 +
∂Ω(w)
(z − w)

+ O(1) .

Thus N−1(T,T ) = ∂Ω, from which (considering dimensions) we conclude Ω = T . �



11

Example 1. A CFT containing the identity field 1, the Virasoro field T and which

is closed under Nm(., .) for m ∈ Z is said to be generated by T. A CFT is minimal
if it has only finitely many non-isomorphic irreducible representations of the VOA

(or the OPE). Minimal CFTs generated by T are called minimal models. They are

parametrised by unordered pairs (µ, ν) of natural numbers µ, ν > 1 s.t. gcd(µ, ν) = 1.

For the (µ, ν) minimal model the number of such representations is (e.g., [3], [1])

(µ − 1)(ν − 1)
2

.

For (µ, ν) = (2, 3), one has F(0) = 1.C, and F(n) = 0 for n > 0 (so that T = 0). The

(2, 5) minimal model has two irreducible representations, the vacuum representation

M1 for the lowest conformal weight (or holomorphic dimension) κ1 −
11
60 = 0, and

another representation M2 corresponding to the conformal weight κ2−
11
60 = −1

5 ([3],

table2 8.1., p. 243). (For g = 1, the 0-point functions are characters, and κs for

1 ≤ s ≤ (ν − 1)/2 is the leading power in the small q-expansion of the character 〈1〉s
in the (2, ν) minimal model. We will use κs to parametrise the characters in Chapter

8.)

2Note that there is a typo in the value for the conformal weight h1,2 of 〈1〉2 in [3].





Chapter 3

Analytic calculation of the
Virasoro N-point function for
some genus 1 minimal models

Virasoro N-point functions on the torus can be determined using techniques from

VOA theory [41]. In this chapter we illustrate a more elementary approach using the

Weierstrass ℘-function.

3.1 The Virasoro N-point function in the (2, 5) minimal model

We consider a conformal field theory (CFT) over the torus Σ1 = C/Λ for Λ = Z.1+Z.τ

with the property that the space F(4) of the holomorphic fields of dimension h = 4 is

one dimensional. Thus for the field Φ of the OPE (2.3), we have

Φ =

(
3K
10
−

1
2

)
∂2T, (3.1)

for some K ∈ C. The model, in which (3.1) holds true, is referred to as the (2, 5)

minimal model. K = 1 is such a theory, but our calculations will show that anyhow.

For any N ≥ 1, the Virasoro N-point function 〈T (z1) . . . T (zN)〉 is an element of the

field

C(℘(z1|τ), ℘′(z1|τ), . . . , ℘(zN |τ), ℘′(zN |τ)) ,

13
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where ℘ is the Weierstrass function associated to Λ,

℘(z|τ) =
1
z2 +

∑
m,n

′
{

1
(z − m − nτ)2 −

1
(m + nτ)2

}
, (3.2)

and ℘′ = ∂℘/∂z is its derivative. x = ℘(z|τ) and y = ℘′(z, |τ) are related by the

equation y2 = 4(x3 − 30G4x − 70G6), where for k ≥ 2, G2k are the holomorphic

Eisenstein series. For N = 1, there actually exists a covering of Σ1 by coordinate

neighbourhoods for which 〈T (z)〉 = 〈T〉 is constant. Comparison of the singularities

in (3.2) and the OPE (2.3), and using that holomorphic functions on the torus are

constant, yields

〈T (z)T (0)〉 =
c

12
〈1〉℘′′(z|τ) + 2〈T〉℘(z|τ) + C, (3.3)

where C ∝ 〈1〉 is constant in position. About z = 0,

℘(z|τ) = z−2 + 6G4z2 + O(z4) ,

so

〈N0(T,T )(w)〉 = C + cG4〈1〉 = 〈Φ(w)〉 .

But in the (2, 5) minimal model,

〈Φ〉 = 0

by eq. (3.1), since 〈∂2T 〉 = ∂2〈T〉 = 0. (Φ is referred to as the singular vector in M1

of the (2, 5) minimal model.) We conclude that

C = −c〈1〉G4 . (3.4)

The Virasoro 2-point function in the (2, 5) minimal model is completely determined

by the 0- and 1-point function. This result has been found previously by [7].

3.2 Higher N-point functions

It is worth mentioning that the method of matching the singularities of the Virasoro

OPE with suitable derivatives of the Weierstrass ℘-function, as demonstrated for the

2-point function in the preceding section, allows also to compute the N-point func-
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tions of the Virasoro field for higher N, by recursion. For N = 3 we have

〈T (z)T (w)T (u)〉

=
c/2

(z − w)4 〈T〉 +
1

(z − w)2 {〈T (z)T (u)〉 + 〈T (w)T (u)〉} + 〈Φ(w)T (u)〉 + O(z − w).

On the other hand, the general form of the Virasoro 3-point function, considered as a

function of z, is

〈T (z)T (w)T (u)〉 =
c/2

(z − w)4 〈T〉

+
1

(z − w)2

{ c
6
〈1〉℘′′ + 4〈T〉℘ + 2C

}
+

1
(z − w)

{
. . .

}
+ (z − w)0

{ c
24
〈1〉℘(4) + 〈T〉℘ + 〈Φ(w)T (u)〉

}
+ O(z − w) . (3.5)

Here and henceforth we denote by ℘(k) for k ≥ 0 the function ∂k℘(w − u|τ), where

℘(0) = ℘. We have omitted the (z − w)−1-term which will drop out as the symmetry

between z and w is restored. On the other hand, considering the singularities and the

symmetries between z,w and u yields the ansatz

〈T (z)T (w)T (u)〉

= Ã {℘′′(z − w|τ) + ℘′′(z − u|τ) + ℘′′(w − u|τ)}

+ B̃ {℘(z − w|τ) + ℘(z − u|τ) + ℘(w − u|τ)}

+ C̃ {℘(z − w|τ)℘(z − u|τ) + ℘(w − z|τ)℘(w − u|τ) + ℘(u − z|τ)℘(u − w|τ)}

+ D̃ ℘(z − w|τ)℘(z − u|τ)℘(w − u|τ)

+ Ẽ, Ã, B̃, C̃, D̃, Ẽ ∈ C. (3.6)

By comparison with (3.5), we conclude

Ã =
c

12
〈T〉, B̃ = 12C, C̃ = 2〈T〉, D̃ = c〈1〉.

In the (2, 5) minimal model, we have by eq. (3.4),

B̃ = −12c〈1〉G4 .
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Moreover, by eq. (3.1),

〈Φ(w)T (u)〉 =

(
3K
10
−

1
2

)
∂2

w〈T (w)T (u)〉

so the coefficient of (z − w)0 reads

c
24
〈1〉℘(4) + 〈T〉℘ + 〈Φ(w)T (u)〉 =

cK
40
〈1〉℘(4) +

3K
5
〈T〉℘′′ .

For the term of order zero, we obtain a cubic equation in ℘,

(3c − 3Kc) ℘3+
1
5

(5c + 40 − 18K) 〈T〉 ℘2 − 54c(1 − K) G4 〈1〉 ℘ + E = 0,

where E = Ẽ + (−9c − 60 + 36K) G4 〈T〉 + 84cK G6 〈1〉.

The equation is satisfied iff K = 1, c = − 22
5 , and

Ẽ = −
78
5

G4 〈T〉 +
1848

5
G6 〈1〉.

In particular, 〈TTT 〉 yields 1-point functions of Nk(T,N`(T,T )). More complicated

fields are treated analogously.

3.3 The Virasoro N-point function in the (2, 7) minimal model

Let us now consider a CFT on C/Λ with the property that

α∂4T + βN0(N0(T,T ),T ) + γN0(T, ∂2T ) + δN0(∂T, ∂T ) = 0 , (3.7)

α, β, γ, δ ∈ C not all zero.

(In the (2, 7) minimal model, the second singular vector occurs at level 6, cf. [3], p.

243, subsequent to table 8.1.) From the Virasoro OPE follows

〈T (z)T (0)〉 =
c

12
〈1〉℘′′(z|τ) + 2〈T〉℘(z|τ) + C

=
c/2
z4 〈1〉 +

2
z2 〈T〉 + (C + cG4〈1〉) + z2(12G4〈T〉 + 10cG6) + O(z4) ,
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so

∂2
z 〈T (z)T (0)〉 =

c
12
〈1〉℘(4)(z|τ) + 2〈T〉℘′′(z|τ)

=
10c
z6 〈1〉 +

12
z4 〈T〉 + 20cG6〈1〉 + 24〈T〉G4 + O(z2)

⇒ 〈N0(∂2T,T )(w)〉 = 24〈T〉G4 + 20cG6〈1〉 (3.8)

Since odd order derivatives of ℘ are odd,

∂z∂w〈T (z)T (w)〉 = − ∂2
z 〈T (z)T (w)〉

⇒ 〈N0(∂T, ∂T )(w)〉 = − 〈N0(∂2T,T )(w)〉

For 〈N0(N0(T,T ),T )〉 we have by eq. (3.7) and the fact that 〈T〉 = const.,

〈N0(N0(T,T ),T )〉 =
γ − δ

β
〈N0(T, ∂2T )〉 , provided β , 0 . (3.9)

The constant γ−δβ can be determined independently and is thus assumed to be known.

Also, the central charge of the (2, 7) minimal model is known to be c = −68
7 . Com-

parison of eq. (3.5) with eq. (3.6) yields

〈Φ(w)T (u)〉 = − 2c〈1〉℘3 + (c + 8)〈T〉℘2 + (24C + 60cG4〈1〉)℘ + E

where

E = Ẽ − (9c + 60)G4〈T〉 + 140cG6〈1〉 .

So 〈Φ(w)T (u)〉 is known upon knowledge of 〈1〉, 〈T〉, C, and Ẽ. To determine Ẽ, it is

sufficient to know 〈N0(Φ,T )〉. By eq. (3.9),

〈N0(Φ,T )〉 = 〈N0(N0(T,T ) −
1
2
∂2T,T )〉

= 〈N0(N0(T,T ),T )〉 −
1
2
〈N0(∂2T,T )〉

= (
γ − δ

β
−

1
2

) 〈N0(∂2T,T )〉 .

But 〈N0(∂2T,T )〉 is given by eq. (3.8). We conclude that in the (2, 7) minimal model,

the Virasoro 3-point function is determined by the 0-point, and the Virasoro 1-point

and 2-point function.





Chapter 4

The Virasoro 1-point function in
rational coordinates,
for genus g ≥ 1

4.1 Change to rational coordinates

Let Σ1 be a compact Riemann surface of genus g = 1. Such a manifold is biholomor-

phic to the torus C/Λ (with the induced complex structure), for the lattice Λ spanned

over Z by 1 and some τ ∈ H+, unique up to an S L(2,Z) transformation. Here H+ de-

notes the upper complex half plane. We denote by z the local coordinate on Σ1 and by

z1, . . . , zN the corresponding variables of the N-point functions on Σ1 [3]. Recall that

N-point functions on Σ1 are elements of C(℘(z1|τ), ℘′(z1|τ), . . . , ℘(zN |τ), ℘′(zN |τ)),

where ℘ is the Weierstrass function associated to Λ, and ℘′ = ∂℘/∂z. Instead of z we

shall work with the pair of complex coordinates

x = ℘(z|τ), y = ℘′(z|τ) . (4.1)

We compactify the variety {(x, y) ∈ C2| y2 = p(x)} with

p(x) = 4(x3 − 30G4x − 70G6)

by including the point x = ∞ (corresponding to z = 0 mod Λ), and view x as a

holomorphic function on C/Λ with values in P1
C

. Thus y defines a ramified double

cover of P1
C

.

N-point functions can be expressed in terms of ℘(z1|τ), ℘′(z1|τ), . . . , ℘(zN |τ), ℘′(zN |τ),

19
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or equivalently as rational functions of x1, y1, . . . , xN , yN . The latter possibility gen-

eralizes much more easily to higher genus. Instead, one can try to work with the

Jacobian of the curve and the corresponding ϑ functions. This would generalize to

arbitrary curves, but it is unknown for which conformal field theories this is possible.

If g > 1, one can write Σg as the quotient of H+ by a Fuchsian group, but working

with a corresponding local coordinate z becomes difficult (e.g. [8], and more recently

[23]). We shall consider hyperelliptic Riemann surfaces Σg only, where g ≥ 1. Such

surfaces are defined by

Σg : y2 = p(x), (4.2)

where p is a polynomial in x of degree n = 2g + 1 (the case n = 2g + 2 is equivalent

and differs from the former by a rational transformation of C only). We assume p

has no multiple zeros so that Σg is regular. Locally we will work with one complex

coordinate, either x or y. None of them is a function of the other on all of the affine

variety (4.2) (whence in particular we refrain from writing y(x)2 = p(x)). By defini-

tion, the function x is called a locally admissible coordinate on an open set U ⊂ Σg

if (U, x) defines a chart, and analogously for y. Thus x is an admissible coordinate

away from the ramification points (where p = 0), whereas y is admissible away from

the locus where p′ = 0. Let us recapitulate the behaviour of T under coordinate

transformations.

Definition 1. Given a holomorphic function f (with non-vanishing first derivative

f ′), we define the Schwarzian derivative of f by

S ( f ) :=
f ′′′

f ′
−

3[ f ′′]2

2[ f ′]2 .

The Schwarzian derivative S has the following well-known properties:

1. S (λ f ) = S ( f ), ∀ λ ∈ C, f ∈ D(S ), the domain of S ( f holomorphic with

f ′ , 0).

2. Suppose f : P1
C
→ P1

C
is a linear fractional (Möbius) transformation,

f : z 7→ f (z) =
az + b
cz + d

, where

a b

c d

 ∈ S L(2,C).

Then f ∈ D(S ), and S ( f ) = 0.
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3. Let f , g ∈ D(S ) be such that f ◦ g is defined and lies inD(S ). Then

S ( f ◦ g) =
[
g′

]2 S ( f ) ◦ g + S (g) .

Remark 9. Let p, y ∈ D(S ) with y2 = p(x). Then by the properties 1 and 3 of the

Schwarzian derivative,

S (y) = S (p) +
3
8

[
p′

p

]2

. (4.3)

Direct computation yields [13]

Lemma 10. Let T be the Virasoro field in the coordinate x. We consider a coordinate

change x 7→ x̂(x) such that x̂ ∈ D(S ), and set

T̂ (x̂(x))
[
dx̂
dx

]2

= T (x) −
c

12
S (x̂)(x).1 . (4.4)

Then T̂ satisfies the OPE (2.3) in x̂. �

Corollary 11. Let S g be a Riemann surface of genus g ≥ 2 with a complex projective

coordinate covering (i.e. a covering by coordinate patches whose respective local

coordinates differ by a Möbius transformation only). Then for any state 〈 〉 on S g,

and for any local coordinate x in this class, 〈T (x)〉 (dx)2 defines a global section of

(T ∗S g)⊗2.

This section is holomorphic by assumption.

Proof. By property 2 of the Schwarzian derivative, and by eq. (4.4),

〈T (x)〉 (dx)2 = 〈T̂ (x̂)〉 (dx̂)2 . �

The equation in the proof of Corollary 11 can be read as the cocycle condition

on the 0-cochain 〈T (x)〉 (dx)2. For a general coordinate covering U of S g, g ≥ 2,

〈T (x)〉 (dx)2 will fail to define a 0-cocycle. According to eq. (4.4), however, its 1-

coboundary is given by c
12 〈1〉S (x̂)(x)(dx)2 which by property 3 of the Schwarzian

derivative satisfies the 1-cocycle condition

S (y ◦ x)(z)(dz)2 = S (y)(x(z))(dx)2 + S (x)(z)(dz)2 .
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A 0-cochain with this property is called a projective connection. Thus for any pro-

jective connection c
12 C(z), the difference 〈T (z)〉 (dz)2 − c

12 C(z) defines a global holo-

morphic section in (T ∗S g)⊗2 [16],(
〈T (z)〉 (dz)2 −

c
12
C(z)

)
∈ H0

(
U,O((T ∗S g)⊗2)

)
. (4.5)

Example 2. Let S g be a Riemann surface of arbitrary genus. Let T be defined by

holomorphic fields of massless free fermions on S g. In this case, the projective con-

nection c
12C is known as the Bergman projective connection ([18],[9],[31]).

By the Riemann-Roch Theorem (e.g. [8]), the affine linear space of projective

connections has dimension

dimC H0((T ∗S g)⊗2) = 3(g − 1) , (g ≥ 2) . (4.6)

Remark 12. Eq. (4.6) is wrong for g = 0 and g = 1. The difference from the

correct result is the dimension of the automorphism group of the Riemann surface,

(dimCS L(2,C) = 3 and dimC(C,+) = 1, respectively). For g ≥ 2, this dimension is

zero.

Example 3. Let Σ1 be a g = 1 Riemann surface. Then T ∗Σ1 is trivial. When one uses

local coordinates given by the affine structure on Σ1 [16], then 〈T (z)〉 is constant.

4.2 Calculation of the Virasoro 1-point function

Associate to the hyperelliptic surface Σ its field of meromorphic functions K =

C(x, y). Then K is a field extension of C of trancendence degree one, since y2 = p(x)

where p is a polynomial in x with coefficients in C. The two sheets (corresponding

to the two signs of y) are exchanged by a Galois transformation.

In what follows, we set

p(x) =

n∑
k=0

akxn−k,

where n = 2g + 1, or n = 2g + 2. For convenience of application, we shall treat both

cases separately throughout this section, though they are of course equivalent.

Theorem 1. (On the Virasoro 1-point function)
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For g ≥ 1, let Σg be the genus g hyperelliptic Riemann surface

Σ : y2 = p(x),

where p is a polynomial with deg p = n.

1. As x → ∞,

〈T (x)〉 ∼ x−4 , for even n ,

〈T (x)〉 =
c

32
x−2〈1〉 + O(x−3) , for odd n .

2. We have

p〈T (x)〉 =
c

32
[p′]2

p
〈1〉 +

1
4

Θ(x, y) , (4.7)

where Θ(x, y) is a polynomial in x and y. More specifically, we have the Galois

splitting

Θ(x, y) = Θ[1](x) + yΘ[y](x). (4.8)

Here Θ[1] is a polynomial in x of degree n − 2 with the following property:

(a) If n is even,
[
Θ[1] + c

8
[p′]2

p 〈1〉
]
>n−4

= 0.

(b) If n is odd,
[
Θ[1] + c

8

(
n2 − 1

)
a0xn−2〈1〉

]
>n−3

= 0.

Θ[y] is a polynomial in x of degree n
2 − 4 if n is even, resp. n−1

2 − 3 if n is odd,

provided g ≥ 3.

Proof. 1. For x → ∞, we perform the coordinate change x 7→ x̃(x) := 1
x . By

property 2 of the Schwarzian derivative, S (x̃) = 0 identically, and

T (x) = T̃ (x̃)
[
dx̃
dx

]2

,

where
[

dx̃
dx

]2
= x−4. If n is even, then x̃ is an admissible coordinate, so 〈T̃ (x̃)〉

is holomorphic in x̃. If n is odd, then we may take ỹ :=
√

x̃ as coordinate.
dỹ
dx = − 1

2 x−1.5, and according to eq. (4.4) and eq. (4.3),

T (x) =
c

32
x−2 +

1
4

Ť (ỹ) x−3, (4.9)
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where 〈Ť (ỹ)〉 is holomorphic in ỹ.

2. 〈T (x)〉 is a meromorphic function of x and y over C, whence rational in either

coordinate. Thus upon multiplication by some suitable polynomial Q if nec-

essary, we are dealing with an element in C[x, y], the ring of polynomials in x

and y. Since y2 = p(x), C[x, y] is a module over C[x] spanned by 1 and y, so

we may assume Q ∈ C[x]. We conclude that the quotient field of C[x, y] is a

vector space over the field of rational functions in x alone, spanned by 1 and y.

In particular, we have a Galois-splitting

〈T (x)〉 = 〈T (x)〉[1] + y 〈T (x)〉[y].

〈T (x)〉 is O(1) in x iff this holds for its Galois-even and its Galois-odd part

individually, as there can’t be cancellations between these. We obtain a Galois

splitting for 〈T̂ (y)〉 by applying a rational transformation to 〈T (x)〉. From (4.4)

and (4.3) follows

p〈T (x)〉[1] =
c

32
〈1〉

[p′(x)]2

p(x)
+

1
4

Θ[1](x) ,

p〈T (x)〉[y] =
1
4

Θ[y](x),

where Θ[1] and Θ[y] are rational functions of x. We have

1
4

Θ[1]

= p〈T (x)〉[1] −
c

32
〈1〉

[p′]2

p
=

1
4

[p′]2〈T̂ (y)〉[1] +
c

12
〈1〉pS (p).

The l.h.s. is O(1) in x for finite x and away from p = 0 (so wherever x is an

admissible coordinate) while the r.h.s. is holomorphic in y(x) for finite x and

away from p′ = 0 (so wherever y is an admissible coordinate). The r.h.s. does

not actually depend on y but is a function of x alone. Since the loci p = 0 and

p′ = 0 do nowhere coincide, we conclude that Θ[1] is an entire function on C.

It remains to check that Θ[1] has a pole of the correct order at x = ∞. We have

[p′]2

p
= n2a0xn−2 + n(n − 2)a1xn−3 + O(xn−4). (4.10)

(a) If n is even, then p〈T (x)〉[1] = O(xn−4) as x → ∞, by part 1. By eqs (4.7)
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and (4.10), Θ[1](x) has degree n − 2 in x. Moreover,

Θ[1](x)

= −
c
8

(
n2a0xn−2 + n(n − 2)a1xn−3

)
〈1〉 + O(xn−4).

(b) If n is odd, then p〈T (x)〉[1] = c
32 a0xn−2〈1〉 + O(xn−3) as x → ∞, by eq.

(4.9). Thus Θ[1] has degree n − 2 in x. Moreover, by eq. (4.7) and eq.

(4.10),

Θ[1](x) = −
c
8

(
n2 − 1

)
a0xn−2〈1〉 + O(xn−3).

Likewise, we have

1
4

yΘ[y](x) = yp〈T (x)〉[y] =
1
4

[p′]2y〈T̂ (y)〉[y];

the l.h.s. is O(1) in x wherever x is an admissible coordinate while the r.h.s.

is holomorphic in y wherever y is an admissible coordinate. Since y is a holo-

morphic function in x and in y away from p = 0 and away from p′ = 0,

respectively, this is also true for

1
4

pΘ[y](x) = p2〈T (x)〉[y] =
1
4

p[p′]2〈T̂ (y)〉[y].

Now the r.h.s. does no more depend on y but is a function of x alone, so the

above argument applies to show that pΘ[y] =: P is an entire function and thus

a polynomial in x. We have p|P:

P
y

= yΘ[y](x) = y[p′]2〈T̂ (y)〉[y]

is holomorphic in y about p = 0. Since P is a polynomial in x, and p has no

multiple zeros, we must actually have y2 = p divides P. This proves that Θ[y]

is a polynomial in x. The statement about the degree follows from part 1.

�

Remark 13. The main purpose of Theorem 1 is to introduce the polynomial Θ. Part

of the results actually follow from classical formulae for the projective connection.
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For instance, for n even and g ≥ 3, we have [8]

p〈T (x)〉 (dx)2 =
c

12
p C(x) + 〈1〉

2g−2∑
i=0

αixi(dx)2 + y〈1〉
g−3∑
j=0

β jx j(dx)2

for constants αi, β j, in the notations of (4.5). Here the projective connection c
12C on

Σ is given by

p C(x) =
3
8

[
[p′]2

p

]
≤n−4
〈1〉(dx)2 ,

and

[
Θ[1](x)

]
≤n−4

= 4〈1〉
2g−2∑
i=0

αixi , Θ[y](x) = 4〈1〉
g−3∑
j=0

β jx j .

Eq. (4.9) (for odd n) follows from the formula for C(x) on p. 20 in [9].



Chapter 5

The Virasoro 2-point function

5.1 Calculation of the 2-point function, for genus g ≥ 1

We first need to introduce some notation. For the polynomial Θ = Θ[1] +yΘ[y] defined

by eqs (4.7) and (4.8) of Theorem 1, we set

Θ[1] = A0xn−2 +

n−2∑
k=1

Akxn−2−k, Ak ∝ 〈1〉 .

Recall that A0 is known constant multiple of 〈1〉. In contrast, for 1 ≤ k ≤ n − 2,

the proportionality factor in Ak ∝ 〈1〉, though constant in position, is a yet unknown

function of the moduli of the surface. Thus 〈1〉 and the Ak define n − 1 parameters of

the theory which we shall focus on in Part II. (The parameters appear in bold print for

better readiblity of the formulae.) For g ≤ 2, Θ[y] is absent so there are no additional

parameters in this case.

It will be convenient to replace Θ[1](x) =: − c
8Π(x) for which we introduce even

polynomials Π[1] and Π[x] such that

Π(x) =: Π[1](x) + xΠ[x](x). (5.1)

Likewise, there are even polynomials p[1] and p[x] such that

p(x) = p[1](x) + xp[x](x). (5.2)

27
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Lemma 14. For any even polynomial q of x, we have

q(x1)+q(x2) + O((x1 − x2)4)

= 2q(
√

x1x2) + (x1 − x2)2 1
4

(
q′(
√

x1x2)
√

x1x2
+ q′′(

√
x1x2)

)
,

and

x1q(x1)+x2q(x2) + O((x1 − x2)4)

= (x1 + x2)
{

q(
√

x1x2) + (x1 − x2)2 1
8

(
3q′(
√

x1x2)
√

x1x2
+ q′′(

√
x1x2)

)}
.

Note that the polynomials q and q′′ in
√

x1x2 are are actually polynomials in

x1x2.

Proof. Direct computation. The calculation can be shortened by using

x1 = (1 + ε) x,

x2 = (1 − ε) x,

where |ε| � 1. �

Abusing notations, for j = 1, 2, we shall write p j = p(x j) and Θ j = Θ(x j, y j)

etc. For k ≥ 0, we denote by [R(x1, x2)]>k the polynomial in x = x1 defined by eq.

(2), with x2 held fixed, and let [R(x1, x2)]>k be the polynomial for the opposite choice

x = x2 (x1 fixed).

Theorem 2. (The Virasoro 2-point function)

For g ≥ 1, let Σg be the hyperelliptic Riemann surface

Σ : y2 = p(x),

where p is a polynomial, deg p = n odd. Let

〈T (x1)T (x2)〉c := 〈1〉−1〈T (x1)T (x2)〉 − 〈1〉−2〈T (x1)〉〈T (x2)〉

be the connected 2-point function of the Virasoro field. We have

1.

〈T (x1)T (x2)〉c p1 p2 = O(xn−3
1 ). (5.3)
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2. For |x1|, |x2| small,

〈T (x1)T (x2)〉c p1 p2 = 〈1〉−1R(x1, x2) + O (1) |x1=x2 ,

where R(x1, x2) is a rational function of x1, x2 and y1, y2, and O(1)|x1=x2 denotes

terms that are regular on the diagonal x1 = x2 and polynomial in x1, x2 and

y1, y2.

3. The rational function is given by

R(x1, x2) =
c
4
〈1〉

p1 p2

(x1 − x2)4

+
c
4

y1y2〈1〉
(

p[1](
√

x1x2)
(x1 − x2)4 +

1
2

(x1 + x2)
p[x](
√

x1x2)
(x1 − x2)4

)
+

c
32
〈1〉

p′1 p′2
(x1 − x2)2

+
c

32
y1y2〈1〉


1√
x1 x2

(p[1])′(
√

x1x2)

(x1 − x2)2 +
3
2

(x1 + x2)
1√
x1 x2

(p[x])′(
√

x1x2)

(x1 − x2)2


+

1
8

p1Θ2 + p2Θ1

(x1 − x2)2

+
1
8

(
y1Θ

[y]
2 + y2Θ

[y]
1

) ( p[1](
√

x1x2)
(x1 − x2)2 +

1
2

(x1 + x2)
p[x](
√

x1x2)
(x1 − x2)2

)
+

c
32

y1y2〈1〉
(
(p[1])′′(

√
x1x2)

(x1 − x2)2 +
1
2

(x1 + x2)
(p[x])′′(

√
x1x2)

(x1 − x2)2

)
−

c
32

y1y2

(
Π[1](

√
x1x2)

(x1 − x2)2 +
1
2

(x1 + x2)
Π[x](

√
x1x2)

(x1 − x2)2

)
.

Here p[1] and p[x] and Π[1] and Π[x] are the even polynomials introduced in

(5.2) and in (5.1), respectively.
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4. For R(x1, x2) thus defined, the connected Virasoro 2-point function reads

〈1〉〈T (x1)T (x2)〉c p1 p2

= R(x1, x2) + P(x1, x2, y1, y2)

−
1
8

a0
(
xn−2

1 Θ2 + xn−2
2 Θ1

)
−

c
64
〈1〉(n2 − 1)a2

0xn−2
1 xn−2

2

−
1
8

y1a1x
n
2−

5
2

1 x
n
2−

1
2

2 Θ
[y]
2 −

1
8

y2a1x
n
2−

1
2

1 x
n
2−

5
2

2 Θ
[y]
1

−
1

16
y1a0x

n
2−

3
2

1 x
n
2−

1
2

2 Θ
[y]
2 −

1
16

y2a0x
n
2−

1
2

1 x
n
2−

3
2

2 Θ
[y]
1

−
3

16
y1a0x

n
2−

5
2

1 x
n
2 + 1

2
2 Θ

[y]
2 −

3
16

y2a0x
n
2 + 1

2
1 x

n
2−

5
2

2 Θ
[y]
1

−
1

16
y1a2x

n
2−

5
2

1 x
n
2−

3
2

2 Θ
[y]
2 −

1
16

y2a2x
n
2−

3
2

1 x
n
2−

5
2

2 Θ
[y]
1 ,

where

P(x1,x2, y1, y2) (5.4)

= P[1](x1, x2) + y1P[y1](x1, x2) + y2P[y2](x1, x2) + y1y2P[y1y2](x1, x2) .

Here P[1], P[y1y2] and for i = 1, 2, P[yi] are polynomials in x1 and x2 with

degi P[1] = n − 3 = degi P[y j] , for j , i ,

degi P[yi] =
n − 1

2
− 3 = degi P[y1y2] .

(degi denotes the degree in xi). Moreover, P[1], P[y1y2] and y1P[y1] + y2P[y2] are

symmetric under flipping 1 ↔ 2. These four polynomials are specific to the

state.

Proof. Direct computation (cf. Appendix). �

In the following, let [T (x1)T (x2)]reg.+〈T (x1)〉c〈T (x2)〉c.1with 〈T (x)〉c = 〈1〉−1〈T (x)〉

be the regular part of the OPE on the hyperelliptic Riemann surface Σ,

T (x1)T (x2) p1 p2 7→
c

32
f (x1, x2)2.1 +

1
4

f (x1, x2) (ϑ1 + ϑ2)

+ [T (x1)T (x2)]reg. p1 p2 + 〈T (x1)〉c〈T (x2)〉c p1 p2.1 . (5.5)
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Here f (x1, x2) :=
(

y1−y2
x1−x2

)2
, and

ϑ(x) := T (x) p −
c

32
[p′]2

p
.1 (5.6)

satisfies 〈ϑ(x)〉 = 1
4 Θ(x, y). ϑ(x) is holomorphic about p = 0 since by eqs (4.3) and

(4.4),

T̂ (y) =
4

[p′]2

(
ϑ −

c
12

p S (p).1
)
,

where S (p) is regular at p = 0.

5.2 Application to the (2, 5) minimal model, in the case
n = 5

In Section 2 we introduced the so-called normal ordered product

N0(ϕ1, ϕ2)(x2) = lim
x1→ x2

[
ϕ1(x1)ϕ2(x2)

]
regular

of two fields ϕ1, ϕ2, where
[
ϕ1(x1), ϕ2(x2)

]
regular is the regular part of the OPE of

ϕ1, ϕ2. For ϕ1 = ϕ2 = T and the OPE (2.3), 〈N0(T,T )(x)〉 can be determined from

Theorem 2.4. To illustrate our formalism, we provide a short proof of the following

well-known result ([1], Sect. 3):

Lemma 15. The condition N0(T,T ) ∝ ∂2T implies c = − 22
5 and

N0(T,T )(x) =
3
10

∂2T (x). (5.7)

Proof. The statement is local, so we may assume w.l.o.g. g = 1. In this case,

Θ[1](x) = −4cx〈1〉 + A1, Θ[y] = 0,

by Theorem 1.(2b). Using Corollary 11 and the transformation rule (4.4) for x =

℘(z|τ), we find

〈T (x)〉 =
c

32
[p′]2

p2 〈1〉 − c〈1〉
x
p

+
〈T〉
p
,



32

where by (4.7), 〈T〉 =
A1
4 . Direct computation shows that

〈N0(T,T )(x)〉 = α ∂2〈T (x)〉

iff α = 3
10 and c = −22

5 . Since by assumption the two underlying fields are propor-

tional, the claim follows. �

The aim of this section is to determine at least some of the constants in the Vi-

rasoro 2-point function in the (2, 5) minimal model for g = 2. We will restrict our

considerations to the case when n is odd. (Better knowledge about Θ[1] when n is

even doesn’t actually provide more information, it just leads to longer equations.) In

the first case to consider, namely n = 5, all Galois-odd terms are absent. Restricting

to the Galois-even terms, condition (5.7) reads as follows:

Lemma 16. In the (2, 5) minimal model for g ≥ 1, we have

7c
640
〈1〉

[p′′]2

p2 −
7c

960
〈1〉

p′p′′′

p2 +
c

1536
p(4)

p

+
1

20
p′′

p2 Θ[1] +
3
80

p′

p2 (Θ[1])′ −
3

160
(Θ[1])′′

p

−
1
16
〈1〉−1

(
(Θ[1])2

p2 +
(Θ[y])2

p

)
+

1
4

a0
xn−2

p2 Θ[1] −
1
8

A0a0
x2n−4

p2

−
c

8 · 32
1
xp

(
(Π[1])′ + x(Π[x])′

)
−

c
256

1
xp
〈1〉

(
−p(3) −

1
2

(
(p[1])′′

x
− (p[x])′′

)
+

1
2x

(
(p[1])′

x
+ 5(p[x])′

))
=

P[1](x, x)
p2 +

P[y1y2](x, x)
p

.

Note that the equation makes good sense since the l.h.s. is regular at x = 0. For

instance, (Π[1])′ is an odd polynomial of x, so its quotient by x is regular.

Proof. Direct computation. �

Example 4. When n = 5,

deg P[1](x, x) = 4, P[y1y2](x, x) = 0 .
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Thus we have 5 complex degrees of freedom. One of them is the constant1 〈1〉, and

according e. (4.6), at most 3 of them are given by 〈T (x)〉 (or by A1,A2,A3). Set

P[1](x1, x2) = B2,2 x2
1x2

2

+ B2,1(x2
1x2 + x1x2

2)

+ B2(x2
1 + x2

2) + B1,1 x1x2

+ B1(x1 + x2)

+ B0 ,

B0, B1, Bi, j ∝ 〈1〉 are constant in position, for i, j = 1, 2. The additional constraint

(5.7) provides knowledge of

P[1](x, x) =B2,2 x4 + 2B2,1 x3 + (2B2 + B1,1) x2 + 2B1 x + B0

only, so we are left with one unknown. As we shall argue in Section 6.2, it should be

possible to fix the remaining constant using (5.7), once the Virasoro 3-point function

is taken into account.

1Recall, however, that 〈1〉 and A1,A2,A3 are functions of the moduli on the surface Σ2.





Chapter 6

The Virasoro N-point function

N point functions for N > 3 can be established from the correlation functions for

N = 2, 3, using symmetry arguments. Thus finding a routine to compute the N-point

functions for all N ≥ 2 goes with encoding their constituents graphically. For the

Virasoro field the graphical description has been formulated by [19] for the genera

g = 0 and g = 1, for which Zhu’s recursion formulae were available [41]. Essentially

the same inductive arguments prove our recursion formula for the Virasoro N point

function for hyperelliptic Riemann surfaces of arbitrary genus.

6.1 Graph representation of the Virasoro N-point function
for g ≥ 1

For g ≥ 1, let Σg be the genus g hyperelliptic Riemann surface

Σ : y2 = p(x),

where p is a polynomial, deg p = n, with n = 2g + 1, or n = 2g + 2. Let F be the

bundle of holomorphic fields introduced in Section 2. For N ∈ N and j = 1, . . . ,N,

abusing notations, we shall write p j = p(x j) and ϑ j = ϑ(x j), where ϑ is the field

defined by eq. (5.6).

Theorem 3. Let S (x1, . . . , xN), N ∈ N, be the set of oriented graphs with vertices

x1, . . . , xN , (not necessarily connected), subject to the following condition:

∀ i = 1, . . . ,N , xi has at most one ingoing and at most one outgoing line,

and if (xi, x j) is an oriented line connecting xi and x j then i , j.

35
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Given a state 〈 〉 on Σ, there is a multilinear map

〈 〉r : S∗(F ) → C ,

normalised such that 〈1〉r = 〈1〉, with the following properties:

1. For all k ∈ N, k ≥ 2, and any ϕ2, . . . , ϕk ∈ {1,T }, we have

〈1 ϕ2(z2) . . . ϕk(zk)〉r = 〈ϕ2(z2) . . . ϕk(zk)〉r .

2. For all k ∈ N, 〈ϑ1 . . . ϑk〉r is a polynomial in x1, . . . , xk and y1, . . . , yk.

3. We have

〈T (x1) . . . T (xN)〉 p1 . . . pN =
∑

Γ∈S (x1,...,xN )

F(Γ) , (6.1)

where for Γ ∈ S (x1, . . . , xN),

F(Γ) :=
( c
2

)]loops ∏
(xi,x j)∈Γ

(
1
4

f (xi, x j)
) 〈 ⊗

k∈AN∩EN
c

ϑ(xk)
⊗

`∈(AN∪EN )c

T (x`)p`

〉
r

.

Here for any oriented edge (xi, x j) ∈ Γ,

f (xi, x j) :=
(

yi + y j

xi − x j

)2

.

AN , EN ⊂ {1, . . . ,N} are the subsets

AN :={i |∃ j such that (xi, x j) ∈ Γ} ,

EN :={ j |∃ i such that (xi, x j) ∈ Γ} .

∪ and ∩ are the set theoretic union and intersection, respectively, and (. . .)c

denotes the complement in {1, . . . ,N}.

Note that 〈 〉r is not a state (it is not compatible with the OPE).

Proof. We use induction on N. By multilinearity of 〈 〉r and eq. (5.6), F(Γ) for

Γ ∈ S (x1, . . . , xN) is determined by 〈T (x1) . . . T (xk)〉r, for k ≤ N.

Suppose 〈T (x1) . . . T (xk)〉r, for k ≤ N has the required properties for k < N. We

define

〈T (x1) . . . T (xN)〉r
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by (6.1) and show first that 〈T (x1) . . . T (xN)〉r is regular as two positions coincide.

In other words, let Γ0(x1, . . . , xN) ∈ S (x1, . . . , xN) be the graph whose vertices are

all isolated. Then
∑

Γ,Γ0 F(Γ) reproduces the correct singular part of the Virasoro

N-point function as prescribed by the OPE (5.5) on Σ.

For N = 1, Γ0(x) is the only graph, and

〈T (x)〉 p = F(Γ0(x)) = 〈T (x)〉r p . (6.2)

For N = 2, the admissible graphs form a closed loop, a single line segment (with

two possible orientations), and two isolated points. Thus by eq. (6.1),

〈T (x1)T (x2)〉r p1 p2 = 〈T (x1)T (x2)〉 p1 p2 −
c

32
f 2
12〈1〉r −

1
4

f12〈ϑ1 + ϑ2〉r ,

where f12 := f (x1, x2). According to the OPE (5.5), 〈T (x1)T (x2)〉r p1 p2 is regular on

the diagonal x1 = x2.

In order to prove regularity of 〈T (x1) . . . T (xN)〉r p1 . . . pN on all partial diagonals

for N > 2, it suffices to show that the coefficients of the singularities are correct.

Suppose the graph representation for the k-point function of the Virasoro field is

correct for 2 ≤ k ≤ N − 1. For 1 ≤ i ≤ N, set S [i] := S (xi, . . . , xN) and Γ
[i]
0 :=

Γ0(xi, . . . , xN). For 1 ≤ i, j ≤ N, i , j, define

S (i j) :={Γ ∈ S [1]| (xi, x j), (x j, xi) ∈ Γ} ,

S (i, j) :={Γ ∈ S [1]| (xi, x j) ∈ Γ, (x j, xi) < Γ} ,

S (i)( j) :={Γ ∈ S [1]| (xi, x j), (x j, xi) < Γ} .

S [1] decomposes as

S [1] = S (12) ∪ S (1,2) ∪ S (2,1) ∪ S (1),(2).

Since S (12) � S [3], the equality∑
Γ∈S (12)

F(Γ) =
c

32
f 2
12 〈T (x3) . . . T (xN)〉 p3 . . . pN

holds by the induction hypothesis. By the symmetrization argument following eq.
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(A.2), it remains to show that∑
Γ∈S [1]\S (12)

F(Γ) =
f12

2
〈ϑ2T (x3) . . . T (xN)〉 p3 . . . pN + O((x1 − x2)−1) ,

which under the induction hypothesis on S [2] and S [3], we reformulate as∑
Γ∈S [2]

F(ϕ−1(Γ)) + F(ϕ̄−1(Γ))

=
f12

2

 ∑
Γ∈S [2]

F(Γ) −
c

32
[p′2]2

p2

∑
Γ′∈S [3]

F(Γ′)

 + O((x1 − x2)−1) .

Here ϕ, ϕ̄ are the invertible maps

ϕ : S (1,2) → S [2],

ϕ̄ : S (2,1) → S [2],

given by contracting the link (x1, x2) resp. (x2, x1) into the point x2, and leaving the

graph unchanged otherwise. Let S (2) ⊂ S [2] be the subset of graphs containing x2 as

an isolated point, and let χ : S (2) → S [3] be the isomorphism given by omitting the

vertex x2 from the graph. Now for Γ ∈ S (2), the graph representation yields

F(ϕ−1(Γ)) + F(ϕ̄−1(Γ))

=
f12

2

F(Γ) −
c

32
[p′2]2

p2
F(χ(Γ))

 + O((x1 − x2)−1) ,

while for Γ ∈ S [2] \ S (2),

F(ϕ−1(Γ)) + F(ϕ̄−1(Γ)) =
f12

2
F(Γ) + O((x1 − x2)−1) .

It remains to show part 2. It is sufficient to show that 〈ϑ1 . . . ϑk〉r for 1 ≤ k ≤ N is

regular at p1 = 0. We use induction. From eqs (5.6) and (6.2) follows 〈ϑ〉r = 〈ϑ〉 =
1
4Θ, which is a polynomial in x and y. Now suppose 〈ϑ1 . . . ϑk〉r is regular at p1 = 0,
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for k ≤ N −1. For I ∈ P({2, . . . ,N}), the powerset of {2, . . . ,N}, we have by eq. (5.6),

〈ϑ1 . . . ϑN〉r = 〈T (x1) . . . T (xN)〉r p1 . . . pN −
c

32
[p′1]2

p1

∑
I∈P({2,...,N})

∏
i∈I

 c
32

[p′i]
2

pi

 〈⊗
j∈Ic

ϑ j〉r

+ terms regular at p1 = 0

= 〈T (x1) . . . T (xN)〉r p1 . . . pN −
c

32
[p′1]2

p1
〈T (x2) . . . T (xN)〉r p2 . . . pN

+ terms regular at p1 = 0 .

Here we have, using the graph representation,

〈T (x1) . . . T (xN)〉r p1 . . . pN = 〈T (x1) . . . T (xN)〉p1 . . . pN −
∑

Γ∈S [1]\Γ
[1]
0

F(Γ)

=
c

32
[p′1]2

p1

〈T (x2) . . . T (xN)〉p2 . . . pN −
∑

Γ∈S [2]\Γ
[2]
0

F(Γ)


+ terms regular at p1 = 0

=
c

32
[p′1]2

p1
〈T (x2) . . . T (xN)〉r p2 . . . pN

+ terms regular at p1 = 0 .

We explain the second identity. Consider the augmentation map a : S [2] \ Γ
[2]
0 →

S [1] \ Γ
[1]
0 defined by adjoining the isolated vertex x1 to the graph. We have

F(a(Γ)) =
c

32
[p′1]2

p1
F(Γ) + {terms regular at p1 = 0} .

Indeed, all terms in F(a(Γ)) that involve ϑ1 are k-point functions with k < N, since

end points of edges are not labelled, and so are regular at p1 = 0 by assumption. We

conclude that 〈ϑ1 . . . ϑN〉r is regular at p1 = 0.

�

Since the proof is by recursion, it should generalise easily to more general Rie-

mann surfaces.

We illustrate the theorem for the case N = 3. Recall that the connected 1-point,
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2-point and 3-point functions are given by

〈ϕ(x)〉c =〈1〉−1〈ϕ(x)〉 ,

〈ϕ1(x1)ϕ2(x2)〉c =〈1〉−1〈ϕ1(x1)ϕ2(x2)〉 − 〈1〉−2〈ϕ1(x1)〉 〈ϕ2(x2)〉 ,

and

〈ϕ1(x1)ϕ2(x2)ϕ3(x3)〉c = 〈1〉−1〈ϕ1(x1)ϕ2(x2)ϕ3(x3)〉

− 〈1〉−2 {
〈ϕ1(x1)ϕ2(x2)〉 〈ϕ3(x3)〉 + cyclic

}
− 〈1〉−3〈ϕ1(x1)〉 〈ϕ2(x2)〉 〈ϕ3(x3)〉 .

Example 5. When deg p = n is odd,

〈T (x1)T (x2)T (x3)〉c p1 p2 p3 = O(xn−3
1 ) .

In the region where x1, x2, x3 are finite, the connected Virasoro 3-point function is

given by

〈T (x1)T (x1)T (x3)〉c p1 p2 p3 = R(0)(x1, x2, x3) + O(1)|x1,x2,x3 ,
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where R(0) is the rational function

R(0)(x1, x2, x3) =
c

64

(
y1 + y2

x1 − x2

)2 (
y1 + y3

x1 − x3

)2 (
y2 + y3

x2 − x3

)2

+
1

64

(
y1 + y2

x1 − x2

)2 (
y1 + y3

x1 − x3

)2

〈1〉−1(Θ2 + Θ3)

+
1

64

(
y1 + y2

x1 − x2

)2 (
y2 + y3

x2 − x3

)2

〈1〉−1(Θ1 + Θ3)

+
1

64

(
y1 + y3

x1 − x3

)2 (
y2 + y3

x2 − x3

)2

〈1〉−1(Θ1 + Θ2)

+
1
4

(
y1 + y2

x1 − x2

)2 (
〈1〉−1〈[T (x1)T (x3)]reg.〉p1 p3

+ 〈1〉−1〈[T (x2)T (x3)]reg.〉p2 p3
)

+
1
4

(
y1 + y3

x1 − x3

)2 (
〈1〉−1〈[T (x1)T (x2)]reg.〉p1 p2

+ 〈1〉−1〈[T (x2)T (x3)]reg.〉 p2 p3
)

+
1
4

(
y2 + y3

x2 − x3

)2 (
〈1〉−1〈[T (x1)T (x2)]reg.〉 p1 p2

+ 〈1〉−1〈[T (x1)T (x3)]reg.〉 p1 p3
)
.

Here for i, j ∈ {1, 2, 3},
[
T (xi)T (x j)

]
reg.

is defined by (5.5). By part 2 in the Proof of

Theorem 2, 〈
[
T (xi)T (x j)

]
reg.
〉 pi p j is a polynomial in xi, x j and yi, y j.

Moreover, the O(1)|x1,x2,x3 term is a polynomial in x1, x2, x3 and y1, y2, y3. Indeed,

〈T (x1)T (x2)T (x3)〉c is regular at p1 = 0 because

〈T (x1)T (x2)T (x3)〉c = 〈1〉−1〈T (x1)T (x2)T (x3)〉 − 〈1〉−2〈T (x1)〉 〈T (x2)T (x3)〉

− 〈1〉−1 {〈T (x1)T (x2)〉c 〈T (x3)〉 + 〈T (x3)T (x1)〉c 〈T (x2)〉} .

6.2 Application to the (2, 5) minimal model, for n = 5

We consider the (2, 5) minimal model on a genus g = 2 hyperelliptic Riemann surface

Σ : y2 = p(x).

There are exactly 2g = 4 parameters, given by 〈1〉 and 〈T (x)〉 (or A1,A2,A3). As we

shall argue now, we expect that all other constants in the Virasoro 2-point and 3-point
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function are determined.

W.l.o.g. n = 5. In this case the 2-point function in the (2, 5) minimal model

has been determined previously, up to one constant, cf. Example 4. In the 3-point

function, there is only one polynomial P[1](x1, x2, x3), of degree n − 3 in each of

x1, x2, x3, free to choose. Set

P[1](x1, x2, x3) =B2,2,2 x2
1x2

2x2
3

+B2,2,1(x2
1x2

2x3 + x2
1x2x2

3 + x1x2
2x2

3)

+B2,1,1(x2
1x2x3 + x1x2

2x3 + x1x2x2
3)

+ B2,2,0(x2
1x2

2 + x2
1x2

3 + x2
2x2

3)

+B2,1,0(x2
1x2 + x2

1x3 + x1x2
2 + x1x2

3 + x2
2x3 + x2x2

3)

+ B1,1,1 x1x2x3

+B2,0,0(x2
1 + x2

2 + x2
3) + B1,1,0(x1x2 + x1x3 + x2x3)

+B1,0,0(x1 + x2 + x3)

+B0,0,0 ,

where Bi, j,k ∝ 〈1〉 for i, j, k ∈ {1, 2} and k ≤ j ≤ i are constant in position. The

constraint eq. (5.7) provides the knowledge of

P[1](x2, x2, x3) =B2,2,2 x4
2x2

3

+B2,2,1(x4
2x3 + 2x3

2x2
3)

+2B2,1,1x3
2x3 + (B2,1,1 + 2B2,2,0)x2

2x2
3 + B2,2,0x4

2

+2B2,1,0(x3
2 + x2x2

3) + (B1,1,1 + 2B2,1,0) x2
2x3

+2B1,1,0x2x3 + (B1,1,0 + 2B2,0,0)x2
2 + B2,0,0x2

3

+B1,0,0(2x2 + x3)

+B0,0,0,

(obtained in the limit as x1 → x2), and thus of all 10 coefficients. So given 〈1〉 and

〈T (x)〉, the Virasoro 3-point function is uniquely determined.

Since 〈[T (x1)T (x2)]reg.〉 p1 p2 obtained from (5.5) is just the O(1)|x1=x2 part in the

connected 2-point function given by eq. (A.5), the remaining unknown constant in

the 2-point function is determined using Example 5.
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Thus in Part I of the thesis we have formulated a set of necessary conditions on

any CFT on a hyperelliptic Riemann surface. We shall not investigate the question

about existence, which requires different methods.





Appendix A

A.1 Proof of Theorem 2 (Section 5.1)

1. We have

〈T (x1)T (x2)〉 p1 p2

=
[
〈T (x1)T (x2)〉 p1 p2

]
n−2 +

[
〈T (x1)T (x2)〉 p1 p2

]
≤n−3 ,

where according to (4.9),

[
〈T (x1)T (x2)〉 p1 p2

]
n−2 =

c
32

a0xn−2〈T (x2)〉 p2

= 〈1〉−1 [
〈T (x1)〉〈T (x2)〉 p1 p2

]
n−2 ,

so

〈T (x1)T (x2)〉 p1 p2 − 〈1〉−1〈T (x1)〉〈T (x2)〉p1 p2

=
[
〈T (x1)T (x2)〉 p1 p2

]
≤n−3 − 〈1〉

−1 [
〈T (x1)〉〈T (x2)〉p1 p2

]
≤n−3 .

This shows (5.3).

2. The proof is constructive. We build up a candidate and correct it subsequently

so as to

• match the singularities prescribed by the OPE,

• behave at infinity according to (5.3),

• be holomorphic in the appropriate coordinates away from the diagonal. Σ

is covered by the coordinate patches {p , 0}, {p′ , 0} and {|x−1| < ε}.

General outline: The 2-point function is meromorphic on Σ whence rational.
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So once the singularities are fixed it is clear that we are left with the addition

of polynomials as the only degree of freedom. The key ingredient is the use of

the rational function

f (x1, x2) :=
(

y1 + y2

x1 − x2

)2

, (A.1)

which has a double pole at x1 = x2 as y1 = y2 , 0, and is regular for (x1, y1)

close to (x2,−y2).

For finite and fixed but generic x2, and for the function f defined by eq. (A.1),

we have

c
32

1
p1 p2

f (x1, x2)2 =
c/2

(x1 − x2)4 +
c

16
[p′2]2

p2
2(x1 − x2)2

+ O((x1 − x2)−1) .

Moreover,

1
4

1
p1 p2

f (x1, x2) =
1

p2(x1 − x2)2 + O((x1 − x2)−1) . (A.2)

Thus

[p′2]2

p2
2(x1 − x2)2

=
1

8p1 p2

 [p′1]2

p1
+

[p′2]2

p2

 f (x1, x2) + O((x1 − x2)−1) .

We conclude that

c/2
(x1 − x2)4 〈1〉 =

c
32

1
p1 p2

〈1〉
{

f (x1, x2)2

−
1
4

f (x1, x2)
 [p′1]2

p1
+

[p′2]2

p2

 } + O(1) , (A.3)

where O(1) includes all terms regular at x1 = x2. Now by eq. (A.2),

〈T (x1)〉 + 〈T (x2)〉
(x1 − x2)2 =

1
4

f (x1, x2)
(
〈T (x1)〉

p2
+
〈T (x2)〉

p1

)
+ O(1) . (A.4)

From eqs (A.3) and (A.4) we obtain

c/2
(x1 − x2)4 〈1〉 +

〈T (x1)〉 + 〈T (x2)〉
(x1 − x2)2

=
1

p1 p2

(
c

32
〈1〉 f (x1, x2)2 +

1
16

f (x1, x2)(Θ1 + Θ2)
)

+ O(1) ,
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by eq. (4.7) Thus in the region where x1 and x2 are finite, we have

〈1〉〈T (x1)T (x2)〉c p1 p2 = R(0)(x1, x2) + O (1) |x1=x2 , (A.5)

where

R(0)(x1, x2) :=
c

32
f (x1, x2)2〈1〉 +

1
16

f (x1, x2)(Θ1 + Θ2) . (A.6)

Note that the O(1)|x1=x2 terms are restricted to polynomials in x1, x2 and y1, y2.

This simplification is due to the use of the connected 2-point function (the

coefficient of any positive power of f (x1, x2) in 〈T (x1)T (x2〉 p1 p2 is regular

at p = 0, so all singularities in at p = 0 drop out when 〈T (x1)T (x2〉c p1 p2 is

considered.)

The degree requirement (5.3) yields the upmost specification of eq. (A.5), be-

cause some terms appearing in

R(0)(x1, x2) =
c

32
〈1〉

(p1 − p2)2

(x1 − x2)4

+
c
8

y1y2〈1〉
p1 + p2

(x1 − x2)4 +
c
4
〈1〉

p1 p2

(x1 − x2)4

+
1
16

p1 + 2y1y2 + p2

(x1 − x2)2

(
Θ

[1]
1 + Θ

[1]
2

)
+

1
16

p1 + 2y1y2 + p2

(x1 − x2)2

(
y1Θ

[y]
1 + y2Θ

[y]
2

)
are absent in eq. (A.5) and so determine some of the polynomials in the con-

nected 2-point function (which in the following we shall refer to as correc-

tion terms). To keep formulae short, we shall go over to the rational function

R(x1, x2) introduced in part 3 of Theorem 2, since it has milder divergencies

for |x| large than R(0)(x1, x2) does. Thus we show now that

R(0)(x1, x2) = R(x1, x2) + polynomials, (A.7)

where the “polynomial” part is a sum of polynomials in x1, x2 and in y1, y2.

Indeed, we have the following identities:

(p1 − p2)2

(x1 − x2)4 =
p′1 p′2

(x1 − x2)2 + polynomial.
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Lemma 14 yields

c
8

y1y2〈1〉
p1 + p2

(x1 − x2)4

=
c
4

y1y2〈1〉
p[1](
√

x1x2)
(x1 − x2)4 +

c
8

y1y2(x1 + x2)〈1〉
p[x](
√

x1x2)
(x1 − x2)4

+
c

32
y1y2〈1〉

1√
x1 x2

(p[1])′(
√

x1x2)

(x1 − x2)2

+
3c
64

y1y2(x1 + x2)〈1〉
1√
x1 x2

(p[x])′(
√

x1x2)

(x1 − x2)2

+
c

32
y1y2〈1〉

(p[1])′′(
√

x1x2)
(x1 − x2)2

+
c

64
y1y2(x1 + x2)〈1〉

(p[x])′′(
√

x1x2)
(x1 − x2)2

+polynomial. (A.8)

Likewise,

1
8

y1y2
Θ

[1]
1 + Θ

[1]
2

(x1 − x2)2

= −
c

32
y1y2

(
Π[1](

√
x1x2)

(x1 − x2)2 +
1
2

(x1 + x2)
Π[x](

√
x1x2)

(x1 − x2)2

)
+ polynomial. (A.9)

Let r, s be polynomials in the only one variable x. Then we have

r1s1 + r2s2

(x1 − x2)2 =
r1s2 + r2s1

(x1 − x2)2 + polynomial . (A.10)

Thus

1
8

p1Θ1 + p2Θ2

(x1 − x2)2 =
1
8

p1Θ2 + p2Θ1

(x1 − x2)2 + polynomial. (A.11)

(A.10) generalises to terms including yi as

y1r1 + y2r2

(x1 − x2)2 =
y1r2 + y2r1

(x1 − x2)2 +
p1 − p2

x1 − x2

r1 − r2

x1 − x2

1
y1 + y2

.



49

Thus

1
16

p1 + 2y1y2 + p2

(x1 − x2)2 (y1Θ
[y]
1 + y2Θ

[y]
2 )

=
1
16

p1 + 2y1y2 + p2

(x1 − x2)2 (y1Θ
[y]
2 + y2Θ

[y]
1 ) + polynomial,

and Lemma 14 yields

1
16

p1 + p2

(x1 − x2)2

(
y1Θ

[y]
2 + y2Θ

[y]
1

)
=

1
8

(
y1Θ

[y]
2 + y2Θ

[y]
1

)
×

×

(
p[1](
√

x1x2)
(x1 − x2)2 +

1
2

(x1 + x2)
p[x](
√

x1x2)
(x1 − x2)2

)
+ polynomial. (A.12)

This proves eq. (A.7). Note that this result implies that in the finite region,

R(x1, x2) has the correct singularities. It remains to correct its behaviour for

large |x|.

3. We first subtract all terms from R which are of non-admissible order in x1.

These depend polynomially on x2 because this is true for
[
(x1 − x2)−`

]
>k

with

` ∈ N, k ∈ Z, (x1 large), and may depend on y2. The result may still be degree

violating in x2. Thus the corrected rational function reads

R − [R]>n−3 −
[
R − [R]>n−3

]>n−3

=R − [R]>n−3 − [R]>n−3 +
[
[R]>n−3

]>n−3 .

Since the subtractions could be done in a different order, the procedure only

works due to

[
[R]>n−3

]>n−3
=

[
[R]>n−3

]
>n−3

. (A.13)

The connected 2-point function is thus determined up to addition of a polyno-

mial P(x1, x2, y1, y2) of the form (5.4) which is specific to the state. The degree

and symmetry requirements for P(x1, x2, y1, y2) are immediate.

For clarity, we first list the terms contained in − [R]>n−3 resp. −y1 [R]> n
2−3:
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From (A.8),

−
3c
64

y1y2

x1〈1〉
1√
x1 x2

(p[x])′(
√

x1x2)

(x1 − x2)2


> n

2−3

, (A.14)

−
c

64
y1y2

[
x1〈1〉

(p[x])′′(
√

x1x2)
(x1 − x2)2

]
> n

2−3
, (A.15)

from (A.9),

c
64

y1y2

[
x1

Π[x](
√

x1x2)
(x1 − x2)2

]
> n

2−3
, (A.16)

from (A.11),

−
1
8

Θ2

[
p1

(x1 − x2)2

]
>n−3

, (A.17)

and from (A.12),

1
8

y1 Θ
[y]
2

[
p[1](
√

x1x2)
(x1 − x2)2

]
> n

2−3
, (A.18)

1
16

y1Θ
[y]
2

[
x1

p[x](
√

x1x2)
(x1 − x2)2

]
> n

2−3
, (A.19)

1
16

y1x2Θ
[y]
2

[
p[x](
√

x1x2)
(x1 − x2)2

]
> n

2−3
. (A.20)

Now we give the full explicit expression for

− [R]>n−3 − [R]>n−3 +
[
[R]>n−3

]>n−3 .

(A.14) and (A.15) yield

c
64

y1y2(n2 − 1)a0x
n
2−

3
2

1 x
n
2−

5
2

2 = −
1
8

y1y2A0x
n
2−

3
2

1 x
n
2−

5
2

2 ,

which cancels against the term we obtain from (A.16). For odd n, A0 = − c
8 (n2−

1)a0〈1〉, so (A.17) yields

−
1
8

a0
(
xn−2

1 Θ2 + xn−2
2 Θ1

)
−

c
64

(n2 − 1)a2
0xn−2

1 xn−2
2 .
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(A.18) yields

1
8

y1a1x
n
2−

5
2

1 x
n
2−

1
2

2 Θ
[y]
2 +

1
8

y2a1x
n
2−

1
2

1 x
n
2−

5
2

2 Θ
[y]
1 .

(A.19) yields:

1
16

y1a0x
n
2−

3
2

1 x
n
2−

1
2

2 Θ
[y]
2 +

1
16

y2a0x
n
2−

1
2

1 x
n
2−

3
2

2 Θ
[y]
1 ,

1
8

y1a0x
n
2−

5
2

1 x
n
2 + 1

2
2 Θ

[y]
2 +

1
8

y2a0x
n
2 + 1

2
1 x

n
2−

5
2

2 Θ
[y]
1 ,

1
16

y1a2x
n
2−

5
2

1 x
n
2−

3
2

2 Θ
[y]
2 +

1
16

y2a2x
n
2−

3
2

1 x
n
2−

5
2

2 Θ
[y]
1 .

(A.20) yields:

1
16

y1a0x
n
2−

5
2

1 x
n
2 + 1

2
2 Θ

[y]
2 +

1
16

y2a0x
n
2 + 1

2
1 x

n
2−

5
2

2 Θ
[y]
1 .

Since all terms are symmetric w.r.t. interchange of x1 and x2, eq. (A.13) has been

verified. This completes the proof.

A.2 Behaviour of the Virasoro 2-point function under de-
generation of the surface in the case g = 1

As mentioned by the author in the viva, the formula for the Virasoro 2-point function

is consistent w.r.t. the degeneration of the Riemann surface Σg.

Suppose X, X′ are two different ramification points of any hyperelliptic Riemamn

surface Σg. A linear fractional transformation on P1
C

sending X′ → X results in

a hyperelliptic Riemann surface Σg−1, since in the limit, X = X′ will no more be a

ramification point. Indeed, while on Σg a path between X and X′ will change the

sheet, in the limit, winding around X′ = X will trace a path on one single sheet.

We checked consistency for Σ1 : y2 = p(x) with deg p = 3. The Virasoro 1- and
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2-point functions on Σ1 are given by

〈T (x)〉 =
c

32
[p′]2

p2 〈1〉 +
−4cx + A1

4p
,

〈T (x1)T (x2)〉 =
c
4
〈1〉

1
(x1 − x2)4

+
c

32
〈1〉

p′1 p′2
(x1 − x2)2 p1 p2

−
c
2
〈1〉

p1x2 + p2x1

(x1 − x2)2 p1 p2

+
1
8

A1
p1 + p2

(x1 − x2)2 p1 p2

+
c
8

y1y2〈1〉
p1 + p2

(x1 − x2)4 p1 p2

−
c
2
〈1〉y1y2

x1 + x2

(x1 − x2)2 p1 p2
+

1
4

A1y1y2
1

(x1 − x2)2 p1 p2

+ 2c〈1〉
x1x2

p1 p2
−

A1

2
(x1 + x2)

p1 p2
+

P[1]

p1 p2

+ 〈1〉−1〈T (x1)〉〈T (x2)〉 ,

respectively, where P[1] ∝ 〈1〉 is specific to the state. Denote by 〈T (x1)T (x2)〉X1,X2,X3

the 2-point function on the torus

Σ1 : y2 = a0(x − X1)(x − X2)(x − X3) ,

(a0 ∈ C). A linear fractional transformation on P1
C

sends X3 → ∞. Since

√
x2 − X3
√

x1 − X3
= 1 −

1
2

x1 − x2

x1 − X3
−

1
8

(x1 − x2)2

(x1 − X3)2 + . . .
X3→∞
−→ 1 ,

we have

lim
X3→∞

〈T (x1)T (x2)〉X1,X2,X3 =
c
4
〈1〉X′1,X′2

1
(x′1 − x′2)4

+
c

32
〈1〉X′1,X′2

1
(x′1 − x′2)2

(
1

(x′1 − X′1)
+

1
(x′1 − X′2)

) (
1

(x′2 − X′1)
+

1
(x′2 − X′2)

)

+
c
8
〈1〉X′1,X′2

1
(x′1 − x′2)4


√

(x′2 − X′1)(x′2 − X′2)√
(x′1 − X′1)(x′1 − X′2)

+

√
(x′1 − X′1)(x′1 − X′2)√
(x′2 − X′1)(x′2 − X′2)


+ 〈1〉X′1,X′2

c2

(32)2

(
1

(x′1 − X′1)
+

1
(x′1 − X′2)

)2 (
1

(x′2 − X′1)
+

1
(x′2 − X′2)

)2

.
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Here 〈1〉X′1,X′2 is the 0-point function on the Riemann sphere

Σ′0 : y′2 = a0(x′ − X′1)(x′ − X′2) ,

in terms of new local coordinates x′, y′. Assuming X′1 = 0 for simplicity, the coordi-

nate transformation is given by

x′(x) = X2
X2 − X3

X2 − X1

x − X1

x − X3
,

(in particular X′2 = X2). To check our result, we perform another linear fractional

transformation on P1
C

,

x′′(x′) =
x′

x′ − X2
,

sending X2 → ∞. The 2-point function on the resulting surface Σ0 : y′′2 = a0x′′,

with 0-point function 〈1〉0 and Virasoro 2-point function 〈T ′′(x′′1 )T ′′(x′′2 )〉0, reads

lim
X2→∞

lim
X3→∞

〈T (x1)T (x2)〉X1,X2,X3 =
c
4
〈1〉0

1
(x′′1 − x′′2 )4 +

c
32
〈1〉0

1
(x′′1 − x′′2 )2x′′1 x′′2

+
c
8
〈1〉0

1
(x′′1 − x′′2 )4


√

x′′1√
x′′2

+

√
x′′2√
x′′1


+

c2

(32)2 〈1〉0
1

x′′1
2

1

x′′2
2 .

The arguments of the proof of Theorem 1 and 2 show that this is the correct formula,

lim
X2→∞

lim
X3→∞

〈T (x1)T (x2)〉X1,X2,X3 = 〈T ′′(x′′1 )T ′′(x′′2 )〉0 .

Thus we have shown that our formulae for the 1- and 2-point function on the torus Σ1

behave correctly under degeneration of Σ1 to the sphere Σ0.
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Chapter 7

Introduction

Let

Σ1 := {z ∈ C| |q| ≤ z ≤ 1}/{z ∼ qz} ,

where q = e2πi τ and τ ∈ H+. Σ1 is a torus. A character on Σ1 is given by

〈1〉Σ1 =
∑
ϕ j

{ϕ j} j basis of F

qh(ϕ j) .

Here F is the fiber of the bundle of holomorphic fields F in a rational CFT on Σ1, as

discussed in Part I of the thesis. By the fact that Part I lists necessary conditions for

a CFT on a hyperelliptic Riemann surface, 〈1〉Σ1 is in particular a 0-point function

〈1〉 in the sense of Part I. On the other hand, 〈1〉Σ1 is known to be a modular function

of τ ([27], [41]). A modular function on a discrete subgroup Γ of Γ1 = S L(2,Z) is

a Γ-invariant meromorphic function f : H+ → C with at most exponential growth

towards the boundary [38]. For N ≥ 1, the principal conguence subgroup is the group

Γ(N) such that the short sequence

1 → Γ(N) ↪→ Γ1
πN
−→ S L(2,Z/NZ) → 1

is exact, where πN is map given by reduction modulo N. A function that is modular on

Γ(N) is said to be of level N. Let ζN = e
2πi
N be the N-th root of unity with cyclotomic

field Q(ζN). Let FN be the field of modular functions f of level N which have a

Fourier expansion

f (τ) =
∑

n≥−n0

anq
n
N , q = e2πi τ , (7.1)

57
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with an ∈ Q(ζN), ∀n. The Ramanujan continued fraction

r(τ) := q1/5 1
1 +

q

1+
q2

1+...

(7.2)

which converges for τ ∈ H+, is an element (and actually a generator) of F5 [2]. r is

algebraic over F1 which is generated over Q by the modular j-function,

j(τ) = 123 g3
2

g3
2 − 27g2

3

.

j is associated to the elliptic curve with the affine equation

Σ1 : y2 = 4x3 − g2x − g3 , with g3
2 − 27g2

3 , 0 .

Here gk for k = 2, 3 are (specific) modular forms of weight 2k,1 so that j is indeed

a function of the respective modulus only (the quotient τ = ω2/ω1 for the lattice

Λ = Z.ω1 + Z.ω2), or rather its orbit under Γ1 (since we are free to change the

basis (ω1, ω2) for Λ). In terms of the modulus, a modular form of weight 2k on Γ is a

holomorphic function g : H+ → Cwith subexponential growth towards the boundary

[38] such that g(τ) (dτ)2k is Γ-invariant [33]. A modular form on Γ1 allows a Fourier

expansion of the form (7.1) with n0 ≥ 0.

Another way to approach modular functions is in terms of the differential equa-

tions they satisfy. The derivative of a modular function is a modular form of weight

two, and higher derivatives give rise to quasi-modular forms, which we shall also deal

with though they are not themselves of primary interest to us.

Geometrically, the conformal structure on the surface

Σ1 : y2 = 4(x − X1)(x − X2)(x − X3) , x ∈ P1
C ,

is determined by the quadrupel (X1, X2, X3,∞) of its ramification points, and we can

change this structure by varying the position of X1, X2, X3 infinitesimally. In this

picture, the boundary of the moduli space is approached by letting two ramification

points in the quadrupel run together [13].

When changing positions we may keep track of the branch points to obtain a

simply connected space [6]. Thus a third way to describe modularity of the characters

is by means of a subgroup of the braid group B3 of 3 strands. The latter is the universal

1As mentioned earlier, a modular form of weight 2k transforms as f (λΛ) = λ−2k f (Λ) for any λ ∈ C∗.
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central extension of the quotient group Γ1 = Γ1/{±I2}, so that we come full circle.

Suppose Σ1 = C/Λ where Λ = (Z.1 + Z.iβ) with β ∈ R. Thus the fundamental

domain is a rectangle in the (x0, x1) plane with length ∆x0 = 1 and width ∆x1 = β.

The dependence of 〈1〉Σ1 on the modulus iβ follows from the identity

〈1〉Σ1 = tr e−Hβ , H =

∫
T 00dx0,

where T 00 is a real component of the Virasoro field.2 As mentioned above, we may

regard 〈1〉Σ1 as the 0-point function 〈1〉 w.r.t. a state 〈 〉 on Σ1. Note that the same

argument applies to N-point functions for N > 0.

Stretching β 7→ (1 + ε)β changes the Euclidean metric Gµν (µ, ν = 0, 1) according

to

(ds)2 7→ (ds)2 + 2ε(dx1)2 + O(ε2) .

Thus dG11 = 2 dβ
β , and

d〈1〉 = −tr(Hdβ e−Hβ) = −
dG11

2

(∫
〈T 00〉dx0

)
β

= −
dG11

2

"
〈T 00〉dx0dx1 . (7.3)

The fact that
∫
〈T 00〉dx0 does not depend on x1 follows from the conservation law

∂µT µν = 0:

d
dx1

∮
〈T 00〉 dx0 =

∮
∂1〈T 00〉 dx0 = −

∮
∂0〈T 10〉 dx0 = 0 ,

using Stokes’ Theorem.

We argue that on S 1 × S 1
β/(2π) (where S 1

β/(2π) is the circle of perimeter β), states

(in the sense of Part I of this thesis) are thermal states on the VOA.

When g > 1, equation (7.3) generalises to

d〈1〉 = −
1
2

"
dGµν 〈T µν〉

√
G dx0 ∧ dx1 . (7.4)

2Any dynamical quantum field theory has an energy-momentum tensor Tµν s.t. Tµνdxµdxν defines a
quadratic differential, by which we mean in particular that it transforms homogeneously under coordi-
nate changes. For coordinates z = x0 + ix1 and z̄ = x0 − ix1, we have [1]

Tzz =
1
4

(T00 − 2iT10 − T11) .

For the relation with the Virasoro field T (z) discussed in Part I, cf. Section 9.1 below.
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Here G := | det Gµν|, and dvol2 =
√

G dx0∧dx1 is the volume form which is invariant

under base change.3 The normalisation is in agreement with eq. (7.3) (see also [3],

eq. (5.140) on p. 139).

Methods that make use of the flat metric do not carry over to surfaces of higher

genus. We may choose a specific metric of prescribed constant curvature to obtain

mathematically correct but cumbersome formulae. Alternatively, we consider quo-

tients of N-point functions over 〈1〉 only (as done in [7]) so that the dependence on

the specific metric drops out. Yet we suggest to use a singular metric that is adapted

to the specific problem.

3The change to complex coordinates is a more intricate, however: We have dx0 ∧ dx1 = iGzz̄ dz∧ dz̄
with Gzz̄ = 1

2 , as can be seen by setting z = x0 + ix1.



Chapter 8

Differential equations for
characters in (2, ν)-minimal
models

8.1 Review of the differential equation for the characters of
the (2, 5) minimal model

The character 〈1〉 of any CFT on the torus Σ1 solves the ODE [7]

d
dτ
〈1〉 =

1
2πi

∮
〈T (z)〉 dz =

1
2πi
〈T〉 . (8.1)

Here the contour integral is along the real period, and
∮

dz = 1. 〈T〉, while constant

in position, is a modular form of weight two in the modulus. The Virasoro field

generates the variation of the conformal structure [7]. In the (2, 5) minimal model,

we find by eqs (3.3) and (3.4) in Part I,

2πi
d
dτ
〈T〉 =

∮
〈T (w)T (z)〉 dz = −4〈T〉G2 +

22
5

G4〈1〉 . (8.2)

Here G2 is the quasimodular Eisenstein series of weight 2, which enters the equation

by means of the identity ∫ 1

0
℘(z − w|τ) dz = −2G2(τ).
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In terms of the Serre derivative

D2` :=
1

2πi
d
dτ
−
`

6
E2 , (8.3)

the first order ODEs (8.1) and (8.2) combine to give the second order ODE ([26], and

recently [21])

D2 ◦D0〈1〉 =
11

3600
E4〈1〉 .

The two solutions are the well-known Rogers-Ramanujan partition functions [3]

〈1〉1 = q
11
60

∑
n≥0

qn2+n

(q)n
= q

11
60

(
1 + q2 + q3 + q4 + q5 + 2q6 + . . .

)
,

〈1〉2 = q−
1
60

∑
n≥0

qn2

(q)n
= q−

1
60

(
1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + . . .

)
.

(q = e2πi τ) which are named after the famous Rogers-Ramanujan identities

q−
11
60 〈1〉1 =

∏
n=±2 mod 5

(1 − qn)−1 , q
1

60 〈1〉2 =
∏

n=±1 mod 5

(1 − qn)−1 .

Mnemotechnically, the distribution of indices seems somewhat unfortunate. In gen-

eral, however, the characters of the (2, ν) minimal model, of which there are

M =
ν − 1

2
(8.4)

(ν odd) many, are ordered by their conformal weight, which is the lowest for the

respective vacuum character 〈1〉1, having weight zero.

The Rogers-Ramanujan identity for q−
11
60 〈1〉1 provides the generating function for

the partition which to a given holomorphic dimension h ≥ 0 returns the number of

linearly independent holomorphic fields present in the (2, 5) minimal model. Recall

that this number is subject to the constraint ∂2T ∝ N0(T,T ), eq. (3.1) in Part I.

h 0 1 2 3 4 5 6
basis of F(h) 1 − T ∂T ∂2T ∂3T ∂4T

N0(T, ∂2T )
dim F(h) 1 0 1 1 1 1 2

Holomorphic fields of dimension h in the (2, 5) minimal model

There is a similar combinatorical interpretation for the second Rogers-Ramanujan
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identity. It involves non-holomorphic fields, however, which we disregard in this

thesis.

8.2 Review the algebraic equation for the characters of the
(2, 5) minimal model

Besides the analytic approach, there is an algebraic approach to the characters. This

is due to the fact that 〈1〉1, 〈1〉2, rather than being modular on the full modular group,

are modular on a subgroup of Γ1: For the generators S ,T of Γ1 we have [2]

T 〈1〉1 = ζ60
11〈1〉1 , T 〈1〉2 = ζ60

−1〈1〉2 ,

while under the operation of S , 〈1〉1, 〈1〉2 transform into linear combinations of one

another [2],

S
(
〈1〉1
〈1〉2

)
=

2
√

5

 sin π
5 − sin 2π

5

sin 2π
5 sin π

5

 (〈1〉1
〈1〉2

)
.

However, 〈1〉1, 〈1〉2 are modular under a subgroup of Γ1 of finite index. Its fun-

damental domain is therefore a finite union of copies of the fundamental domain

F of Γ1 in C. More specifically, if the subgroup is Γ with index [Γ1 : Γ], and if

γ1, . . . , γ[Γ1:Γ] ∈ Γ1 are the coset representatives so that Γ1 = Γγ1 ∪ . . .∪Γγ[Γ1:Γ], then

we have

FΓ = γ1F ∪ . . . ∪ γ[Γ1:Γ]F . (8.5)

[15]. Thus 〈1〉1 and 〈1〉2 define meromorphic functions on a finite covering of the

moduli spaceM1 = Γ1 \ H
+ and are algebraic. We can write [2]

〈1〉1 =
θ5,2

η
, 〈1〉2 =

θ5,1

η
,

where the functions η, θ5,1, θ5,2 on the r.h.s. are specific theta functions (e.g. [3])

θ(τ) =
∑
n∈Z

f (n) , f (n) ∼ qn2
, q = e2πi τ .

The characters’ common denominator is the Dedekind η function. Using the Poisson

transformation formula, one finds that η, θ5,1, θ5,2 are all modular forms of weight 1
2
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([38], Propos. 9, p. 25). For the quotient 〈1〉1/〈1〉2 and τ ∈ H+, we find [2],

〈1〉1
〈1〉2

=
θ5,2

θ5,1
= q

1
5

∞∏
n=1

(1 − qn)(
n
5 ) = r(τ) ,

where r(τ) is the Ramanujan continued fraction introduced in eq. (7.2). (Here (n/5) =

1,−1, 0 for n = ±1,±2, 0 (mod 5), respectively, is the Legendre symbol.)

r(τ) is modular on Γ(5) with index [Γ1 : Γ(5)] = 120 [16]. The quotient Γ(5) \H+

can be compactified and made into a Riemann surface, which is referred to as the

modular curve

Σ(5) = Γ(5) \ H∗ .

Here H∗ := H+ ∪ Q ∪ {∞} is the extended complex upper half plane. Σ(5) has genus

zero and the symmetry of an icosahedron. The rotation group of the sphere leaving

an inscribed icosahedron invariant is A5, the alternating group of order 60. By means

of a stereographic projection, the notion of edge center, face center and vertex are

induced on the extended complex plane [5]. They are acted upon by the icosahedral

group G60 ⊂ PS L(2,C). The face centers and finite vertices define the simple roots

of two monic polynomials F(z) and V(z) of degree 20 and 11, respectively, which

transform in such a way under G60 that

J(z) :=
F3(z)
V5(z)

is invariant. It turns out that J(r(τ)) for τ ∈ H+ is Γ(1)-invariant, and in fact that

J(r(τ)) = j(τ). Thus r(τ) satisfies

F3(z) − j(τ)V5(z) = 0

(for the same value of τ), which is equivalent to r5(τ) solving the icosahedral equation

(X4 − 228X3 + 494X2 + 228X + 1)3 + j(τ)X(X2 + 11X − 1)5 = 0 .

This is actually the minimal polynomial of r5 over Q( j), so that Q(r) defines a func-

tion field extension of degree 60 over Q( j).

This construction which goes back to F. Klein, doesn’t make use of a metric. In

order to determine the centroid of a face (or of the image of its projection onto the

sphere) only the conformal structure on S 2 is required. Indeed, the centroid of a

regular polygone is its center of rotations, thus a fixed point under an operation of
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Aut(S 2) = S L(2,C).

8.3 Higher order modular ODEs

Sorting out the algebraic equations to describe the characters of the (2, ν) minimal

model becomes tedious for ν > 5. In contrast, the Serre derivative is a managable

tool for encoding them in a compact way [26]. Since the characters are algebraic, the

corresponding differential equations can not be solved numerically only, but actually

analytically. We are interested in the fact that the coefficient of the respective highest

order derivative can be normalised to one and all other coefficients are holomorphic

in the modulus.

To the (2, ν) minimal model, where ν ≥ 3 is odd, we associate [3]

• the number M = ν−1
2 introduced in eq. (8.4), which counts the characters,

• the sequence

κs =
(ν − 2s)2

8ν
−

1
24

, s = 1, . . . ,M , (8.6)

which parametrises the characters of the (2, ν) minimal model,

• the rank r = ν−3
2 .

The character corresponding to κs is

〈1〉s = fA,B,s := qκs
∑

n∈(N0)r

qntAn+Btn

(q)n
,

where

A = C(Tr)−1 ∈ Qr×r, B ∈ Qr ,

C being a Cartan matrix. The tadpole diagram of Tr is obtained from the diagram of

A2r by folding according to its Z2 symmetry.

It turns out that 〈1〉s satisfies an Mth order ODE [26]. Given M differentiable

functions f1, . . . , fM there always exists an ODE having these as solutions. Consider
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the Wronskian determinant

det


f D1 f . . . DM f

f1 D1 f1 . . . DM f1
. . . . . . . . . . . .

fM D1 fM . . . DM fM

 =:
M∑

i=0

wi D
i f .

Here for m ≥ 1,

D
m := D2(m−1) ◦ · · · ◦D2 ◦D0

is the order m differential operator which maps a modular function into a modular

form of weight 2m. (Dk is the first order Serre differential operator introduced in eq.

(8.3).) For m = 0 we set D0 = 1.

Whenever f equals one of the fi, 1 ≤ i ≤ M, the determinant is zero, so we obtain

an ODE in f whose coefficients are Wronskian minors containing f1, . . . , fM and their

derivatives only. These are modular when the f1, . . . , fM and their derivatives are or

when under modular transformation, they transform into linear combinations of one

another (as the characters do).

Lemma 17. Let 3 ≤ ν ≤ 13, ν odd. The characters of the (2, ν) minimal model satisfy

D(2,ν)〈1〉 = 0 , (8.7)

where D(2,ν) is the differential operator

D(2,ν) := DM+

M−2∑
m=0

∑
Ω2(M−m)

Ω2(M−m)D
m (8.8)

Ω2(M−m) := αmE2(M−m) , 2 ≤ M − m ≤ 5 ,

Ω12 := α0E12 + α
(cusp)
0 ∆ .

Here ∆ = η24 is the modular discriminant function, E2k is the holomorphic Eisenstein

series of weight 2k, and the nonzero numbers αm and α(cusp)
0 are given by the table

below:
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(2, ν) (2, 3) (2, 5) (2, 7) (2, 9) (2, 11) (2, 13)
M 1 2 3 4 5 6

κM 0 − 1
60 − 1

42 − 1
36 − 1

33 − 5
156

αM 1 1 1 1 1 1

αM−2 − 11
602 − 5·7

422 −2·3·13
362 − 11·53

22·332 − 7·13·67
1562

αM−3
5·17
423

23·53
363

3·5·11·59
23·333

23·13·17·193
1563

αM−4 −3·11·23
364 − 11·6151

24·334 − 5·11·13·89·127
1564

αM−5
24·17·29

335
23·3·5·13·31·2437

1565

αM−6 − 54·72·23·31·67
1566

α
(cusp)
M−6

52·7·11·232·167
25·32·134·691

The nonzero coefficients in the order M differential operator in the (2, ν) minimal
model. κM is displayed to explain the standard denominators of the αm (and mark

deviations from them).

Remark 18. The prime 691 displayed in the denominator of α(cusp)
M−6 suggests that

Bernoulli numbers are involved in the computations. This is an artefact of the choice

of basis, however. Using the identity [38]

E12 =
1

691
(441E3

4 + 250E2
6) ,

we can write

α0E12 + α
(cusp)
0 ∆ = −

52 · 7 · 23
27 · 35 · 136

(
53 · 1069

25 E3
4 +

6047
3

E2
6

)
.

Only the specific values of the coefficients in eq. (8.7) seem to be new. Rather

than setting up a closed formula for αm, we shall outline the algorithm to determine

these numbers, and leave the actual computation as an easy numerical exercise.

Proof. (Sketch) We first show that the highest order coefficient αM of the ODE can
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be normalised to one. For every κs in the list (8.6) and for 0 ≤ m ≤ M − 1, we have

D
m〈1〉s ∝ qκs(1 + O(q)) . (8.9)

Since the κs are all different, we know that

wM ∼
∏

s

qκs , q close to zero ,

where wM is the coefficient of DM in the Wronskian. By construction, wM has no

pole at finite τ. The number of zeros can be calculated using Cauchy’s Theorem [38]:

Since Dm〈1〉 has weight 2m, we find

weight wM = 2
M−1∑
`=0

` = M(M − 1) .

The order of vanishing ordP(wM) of wM at a point P ∈ Γ \ H+ depends only on

the orbit ΓP [38]. Denote by ord∞(wM) the order of vanishing of wM at ∞ (i.e. the

smallest integer n ≥ 0 such that an , 0 in the Fourier expansion for wM). By eq.

(8.5) for the fundamental domain of the finite index subgroup Γ of Γ1, all orders of

vanishing for Γ differ from those for Γ1 by the same factor. Thus ([38], Propos. 2 on

p. 9) generalises to subgroups Γ ⊂ Γ1 and to

ord∞(wM) +
∑

P∈Γ\H+

1
nP

ordP(wM) =
M(M − 1)

12
, (8.10)

where nP is the order of the stabiliser. Since

ord∞(wM) =

M∑
s=1

κs =
M(M − 1)

12
,

we have ordP(wM) = 0 for P ∈ Γ \ H+. Thus we can divide by wM to yield∑
α̃iD

i〈1〉 j = 0

for j = 1, . . . ,M and the modular forms α̃i =
wi
wM

.

By (8.9), D(2,ν)〈1〉s is a power series of order ≥ κs in q. The coefficient of qκs is a
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monic degree M polynomial in κs, and we have

[D(2,ν)]0qκ = qκ
M∏

s=1

(κ − κs) , (8.11)

since by assumption 〈1〉κs ∈ ker D(2,ν) for s = 1, . . .M. (Here [D(2,ν)]0 denotes the

cut-off of the differential operator D(2,ν) at power zero in q.) For 2 ≤ k ≤ 5, the

space of modular forms of weight 2k is spanned by the Eisenstein series E2k, while

for k = 6, the space is two dimensional and spanned by E12 and ∆. However, only

the Eisenstein series have a constant term, so that actually all coefficients αm are

determined by eq. (8.11). Note that vanishing of αM−1 (the coefficient of DM−1 in

D(2,ν)) implies the equality

−

M∑
s=1

κs =

M∑
`=1

1 − `
6

. (8.12)

Indeed, the l.h.s. of eq. (8.12) equals the coefficient of κM−1 in the polynomial

q−κ[D(2,ν)]0qκ

in eq. (8.11), while the r.h.s. equals the coefficient of κM−1 in

q−κ[DM]0qκ ,

where for 0 ≤ i ≤ M − 1,

q−κ[DM−i]0qκ =

M−i−1∏
`=0

(κ −
`

6
) .

Equality (8.12) thus states that q−κ[DM−1]0qκ (with leading term κM−1) does not con-

tribute, and so is equivalent to αM−1 = 0.

α
(cusp)
0 is determined by considering the next highest order [D(2,ν)〈1〉]κ+1 for some

character. (Since modular transformations permute the characters only and have no

effect on D(2,ν), it is sufficient to do the computation for the vacuum character 〈1〉1 =

qκ1(1 + O(q2))). �

The external examiner has pointed out that the leading coefficient can also be read

directly from the equation for the singular vector (Lemma 4.3 in [36]).
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8.4 Generalisation to other minimal models

For (µ, ν) ∈ Z2, the (µ, ν)-minimal model has

M =
(ν − 1)(µ − 1)

2

different characters. The set of all characters is parametrised by [3]

κr,s =
(νr − µs)2

4µν
−

1
24

, 1 ≤ r ≤ µ − 1 , 1 ≤ s ≤ ν − 1 .

Due to periodicity of the conformal weights κr,s + c
24 (which we shall not go into

here) this listing makes us count every character twice. The characters are modular

functions on some finite index subgroup Γ of Γ1 satisfying an order M differential

equation, and it remains to verify that the latter has highest order coefficient αM = 1.

We have

ord∞(wM) =
1
2

∑
1≤r≤µ−1;1≤s≤ν−1

κr,s =
M(M − 1)

12
,

where the factor of 1/2 in front of the sum has been inserted to prevent the double

counting mentioned above. As before, we conclude that wM has no zeros in H+ and

with the

Corollary 19. The characters of the (µ, ν) minimal model satisfy an order M differ-

ential equation

D(ν,µ)〈1〉 = 0 ,

where D(ν,µ) is a differential operator of the form

D(ν,µ) = DM +

M−2∑
m=0

∑
Ω2(M−m)

Ω2(M−m)D
m

where summation is over modular forms Ω2(M−m) of weight 2(M − m).



Chapter 9

A new variation formula

The present chapter relies on joint work with W. Nahm; Sect. 9.2 is based on his

ideas.

9.1 The variation formula in the literature

Formula (7.4) describes the effect on 〈1〉 of a change dGµν in the metric. It gener-

alises to the variation of N-point functions 〈ϕ1(x1) . . . ϕN(xN)〉 as follows: Suppose

the metric is changed on an open subset R ⊆ S of the surface S . Then

d〈ϕ1(x1) . . . ϕN(xN)〉 = −
1
2

"
S

(dGµν) 〈T µνϕ1(x1) . . . ϕN(xN)〉 dvol2 , (9.1)

where dvol2 =
√

G dx0 ∧ dx1 ([37], eq. (12.2.2) on p. 360; see also eq. (11) in [7])1,

provided that

xi < R , for i = 1, . . . ,N . (9.2)

Note that in order for the formula to be well-defined, Tµνdxµdxν must be quadratic

differential on S , i.e. one which transforms homogeneously under coordinate changes.

The antiholomorphic contribution in eq. (9.1) is omitted. It is of course of the same

form as the holomorphic one, up to complex conjugation.

Due to invariance of N-point functions under diffeomorphisms, Tµν satisfies the

1Note that both references introduce the Virasoro field with the opposite sign. Our sign convention
follows e.g. [3], cf. eq. (5.148) on p. 140.
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conservation law

0 = ∇µT µ
z = ∇zT z

z + ∇z̄T z̄
z

= ∂zT z
z + Gzz̄∂z̄Tzz , (9.3)

where ∇ is the covariant derivative of the Levi-Cività connection on S w.r.t. the metric

Gµν. Here we have used that T z
z transforms like a scalar [12], whence ∇zT z

z = ∂zT z
z.

Moreover, ∇µGµν = 0, and ∇z̄Tzz = ∂z̄Tzz [12], which is true since Tzz takes values in

a holomorphic line bundle.

A Weyl transformation Gµν 7→ WGµν changes the metric only within the re-

spective conformal class. (In any chart (U, x) on S , such transformation is given by

Gµν(x) 7→ h(x)Gµν(x) with h(x) , 0 on all of U.) The effect of a Weyl transformation

on N-point functions is described by the trace of T (eq. (3) on p. 310 in [7]), which

equals

Tµµ = Tz
z + Tz̄

z̄ = 2Tz
z =

c
24π
R.1 , (9.4)

([3], eq. (5.144) on page 140, which is actually true for the underlying fields). Here

1 is the identity field, and R is the scalar curvature of the Levi-Cività connection for

∇ on S . The non-vanishing of the trace (9.4) is referred to as the trace or conformal

anomaly.

Since Tµµ is a multiple of the unit field, the restriction (9.2) is unnecessary. Thus

under a Weyl transformation Gµν 7→ WGµν, all N-point functions change by the

same factor Z (equal to 〈1〉), given by

d log Z = −
c

24π

"
R dW dvol2 .

While Tzz transforms as a two-form, it is not holomorphic. We will now redefine

the Virasoro field to obtain a holomorphic field, but which as a result of the conformal

anomaly, does not transform homogeneously in general.

Lemma 20. [7] Suppose S has scalar curvature R = const. Let

1
2π

T (z) := Tzz −
c

24π
tzz , (9.5)

(with the analogous equation for T̄ (z̄)), where

tzz :=
(
∂zΓ

z
zz −

1
2

(Γz
zz)2

)
.1 .
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Here Γz
zz = ∂z log Gzz̄ is the Christoffel symbol. We have

∂z̄T (z) = 0 .

Proof. Direct computation shows that

∂z̄tzz = −
1
2

Gzz̄ ∂z(R.1) .

From the conservation law eq. (9.3) follows

∂z̄Tzz = −Gzz̄ ∂zT z
z

= −
c

48π
Gzz̄ ∂z(

√
G R.1) =

c
24π

∂z̄tzz .

�

Thus for constant sectional curvature, T (z) is a holomorphic quadratic differen-

tial.

Remark 21. tzz defines a projective connection: Under a holomorphic coordinate

change, z 7→ w such that w ∈ D(S ),

tww (dw)2 = tzz (dz)2 − S (w)(z).1 (dz)2 ,

where S (w) is the Schwarzian derivative. tzz is known as the Miura transform of the

affine connection given by the differentials Γz
zzdz.

T (z) is the holomorphic field introduced in Part I.2

9.2 A new variation formula

Let S be a Riemann surface. We introduce

γ : one-dimensional smooth submanifold of S , topologically isomorphic to S 1,

R : a tubular neighbourhood of γ in S ,

A : a vector field which conserves the metric on S and is holomorphic on R .

2Our notations differ from those used in [7]. Thus the standard field T (z) in [7] equals −Tzz in our
exposition, and the field T̃ (z) in [7] equals − 1

2πT (z) here.
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We think of A = α(z) ∂∂z ∈ TR as an infinitesimal coordinate transformation

z 7→ w(z) =

(
1 + εα(z)

∂

∂z

)
z

= z + εα(z) , (9.6)

where |ε| � 1. We suppose α = 1.

Theorem 4. Suppose S has scalar curvature R = 0. Let ϕ be a holomorphic field on

S . The effect of the transformation (9.6) with α = 1 on 〈ϕ(w)〉 is

d
dε

∣∣∣∣∣
ε=0
〈ϕ(w)〉 = −i

�
γ
〈Tzz ϕ(w)〉 dz ,

provided that

w does not lie on the curve γ . (9.7)

In particular, as w is not enclosed by γ, 〈ϕ(w)〉 doesn’t change.

Proof. By property (9.7), the position of ϕ is not contained in a small tubular neigh-

bourhood R of γ. Let

R \ γ = Rleft t Rright

be the decomposition in connected parts left and right of γ (we assume γ has positive

orientation). Let W ⊂ S be an open set s.t.

W ∩ γ = ∅ , W ∪ R = S .

We let F : R → [0, 1] be a smooth function s.t.

F = 1 on Rleft ∩W ,

F = 0 on Rright ∩W .

Let ε be so small that z ∈ Wc = S \W implies exp(εF)(z) ∈ R. Define a new metric

manifold (S ε ,Gε
zz̄) by

S ε |W := S |W

Gε
zz̄(z) |dz|2 := Gzz̄(exp(εF)(z)) |d exp(εF)(z)|2 , z ∈ Wc .
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We have

dGµνT µν = dGz̄z̄T z̄z̄ + antiholomorphic contributions + Weyl terms ,

where we disregard the antiholomorphic contributions ∼ Tz̄z̄, and the Weyl terms are

absent since by assumption R = 0. Alternatively, we can describe the change in the

metric by the map

|dz|2 7→ |dz + µdz̄|2 = dzdz̄ + µdz̄dz̄ + . . . ,

where

µ = ε∂z̄F + O(ε2)

is the Beltrami differential. Thus

dGz̄z̄ = 2Gzz̄ dµ(z, z̄) .

Eq. (9.1) yields

d〈ϕ〉
dε
|ε=0 = −

1
2

"
S

∂Gµν

∂ε
|ε=0 〈T µν ϕ〉 dvol2

= −
i
2

"
S

2Gzz̄
∂µ(z, z̄)
∂ε

|ε=0 (Gzz̄)2〈Tzz ϕ〉Gzz̄ dz ∧ dz̄

= i
"

R
(∂z̄F) 〈Tzz ϕ〉 dz̄ ∧ dz ,

since (Gzz̄)k = (Gzz̄)−k for k ∈ Z. Here

〈Tzz ϕ〉 dz = ιA(〈Tzz ϕ〉 (dz)2)

is the holomorphic 1-form given by the contraction of the holomorpic vector field

A = ∂
∂z with the quadratic differential 〈Tzz ϕ〉 (dz)2, which is holomorphic on R. By

Stokes’ Theorem,

d〈ϕ〉
dε
|ε=0 = i

"
R
∂z̄ (F 〈Tzz ϕ〉) dz̄ ∧ dz

= i
�

WR

F 〈Tzz ϕ〉 dz + i



WL

F 〈Tzz ϕ〉 dz

= − i
�

WL

F 〈Tzz ϕ〉 dz .
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Here WR = NR∩∂W and WL = NL∩∂W are the left and right boundary, respectively,

of W in R. We conclude that

d〈ϕ〉
dε
|ε=0 = −i

�
WL

〈Tzz ϕ〉 dz = −i
�
γ
〈Tzz ϕ〉 dz ,

by holomorphicity on Rleft ∪ γ. �

Remark 22. The construction is independent of F. When F approaches the discon-

tinuous function defined by F = 1 on Rleft ,

F = 0 on Rright ,

we obtain a description of (S ε ,Gε
zz̄) by cutting along γ and pasting back after a trans-

formation by exp(ε) on the left.

There is a way to check the result of Theorem 4: Let ϕ be a holomorphic field

whose position lies in a sufficiently small open set U ⊂ S with boundary ∂U = γ.

We can use a translationally invariant metric in U and corresponding coordinates z, z̄.

Then

Tzz =
1

2π
T (z)

in eq. (9.5). For A = d
dw , we have

〈Aϕ(w) . . .〉 =
1

2πi

�
γ
〈T (z)ϕ(w) . . .〉 dz , (9.8)

This can be seen in two ways.

1. Eq. (9.8) follows from the residue theorem for the OPE of T (z)⊗ϕ(w). Indeed,

the Laurent coefficient of the first order pole at z = w is N−1(T, ϕ)(w) = ∂wϕ,

which is holomorphic.

2. Alternatively, by Theorem 4,

d
dε

∣∣∣∣∣
ε
〈ϕ(w + ε) . . .〉 =

1
2πi

�
γ
〈T (z)ϕ(w) . . .〉 dz .

The two approaches are compatible!
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9.3 Discussion of the metric

Let Σg be the genus g hyperelliptic Riemann surface

Σg : y2 = p(x) , deg p = n = 2g + 1 .

Recall that x which varies over the Riemann sphere, defines a complex coordinate

on Σg, outside the ramification points where we must change to the y coordinate. P1
C

does not allow for a constant curvature metric but we shall define a metric on P1
C

which is flat almost everywhere.

Suppose we consider a genus one surface with n = 3. By means of the iso-

morphism P1
C
� C ∪ {∞}, we may identify the branch points of Σ1 with points

X1, X2, X3 ∈ C and X4 = {∞}, respectively.

Let θ � 1, but finite, such that in the flat metric of C,

|Xi| < θ , i = 1, 2, 3 .

We define |X4| := ∞. For ε > 0, define a metric

(ds(ε))2 = 2Gzz̄(ε) dz ⊗ dz̄ (9.9)

on P1
C

by

2Gzz̄(ε) :=

(1 + εθ2)−2 for |z| ≤ θ ,

(1 + εzz̄)−2 for |z| ≥ θ .

The metric on Σ1 is obtained by lifting.

Lemma 23. In the disc |z| ≤ θ, the metric is flat, while in the area |z| ≥ θ, it is of

Fubini-Study type of Gauss curvature K = 4ε.

Proof. For ρ = 2Gz′ z̄′(ε) with

Gz′ z̄′(ε) :=
1
2ε

(1 + z′z̄′)−2 for |z′| ≥
√
εθ ,

we have [12]

R = ρ−1(−4∂z∂z̄ log ρ) = ε(1 + z′z̄′)2(8∂z′∂z̄′ log(1 + z′z̄′)2) = 8ε ,

and R = 2K . �
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Definition 2. Let Σ be a genus g = 1 Riemann surface with conformal structure

defined by the position of the ramification points {Xi}
3
i=1 with finite relative distance

on P1
C

. Let Gzz̄(ε) be the metric defined by eq. (9.9). We define 〈1〉{Xi}
3
i=1,ε,θ

to be the

zero-point function on (Σ,Gzz̄(ε)).

By eq. (9.4) and the fact that on any surface, R = 2K ,

Tzz̄ =
c

24π
Gzz̄K .1 ,

where 1 is the identity field. So according to eq. (7.4) we have for the 2-sphere S 2
θ of

radius θ,

d log〈1〉{Xi}
3
i=1,ε,θ

=
c

48π

"
S 2
θ

(d log Gzz̄(ε))K dvol2 .

Since G(ε) = (Gzz̄(ε))2, for |z| > θ, the two-dimensional volume form is

dvol2 = Gzz̄(ε) dz ∧ dz̄ =
1
2

πd(r2)
(1 + εr2)2 .

Now

d log〈1〉{Xi}
3
i=1,ε,θ

= dI|z|<θ + dI|z|>θ ,

where for %2
0 := εθ2, the integrals yield

dI|z|<θ = −
cθ2

12
d(ε)

%2
0

(1 + %2
0)3

,

dI|z|>θ = −
c

12
(d log ε)

∫
|%|2>%2

0

%2 d(%2)
(1 + %2)3 = −

c
24

(d log ε) (1 + O(%4
0)) .

So for |%0| � 1,

〈1〉{Xi}
3
i=1,ε,θ

= ε−
c

24 (1+O(%4
0)) Z exp

− c
12

%4
0

(1 + %2
0)3

 , (9.10)

where Z ∈ C is an integration constant.

Variation of ε rescales the metric within the conformal class defined by the branch

points. In the limit as ε ↘ 0,

Gzz̄ := lim
ε↘0

Gzz̄(ε) =
1
2

for |z| < ∞ , (9.11)
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(and is undefined for |z| = ∞). Thus P1
C

becomes an everywhere flat surface except

for the point at infinity, which is a singularity for the metric.

Definition 3. Let Σ1 be a genus g = 1 Riemann surface with conformal structure

defined by the position of the ramification points {Xi}
3
i=1 with finite relative distance

on P1
C

. Let Gzz̄ be the metric on Σ defined by eq. (9.11). We define the zero-point

function on (Σ1,Gzz̄) by

〈1〉{Xi}
3
i=1

:= lim
ρ0↘0

ε
c

24 (1+O(%4
0))〈1〉{Xi}

3
i=1,ε,θ

.

Thus 〈1〉{Xi}
3
i=1

= Z. We shall also write 〈1〉sing. to emphasise distinction from the

0-point function on the flat torus (Σ1, |dz|2), which we denote by 〈1〉flat.

Remark 24. The reason for introducing ε and performing limε↘0 is the fact that the

logarithm of the Weyl factorW is not defined for surfaces with a singular metric and

infinite volume. We have

d log
〈1〉sing.

〈1〉flat
= d logW ,

soW is determined only up to a multiplicative constant, which is infinite for ε = 0.

Our method is available for any surface Σg : y2 = p(x) with deg p = n ≥ 3. When

n is odd, the point at infinity is a non-distinguished element in the set of ramification

points on Σg. We shall distribute the curvature of Σg evenly over these. Using the

Gauss-Bonnet theorem, the total curvature is recovered as∫
Σg

K dvol2 = 2π χ(Σg) = 4π(1 − g) = 8π − 2π(2g + 2) .

We interpret 8π as the contribution to the curvature from the g = 0 double covering

and −2π from any branch point.

The method is now available for arbitrary genus g ≥ 1 hyperelliptic Riemann

surfaces and will in the following be checked against the case g = 1.

9.4 The main theorem

We now get to an algebraic description of the effect on an N-point function as the

position of the ramification points of the surface is changed.

Theorem 5. Let Σg be the hyperelliptic Riemann surface

Σg : y2 = p(x) , n = deg p = 2g + 1 ,
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with roots X j. We equip the P1
C

underlying Σg with the singular metric which is equal

to

|dz|2 on P1
C \ {X1 . . . , Xn} .

Let 〈 〉sing be a state on Σg with the singular metric. We define a deformation of the

conformal structure by

ξ j = dX j for j = 1, . . . , n .

Let (U j, z) be a chart on Σg containing X j but no field position. We have

d〈ϕ . . .〉sing =

n∑
j=1

 1
2πi

�
γ j

〈T (z)ϕ . . .〉sing dz
 ξ j , (9.12)

where γ j is a closed path around X j in U j.

Proof. On the chart (U, z), we have 1
2π T (z) = Tzz in eq. (9.5), outside the points

which project onto one of the X j for j = 1, . . . , n on P1
C

. Moreover, γ does not pick

up any curvature for whatever path γ we choose. Since

d〈1〉sing. =

n∑
i=1

ξi
∂

∂Xi
〈1〉sing. ,

formula (9.12) follows from Theorem 4. �



Chapter 10

Application to the case g = 1

10.1 Algebraic approach

Let Σ1 be the genus 1 Riemann surface

Σ1 : y2 = p(x) , deg p = n = 3 ,

with ramification points X1, X2.X3. Throughout this section, we shall assume that

3∑
i=1

Xi = 0 . (10.1)

We introduce some notation: Let m(X1, ξ1, . . . , Xn, ξn) be a monomial. We denote by

m(X1, ξ1, . . . , Xn, ξn)

the sum over all distinct monomials m(Xσ(1), ξσ(1), . . . , Xσ(n), ξσ(n)), where σ is a per-

mutation of {1, . . . , n}. E.g. eq. (10.1) reads X1 = 0, and

X1X2 =

3∑
i, j=1
i< j

XiX j ,= X1X2 + X1X3 + X2X3 ,

(for n = 3). For any state 〈 〉 on Σ1, the Virasoro 1-point function on Σ is given by

Theorem 1 of Part I,

〈T (x)〉 =
c

32
[p′]2

p2 〈1〉 +
Θ(x)
4p

, (10.2)
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where Θ(x) = Θ[1](x) in the notations of Part I (the polynomial Θ[y] is absent),

Θ(x) = −ca0x〈1〉 + A1 , (10.3)

where a0 is the leading coefficient of p, and A1 ∝ 〈1〉 is constant in x. The connected

Virasoro 2-point function for the state 〈 〉 on Σ1 is given by Theorem 2 in Part I. Here

we note that

P(x1, x2, y1, y2) = P[1](x1, x2) (10.4)

is constant in position, but depends on 〈1〉 and A1. For the 1-forms ξ j = dX j ( j =

1, 2, 3) we introduce the matrices

Ξ3,0 =


X1 X2 X3

1 1 1

ξ1 ξ2 ξ3

 , Ξ3,1 =


X1 X2 X3

1 1 1

ξ1X1 ξ2X2 ξ3X3

 ,
and the 3 × 3 Vandermonde matrix

V3 :=


1 X1 X2

1

1 X2 X2
2

1 X3 X2
3

 .
For later use, we note that

det V3 =
∏

1≤i< j≤3

(X j − Xi)

= (X1 − X2)(X2 − X3)(X3 − X1) ,
det Ξ3,0

det V3
=

ξ1

(X1 − X2)(X3 − X1)
+ cyclic , (10.5)

det Ξ3,1

det V3
=

ξ1X1

(X1 − X2)(X3 − X1)
+ cyclic . (10.6)

We let

∆(0) := (det V3)2 .

It shall be convenient to work with the 1-form

ω := −3
det Ξ3,1

det V3
. (10.7)
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A simple calculation using eq. (10.1) shows that

d det V3 = − 3X1(dX1)(X2 − X3) + cyclic = −3 det Ξ3,1 ,

so that

ω =
1
2

d log ∆(0) (10.8)

=
ξ1 − ξ2

X1 − X2
+ cyclic . (10.9)

Lemma 25. Let Σ1 : y2 = p(x), where

p = 4(x − X1)(x − X2)(x − X3) ,

where we assume (10.1) to hold. Define a deformation of Σ1 by

ξ j = dX j , j = 1, 2, 3.

In terms of the modulus τ and the scaling parameter λ (the inverse length) of the real

period, we have

ω = πi E2 dτ − 6
dλ
λ
.

Proof. By assumption (10.1), we can write

p(x) = 4(x3 + ax + b) ,

where on the one hand,

a = X1X2 , b = −X1X2X3 .

and [33]

∆(0) = −4a3 − 27b2 . (10.10)

On the other hand, [33]

a = −
π4

3
λ4E4 , b = −

2π6

27
λ6E6 , (10.11)
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so

∆(0) =
4π12

27
λ12(E3

4 − E2
6) , (10.12)

We expand the fraction defining ω in eq. (10.7) by det V3 and show that for a, b

introduced above, we have

det(Ξ3,1V3) = 2a2 da + 9b db . (10.13)

We now establish eq. (10.13) under the additional assumption that ξ ∝ X. In this

case both sides of eq. (10.13) are proportional to ∆(0), with the same proportionality

factor: On the l.h.s.,

det Ξ3,1|ξ=X det V3 ∝ − det


1 X1 X2

1

1 X2 X2
2

1 X3 X2
3


2

= −∆(0) .

On the r.h.s.,

da = ξ1X2 ∝ 2X1X2 = 2a ,

db = − ξ1X2X3 ∝ −3X1X2X3 = 3b .

From this and eq. (10.10) follows eq. (10.13). Using (10.11), (10.12), and

D4E4 = −
E6

3
, D6E6 = −

E2
4

2
(10.14)

([38], Proposition 15, p. 49), where D2` is the Serre derivative (8.3), we find

2 a2 ∂

∂τ
a + 9 b

∂

∂τ
b = −

i π
3

E2∆(0) .

For the λ derivative, we use the description of ω by eq. (10.8). From eq. (10.12)

follows
∂

∂λ
log ∆(0) =

12
λ
.

The last two equations prove the lemma under the assumption ξ ∝ X. For the general

case we refer to Appendix B.1. �

Under variation of the ramification points, the modulus changes according to
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Lemma 26. Under the conditions of Lemma 25, we have

dτ = − i πλ2 det Ξ3,0

det V3
. (10.15)

Proof. We first show that for

p(x) = 4(x3 + ax + b) ,

we have

det(Ξ3,0V3) = 9b da − 6a db . (10.16)

Indeed, if we set

ξi ∝ X2
i − ξ0 , ξ0 :=

1
3

 3∑
i=1

X2
i

 =
1
3

X2
1

then the condition (10.1) continues to hold, and both sides of eq. (10.16) are propor-

tional to ∆(0), with the same proportionality factor: On the l.h.s.,

det Ξ3,0|ξ=X2−ξ0
det V3 ∝ det


ξ1 ξ1X1 ξ1X2

1

X1 X2
1 X3

1

3 X1 X2
1

 = −∆(0) ,

since

det


ξ1 ξ2 ξ3

X1 X2 X3

1 1 1

 ∝ det


X2

1 X2
2 X2

3

X1 X2 X3

1 1 1

 − det


ξ0 ξ0 ξ0

X1 X2 X3

1 1 1

 ,
where for the present choice of ξ, the latter determinant is zero. On the r.h.s., by the

fact that X1 = 0,

ξ0 =
1
3

X2
1 = −

2
3

X1X2 = −
2a
3
,

X3
1 = − 3X2

1 X2 − 6b ,

X2
1 X2 = X1X2(X1 + X2) = −3b ,
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so

da = − ξ1X1 ∝ −X3
1 + ξ0X1 = −X3

1 = −3b ,

db = − ξ1X2X3 ∝ −X2
1 X2X3 + ξ0X1X2 = bX1 + ξ0a = ξ0a = −

2
3

a2 .

From this and eq. (10.10) follows eq. (10.16). Now by eqs (10.11), (10.12), and

(10.14),

9 b
∂

∂τ
a − 6 a

∂

∂τ
b = 2πi (9 bD4a − 6 aD6b) =

i
πλ2 ∆(0) .

The partial derivatives are actually ordinary derivatives since from eqs (10.11) fol-

lows

9 b
∂

∂λ
a − 6 a

∂

∂λ
b = 0 .

Factoring out dτ in eq. (10.16) and dividing both sides by ∆(0)/(−iπλ2) yields the

claimed formula. The general case (with the assumption ξi ∝ X2
i −

1
3 X2

1 omitted) is

proved in Appendix B.2. �

Theorem 6. Let

Σ1 : y2 = 4x3 + a2x + a3 .

We equip the underlying P1
C

with the singular metric defined in Section 9.3. Let 〈 〉sing

be a state on Σ1 w.r.t. this metric. Define a deformation of Σ1 by

ξ j = dX j , j = 1, 2, 3 .

Let ω be the corresponding 1-form

ω = −3
det Ξ3,1

det V3
.

We have the following system of linear differential equations

(d +
c

24
ω)〈1〉sing. = −

1
8

(A1)sing.
det Ξ3,0

det V3
, (10.17)

(d +
c − 8

24
ω) (A1)sing. = Csing.

det Ξ3,0

det V3
,
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where for P[1] from eq. (10.4),

Csing. := − 2P[1] −
1
8
〈1〉−1

sing.(A1)2
sing. −

2ca2

3
〈1〉sing. .

In particular, in the (2, 5)-minimal model,

Csing. =
11
150
〈1〉sing.a2 .

In general, Csing. is a function of 〈1〉sing. and (A1)sing.. Note that the occurrence

of a term ∼ (A1)2
sing. in the definition of Csing. is an artefact of our presentation since

P[1] has been defined by means of the connected Virasoro 2-point function.

Remark 27. In contrast to the ODE (8.1) for the zero-point function 〈1〉flat on (Σ1, |dz|2),

the corresponding differential equation (10.17) for 〈1〉sing. w.r.t the singular metric

comes with a covariant derivative. Denote by

(A1)flat = 4〈T〉flat =: αflat〈1〉flat , (A1)sing. =: αsing.〈1〉sing.

the parameters w.r.t. the flat and the singular metric, respectively. By eqs (8.1),

(10.17) and (10.15),

d log
〈1〉sing.

〈1〉flat
= −

c
24
ω +

1
8πi λ2

(
αsing. − αflat

)
dτ .

Using eq. (10.8), we obtain

〈1〉sing. ∝ (∆(0))−
c

48 〈1〉flat , (10.18)

with proportionality factor equal to exp
{

1
8πi λ2

∫ (
αsing. − αflat

)
dτ

}
. In particular,

〈1〉sing. is not a modular function. This is due to the non-vanishing of the scalar

curvature R in the Weyl factorW (cf. Remark 24).

Proof. (of the Theorem)

Notations: All state-dependent objects are understood to refer to the singular metric

on Σ1.

For j = 1, 2, 3, let γ j be a closed path enclosing X j ∈ P
1
C

and no other zero of p.

x does not define a coordinate close to X j, however y does. On the ramified covering,

a closed path has to wind around X j by an angle of 4π. We shall be working with the

x coordinate, and mark the double circulation along γ j in P1
C

by a symbolic 2 × γ j
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under the integral. Thus for j = 1 we have

1
2πi

�
2×γ1

〈T (x)〉 dx = 2 lim
x→ X1

(x − X1)〈T (x)〉

=
1
8

(
c〈1〉

X1 − X2
+

c〈1〉
X1 − X3

+
Θ(X1)

(X1 − X2)(X1 − X3)

)
=

1
8

c(−2X1 + X2 + X3)〈1〉 − A0X1 − A1

(X1 − X2)(X3 − X1)

= −

(
c
4
〈1〉 +

A0

8

)
X1〈1〉

(X1 − X2)(X3 − X1)

−
1
8

A1

(X1 − X2)(X3 − X1)
+

c
8
〈1〉

X2 + X3

(X1 − X2)(X3 − X1)
.

So

d〈1〉 =

3∑
i=1

(
1

2πi

�
2×γi

〈T (x)〉 dx
)

dXi = −

(
c
4
〈1〉 +

A0

8

)
det Ξ3,1

det V3
−

1
8

A1
det Ξ3,0

det V3

+
c
8
〈1〉

(
ξ1(X2 + X3)

(X1 − X2)(X3 − X1)
+ cyclic

)
,

using eqs (10.5) and (10.6). When (10.1) is imposed and A0 = −4c〈1〉 is used, we

obtain the differential equation (10.17) for 〈1〉. When 〈T (x)〉 is varied by changing

all ramifications points X1, X2, X3 simultaneously, we must require the position x not

to lie on or be enclosed by any of the corresponding three curves γ1, γ2 and γ3. Then

we have

d〈T (x)〉 =

3∑
j=1

 1
2πi

�
2×γ j

〈T (x′)T (x)〉 dx′
 dX j

=

3∑
j=1

 〈1〉2πi

�
2×γ j

〈T (x′)T (x)〉c dx′
 dX j + 〈1〉−1〈T (x)〉 d〈1〉.

Here 〈T (x)〉 is given by formula (10.2). For 〈T (x)T (x′)〉c, we use Theorem 2 in Part

I. The terms ∝ yy′ (with y′2 = p(x′)) do not contribute: As X j ∈ P
1
C

is wound around

twice along the closed curve γ j, the square root y′ changes sign after one tour, so the
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corresponding terms cancel. Thus for j = 1 we have, using eq. (10.3) for Θ(x′),

〈1〉
2πi

�
2×γ1

〈T (x′)T (x)〉c dx′ (10.19)

= 2 lim
x′→ X1

(x′ − X1)
{ c
4
〈1〉

(x′ − x)4 +
c

32
p′(x′)p′〈1〉

(x′ − x)2 p(x′)p
+

1
8

p(x′)Θ + pΘ(x′)
(x′ − x)2 p(x′)p

+
P[1]

p(x′)p
−

a0

8
x′Θ + xΘ(x′)

p(x′)p
−

a2
0c

8
x′x〈1〉
p(x′)p

}
=

c
16

〈1〉
(X1 − x)2

p′

p
+

1
4

Θ(X1)
(X1 − x)2 p′(X1)

(10.20)

+
2P[1]

p′(X1)p
−

a0

4
X1A1

p′(X1)p
−

a0

4
xΘ(X1)
p′(X1)p

.

Multiplying the first term on the r.h.s. of eq. (10.20) by ξ1 and adding the correspond-

ing terms as j takes the values 2, 3 yields

c
16
〈1〉

p′

p

(
ξ1

(x − X1)2 + cyclic
)

=
c

32
〈1〉d

(
p′

p

)2

.

The cyclic symmetrisation of the remaining four terms on the r.h.s. of eq. (10.20)

gives d
(

Θ(x)
4p

)
−

Θ(x)
4p d log〈1〉. We deduce the differential equation for A1. Firstly,

dΘ(x) = 4p d
(

Θ

4p

)
+ Θ

dp
p
.

By the above, using p′(X1) = −a0(X1 − X2)(X3 − X1) with a0 = 4,

4p d
(

Θ

4p

)
= −

p
4

( 1
(x − X1)2

ξ1Θ(X1)
(X1 − X2)(X3 − X1)

+ cyclic
)

+ x
(

ξ1Θ(X1)
(X1 − X2)(X3 − X1)

+ cyclic
)

− 2P[1] det Ξ3,0

det V3
+ A1

det Ξ3,1

det V3
+ Θ(x) d log〈1〉 . (10.21)

Secondly, using partial fraction decomposition,

Θ(x)
p

= −
1

(x − X1)
Θ(X1)

4(X1 − X2)(X3 − X1)
+ cyclic.

Solving for Θ and using that

dp
p

= −

(
ξ1

x − X1
+ cyclic

)
,
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yields

Θ(x)
dp
p

=
p
4

(
Θ(X1)

(x − X1)(X1 − X2)(X3 − X1)
+ cyclic

) 3∑
j=1

ξ j

(x − X j)
. (10.22)

Note that three terms in the sum on the r.h.s. of eq. (10.22) are equal but opposite to

the first term on the r.h.s. of eq. (10.21). Since ξ1 = 0, we have for the remaining sum

p
4

 Θ(X1)
(x − X1)(X1 − X2)(X3 − X1)

∑
j,1

ξ j

(x − X j)
+ cyclic


= −

(
Θ(X1)(ξ2X3 + ξ3X2)
(X1 − X2)(X3 − X1)

+ cyclic
)
− x

(
ξ1Θ(X1)

(X1 − X2)(X3 − X1)
+ cyclic

)
,

where the second term on the r.h.s. is equal but opposite to the one before last on the

r.h.s. of eq. (10.21). For the first term we have (cf. Appendix B.3)

−
Θ(X1)(ξ2X3 + ξ3X2)
(X1 − X2)(X3 − X1)

+ cyclic = −
2
3

ca2〈1〉
det Ξ3,0

det V3
− 2A1

det Ξ3,1

det V3
.

Using Θ(X1) = −4cX1〈1〉 + A1, we conclude that

dA1 = − A1
det Ξ3,1

det V3
+ (−2P[1] −

2ca2

3
〈1〉)

det Ξ3,0

det V3
+ A1 d log〈1〉 .

Plugging in eq. (10.17) yields the claimed formula. To determine the constant in the

(2, 5)-minimal model, we write

p = 4x3 + a1x2 + a2x + a3 .

By Lemma 16 in Part I, using c = − 22
5 , we find

P[1] = −
77
400

a2
1〈1〉 +

2
20

a1A1 +
143
100

a2〈1〉 −
1

16
〈1〉−1A2

1 .

�

The formulation of the differential equations using determinants relies on the per-

mutation symmetry of the equations’ constituent parts. This symmetry will continue

to be present as the number of ramification points increases. With the genus, how-

ever, also the degree of the polynomial Θ will grow and give rise to additional terms

having no lower genus counterpart (cf. Section 10.3).
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10.2 Comparison with the analytic approach, for the (2, 5)

minimal model

We provide a rough check that the system of linear differential equations obtained

from Theorem 6 for the (2, 5) minimal model is consistent with the system discussed

in Section 8.1. By formula (10.18), we have

〈1〉 = ∆(0)−
c

48 f , A1 = ∆(0)−
c

48 g , (10.23)

for some functions f , g of τ, with f , g ∝ 〈1〉z. We have [38]

∆(0) =
∏
i< j

(Xi − X j)2 ∼ η24 = q − 24q2 + O(q3) ,

and so close to the boundary of the moduli space where X1 ≈ X2, we have

(X1 − X2) ∼ q
1
2 = eπi τ . (10.24)

As before, we shall work with assumption (10.1). Since in this region only the differ-

ence X1 − X2 matters, we may w.l.o.g. suppose that

X2 = const.

(ξ2 = 0). In view of (10.24) on the one hand, and the series expansion of the Rogers-

Ramanujan partition functions 〈1〉z on the other, we have to show that

f ∼ (X1 − X2)−
1
30 , or f ∼ (X1 − X2)

11
30 . (10.25)

Eq. (10.23) yields

d〈1〉 = ∆(0)−
c

48 d f −
c

24
ω f ∆(0)−

c
48 ,

using eq. (10.8), and a similar equation is obtained for dA1. So by Theorem 6,

d f = −
1
8

g
det Ξ3,0

det V3
, (10.26)

(d −
1
3
ω)g =

11
150

a2 f
det Ξ3,0

det V3
.
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Since f ∼ (X1 − X2)α for some α ∈ R,

d f ∼
ξ1α

X1 − X2
f . (10.27)

On the r.h.s. of eq. (10.26), we have by the assumption (10.1),

det Ξ3,0

det V3
=

ξ1

(X1 − X2)(X3 − X1)
+ cyclic ∼

ξ1

(X1 − X2)(−3X2)
∼

ω

(−3X2)

since X1 ≈ X2, and we have omitted the regular terms. Eq. (10.26) thus yields

g ≈ 24X2α f .

Now we use the differential equation for g,

24X2α(d −
1
3
ω) f ∼

11
150

f a2
ω

(−3X2)

which by eq. (10.27) and a2 ∼ −12X2
2 reduces to the quadratic equation

α(α −
1
3

) ∼
11

900

and is solved by α = − 1
30 and 11

30 . This yields (10.25), so the check works.

10.3 Outlook: Generalisation to higher genus

For Σg : y2 = p(x) with deg p = n ≥ 3, we have from eq. (4.8) in Theorem 1 of Part I,

Θ(x, y) = Θ[1](x) + yΘ[y](x) , deg Θ[1](x) = n − 2 .

Θ[y] does not contribute to the contour integral as y dx
p = dx

y is a holomorphic differen-

tial on Σg. As stated in the viva, the author has established a preliminary formulation

of the differential equations for 〈1〉sing. and 〈T (x)〉sing for the case n = 5 (g = 2).

In the following, all state-dependent objects are understood to refer to the singular

metric on Σ2. In the present case, Θ[y] is absent, so

〈T (x)〉 =
c

32
[p′]2

p2 〈1〉 +
1
4

A0x3 + A1x2 + A2x + A3

p
,
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where A0 is known in terms of 〈1〉 by Theorem 1 of Part I, while A1,A2,A3 are

parameters of the theory, in addition to 〈1〉. Eq. (10.9) is adapted to n = 5 as

ω =

n∑
s=1

∑
j,s

ξs

Xs − X j
.

The differential equation for 〈1〉 now reads

(
d −

c
8
ω
)
〈1〉 =

1
2a0

A0
det Ξ5,3

det V5
+

3∑
k=1

Ak
det Ξ5,3−k

det V5

 ,
where V5 is the 5 × 5 Vandermonde matrix and

Ξ5,k :=



X3
1 X3

2 X3
3 X3

4 X3
5

X2
1 X2

2 X2
3 X2

4 X2
5

X1 X2 X3
3 X3

4 X5

1 1 1 1 1

ξ1Xk
1 ξ2Xk

2 ξ3Xk
3 ξ4Xk

4 ξ5Xk
5


, k = 0, . . . , 3 .

The derivation of the differential equation for 〈T (x)〉sing has been based on the con-

nected Virasoro 2-point function (computed in Theorem 2 of Part I) which resulted in

a non-linear differential equation. An improved formulation reestablishing linearity,

and the individual equations for the parameters Ai (i = 1, 2, 3), were not completed

by the time of the viva.

Future work will deal with a variation formula for the Virasoro N-point function

for arbitrary g and N > 1.





Appendix B

B.1 Completion of the Proof of Lemma 25 (Section 10.1)

It remains to show eq. (10.13) for general deformations ξi = dXi, assuming that

X1 = 0, eq. (10.1). We have

a = X1X2 , da = d(X1X2)

= ξ1X2 + ξ1X3 + ξ2X1 + ξ2X3 + ξ3X1 + ξ3X2 = ξ1X2

b = −X1X2X3 , db = − d(X1X2X3)

= − ξ1X2X3 − ξ2X1X3 − ξ3X1X2 = −ξ1X2X3 .

Let α, β ∈ Q. On the one hand, since X1 = 0, we have

(X1X2)2 = X2
1 X2

2 + 2X1X2X3 · X1 = X2
1 X2

2 , (B.1)

so

αa2da + βb db = α X2
1 X2

2 · ξ1X2 + βX1X2X3 · ξ1X2X3 .

On the other hand,

det Ξ3,1 det V3 = det


ξ1X1 ξ2X2 ξ3X3

X1 X2 X3

1 1 1



1 X1 X2

1

1 X2 X2
2

1 X3 X2
3


= det


ξ1X1 ξ1X2

1 ξ1X3
1

0 X2
1 X3

1

3 0 X2
1


= 3

(
X3

1 · ξ1X2
1 − X2

1 · ξ1X3
1

)
+

(
X2

1

)2
· ξ1X1 .

95
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Here (
X2

1

)2
= 4

(
X1X2

)2
= 4 X2

1 X2
2 (by eq. (B.1))

ξ1X1 = − ξ1X2 , (B.2)

and

ξ1X2
1 = − ξ1X1X2

= − ξ1X1(X2 + X3) + cyclic = −X1X2 · ξ1 + ξ1X2X3 = ξ1X2X3 (B.3)

X3
1 = X1(X2 + X3)2 + cyclic = X1X2

2 + 6X1X2X3 = 3X1X2X3 , (B.4)

since

X1X2
2 = − X1X2(X1 + X3) − X1X2(X2 + X3) + cyclic = −6X1X2X3 − X2

1 X2 = −3X1X2X3 .

Moreover,

ξ1X3
1 = ξ1X1(X2 + X3)2 + cyclic = ξ1X1X2

2 + 2X1X2X3 · ξ1 = ξ1X1X2
2

X2
1 = ξ1X2

1 X3
2 + ξ1X2

1 X2X2
3 + ξ1X3

2 − X1(X2 + X3) + cyclic = −2 X1X2 , (B.5)

and

X1X2 · ξ1X1X2
2 = (X1X2 + X1X3 + X2X3)(ξ1X1X2

2 + ξ1X1X2
3 + cyclic)

= X2
1 X2

2 · ξ1X2 + X2
1 X2

3 · ξ1X3 + cyclic

+ X1X2 · ξ1X1X2
3 + X1X3 · ξ1X1X2

2 + cyclic

+ X2X3 · (ξ1X1X2
2 + ξ1X1X2

3) + cyclic

= X2
1 X2

2 · ξ1X2 + X1X2X3 · ξ1X1X2 + X1X2X3 · ξ1X2
2

= X2
1 X2

2 · ξ1X2 ,

by eq. (B.3) and

ξ1X2
2 = − ξ1X2(X1 + X3) − ξ1(X1 + X2)X3 + cyclic

= − ξ1X1X2 − 2 ξ1X2X3 = ξ1X2X3 .
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We conclude that

det Ξ3,1 det V3 = 9X1X2X3 · ξ1X2X3 + 6X1X2 · ξ1X1X2
2 − 4X2

1 X2
2 · ξ1X2

= 9X1X2X3 · ξ1X2X3 + 2X2
1 X2

2 · ξ1X2 ,

and so α = 2, β = 9, as required.

B.2 Completion of the Proof of Lemma 26 (Section 10.1)

It remains to show eq. (10.16) for general deformations ξi = dXi, assuming that

X1 = 0, eq. (10.1).

We use the expressions for a, b, da, db listed at the beginning of Appendix B.1.

Let α, β ∈ Q. On the one hand,

α a db + β b da = − αX1X2 · ξ1X2X3 − β X1X2X3 · ξ1X2

= − (α + β) X1X2X3 · ξ1X2 − ξ1X2
1 X3

2 + ξ1X2
1 X2X2

3 + ξ1X3
2α ξ1X2

2 X2
3 .

On the other hand,

det Ξ3,0 det V3 = det


ξ1 ξ2 ξ3

X1 X2 X3

1 1 1



1 X1 X2

1

1 X2 X2
2

1 X3 X2
3


= det


0 ξ1X1 ξ1X2

1

0 ξ1X2
1 X3

2 + ξ1X2
1 X2X2

3 + ξ1X3
2 X2

1 X3
1

3 0 X2
1

 = 3
(
X3

1 · ξ1X1 − X2
1 · ξ1X2

1

)
.

Eqs (B.4), (B.2), (B.5) and (B.3) from Appendix B.1 yield

det Ξ3,0 det V3 = 3
(
−3X1X2X3 · ξ1X2 + 2 X1X2 · ξ1X2X3

)
= 3

(
−3X1X2X3 · ξ1X2 + 2 ξ1X2

2 X2
3 + 2X1X2X3 · ξ1X2

)
= − 3X1X2X3 · ξ1X2 + 6 ξ1X2

2 X2
3 .

We conclude that α = −6, α + β = 3, so β = 9. This completes the proof.
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B.3 Completion of the proof of Theorem 6 (Section 10.1)

It remains to show that

−
Θ(X1)(ξ2X3 + ξ3X2)
(X1 − X2)(X3 − X1)

+ cyclic = −
2
3

ca2〈1〉
det Ξ3,0

det V3
− 2A1

det Ξ3,1

det V3
.

We have

ξ2X3 + ξ3X2 = (ξ2 + ξ3)(X2 + X3) − (ξ2X2 + ξ3X3)

= ξ1X1 − (ξ2X2 + ξ3X3)

= 2ξ1X1 − ξ1X1 .

It follows that

−
Θ(X1)(ξ2X3 + ξ3X2)
(X1 − X2)(X3 − X1)

+ cyclic =
8c〈1〉 ξ1X2

1 − 2A1ξ1X1

(X1 − X2)(X3 − X1)
+ cyclic ,

since ξ1X1 is symmetric and both

1
(X1 − X2)(X3 − X1)

+ cyclic = 0 , (B.6)

X1

(X1 − X2)(X3 − X1)
+ cyclic = 0 . (B.7)

Now

X2
1 = − X1(X2 + X3) = −

a2

4
+ X2X3 ; (B.8)

we claim that

ξ1X2X3

(X1 − X2)(X3 − X1)
+ cyclic =

a2

6
det Ξ3,0

det V3
. (B.9)

Indeed, since ξ1X2X3 + cyclic = ξ1X2X3 is symmetric, we have by eq. (B.6),

ξ1X2X3

(X1 − X2)(X3 − X1)
+ cyclic = −

ξ2X3X1 + ξ3X1X2

(X1 − X2)(X3 − X1)
+ cyclic .
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Since ξ1 = 0, we have

−
ξ2X3X1 + ξ3X1X2

(X1 − X2)(X3 − X1)
+ cyclic =

(
ξ1(X3X1 + X1X2)

(X1 − X2)(X3 − X1)
+ cyclic

)
+

(
(ξ3X3 + ξ2X2)X1

(X1 − X2)(X3 − X1)
+ cyclic

)
=

a2

4
det Ξ3,0

det V3
−

(
ξ1X2X3

(X1 − X2)(X3 − X1)
+ cyclic

)
−

 ξ1X2
1

(X1 − X2)(X3 − X1)
+ cyclic

 ,
using symmetry of ξ1X1 and eq. (B.7) again. From eq. (B.8) follows eq. (B.9), and

the proof of Theorem 6 is complete.
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