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QUANTUM ELECTRODYNAMICS.
By . A. M. DIRAC.

THE present leciures, like those of Eddington, are concerned with unifying
relativity and quantum theory, but they approach the question from a
different point of view. Eddingon’s method is first to get the physical
ideas clear and then gradually to build ap a mathematical scheme. The
present method is just the opposite—first to set up a mathematical scheme
and then to try to get its physical interpretation. This method ought to
be the easier one, because it takes the easier task first. It should be easier
to get the mathematical scheme, because for this purpose the number of
things one has to choose between is small. The scheme, to be acceptable,
must be neat and beautiful, and the number of such schemes which pure
mathematics can provide is very limited. When the mathematical scheme
is decided on, the subsequent task of finding-its physical interpretation is
rendered easier by the existence of many pomts of contact between the
mathematies and the physics.

‘We shall be concerned with the problem of the interaction of a number
of charged particles with the electromagnetic field, and our object will be to
get a method for caleulating experimental results, such as the probability of
certain particles, which are incident in a certain way, being scattered in a
certain way, with perhaps the emission and absorption of certain photons.
The method has to be in conformity with the general principles of physics,
such as the conservation laws and Lorentz invariance, and with the laws of
the quantum theory so far as they are understood.

The line of attack will be to start from the mathematical scheme of the
quantum theory as it is known for the non-relativistic domain and -to try
to extend it to make it relativistic. We shall find that there is one natural
way of doing this. But when we come to consider the physical interpre-
tation of the mathematical scheme, we shall find that the natural extension
of the non-relativistic theory leads to the appearance of negative energies
and probabilities. It hecomes necessary to make some new assumptions,
which result in the interpretation being somewhat less direct than one
could wish for, but which is all the same in agrecment with all essential
requirements.

[a]
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§1. 7he Brocket Notatron.

The most convenieni notation to use in quantum mechanies for wenersl
theoretical purposes in which one wants to be able to pass freels i one
representation to another is the author’s bracket notation) ‘I'he vectors
corresponding to the quantumn states are denoted by symbols | ), consisting of
a vertical line and an incompleted.bracket. If one wants to give a vector a
label, @ say, oue inserts it in the middle, thus |a ). Each of these vectors
has a conjugate imaginary vector, corresponding to the same quantum state,
which is written (| with the same label. Thus, in our example, [a) has
the conjugate imaginary (a |. '

A vector (b| and a vector |a) have a scalar product which is a number,
and which is written as a symbolic product { &[a ). (For brevity one does
not put two vertical lines). The following axioms hold :—

(a|d) = (bfa), - (1°1)
the bar denoting the conjugate complex number, and
{afa) > 0, s (1-2)

One can operate on a | ) with a linear operator, the result being another
[). If the linear operator £ operates on the vector | @ ), the result is written
as o symbolic product £|a ). Similarly, one can operate on a (| with a
linear operator, the result being another (|, and if the linear operator
operates on the vector ( b(, the result is written as a symbolic product (b | &

A vector |a ) and a vector (b| have a symbolic product @) (&|, which
is a linear operator. If this linear operator operates on [¢ ), the result
is |a) {ble), a numerical multiple of |a ), and if it operates on (¢,
the vesult is (c|a) (4|, & numerical multiple of ¢ /.

In all our symbolic multiplication processes the associative axiom of
multiplication helds, but not, in general, the commutative one. Of course
when a numerical factor appears in a product, such as the (5| ¢) and the

{¢la) In the preceding paragraph, it can be commuted with any othe,
factor. 5 :

As an example to familiarize us with this notation, let us study the con-
ditions for a set of vectors (7| to form a base of a representation in ordinary
non-relativistic quantum mechanics. The conditions are :—

The vectors must form a complete set, i.e. it must be possible to expand any

{| in the form ‘
(| = Srer (7]. " {1:8)

! Dirace, Proc. Camb. Philos. Soc. 35, p. 416 (1939).
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They must satisly the orthoconal nominalizine equation
(r}s) = dra) (1)
s being another label for one of them.

These two conditions are necessary and sufficient. From them, Lwo more
conditions can be deduced, namely :—

The vectors are all independent, i.e.
it Bpep{r| =0, then ¢, = 0 forall », (1:5)
and the operator
Selr¥drf=1. (16)
To prove (1'5), multiply the equation 3,¢. (7| =0 by 's) on the

right, getting | "
Ercf ('r 8) - .

or dis el
from (1'4). To prove (1'6), note that
. 07) <9'[S> == :’:rlq')Sra = !8).

Since the |s) form a complete set, like the (»|, we can infer that for
any vector |z ), o,

: S| r¥r|2) = |=z).
and (1+6) follows.

The conditions (1'5) and (1'6) are sufficient as well as necessary, since
(13) and (1-4) can be deduced from them. To deduce (1'3) from them, take
any vector {2 | and multiply it into (16) on the left. The result is

2lalry lr=(2]; ;
which gives (z | expanded in the form (1:3), with ¢ = (2| »). To
deduce (1°4) from them, multiply (1'6) by (s| on the left. The result is
E s r){r]| = (s8] = 2,8, (7|
or 2,(s]lr)y-8.,(r|=0.
Applying the independence condition (1°5), (1'4) follows.

The general formula (1'6) leads imwmediately to the law of matrix

multiplication of quantum mechanies in all its various cases, e.g.

(s|En|t)= Z,(s|E|r)(r]|n]|t)
and (r|Ela)=Zu(r|E|s)(s]| ).

Instead of the discrete set of basic vectors (» |, ome can have a con-
tinuous range of them, labelled by a parameter, ¢" say, that can take on all
values in a certain continuous range. The sams in (1-3), (1'5), and (1-6) are

- then to be replaced by integrals over ¢/, and (1'4) is to be replaced by
(L 19" =3 -9 (17)
[4 2]
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There now oxists an operator, ealled the operaior ¢, which, when oper-
ating on any |[¢') or (¢'|, has the effcct of merely multiplying it
by ¢’, thus ‘

gld)=d1g) <(dla=d<d] (1'8)
There exists another important operator, which wo may call the operator
gz—, which is such that when it operates on any | ), the ¢’ representative

of that | ) sets differentiated. In symbols
g d P
(fi|éq|>— dyf ¢ )

d

Hence (g | g
or

d ;
TIPS . 19
dg,(q B (19)

which shows the effect of ‘}; operating on a basic (|. Now, with the
help of (1'7),

’ d ” d ’ r d ¢ 7 dc\ ‘ ’
Mlplie re o X11e' =0 80 ) mm gl =)

d r rr
T g lg” .
d d

" S ) .
Hence % |42y = PP el ) (1-10)
showing the effect of Rd} operating on a basis | ).
We may check the commutation relation
d

TP 111
o g e (1)

“We have

d d . d d
3 = = i, e S A 8 ’ s ’
(g 1 dp-ale g ARGk s Al vg 5 KEs
and again

’ 'l ’ ’ d ad ’
(9|?3§ =£Z<{l['3é -y dg"<q"

Hence, subtracting
A a p
(q l(a-éq- 9;@) = {q |
and (1'11) follows.
“One can have more general representations in which the basic vectors

are labelled by scveral parameters ¢, ¢, . . . with continuous ranges of
values, Corresponding to each of these paramciers ¢, there is now an
A

operator ¢, and another operator
r




i\!!-.' AC ({-}?!J”f ,.J’:‘.H f'_.'!rf"f .',‘""'-'.j*f,i:.ﬁa_r!-'It"', )

With thoso representabions, the rvepresentatives (g, ¢s .. ) ) of
[ Y vectors are the wave functions of Schrodinger’s theory. If such o
wave function is normalized, it has the physical interpretation Lhal
[{g qs ...|>|* is the probability of the observables oo Gy oo

having values close to ¢, ¢.’ ... per unit range of variation of the:c
values. '

§ 2. Fock's Treatment of the Harmonie Oscillator.

A. corner-stone of electrodynamic theory is the simple harmonic oscii-
lator. Is may .be treated in guantum mechanics by Heisenberg’s matrix
method or by Schrodinger's wave functions, but a simpler method las
been discovered by Fock,® which is much more suitable for our present
purposes,

Neglecting unessential numerical coefficients, we have to deal with a
coordinate ¢ and momentum p satisfying

gp - pg =%. (2'1)

Fock’s method consists in introducing the variable
e 1y (p + @ 2:2
N Caler Rl ; (2:2)

and setting up a representation referring to & Such a representation is

of a more general kind than the representation referring to ¢ of the pre-

ceding section, on account of & not being a real dynamical variable. We
may take
; d 1 o ;

e B W) (2:3)

since this leads to the commutation relation

HE-E = M- i) -+ i)p- )] = - ilp-pp) = 1,

like (1-11).
The energy operator, excluding the zero point energy, is

: @ ;
1 2 2 ] iy e e (D45
1Pt e) -z=34(p + Wp - ) = & 5 (2°4)
The eigeninnetions of this operator (which are the represeutaives of the .

eigen | ) vectors) are & with « =0, 1, 2.,., giving the energ;

*Tock, Zeits f. Phys. 49, p. 330 (1828). There is a correction in Phys. Zeits. de Soviet. U.
8, p. 428, footnote (1934).
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levels. - It follows that the representative of any |a ) ecan be expressed
as a power series
(Ela)=ap+a,§+ a8 +a,k°... (2'5)
the various terms in the expansion correéponding to the various energy
levels. _
Let us determine the form of the representatives of the eigen ¢ | vectors,
An eigen ( | satisfies

LEge=nd]
or | (|E£IE')=?B<|E')-

Assuming that relations like (1'8), (1°10) hold for the E-representation, we
get _

& Q%IE'(IE'.)] =a{]E"),

showing that (| £ ) is of the form g-"-'. It follows that the repre-
sentative of any ( & | can be expressed as a power series
(b | §) =08~V £ B gt W (26

the various terms in the expansion again corresponding to the various energy
levels.

One may look upon the representative (E'I a ) for any value of &
as the scalar product of |a ) with a basic ( &|, and similarly (5| &)
may be looked upon as the scalar product of ¢ »| with a basic * 3
However, (E| and |E) are not conjugabé imaginary- vectors. The
rule that the same label is used for conjugate imaginary vectors does not
apply when the label is a value of a complex, dynamical variable, and the
conjugate imaginary of | £ ) must be written ( & | .

Suppose that the |a ) represented by the right-hand side of (2 5,
and the (b | represented by the right-hand side of (26) are conjugate
imaginary vectors. Then the coefficients &, and @, , which refer to the
same energy level, must be connected by a relation of the type

b,.‘— An An 4 (27)
To determine X, we note that,if (5| and |a) are conjugate imagi-
nary vectors, then soare (b | (p - i) and (p + ig)|a) or (b| d.E

and ¥|a). These vectors are represented by 2 (n +1)b,€6""* and
E‘a En+1  which must therefore be commcted in the same way in
whmh the rlghb-ha.nd sides of (2'6) and (2'5) are connected by (2'7), so

that
n+1)dy = Apsr1@yp.



Dirac—Quantum Electrodynamics. 7

" Hence : Ansr =(m + 1) Ag,

’

and we may take
Ap = 0!,

The condition (2°7) now becomes
| ] PR PG (2:8)

As a check, let us examine the requirement that /b | (p +1dg) and
(p ~ 19) | @) shall also be conjugate imaginary vectors, or ¢ t| E and

E |a) . The representatives of these vectors are - 37 b, E-" and

3, mea.E""'. We see that these series are connected in the same wa.y
in which the right-hand sides of (2'6) and (2'5) are connected by (28
with the exception that there is a constant term &, in the former w)uch
is not counected with any term in the latter, and which has no analogue in
the right-hand side of (2:6). To get over this difficulty, we must assume
that an arbitrary constant may be added to'the representative ¢ | &) of
any ( | and it still represents the same (|. Generalizing the argument,
one finds the need for a more general assumption, that an arbitrary ascend-
ing power series ¢, + ¢1& + & 5%+ .. . may be added to the repre-
sentative ¢ | €) of any ( | and it still represents the same ( | .

'The scalar product (b |a) of the vectors (& | and | @ ) whose
representatives are given by (2:6) and (2-5) must be of the form

v

(b|a) = #nboa}o +y1b1a1 +-ygbg?:+ gy

where the p's are real positive numbers. By suitably redefining the
coefiicients a, and b,, one can arrange to have the u’s unity, so that .

CHI Ay = b s Uity ¢ 0y 8y +osr " - (29)

This may be expressed as a con tour integral round the origin,

(blay = 5 <I> (o £t 4 by B + Dok b . ) AE (G + G E+ GalR +..0)

: 2:10!
- 7w 1 0EEE 0. 2
~ This result may be put into operator form
1=§L(j>|E>dE<EI, (2:11)
T

“' and is then the. analogue of (1, 6) for the present kind of representation.
~ We can now see how it comes about that an arbitrary ascending power series
sjn £ may be added to (0 | £ ), since such a series. would not a.ffect the
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Taking the vector (| to he the' conjugate imaginary of |y, so
that the labels & and @ are the same and the coefficients b, and a, are
counected by (2:8), we get from (2:9)

(ala) =Snl|a,|* =3 (nl1)=1 )b, |*. (212)

These sums must be convergent for vectors that correspond to quantum
states. It follows that the series S« w E® repi'e'éénting | @ ) must be
convergent for all & but the series 38, E-#-! representing . (4| need
not converge for any £, For this reason one usually works only with ¢ £ | )
representatives, and (| &) representafives are not suitable for general
theoretical inyestigations.- _

The form of (212) shows that if | @ ) is normalized, it corresponds to

a state for which the probability of th‘e energy having the value » is
Py =nlla,|?. : (213).
\

Let us work out the representatives of some simple operators. The unit

operator is represented by

CELLLE) = CELE) = gty (214)

since this makes

1 ’ H. -.f ‘! \ '
rm PeEiLe YEECE [a) = (E]a).

The operator £ is represgnted by
4 44 s
< E’ I E | '5” ) e ‘EW“E?'?- or 'E-,?‘z‘:'-? & (2'15) )
These two expressions count as equal in the representative of an operator,
since their difference is unity, which does not contribute anything when
multiplied into ¢ £”|) and integrated round.the origin with respect
to £”, and contributes only a constant when multiplied into (| ¥ ) and

ag

integrated round the origin with respect to &’. The obera.tor & is

represented by :
; . ’ d’ ' T E o

<EIE‘E|E >=(_ET'“*_ET" L (2:16)
since this makes Sl

) S g
i P CEIm e arcery - £ ey

2w

- bk B il o
rr PiclE e ce s =<5 (18,

271

These results confirm the assuinptions made in deriving (2-6).



Digac—Quanium Electrodynamics. 9

The foregoing theory may be oxtended to several harmonic oscillators, a
representation being set up with one complex variable £ for each oscillalor,
A quantum state for a set of 7 oscillators is then represented as a power
series in &,, &,, ... &,, which may be written

Eﬂa’ﬂl Ng o.. Ny £1ﬂ1 Ein' e Ef'n' )

summed for all n,, #,, ... n,. If this funetion is properly normalized,
~the probability of the various oscillators being in the energy states
My, %, ... N, respectively will be '

Pn1nz...n, = n,l n,! ... nr!la’nlng..;nrlz s (217]

by an extension of (2-13).

§ 3. Theory of Bosons by Fock's Method.

The electromagnetic field consists of light-quanta or photons, which
satisfly the Bose statistics. The general theory of bosons (p.u ticles satisfying
Bose statistics) is thus needed as a basis for the quantum treatment of the
electromagnetic field, and the best method of setting up this theory is one
due to Fock.? : :

A state of an assembly of u bosons is represented py a.symmetrical wave
function {¢”¢”...¢"|), where each value for a variable g represents
a state for one boson. Tet ys suppose for definiteness that the values a ¢
can take on are discrete. Then | g’ q”...q%[|>]* is the probability of
the first particle being in the state ¢’, the second in the state ¢”,'and so on.
Since, however, there is no means of distinguishing one particle from
another, the only physically significant interpretation of the wave. function is
that, if «#® »®'. .. are the numbets of bosons in the various states
%l when the distribution g g”,.,.,g" occurs, so that Sn =u, then

(uifnetndl. O Ke'g” . g P @
is the total probability of there bemg these numbers of bosons in bhe various
states. ; ey
It the number of bosons in the assembly is indeterminate, a state of the
assembly must be represented by a series of component wave functions

CAY ERE DT e Dy (o Tt ()
referring successively to 0, 1, 2, 3,. .. bosons, those referring to two or more

bosons being symmetrical. Each componenf, (g’ q¢”...q"|) determines
~ the probability of there being » bosons distributed in any way over the

3 Fock, Phys. Zeits. d. Soviet. U. 6 p. 425, § I (1934).
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various states, in accordance: with (31). > FIRNTE L& & e LR
is the total probability of there being % bosons in the assembly, and this
quantity summed for all » must equal unity.

Fock’s method consists in introducing a set of variables . £, E,, . . .,
one for each value of ¢ or for each independent state of a boson, and
representing a state of the assembly by the function (& | ) of the &s

<E| ) = Iy ul—§ 2q:.”q. Eq’-sq” o e Er_"‘ (Q’g”...qul ). (3'3)

This function is a polynomial in the :E’s, the terms of any degree
corresponding to there being u bosons in the assembly. The terms. of
the form  E7. E'q': ... correspond to there being n® bosons in the state ¢°,
n® in the state ¢° and so on, and hence the operator &,.9/0 &4« gives
the number of bhosons n? in any state g% The coefficient of' E :: E :: 1
equals the appropriate (¢” ¢” ... ¢%|) multiplied by w«!"¥ (u!/n®!2%!...),
the factor in brackets () being the number of equal terms occurring in the
sum over all ¢'s. Hence the probability (3:1) becomes
ne! nbl ... | coefficient of E:;: E;: et B R ke (3-4)

There arises a correspondence between the assembly of bosons and a set
of harmonic oscillators, each of the boson states specified by a value of ¢
corresponding to one oscillator. The power series in the &'s representing a
state of the assembly of bosons may be identified with that deseribing a state
of the oseillators, the probability (3-4) of there being various numbers of
bosons in the various states for a boson being the same as the probabilivy
(2:17) of the oscillators being in various quantum states. e assembly of
bosons and the set of oscillators are mathematically equivalent systems.

The transformation from the set of components (3°2) to the function
(E|) is a linear transformation and is therefore expressible in terms of

' 4 r

a transformation fqnction (R g g%y, ‘thus
AE])=FuZg... o E|gL .. ") ...¢"]| ). (3D)-
Comparing (3-5) with (33), one finds : . |
L KE| g gy = wl b g B (36)

The operators &,, 0/0£,, when operating to the right, correspond
to the emission of a boson into and the absorption of a boson from the
state g respectively. From the theory of § 2, one sees that these operators
are adjoint (i.e. (@ | &, and 9/0f, | ¢ ) are conjugate imaginary vectors,
andsoare (a|0/0E, and §,]|a)).
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§ 4. Relativistie j{'_focm‘y of a Particle.

-

Let us take for simplicity a particle of zero rest-mass, as we shall
afterwards apply the theory to photons. We want our work to be of
relativistic form throughout, so we must first generalize the conditions of
" § 1 for basic vectors to get them into relativistic form.

A state of a particle without spin ie represented by a wave function
(Zo@, Tr2s| ), or (x|) for brevity, in which tLe time w, appears
on the same footing as the spacial coordinates #1% By, 2y . (The velocity
of light is taken as unity.) The wave function satisfies.the wave equation

‘oO¢x|)=0. fims (4-1)

The value of the wave function for'any point in space-time x may be
regarded as the scalar product of a vector | ) corresponding to the state
and a basic vector (x|. Since (4-1) always holds, the basic vectors
¢ x| cannot be all independent, but must satisfy

o{x| =0. (42)

-

This marks a departure from (1'5). A similar equation must hold for the
conjugate imaginary basic vectors S

Olx)=0. t . (43)

We need a rule for fixing the scalar product of a wave function ( x | @3
and a conjugate wave function {b|x), which rule has.to be connected
with the physical interpretation of the wave functions. The only Lorentz-
invariant rule is the one put forward by Gordon and Klein, which involves

“abandoning (1'2) and thus has the disadva.nﬁage, from the physical side, of

leading to negative probabilities in the interpretation, but which is quite
satisfactory from the mathematical side, since (1'2) does not play any
essenfial réle in the mathematical development. ‘ ‘

The Gordon-Klein rule makes - :

lay= g f[] [ ¢2 x).(xja)_mx>5%;<g|a>]¢m@,m,;

the integral being taken over any three-dimensional surface a:u'= constant,
and being easily seen to have the same value for all such surfaces. This -
result may be written for brevity

(b]a):(%z‘)-l[(b_[x)(q-r)<x|a>dx, (44)

where dz means da,dr,dx; and T. and I' mean 2/ow, operating on
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the expression to the left and. to the w'ht respectively. It leads to the
opera.hm equation

= iy [ |2 (1= (x| de (4'5)

~ which replaces (1'6) in the present scheme.
- As examples of (4'4), it follows that -

Ch Xy = (4,r¢)-:j<b|x'>(~1' D)X | x)ds

ﬂnd <x#|a> s (4“_,‘,:)-1 [(xflxrr) (.-]H i r”)<x”|a)d$~-.

These results, considered as equations for the unknown function (x’ | x”),
have the solution ; :

(X |2y = -id@@ - X, (46)
as is easily seen by taking the integrals in them to be over the three-dimen-
sional surface 2, = #,” and using the property of the A function given
by Heisenberg and Pauli* : o '

0A tx)
oz,
Equation (4'6) replaces (1'4) in the present scheme.

The relativistic quantum theory of a particle involves negative energles
as well as negative probabilities. They may be examined by passing to the
momentum-energy representation. On account of (4'2), the basic vectors
(x| will have a Fourier resolution of the form

= 4w 8(21) 8 (s) 8(a's) for @y = 0. (4°7)

(x| = (@m) '3, [”3"“""<kl_ko-‘ dky dky ks, (4°8)

where (k, x) denotes the scalar product %, 2, - by 2, — ks 2y - ks m,- and
3k, denotes a sum over both values of %o thab go with any k., k., ks,
namely :

: ko = &£ (ki + kot + 0% S . (49
The %,~' factor is inserted into the integrand of (4'8) since the combination
kot dk, dk, dk, is Lorentz-invariant, so that the Fourier coefficient { k |
defined by (4'8) is Lorentz-invariant. The vectors { k| thus introduced
may be considered as the basic vectors of a representation, which is, apart
from a factor h, the momentum-energy representation, the energy p, and
the momentum components p,, p,, p;. being connected with k according
to pu=~rFkuh.

¢ Heisenberg and Pauli. Zeits. f. Phys. 56, p. 1, equation (64) (1929). The A function we
are using is minus that of Heisenberg and Pauli.

-
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Put '
kﬂ- : d’ﬂ] d’ﬂg'dk 3 = ak

for brevity. The conjugate imaginary efjuation to (4:8) is

|25 = (@m)-1x, o 77 (k) ak, (410)
Thus

Bakext - (25X - wzkk,j oMK (s ) | k) (K| BkK .
Integratmg overall =,, z,, #; for ccmstant @y
J1x>('1 - IXx|de = 2003,

J f ¢ B0 FV 20 8y = 1) & (hw = B') 8 (s = )y + &) | K YK’ | @ .
5 (411)
The integrand on the vight vanishes unless ky= X%/, ko= k), ky= £,
which lead to k,= + k,”. But it also vanishes if %, = - &/, and
therefore vanishes unless 4, =%, . Thus (4'11) reduces, with the hLelp
of (4'5), to e o . t '
1= z,,J!k){k[@k. | - (4-12)

This is the equation which replaces (1'6) for the k-representation. It
is connected with the physical interpretation that the probability of
ky, ks, ks having values within the ranges dk,dk,dk,, with i,
having either of the values (49), is - \ :

Wk|ad|? ok = Kk|a)|* ko dkydha dk,, - (413)
for a state corresponding to a nbrmalized vector |a). The pgobé.bility
(4'13) is positive or negative according to whether %, is positive or
negative, which shows that states of positive energy always occur with a

positive probability and those of negative energy with a negative probability.
: From (4:12) 0%
1Ky = zkaj-|k)(k|k’)ak,
which shows, since the | k) are all independent, thab
(k|X)= K (k- 1)@ (fr;—- k) 8 (ks - k() when k,, &, bave the same sign
- when %,, k,’ have opposite signs.
(4.14)

This is the equation which veplaces (1'4) for the k-representation.
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8 5. Relativistie Theory of Bosons.

The theory of bosons of § 3 may be made relativistic in a straightiorward
way. For bosons with no spin, one replaces each ¢ by x, denoting the four
coordinates of the boson in space-time. Thus one gets, instead of (3-2) the
series of component wave functions ; :

1y, (XY, (X2, (x'x"x7 ), .., (5:1)
those beyond the second being symmetrical. Let us again take the case of
particles of zero rest-mass. Then the various components (5-1) satisfy

Do (XX R w8y B - (b2)

The Gordon-Klein rule can easily be extended to apply to a number w

of bosons and reads, in the operator form corresponding to (45),

1= (41r12)"‘ﬂ | 2% 5 2V PN 1) (= [Nx’x”... x| do'd”. . . da®,
(5:3)
"The various operators 1 and T here all commute with each other, so their
order does nobt natter. One can generalize (5°3) to apply to a variable
number of bosons, by summing the right-hand side for all . :
One can alternatively work with the momentum representation or
k-representation, replacing (5-1) by a set of functions referring to the

k-variables
1)y (K| D), (KK ), (KK'E” |),
and one then has instead of (5'3), by extending (4'12),

P s R “ | KK ..k* Y K" .. k¥ | 9k 9k”... akv. (54)

We now introduce the £'s, either £,, satisfying: O E; = 0 or &y,
defined for k,= + (%® + &* + k)%,  Corresponding to the non-relativistic
theory of bosons, we represent a state of the assembly by a power series in
the £4's, using the transformation function ‘

(Eg |2 %70, %x%) = w!ld Exp8gn... Exa (5+5)
or as a power series in the £y ’s, using the transformation function :
(B | X K’ ...k k%) = wl"d By Epo ... Egu (56)
The first power series is, from (5°3) -
TEaet gu(‘;iﬂ-i)-“” (EL[xx. xy (-,
‘ (TIPS (2" o x% ]S da i du”

=z..(47r-€)""u!‘*n Ex Expor  Exu (1=
s (T¥-T'% (x'x”...x%|) d2’...dz" (57
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and the second is similarly, from (5+4)

R s T | L e

-

(R K7L, kY| ).k K" .., 2kv.  (5)

The two power series are easily seen to be equivalent when one refers to the
connection between £, and &,

Ex = (3w)7) B, J’"i(k'-‘] Ex 0k, (59)

which corresponds to equation . (4:10) for basic Vectors. The coefficients
in (&x|) may be used to give the probabilities of various bosons being
in various places, and the coefficients in ¢ £y | ) may be used to give the
probabilities of various bosons having various momenta. The latter of these *
probabilities are the more usefal, so we shall consider them in more detail,

Let us replace the.continuous range of k-states by a discrete set, by
enclosing the bosons in a finite box, or otherwise, and let sy be the density
of the discrete set, per unit volume of (k,, /., & s)-space, in the neighbourhood
of any k. Integrals over &k, k,, &, are now to be repla.eed by sums, so that

(5'8) becomes :

= - ’

(k) = By wl™d 3y g b Epr ... Epe
' (K" k"...k"|) (k, sy &y sy ..\ % 8) 2.
From (4:13) transferred to the case of discrete k's, the probability of there
being one boson and of its being in the state k is [ Ck|)])? (B, sp)-2.

Generalizing this result, we have that the probability of there being » bosons,
ne of them in.state k7 n; in state k? and so on, is-

lnal sl . ) [CK R, R ) | (kS s B sy ... K® 8g0)-1,
where n, of K'k”...k" are equal to k¢ =, of them are equal to k?,
and soon. This expression equals :
.fn.,.l ny! ... | coefficient of & e (il ¥ P
' (Bs® sya)™-(k® 8p)™ ... (6:10)
For %, » 0, £p may be .éonsidered‘ to describe a hnrrﬁonic oaciliafor.-
It must be taken as (k, sx)? times the Z of §2 or 3, to get the same.

weight factor in (5:10) as in (3'4), and thus satisfies with its adjoint" £¢ the
commutation relation - paerion

ER Ex - Ex &F = &, 8y . e g



/
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For &, < 0, one no longer has the analogy with the harmonic oscillator
but (5:11) still holds, as may he verified thus:—

Consider the degree of freedom corresponding to £y by itself, a.nd take
two states, @ and b, represented by

(Ekl“) - Eanf'ﬁ

(Ek|b> = Eb» E:

Corresponding to the physical interpretation (5 10), we must have the
multiplication law - :

. Cald) = Znla, by (ko 83)".
Using this law ‘ '

CalEEIBY = Sl ay ba, (ko 50"
Taking fhe_ ‘conjugate complex équabion,
(D1 & @)= 301anBa,(bysx)" = 3 (0 = 1) By (nankysy) (R 53)"
showmg that Ef |a) is represented by

E?m..k e k, 3"dE (5k|“)

E[.‘hus Ei = k“sk“?
k

and (5°11) follows, whether %, is positive or negative.
(6°11) leads to -

E_:-Ekb = EkbE{«gko"Sknsab; 3
Passing back from discrete to continuous k

]

kel — B Efa = Bo" 8k - k) 8 (ks - k%) 3(k* - ko)
: when % &} have the same sign (612)
=0 when ks k> have opposite signs.

Returning to the &4's, according to (5°9)
T Ear—Exnkd = (20)"* 340 am, |:|.e" i, ) i (&, %)
' (E :r Eku » Ek" E;;) ak’ ak”
= (27)-? E"'oJ"’ -i(k, x' -x") ol
= - 21(2%)"? Isin k', ¥ - x”) oF,

where in the last expression %, is vestricted to be positive. Put x'-x" =x
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and let |z|= (z'+ 2"+ a*)}, and 0 be the angle between the three-
dimensional vectors z,, ., s and k,, k,, ks. Then

E e, - E - - in J jain [y (@, - | @ | cosj0) ]k, dk,d cos @
cosf=1

= - ir”! |m|“I:cos [ko(x, - | # | cos Q)] dk,

cosf=~1
=~ n! |9«‘]"_[: (cos [ko(o | 2| )] - coB[ko (o + | 2 )]} d,

= -~ iz 8@, - |2])-8@ +|2]))
. R TN R Y T T (513)
The operators §,, E: , when operating to the right, correspond to the
emission of a boson into and the absorption of a boson from the momentum-
energy state kh, and likewise the operators £_, § : correspond to the

emission of a boson into and the absorption of a boson from the position
 state x. The commutation relations (512), (5-13) which these operators
satisfy should be compared with (4-14), (4'6) of the one-particle theory.

The above relativistic theory for spinless bosons of zero rest-mass may
easily be extended to apply to photons. The wave function for a single
boson must be made into a 4-vector with components corresponding to
the four components of the electromagnetic potential. The 4-vector wave
function may be considered as a function of the four coordinates x and of
another variable u taking on the four values 0, 1, 2, 3, and may be written
¢(Xu|). The u here is not a suffix attached to x, but is an independent
variable, which is written in the lower position to express that the whole
function (X, |) is subject to the contravariant law under Lorentz trans-
formations, and which may be raised by the usual rule

: (xXk|) = gm (xy]). (5:14)
The multiplication rule (4:5) must be extended to

t

L —g#’(41r11}"[|!,:.)('1 - ) (xy|de, (5-15)

in which the - sign_ is inserted with ylmf for convenience, so as to give a
factor + 1 forpu and vequal to 1, 2,or 3. Similarly, (4'6) must be extended to

(XulX") = gw A - X'). (5°16)

In a corresponding way the wave function for » particles must be made
into a tensor of rank % and may be written (x'uxx”, ..x%|), in which the
@, v, ..., r are independent variables from the x's. It must satisfy the

[B]
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symmetry condition that it vemains unchanged when any permutation is
applied to the x's and the same permutation to g, v, ..
plication rule (5°3) must be extended to

r. The multi-

1 = (= duws)=" ” s oo X1 = B (1~ T s . (1Y =T

(gl x'"[dc"dm" o o d®,  (6°17)

The further development of thes: cxtensions is obvious and need 10! be
mentioned in detail. The result is that the positional emission ojerator
becomes a 4-vector Exu, and satisfies with its adjeint E:y. the commutation
relation

Exubuy - Eonbry = 9,0 -X),  (518)

corresponding to (5:13), and similarly the momentum emission operator
becomes a 4-vector Ewu, satisfying with its adjoint Ex, the _commutation
relation

E:,uek’r 57 Ek'v E;,u = gmf ko 3(’1‘1 . k1') 8 (k:"f IC;') 6(’& - k,')
when Z%,, %, have the same sign J
= 0 when %,, k,” have opposite signs

(5'19)

corresponding to (5:12). >
§ 6. Classical Electrodynamaics in Hamillonian Form.

For one electron, with coords 2z, and momenta p u» We have an
elementary theory with the Hamiltonian ‘

. 1 . ‘ 9 I . } % ~ 5
Fu—%{(p~eA(§)) Cigal L ¢ (61)
in which A(x) is a given field. The Poisson Bracket relations are
: [.p;u zr] = Jur: {6'2)
The general equation of motion is
i :
Z-wErn. (©9)

This gives

d | ' '
e _%.; = %(P,‘_mp(z)) - (6°4)
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the correct connection between velocity and momentum, and

- W Y

s . o0RB - m

(65)

or m =

s, dzv(pAy 04
st " ds \par v Ja’

the correct equation of motion for an electron in the given field A(x).

We must generalise this to apply to several electrons and include the
interaction between them. : let e;, m;, 2ui, Pui, 8¢ refer to the ith
clectron. 'We now have several independent variables 's‘; and a dyhamicai
variable £ is,in general a function of all of them, satisfying equations of
motion of the form '

dE » ’ H i
T -Er. (69)
For conisbensy'of these eG_uatiéns of motion, we need $0%: o iondll
: : ds;ds; dsj;ds;
forall § or- . " [[E, F5] Fs] = [[E, Fi], ¥Fy].
From Poisson’s identity [E[F;, F4]] = O
or . [#:, F;] = a number.

Again, each F; must equal zero throughout the motion, so we also need
4 7
s Pl M
[Fi,'F)) = 0, e (67)
which is a rather stronger condition than the above one.
Let us now assume :— :

P.B. of two variables referring to different electrons = 0,
P.B. of 4, (x) and any electron variable = 0,
F; is of same form as for one electron, :
F, e l(p--e A ))’ “mel =0 (6°8)
i 9 m; ! i i Ii' ) ’ b
" Then ‘ ' _ _
_!_int' -t Q, . : t_l._}.?_‘u_i = ( for j + 1:, ‘(6°9;

ds;

showing that 2ui, pui, depend only on s, as they should. As for one
electron - '

C 7" o 8 l
. e g 6“"‘“("))' b I
which is eorrect, and
d*2pi  dzv (04, 04a) g
g T gy (aw*‘ T 8" ) s
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This must be made to a.gtee. with Torentz’s equation, iucluding.'rafdia.tion
damping, which is (puttmg dz;/ds; = v¢; and u dots for higher
derivatives), _

mi”#‘“‘gei,&f!“'* §6£"(7V)%‘ = : .
e 'U”‘ [:',Z‘T#r.in"i' Ejtiai F‘uvjnt}l‘ (6'12)

with
: 04y 04, e : ;
Fw' = du. gt v (6:13)
Now it may be verified that on the world-line of an electron,®
F_uyret—' Fﬂ-l’“dg = ‘115 ('Dp. 'l? - Uy v,.), ¥ (614) i

o (6 12) may be written
MiVui = €07 (Fuvin + 2j4i Fm;rst + 3 Fuvire %Fplﬂiadv]”i' (6:15)
This agrees with (6:11) provided the A in (6:11) has the value
A+ Ej#l' A_fr‘et +..'%A|:ret g ‘%Aiadv (G'IGJ :
when x = g;. : : .
The Wentzel field® A » (Xx), is defined by

Apw ) = App(X) + 364 J‘" 'vlm- .(s’;) A (x —.zi (s’,-)) ds;. (6:17)

\

It depends on the eleciron points
3¢, which may be chosen anywhere
on the world-lines of the electrons, ﬁ
The contribution of 'an electron to
A y-, namely

aulj-PHoM LOJYI31a
-

(7
9’.
,

_- e r vu A (x—z’jds’,

has the values shown in the figure.

& Dirac, Pri 'Rrx? Soa., A 167, p. 151 (1938).
$ Wentzel, Zeils. i II»_, . 88, p. 479 (1948), gives the main propertiee of this field in the
guanfum theory.
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Aw (x) has a singularity at each of the electron points x = z,, its
value at one of these points depending on the path along which one
approaches the point. Suppose the electron points are all outside each
other’s light cones, _ ; :
(z: -29)* < 0 T+ 7. : (6-18)
Then A 4 (x) has the value : S :

(1) Aup+ 334, if one approaches the roint - x = 2z; along
a path outside the light-cone from z;,

(i) A + 3530 Ajrm if one approaches the point x = z; along
: a pabh inside the future light-cone from z;,

(i) A + 2;A; 5,4 - Ao if one a.pprdaches the point x = z; along
a path inside the past light-cone from z;.

Expressmn (1) is just the Ma,xwell field. The mean of (ii) a.nd (iii) is
Am + EJ#‘ A;rei + %Aint = %Aiado:

which is just (6:16). We can thus make (6 11) the correct equabmn of
motion by taking

; A = 3 {Apx+2)+ApE=-2)) - (6:19)

where A is a small time-like 4-vector, made to tend to zero ultimately,
provided :
: Zi-5;22)%<0 . N (6:20)
This is a sharpening of condition (6:18). (6:20) may be looked upon as a
restriction on the values s;, s; ... of the independent variables, One
‘may suppose that a dynamical variable is undefined except when this
restriction is fulfilled. :

It remains for us to get the correct equations of motlon for the A, (x).
From (6'17)

Ry
ds

i

=e;Vui AX -2,

so that, with (6:19)

d‘f;; O o jevuilA@-zr N+ AE@-B-A). - (621)
The equation of motion
d4 ,(x)
2 = [4u (@), F)

agrees with (6:21) provided we assume
[4p®, 4)(X)] = $gw(A@-X +2)+A-X - V). (622)
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This completes the scheme of I.B.’s and the Hamiltonian formulation. We
have

[‘Fts .}] - 0

provided (6:20) holds, so the consistency condition (67) is fulﬁlled
From (6°17).

OAw =0 . (6-23)
since OA(X) = 0. Again '
a i r a ’ I d
aﬂi Ap.w == 2,‘ ei_'--m'v,,.i a—;}—p A(x - &3 )d-‘!.-
U e
= -—Egﬂij 'Upi’g“"':' A(x—zi)dsi
- Q0 ! #t [
= Ee.J‘ ds,A(x-z Y ds{
= - 2; é; A (x g S-,'). : (6'24) ;
These equations are to be contrasted with thnse for the Maxwell field A 5
04 uar
A e =0,
OAy +0 Er 0

The Wentzel field can be resolved into waves travelling with the velocity
of light.

Using (6°19) : ;
DA =0, : (6-25)

22D N a@-ze )+ AE-E- M) (626)
M h ,

These equations are not consequences of the equations of motion, and they
. therefore have to be imposed as extra conditions. One can verify that they
are consistent with the equations of motion, 7.e. if they hold initially they
hold always. This follows since

[ODA, Fi] =0 (6:27)
and, putting _

Ry aAuix)

+ 33 {AX-2;+ M)+ A(x -2~ k)],. (6-28) -

we have

[R(x), pui- e-z,;A,u(z,-)] = - J‘;e,;—-aw (A(x-2;+ N+ A(x-2z; - \))

_i,g,a a{AE-2;4 0+ A(x-—z.-x)}
=0, (629)
0. (6:30)

]

so that [R(x), F;]

- Thus OA and E(x) are in any case constants of the motion.
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One can pass from the above wany-time Hamiltonian formulation of the
equations of motion to a one-time fornulation, which is, of course, not of
relativistic form, in the following way., First replace the Hamiltonian
equations (6'8) by the equivalenl equations (for po—e; 4, > 0)

F/=-pug+ e Ad,(2) + [mi+ 3, [pr - ":’Ar(zl’)]gié ='0’ ‘6'?;1)

where » = 1, 2, or 3. In terms of the #*;, the equations of motion are
easily seen to be : :

S0 .

dz_n,-

Now pub all the times z, equal to £ Then, for £ independent of the
Poi and 8., |

A g 3 @) - (5 H) (6:32)
where
H =3, F{ (@), (6:33)

or, ag will do equally well

H=3i[eido+ (md+3,(pn~e:4,)"1] (6:34)

§ 7. Blimination of the Longitudinal Waves.

The field 4,(x) may be split up into longitudinal and transverse
waves, as follows :— AR S

Split up the three-dimensional vector field -, (%), into a divergence-free
part M,(x) and a rotation-free part L.(x), le.

4, =M. + L (7°1)
where Zr %%’ = 0 (7-2)
oL.- 8k |
a0 3
ot o a, ' . {8
and do this so that ! :
oM, =0, oL, =0, : (74)

Then M, gives the transverse waves, and L, and A, the longitudinal

waves,
- This splitting up is net relativi iic, but it is of intervest in spite of this, -
because the longitudinal waves can be eliminated {rom the Hamiltonian
formilation by a contact transformation, thereby effecting a simplification
of the equations,
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The contact transformation can be given most conveniently by building
it up from infinitesmal contact transformations, each dynamical variable §
being transforined according to

dgt )

- [£®, 8] 0gr<l (7°5)

from its initial value §©@ = & to its final value &0 = E"‘ say.

Take | G(rr_-x,-e,-[J'A},"d:co] : (7°6)

By

in which the arbitrary function of 2,, z,, 2, in IA f,” dz, is chosen so

as to make

ajA ) gy = 0. )

Then z, and 4, (x) are invariant (ie. independent of r) and

i Foa 0 fiacs
drx-——=-—‘§3.r'31§m< ) m< )} Jan

where | # | means the length of the ‘3-dimensional-vecbor ., and for the

0 :
triplets (1) the first member is to be taken when x is in the past part of
0 .

the light cone z;- A or z;+ A, the second member when it is outside
the light cone, and the third member when it is the future part.
Integrating (7-8)

g8 L0 ey by
A‘“WL’A°“)'%'E”‘{Fﬁi5117<5)* e (L)

(7°9)
and thus
i
3 - x ‘10
Ay (@)D = A,(z9) %fi:*c"’!g‘ ,J+,\| [ .--ZJ-W ¥ )'
(r)
Again dg}ﬁ = —e; A,(2)7 .

Using (7-10) and integrating,
1
-z;+As+|m—zJ—Ad'

P = po-res Ao (8) +1reiS 4005 {;z.
Taking r=1,

1 1 :
p.;-c;Ag(:;) wpg" -&8(2,‘:}:;81’ |$,‘ —-Z;'!'ll * TRE x];. (711)
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fbe |

Onee more
() o G g
dpl ek ("{Jrr f.. !’-"nl : (712)

olr ! z;

To evaluate this we need some subsidiary work.,  From (7°3)

L, = ':]h’_ ; (713)
o
where 8 may be chosen so that
(18 =0, (7-14)

Thus (6:26) gives, using (7°1) and (7-2),

0 8
0 .

0ds 08
B aang ‘-EE,‘." ~Z:+ A) 4 ~2Z:- X)),
% 0o  Ov 53 (A(®-2:+ N+ A(x-2z ))

Integrating with respect to »,,

28 B e & S it N4
DRI T 7 B IS 5 O BTN sk o
02, @ —-2;+ A| 0 | & -24= A 0 }

+ F(@1, 0y, (715)

where the arbitrary function / must be chosen, from (7°14), so that O applied
to the right-hand side of (7:15) vanishes, From the theoremn

1 . |
0 E) =9 (7'16)
) (0>

which holds even at the origin, as may be verified by integrating (7-16)

through a small volume around the origin and transforming to a surface

integral, when one finds that it vanishes, one sees one must take S =0.
Multiplying (7-15) by 2 and adding to (7°9),

01 SRS SR T

axo

’ 1 0 1 0
ik MEr e B e == -
—3r2"c’t[w-~z;+z\'] <é> " | 2 -25-A | 3)}'
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Integrating with respect to z,,
IA,,den SR B9 JA., dis - 958 =

1 -1z ~2; +2] :
= §r 3 L) I‘;’:—'z"}-r(\—l-- o =Zoit A +

|2 —2; +A|

1 -| e -z - A ) .
* T AT 5+§(-’¥1,-’1’2;‘”3)n (717)

|z -2; -]

where the arbitrary function g must be chosen, from (7°7) and (7°14), so that
O applied to the right-hand side of (7°17) vanishes. From the theorem

- ||
1 L]
DT:W( ,i‘]) T e

which, like (7'16), holds even at the origin, one sees that g = 0. Using
(717), (7-12) becomes ‘

dp® et ] .« (as
,_dr = - Gi(l —21’) J L dzo » e .?.-ret- amr)h =

s | Ay bt ™ *g3 A
_%Tegzj:f;iej{_(z zr;..z-(il|fj+ o)
% J \

(zr - Zop = Ap) (Ros - Boj ~ )\n)}
| #s - 2; - A |? :

-+

+

- Integrating with respect to = from 0 to 1,
. | 38
YTl = ~ % 92", s
i zfj"}” Ar) (zoi - %o4 t Ao)_
|85y = X[

G o A.,)} |
|8 -2~ A]°? 2

- }eiZjtie, -{(z" +

+

and thus-

Prs—€;id,(8)) = pfi - e M, (z;) +

(2 = 2y + Ay) (Bos — 205 + Ao)
I Z¢g — &5 + )\I %

+

+ Le; Zj4ie;

+ (SN-S,,-—-I\,)(E:(,;-—%;—AO). (7.19)

{ B¢ =gy » N |2
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This equation and (7-11) give expressions for  p,a - e; A u () in berms of
the new variables Pui» M, (x), and by substituting these expressions
into the Hamiltonians one eliminates the longitudinal waves,

In the limiting case A\ = 0, (7-11) and (7:19) reduce to

Poi - i da(s) = pdi - deiZgpi
lzi - 85
Pri-¢: A, (8) = pf — e M, (89 * - (720)
. (295 = Be9) (Bo i — 20j) '
i 3 o Bl F el B
+ de; Zjtie; . ¥ b ]

The one-time Hamiltonian (6:34) becomes, after elimination of the
longitudinal waves, in the limit A = 0,

268 L3, (w43 (e - e MY (1)

z; — 55

H = 2‘; EJ<‘ ——

The ordinary Coulomb interaction energy appears here to replace the
longitudinal waves.

§8. Passage to the Quantum Theory.

The preceding classical theory may be taken over into the quantum
theory, by makiug the dynamical variables into operators satisfying com-
mutation relations corresponding to the classical P.B. relations. No
ambiguity concerning the order of factors arises. One may replace the
form of Hamiltonian (6'1) for a spinless particle by the form

Fap—edys) -3, a’(p,~64,(08) ~ aqgm=0 . (81)

for a spinning electron.
Each Hamiltonian F; provides a wave equation

Fi|) =0 (82)
To examine the consistency of these wave equations, note that they lead to
F;F;|)» =10 Fi¢F;l)=0
and hence [Fe, Fgl]l) = 0. \

The equations are consistent since [#;, F',] = 0, {for either spinless or-
spinning electrons, provided (6:20) holds.

The extra conditions OA = 0 can be taken over unchanged into the
quantum theory, since they are consistent with the commutation relations.
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However, the extra conditions R(t) = 0, with 2 (x) defined by (6:28),
are not consistent with the commute tion relations, since they would lead to

. I—Iﬂ (x) ) 4,|| (.\"}1 = 0 -
whereas actually

o~

(A(x=-X +2) + Alx=-x"= 1))}

[B@, 4a(x)] = 4,2
The way out of the difficulty was sl own by Fermi. It consists in assuming
that the only states | ) that occur i1 nature are those for which
’ R(x){) = 0. (8:3)
There is one of these conditions oy cach %, and we must see that they are

all consistent with each other and witl (8Z). We have

[2(x), R()] - [2442), 24001

0% : ox'y

i

2

= im fa-x'+23)+ A(x-%X - M),

=-30AE-X+N)+AxX-X -2 =0, (84)
showing that equations (3'3) are consistent with each other. From (6-29)
[R(x), Fi] = 0,

*

whether F; is of the form (8'1) or (6°1), and thus (8'3) is consistent with
(8'2). Hence the conditions are consistent and we have a satisfactory
mathematical scheme.

It remains for us to get a method of physical interpretation, by intro-
ducing a representation which will allow us to deduce from the wave
functions the probabilibi'es of various physical conditions holding. Since
an interpretation of the electromagnetic field must involve photons, we try
to connect the theory with the relativistic theory of photons of §5.° The
obvious way of doing this is by putting :

Au(® = G0} Exogn, 0t Exepn, ) (85)
since this gives from (5'18) the correct commutation relation for
[Adu(x), 4, (&)],

namely (6:22), and makes A4 ,(x) self-adjoint in the limit X = 0.

The wave function may now be taken to be a function of the coordinates
z,i of the electrons and of the Exu, referring to the momenta of the
photons, 1t is defined only for the z’s satisfying (6-20) and it is a power
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sories, or rather a power integral in the k., containing, for example, linear
terms like

"“*k-,.[ el Ky 0K . (86)

and quadratic terms like

T [ ofwE, Euy 2K 04" (c Fo = ofy) - 87

The variables £}, occurring in the Hamiltonians become operators of
differentiation with respeet to the Exu.» with numerical coefficients chosen
to give the correct commutation relations (519). Thus Eg. applied
to (8'6) produces - cy,, and applied to (8'7) it produces

2 ijﬂi"n E e OF.

The coefficients in the power integral now give us the probability of the
electrons being in specified places at specified times, with specified numbers
of photons existing in the various momentum-energy states (in accordance
with formula (510), if one passes from continuous to discrete k-values).
This method of interpretation involves negative photon energies and negative
probabilities. The way to understand these will be discussed later.

Longitudinal photons have no practical significance. It is therefore
desirable to eliminate the longitudinal electromagnetic waves, which can be
done by taking over the work of § 7 into the quantum theory. (This work
was arranged so that every step in it can be immediately transferred to the
quantum theory.) One then needs to use (8'5) only to connect the
transverse part of 4 ,(x), namely M ,(x), with the transverse parts
of £x, and £%,, and only the transverse components of £y, will
appear in the wave funetion, i.c. those linear combinations of Ex,s Exy Ex,
which correspond to directions in three-dimensional space perpendicular to
kiiiky, By

After eliminating the longitudinal waves, it becomes practicable to solve
the wave equations by a perturbation method, treating those terms in the
Hamiltonians that contain field variables as the ‘perturbation. The
important question now arises, whether the integrals arising in the solution
are all convergent for high k-values. If they are not, the whole theory
would be useless. :

From (8'5) and (5'9) one sees that & ku> &ky occur in the Hamiltonians
only in the combinations

3, J ei(k"‘_é")Ek# ok, 2, J. gt 4N Ex, 0k, (88]
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With the perturbation method of solving the wave equations, the various
terms in the wave function are given by repeated applications to the original
wave function of the operators (8:8) and of other operators involving the
electron momentum variables in a rational algebraic way and causing the
appearance of rational algebraic functions of the k’s. An application of the
first type of operator (8:8) does not lead to a numerical integral over the
K’s, but an application of the second type leads to a numerical integral of the
form

z;mjf(k)e-“‘v*)ak i E,:.OJ‘f(k)e"(k"""zf“}"alr. (89)

with f(k) rational algebraic. Carrying out the integration first with respect
to &y, taking fixed ratios %, : k. : k. : k5, one has an integral of the
form

I glk) e 2 dk,, (8:10)

where a is a number of the order X or z;-3z;, and ¢ (k,) is rational
algebraic. Thus for | %, | very large, g (k,) is of the form %™ or L =+,
It is reasonable on physical grounds to approach the upper and lower limits
of integration in (8:10) at the same rate, so the integral becomes of the form

Ik,f"cosk,a,dk, or Ik02"+‘sin?c°adko. (8'11)

Such integrals oscillate at the upper limit, but it is reasonable to take
. the mean of the oscillating part (as one does in other cases in quantum

mechanics, e.g. in evaluating (¢’ | p" | ¢”) = h‘éJ prew-9")Ih qp)

and one then gets a definite value, which remains finite as A - 0, causing
possibly @ - 0.

It is necessary that both positive and negative values of %, should occur
in (8:8) and (8'9), otherwise one would have, as well as (8:11), integrals of
the form '

-I' 'z"-:ow"“l co8s kﬂa dko ’ _[ kﬂzn sin kaa dko ’ (8'12)

and no procedure of taking the mean of an oscillating part would enable one
to assign a finite value to such integrals in the limit « =0. One would get
instead terms of the form a-**-%* 6 g-*-! The earlier quantum electro-
dynamics of Heisenberg and Pauli, which worked with only positive-energy
photons, was faced with just this difficulty. |
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89, The Redundant Variables.
Corresponding to (8:5), define

Bu(x) = 30} (Exapnu - Ex-p u), (91)
which provides us with a new field. We have, from (5:18), :
[Bu(®), 4,(x)] =0,

and thus the B, (x) commute with all the dynamical variables oceurring in
the Hamiltonians. Such quantities are called redundant variables. They
are, of course constants of the motion. If the longitudinal part of A, (x)
has been eliminated, then the transverse part of B, (x) provides the only
interesting redundant variables. '

Let us examine the significance of redundant variables in an elementary
case. A system of one degree of freedom, with the canounical variables g, p,
may be considered as a system of two degrees of freedom by putting

= 3@+ g, 2= (it 9, ©9)

Then ¢,-¢. and p,- p, are redundant variables, as they commute
with g and p. Make a canonical transformation which separates the redun-
dant and non-redundant variables, by putting

gr=?];§(gl"Qz), Prz:/l_z(pl»"pﬁ)! (9.3)

so that (9-2) and 69'3) give the required contact transformation. Referred to
the new variables, the wave function ¢ ¢¢,| ) isa function of ¢, ¢, satis-

fying a wave equation which involves only ¢ and é%' It must therefore

datisfy this wave equation for each value of ¢,, which thus appears in it
only as a parameter. Since ¢, has no physical meaning, to get a physical
interpretation we must integrate |(¢g¢,|)|* forall ¢,, and so get the
probability of ¢ having a specified value or lying in a specified range.

One can now see that (g¢¢,|) does not represent a pure guantum
state. Such a state is represented by a function of the single variable ¢ -
satisfying the wave equation. (It is the state ensuing from a maximum
observation, in this case an observation of ¢.) (g¢g¢,|) represents a
mixture of several pure states, namely, all those pure states represented
by functions of ¢, which one can get by giving numerical values to ¢,
in {¢g,|). Such a mixture is the analoguc of a Gibbs ensemble in.
classical mechanics. One can conclude that:—7"he existence of redundant
variables means that a wave function represents a (Yibbs ensemble and not a
pure state. This conclusion must still hold if one is using a representation
which does not separate the redundant and non-redundant variables.
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Oue could try to make a canonicali@ansformation to separate the redun-
dant and non-redundant variables inofir present quantum electrodynamics.
Let us work with the limiting case A = 0. Put : s

LT Rl T e TS AR (94)
Then, from (5'9), (8'5), and (9°1), '

4x@ = G0 @) [[] 1 - 2k 000 4 (= Lra s ERe-i000) 21

(9°5)
Bu@ = G0} o [[[ (e + Chet00) 4 (- Cie - i) o-s00) 3k
. (96)
with kg = + (B + ko* + k¥, Thus putting
\/2ak,,;=5k,.-f,’§,‘ Qai‘ = L.—Zk (9.7),-
VB, = Ly, + Ef, VIBE, = EE, + Exa } :

a and a* are the only field variables occurring in the Hamiltonians, and
B and B* commute with « and «* and are the redundant variables.

Let us confine our attention to one particular k-value (with %, > 0),
which we may suppose to be one of a discreet set, and one particular u-value,
corresponding to transverse waves. Then, using (5:19) and dropping the
suffixes, :

E™E —EE® =it ,
PRSP e
where ¢ is some positive number. From (9'7) and (9'8)
a*a - aa® =¢ }
" 9'9
B*B - BB* = - o. ot

One can now set up a contact transformation from the, variables
€ E¥% C, L% to the variables a, ¥ f3, B* The transformation func-
tion has been worked out by the author.” It enables one to transform the
wave function from a power series in & I to a power series in «, [3.
[From the commutation relations (9'8), (9:9), two forms of transformation
are possible, one of which transforms an ascending power series in &  to
an ascending power series in a, 3, the other transforms it to a descending
power series in a, 3. We choose the former, which is the one worked out
in the reference.”] : i

The Hamiltonians get transformed to functions of «, 9/da independent
of B, 9/63. Thus the redundant variable 3 may be eliminated from the

" Dirae, Proe, Roy. Soc. A. 180, p. 1 (1342). Appendix III.
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wave equations. However, if one carries out this olimination procedure
for all Z-values simultaneously, one gets the wave equations of Heisenbery
and Panli’s ~quantum electrodynamies, which do not have any solution,
because of the divergent integrals discussed at the end of § 8. Thus one
cannot apply the transformation which eliminates all the redundant variables
to solutions of the wave equations. All the same this transformation has a
meaning because one can apply it to suitable functiors of the &'s, Z's not
satisfying the wave equations.

§ 10. 7he Negative Energics and Probabilities.

We may give the redundant vaviables any values we like, subject to no
inconsistency arising from their Poisson Bracket relationships. It leads to a
reasonable interpretation for the negative energies and probabilities to take
the transverse part of B, (») equal to the transverse part of the initial
value of A, (z), after elimination of the longitudinal waves. With this
assumption, for the initial state | dnit ),

[Aﬂ(x)tramvme o B# (x)h'numm] l '””'t) - 0- (101)
Making the Fourier resolution of this equation we get, from (9-5)
and (96), . X
' Ef; | init) = 0 ¥ |ty = 0, (10-2)

where ¢ denotes a transverse component. These conditions are evidently all
consistent, since the £*s and Z*s all commute. They show that

3.‘,‘ (EL|init) = 0O BZ (EZ | imit) = 0, (10-3)

so that the representative ( £ | 'fn'it) of the initial state is independent
of the &'s and {’s, and is a funection only of the electron variables 2. It
thus corresponds to no photons being present, of either positive or negative
energies.

The following natural interpretation for the probablllblea (5°10) given by
the wave function at some later time now appears. That part of the wave
function corresponding to no photons present may be supposed to give the
probability of no change having taken place in the field of photons; that part
corresponding to one positive-energy photon present may be supposed to give
the probability of a photon having been emitted; that corresponding to one
negative-energy photon present may be supposed to give the probability of a
photon having been absorbed; and so on for the parts corresponding to two
or more photons present. 7%e various parts of the wave function which referred

fe]
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to the existence of positive--and negative-encrqy pholons in the old tnterpretation
now refer to the emissions and absorptions of photons. This disposes of the
negative-energy difficulty in a satisfactory way, conforming to the laws of
‘conservation of energy and momentum. It is possible only because of the
redundant variables enabling one to arrange that the initial wave function
shall correspond in its entirety to no emissions or absorptions having taken
place. ’I

The assumptions (10°1) or (10-2) are not compatible with the equations
ol motion and can therefore hold only for a particular value for the particle
times z,;. These assumptions are thus suitable only for problems in which
the initial conditions apply to one time for each particle, for example if the
initial positions of the particles in :space-bime are given. In practical
problems one is usually given, not the initial positions of the particles, but
their initial momenta for some collision process. The momenta p wi do mnot
commute with the Hamiltonians (6-1) or (8-1) and the requirement that they
should have certain initial values means that one must solve the wave
equations by a perturbation method, taking as the zero-order wave function
one for which they have these values and arranging that the higher-order
wave-functions should refer only to outgoing particles or else latent
particles (i.e. particles in transient states for which the momenta have values
not satisfying p 4 p* = m*). The zero-order wave function in this
perturbation method is then the initial wave function for which the
conditions (10-1) or (10-2) hold, and any emission or absorption of photons
that takes place according to the new interpretation given above refers to
changes from the state represented by this zero-order wave function.

The physical interpretation is not yet complete, because at present
it would give a negative probability for a process involving the absorption of
a photon, or the absorption of any odd number of photons. To track down
these negative probabilities, let us study the initial state by transforming the
initial wave function to the «, (3 variables introduced in §9. From (10-2)
and (9°7)

(a + B) | anit ) = 0, (B* - @) | inity = 0, (104
which give, from the commutation relations (9-9)

(02 + B) Ca |imit) = 0 (eg5+a) ol init) = 0. _(10'-5>.

Hence (af3 | tnit ) = constant e~ ot (10°6)

Thus, applying (510) to the a, 3 variables, the probability of there being
for the initial state m photons of the A field and » of the B field in the
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photon state considered is zero if m +n and is proportional to (- 1) if
m =mn. The probability of there being = photons in the A field and in the
B field must be taken equal to

Py = 2(e = 1)*, R et igs

where ¢ is a small positive quantity tending to zero, in order that we may
have &y Ps=1. : '

The probabilities (10'7), equal to 2 and — 2, are not physically under-
standable, but one can nse them mathematically in accordance with the rules
for working with a Gibbs ensemble. One can suppose a hypothetical mathe-
matical world with the initial probability distribution (10-7) for the photons,
and one can work out the probabilities of radiative transition processes
occurring in this world. One can deduce the carresponding probability
coefficients, i.e. the probabilities per unit intensity of each beam of incident
radiation concerned, by using Kinstein’s laws of radiation. For example,
for a process involving the absorption of a photon, if the probability
coeflicient is B, the probability of the process is

3 e-onPuB =-1B, ' (10-8)

and for a process involving the emission of a photon, if the probability
coefficient is A, the probability of the process is

2" D Podwiid; (109)

Now the probability of an absorption process, as caleulated from the theory,
is negative, and that for an emission process is positive, so that, equating
these calculated probabilities to (10'8) and (10°9) respectively, one obtains
positive values for both B and A, Generally, it is easily verified that any
radiative transition probability coefficient obtained by this method is
positive.

It now becomes reasonable to assume that these probability coefficients
obtained for a hypothetical world are the same os those of the actual world,
One gets in this way a general physical interpretation for the quantum
theory of photons. When applied to elementary examples, it gives the same
results as Heisenberg and Pauli’s quantum electrodynamics with neglect of
the divergent integrals, since the extra factor 2 -3 occurring in the matrix
elements of the present theory owing to the /2 in (97) compensates the
factor } in the right-hand side of (108) or (10-9). ;

The above interpretation enables one to calculate the probability
coefficients for all transition processes, which is essentially all that one
needs for comparing the theory with experiment. It involves the logical
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defect that it requires one to assume Einstein's laws of radiation, instead of
enabling one to deduce them from the theory. This defect can be reduced,
however, by the circumstance that one can deduce Einstein’s laws of
radiation for the hypothetical world by working with initial wave functions
which are not completély independent of the &’s and s, as (10:3) requires,
but contain small powers of some of the &’s and &’s, and then seeing how the
resulting change in the initial probability distribution oi the photons (10-7)
affects the probability for transition processes® It then remains only to
assume that the same laws of radiation hold for the actual world as for the
hypothetical one, an assumption of the same nature as the main assumption
above. ; ‘

A further point in connection with the interpretation should be noted:
The theory involves processes in which a certain photon is emitted and the
same photon is absorbed—two actions which cancel each: other and leave
nothing observable. However, according to Einstein’s laws, such processes
would be stimulated by incident radiation in a different way from what they
would be if these actions did not occur, and thus there is a poss1b111by of
getting experimental evidence for such actions.

¥

® This point was brought up by correspondence with W. Pauli.



