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THE COMBINATION OF RELATIVITY THLORY AND
QUANTUM THEORY.

By ARTHUR S. EDDINGTON.

INTRODUCTION.

TWENTY years ago relativity theory had unified molar physies—molar
mechanies, molar electrodynamies, and the geometry of molar measure-
ment—into a single formulation, rational and complete. By ‘‘complete’’
I mean that it was as complete as a theory which admittedly covered only
one-half of physies had any right to be. Microscopic physics, as
represented by quantum theory, was still in its infancy. Since.then a
highly developed microscopiec theory has grown up almost independently
of relativity theory, and the problem of unification arises. But if the
right inspiration had occurred to those who twenty years ago were casting
about for a way of extending relativity theory to microscopic phenomena,
our present knowledge might have been reached by a continuation of the
systematic development of relativity theory, and there would have been
no problem of unifying a theory which had never been divided. How .
ought we to have proceeded to extend relativity theory to embrace
microscopic physies? What avenues were left unexplored? It is easy to
be wise after the event; and, knowing what we know now, I think these
questions. can be answered.

There were two unexplored avenues. We neglected statistical
relativity theory. We considered relativity transformations of exact
quantities, but- we did not develop to any serious extent a corresponding
relativistic theory of probability distributions. "Secondly, we neglected
spin. The energy tensor Z%» of continuous matter in molar relativity
theory represents fluid in irrotational motion, and there is no provision
. for' representing a continuous distribution of vorticity. If“these two
developments are pursued; all known phenomena are reached. <

In 1928 Dirac opened up the spin avenue, and we went down it with
a rush. My path bifurcated from the others soon after the start.- The
others took short cuts to the things that most interested them, and
produced a theory adapted to certain parts of physics which are the field
of intense experimental activity. But in fourteen years I have never had

[a]
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the smallest doubt that the direction which X #sok in 1928 was the one
which leads to the unified relativity and quamtem theory.

My book Protons and Electrons (1936) was based almost wholly on
the spin extension of relativity theory. Sinee then I have been mainly
occupied with the statistical extension of relativity theory—the other
unexplored avenue—and the present article is-devoted to this part of the
subject. It includes very little that has previously been published. The
article concludes at the point where it would, I think, cease to be profitable
to develop the statistical theory alone; that is to say, the natural
continuation would be to give the full development of the spin theory,
and then pass on to problems in which both are applied coneurrently.
It has been necessary sometimes to quote results of the spin relativity
theory; but only the more elementary results, which are probably by this
time familiar in one form or another, have been used. It is an advantage
to begin with statistical theory, because it supplies the rigorous definition
of the various new concepts which mieroscopic theory introduces. The
spin theory is highly mathematical, and is likely to degenerate into pure
algebra unless it is guided by a clear understanding of the concepts to
which it is to be applied. I regard the introductory statistical part of
the theory as the more difficult, because we have to use our brains all
the time. Afterwards we can use mathematics instead.

Although limited to statistical theory (except for a few elementary
- vesults of spin theory), this article covers the theoretical caleulation of
all the fundamental physical constants except “the. cosmical number.
Comparisons with observation are made in §§ 4, 20, 24, 28, the two
comparisons in § 20 being much the most stringent.

- PART I.—THE UNCERTAINTY OF THE REFERENCE FRAME,

1. The uncertainty of the origin.

The quantities cecurring in the equations of mathematical physics
relate partly to physical objects and events, and partly to a mathematical
framework eonstructed for purposes of reference. Both relativity theory
and quantum theory stréss the distinetion between ‘‘observables,’’
iLe. quantities which could be ascertained by a specified experimental
procedure, and ‘‘unobservables,’’ ie. quantities depending on the
anxiliary mathematical framework which eannot be the subject of any
actual experiment. Unobservables are used to facilitate deseription and
calculation, but are eliminated in the final ealeulation of observationally
verifiable results. - ¥ :

Relativity theory begins with a denial of absolute “motion. An
observed velocity dé/dt of a physicel entity is necessarily relative to
another physical entity. Likewise the coordinate ¢ of which an observed
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veloeity is the time-derivative, is a relative coordinale of two physical
entities.

Quantum theory insists that the conncetion of a physical objeet with
the geometrical frame of coordinates is governed by Heisenhere's
uncertainty principle. A particle is not exactly locatable ag a point (or
a world-line) in the geometrical frame. Tt can only be assigned a
probability distribution of position and velocity. .

In modern physies these two eon%ditions of observability have been
applied separately with very far-reaching vesults, In relativistic quantum
theory they must be applied in combinalion. The combined principle is
that a eoordinate £ is observable only if it is a relative coordinate of two
entities, both of which have uncertainty of position and momentum in
the geometrical frame, !

The essential point is that an observable coordinate is measured, not
from an abstract geometrical origin, but from something which is involved
physically in the experiment which furnishes its observed value. Deing
involved physically, it experiences those inealeulable reactions whieh limit
the precision of our knowledge in the way deseribed by Heisenbere's
principle.  We must, therefore, distinguish between the ¢ physical
origin,”” from which an observable coordinate is measured, and the
“geometrieal origin’’ of the mathematical reference frame which is
inaccessible to measurement: ~The mathematical reference frame is
climinated in the final predietion of observationally verifiable results;
being, therefore, aloof from the rough-and-tumble of observational
inquisition, it has a sharpness of definition which contrasts with the
blurring of physieal landmarks by probability seatter.

There is one simple class of quantum problems, namely, the theory of
the eigenstates of a two-particle system, in which there is no need to
introduce an extrancous origin, sinee we can deal directly with the
coordinates of one particle relative to the other. But normally we are
concerned with a number of particles whose coordinates are measured
from a common origin. Consider a system of n particles with coordinates
Zr, Yr, 2+ in the geometrical frame. These coordinates are unobservable.
To obtain physical (observable) coordinates, we must substitute a physical
origin which has a probability seatter relative to the geometrical origin.
If the (unobservable) geometrical coordinates of the physical origin are
Zoy Yoy 20, the relative coordinates

E!‘s ey Gp = Wy Lo, Yr — Yo, B - % (1)

are observables. A measurement of £, will give a value taken at random
from the pre-existing probability distribution of £ ; or equivalently it
gives the distance from a random point in the probability distribution of
¥, to a random point in the probability distribution of z,. Thus (1) is
not a simple change of origin, but a change from an origin fixed in the



4 Communications of the Dublin Institute—=Ser. (A).

geometrical frame to an origin with a probability scatter in that frame.
It will be neceessary (§ 21) to make a special study of this type of
transformation which is, of course, outside the ordinary tensor theory of
coordinate transformations.

The ecoordinates postulated in the ecurrent dynamical equations of
quantum theory must be measured from a physical origin, sinee they and
their conjugate momenta are always assumed to be observables, being in
fact the typical observables of wave mechanies.! The urgent question
arises : How is this physical origin defined, and what probability distri-
bution has been assigned to it? For the current equations are clearly
not of a form which would be invariant for arbitrary changes of the
probability distribution of the origin.

In treating a system of n similar particles we naturally take their
centroid as origin. When = is large, the centroid has the important
slatistical property that the form of its probability distribution does not
depend on the form of the probability: distribution of the individual
particles. The mean of a large number of uncorrelated variates x, has
a (Gaussian distribution whatever (within reason) may be the distribution
law of the individual z,.

Thus, if we employ the centroid as physical origin, we have the
immense advantage of starting with a knowledge of the distribution
funetion f(z,, ¥, 2,) of its geometrical coordinates, complete except for
the one disposable constant in the Gaussian law. . It should be remembered
that it would be impossible to ascertain f(zx,, v,, 2,) by observation, since,
geometrical coordinates are wunobservable; so that, unless we have
theoretical information, suech as that furnished by the ‘“‘law of large
numbers,’’ we can have no knowledge of f. Assuming spherical symmetry,
we have :

Y, gu) = (2wo?) - % ¢~ (@0 + yo? + 20’)[20*, (2)

The standard deviation o, which is left to be determined later, will be
called the uncertainty constant of the physical reference frame.
Throughout our investigations we shall employ a physical reference
frame related to the geometrical reference frame by the distribution
funetion (2) of the physical origin. The system of n particles, which
provides an observational identification of this origin, will appear in our
work sometimes as the principal object of study and sometimes as the
‘‘standard environment’> of a small system that is being intensively
treated. It is essential to use the same physical roference frame with the
same ¢ throughout physics, whether the system treaied is on .an atomic,

!The dynamical equations deseribe the propagation and dispersal of the concentra-
tions of probability (wave packets) created by our measurements. It is therefore
essential to identify correctly the variates in which these concentrations of probability
are produced,
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molar or cosmical scale; otherwise the laws applicable in the different
branches of physies will not grade eontinuously into one another.
Starting with an abstraet geometrical frame of coordinates, we pass
from pure geometry into physies by introducing a physical frame whose
origin has a Gaussian probability distribution relative to the geometrical
origin. The standard deviation ¢ of this distribution ‘‘puts the scale into”’
the physical frame and all that we construct in it, whether it be a
nucleus, an atom, a erystal or the! whole extent of physical space.
Initially we seem to have freedom of choice of o; but the freedom is
illusory, since ¢ can only be measurdd in terms of the extensions of
physical structures whose seale it has itself determined. To double o
would be physically meaningless, since it would doubie the scale of every-

thing in the physical universe, leaving the relative dimensions of things
unchanged.

2. The Bernoulli fluctuation.

Consider a very large number of particles N which all have the same
probability distribution of coordinates. Let V, be a volume, fixed in the
geometrical frame, extensive enough to include a large number of particles.
Iach particle has the same probability p of being within V,, and the
expectation number of particles in V, is therefore n, = pN. Let the
actual number in V, be n, and let y = n — n,. Then by James Bernoulli’s
theorem the “fluctuation’’ y has the distribution function

Jx@) = 27n,(1 - no/N)}-é ¢ -V 2m0 (L - ng/N), 3)
If N/n, - oo, this becomes . ) |
S @) = (2mny)-} e~ V2, @

Both distributions are Gaussian, and their standard deviations are
(ny = n,2/N)t and n,t. Hence (4) is obtained by compounding with (3)
an independent Gaussian fluctuation with standard deviation (n,%/N)* and
distribution law

}

fo@) = @unlN) % - Ny*i2ng? (5)
let {¢=4y/m,, sothat -
no=ng(l + 8. (6)
Then the distribution funetion of ¢ corresponding to [, (v) : is
ge@) = @uyded¥e.

The whole fluctuation is, therefore, separated into two independent .
fluctuations (4) and (7), the one depending on the finitude of n, and the
other on the finitude of N. We distinguish them as the ordinary and
extraordimary fluctuations. The extraordinary fHuetuation is to be
combined negatively, i.e. removed from the ordinary fluctuation. If, for
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example, we are treating in statistical mechanies a unit volume of gas, we
generally take into aceount only the ordinary fluctuation; that is to say,
we assume that outside the unit volume the gas extends uniformly without
limit in all directions. But an infinite extent of uniform gas is contrary
to relativity theory, which introduces a curvature of space determined by
~ the density of the gas, so that space becomes closed. We shall show thal
this space-curvature 1s simply a “way of toking the extraordinary
fluctuation into account.

The fluctuation (7) transforms an exaet particle density s, into an
uncertain density _

8 = &(l + ). ' (8)

Instead of considering an uncertain number of particles  in a fixed volume
V,, we can consider a fixed number of particles n, and transfer the
uncertainty to the containing volume V. The mathematical analysis for
a system of n, particles oceupying a volume V, is adapted to other values
of V by a change of linear scale. Thus the uncertainty is now contained
in a linear scale-factor 1 + ¢ defined by V = V,/(1 + ¢ If we had to
transform a distribution of diserete values of ¢ into a distribution of
discrete values of e, the relation wouldbe (1-+¢ =1+ ¢?*. Butin
transforming a continuous distribution, discrete values of ¢ and ¢ must
be replaced by constant ranges of £ and ¢; and we have to include a
factor de/d{ transforming the constant ranges of e into ranges which
correspond to constant ranges of ¢. The relation is accordingly
1+ ¢ = const. X (1 + ¢€)*de/d{, which on integration gives

50 o kb - 5 S (9)
1'or the distribution funetion (7) the values of £ which have sensible
probability are of order not greater than N-. Hence (9) becomes with

sufficient approximation { = 2¢. By (7) the standard deviation of £ is
N-%; hence the standard deviation of e is

s e a1 BN (10)

The geometrical frame is our standard of fixity when we speak of the
uncertainties of physical quantities; and the exact scale of measurement
of the geometrical coordinates corresponds to ¢ = 0. The uncertain
scale-factor 1 + « is introduced in the measure system of .the physical
coordinates £, 5, {. Considering a point distant » from the origin, the
differences £ — &, n — ¥, { — 2 will now include, besides the standard
deviation o in all directions due to the uncertainty of the physical origin,
a standard deviation oe in the radial direction due to the uncertainty.
of the physical scale of measure of £ », {. Remembering that the extra-
ordinary fluctuation is to be combined negatively, the resultant standard
deviation is

radial (¢* - a¢7% 4, (ransverse o (11)
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This may be deseribed as the local uncertainty of the physical reference
frame, since it represents the difference between the physical and
geometrieal coordinates. 'We have derived it by combining the uneertainty
of a distant origin with the unecertainty of scale; but it can be interpreted
more compactly as the uncertainiy of a local physwal origin relative to
a local geometrical origin. The anisotropic distribution ~ could be
transformed into an isotropie distribution by introducing an appropriate
local coordinate system in place of the coordinates associated with the
distant origin. Independently of coordinate systems, the local uncertainty
in a given direction defines an extension which might be employed as a
unit for measuring lengths in that direction in that locality. We shall
call this the o system of defining lengths, or briefly the “o-metrie.”’

Let ds- be the length of a line-element according to o¢-metric. By
(11) the lengths of radial and transverse elements are proportional te
dr/(a®* - elrY)} a.nd rd0/e; so that the general formula is

dr?

ds* = 1— (oiaym T rd @ + 7*sin®f d¢*. (12)

This is the well-known formula for a line-clement in spherieal space of
radius B, = o/oe. Hence by (10)

o = giRyi= BJEA N (13)

It will be shown in § 3 that the c¢-metric agrees with the recognised
definition of length in relativity theory and quantum theory; so that the
spherieal metric assigned to a steady uniform distribution of particles
in relativity theory is the device by which eurrent theory takes into account
the effeet of the extraordinary fluctuation arising from the finitude of N.
It is not necessary to employ this device; and for the domestic develop-
ment of quantum theory it is preferable to keep to flat space and take
the scale fluctuation into account explicitly, introducing an extra variate
for that purpose. The present investigation exhibits the connection
between the two methods of treatment; and it establishes the important
formula (13) which determines our fundamental constant ¢ in terms of
the constants R, N familiar in cosmological theory.

The coordinates r, 6, ¢ in (12) are the ordinary polar eoordinates
of the orthogonal projection of the point of spherical space on the tangent
flat space at the origin. This leads to a simple geometrical representation
of our results. The four rectangular coordinates of a particle on the
hypersphere, referred to a geometrical origin O at the centre, satisfy

z' + Y + 2 +ou = R (14)
so that for uniform probability distribution over the hypersphere the’
mean values are

2

x,—z = y,,z = 212 = :H; = _-:Il_. Il‘:u.‘ (15)

Thus the standard deviation of a coordinate of a particle is 4 R,, and
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the standard deviation of a ¢oovdinate of the eentroid 07 (in 4-space)
- §By/VN, which is equal to o. If now we transfer the geometrical
origin to a point P on the hypersphere and take the w-axis along O P,
the three-dimensional uncertainty of the physical origin corresponds 1
the ®, ¥y, 2z components of O 0%; and the uncertainty ol scale
corresponds to the nse of O’P as standard of length instead of the exact
standard O P. ;

Besides uncertainty of origin and scale, the physical reference frame
will also have uneertainty of orientation. But by the use of tensors we
can make our description independent of the orientation of the frame.
Current quantum theory is alert to the difficulty of defining orientation,
and the problem is treated rigorously in spin theory. We may, therefore,
here confine attention to the uncertainty of origin and scale, which has -
been. completely neglected.

The use of a centroid as origin of space coordinates obviously cannot
be extended to an origin of time. But we shall deal entirely with steady
distributions, and shall not require a time origin.

3. The standa.rd of length.

The definition of length, both in theoretical physies and in practical
metrology, agrees with the o-metric. To make this clear we consider
the necessary conditions that must be fulfilled by an ultimate standard of
length. It must be available for comparison at all times and at all places.
We require a physical structure, not neecessarily permanent, but con-
structable at any p]ace and time from a recorded specification. The
form of specification 15 determined by the condition that the definition
of length (and a cornbpondlng definition of time-interval) is required at
the very beginning of physies, and must precede the definitions of all
other physica,l quantities. It would, therefore, be a vicious circle to
employ any ‘‘dimensional’’ physical quantities in specifying the standard
which forms part of the definition of length. The quantitative part of
the specification must, therefore, consist entirely of pure numbers. It is
only in quantum theory that we have developed a method of specifying
physical structure by pure numbers—numbers of elementary particles in
1 configuration speecified by quantum numbers.. The standard of length
must aceordlngly be a quantum-specified structure.?

The equations of quantum theory determine the various spatial
exiensions in quantum-specified systems as fixed multiples of a lincar
unit  h/me. Thus, whether the unit is constant or not, the ratio of
two such extensions at one time and place is the same as at any other tima
and plaee; and they 'give equivalent systems of reckoning length, differing

*For a fuller discussion see J*ddm;,tml The Philos ‘)y.’J of Phy.stcal burnc(, Pp-
70-85.
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only by a constant conversion facter. In saying that the metric is
quantum-specified we fix it uniquely. '

It only remains to show that the unique quantum-speeified metric
agrees with the o-metric. This follaws at once if we can show that any
one quantum-specified extension hag a mathematically caleulable, and
therefore fixed, ratio to o, Abundant ecalculations of such ratios oceur
in the course of development of the ipresent theory. Tor example, the
Rydberg constant for hydrogen is folind to be?

3 1 1
I8x70 | K30 A07 15 v o i8)
Thus the metric which makes the loedl uncertainty a constant for every
place, time and direction (by adopting it as the standard of length) also
makes the wave-lengths of the hydrogen lines constant for every place,
. time and direetion. In other words, the o-metric is the ordinary metric,

RH*

4. Range of nuclear forces and the recession of ‘the nebulae.

The deseription of physical systems by probability distributions requires
certain precautions which are liable to be overlooked, because they have
no counterpart in the classical conception of physies, from which most of
our nomenclature has been derived. Distinetions have to be made which
are unprovided for in the usual terminology. :

Congider the coordinates §r, & of two particles measured from the
‘physical origin. An observational measurement of £, gives the distance
from an undetermined point in the distribution of Z, to an undeter-
mined point in the distribution of z, If ¢, is also measured, the
measure will have an independent starting-point in the distribution of %,
Thus the coordinate difference &rs = £,- ¢, includes the coordinate

“difference of two independent points in the probability distribution of
*,; ‘this has' a Gaussian distribution with standard deviation oV 2.

But the relative coordinate §re = ® - x can also be measured
directly from the » th to the sth particle without the intermediary of an
origin. Both ¢,, and £,, are observables, and they have the same
expectation value, but their probability distributions are different, that
of §,,  having the greater spread. We have in fact (in the notation of
the theory of errors)

: f'r. = Eru - "\/2 _ (17)
Lvidently the wave functions and the conjugate momenta of ¢,, and
rs Wwill be different.

Since o s found to be of the order 10-'* em. the difference’
between ¢;, and ¢,, appears directly in nuclear problems, and in the

_ *The formulae, from which this result is derived, arc given in Proc. Phys. Soc., 64,
401, § 2. : . :
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scattering of protons by protons where very close approaches of the
particles oceur. . The non-Coulombian energy of two protons is a singular
energy assoclated with their actual coincidence, i.e. with &, = 0 (sce
§28). The corresponding values of ¢&,, form a probability distribution
with standard deviation o¢V/2, so that the non-Coulombian energy has

the form :

A'c‘(f’n’ + ﬂ'ra’ -'l' f’ri’)/"’_ ' v (18)

where k& = 20. We thus get an apparent range of the non-Coulombian
foreces when the pal ticles are referred to an origin, although the range in
Erer Wres Cre 18 actually zero.

We can make an observational test of the results thus far obtamcd
According to the latest experimental data available* %k =19 .10- cm.;
so that

B, 1- - 13 3
71}-20 “.k=19.10 cim. (19_] .

From the well-known formula «M,/¢* = }«xR,, -connecting the

mass Y, and radius R, of the Einstein universe, we obtain
N w

T | il

where M is the mass of a hydrogen atom and « is the constant of
gravitation. From (19) and (20), we obtain N and R, separately;
and we can then calculate the limiting speed of recession of the galaxies
Vo = ¢/R,\/3. - The result is V, = 585 km. per see. per megaparsec.
The observed value given by Hubble and Humason is 560 km. per seec.
per megaparsec. '

Thus the two most direct methods of determining o—from the range
of nuclear forces and from the recession of the galaxies—are in good
agreement. Owing to the inaccuracy of the observational data, the test
is rather rough. Much more accurate (but indireet) methods of deter-
mining o are found in the later developments of the theory. The
definitive value is

o = 9604.10-" cm. (21)

From the point of view of the ordinary theory of statistics the
confusion of &,, with §,, is an error of the most elementary kind.
Its consequences appear straightforwardly in an apparent (but really
non-existent) range of the non-Coulombian interaction of two particles;
and this agrees with the value of ¢ found by extra-nuclear observation.

— - PO —— fe—

¢ Eddington and Thaxton, Physica, 7, 122 (1940).
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This was pointed out in 1937.* The hypothesis of a ‘“‘meson-field,”’” which
has since been so prominent in nuclear physies, is clearly a retrograde
step. It is, of course, possible that the formal mathematics of meson-
field theory may constitute a valid treatment of the oV/2 dispersion,
since.a mathematical scheme admits of many alternative physical inter-
pretations; but, if so, the ‘‘mesons’’ of the meson-field are totally
unconneeted with the mesotrons produced by cosmie rays. :

5. Uranoids.

For the purpose of investigation we divide the universe into two parts,
namely, an object-system and its enmviromwment. The term object-system
(object-particle, object-field, ete.) is used to distinguish the system that is
being intensively studied. The environment comprises everything not
" wpecifically included in the object-system, whether it surrounds it or

permeates it. : _

The most elementa,ry formulae relate to the most simple ob;ect—systems
in the most simple environments. Just as we have to begin with simple
ohjects—electrons, two-particle systems, ete.—so we have to begin with
simple environments. These simple environments will be called uranoids.
A uranoid is an ideally simplified universe, just as a geoid is an 1dea.lly-
simplified earth, and it is used in an analogous way.

The ura,nmd adopted as standard environment for our object-systems
is naturally taken to be a steady uniform probability distribution of
particles. By general relativity theory such a distribution occupies a
spherical space, and constitutes an ‘‘Einstein universe.”” Usually it is
further specialised as a ‘‘zero-temperature uranoid’’; the pressure is then
zero, and there is no radiation present.

Two lines of thought have led us to contemplate a system of a large
‘number of particles as an environment or background for the objects
intensively studied. In §1 it was a question of metric; the system of
particles determines the uncertainty of the reference frame, and hence the
scale of the various structures related to that frame. Now it is a question
of mechanical interaction ; a vast assemblage of particles is present in the
actual universe, and we have to take account of its influence
(e.g. grav1tatmna1 mﬂuence) on the object-system under consideration.
But the two aspects are not really distinet. General relativity, by
unifying geometry and mechanics, amalgamates the metrical and
mechanical influences of the environment; both are included in the
deseription of the influence as a ‘‘field’’ of gu». This field is at the same
~time a metrical field and an inertial-gravitational field ; and it is indifferent
whether we regard it as influencing the characteristics of the object-
system by mechanical agency or by determining the measure-system in
which they are expressed \ , '

-

'Proc. Roy Boc _A -1ﬂ_é 156.
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In the present series of investigations we shall generally take into
account the complete uranoid.  This does not imply that the remote
environment plays a greater part in determining local phenomena than is
ordinarily admitted in relativity theory. In particular, the most radical
- changes in the distribution of the  extragalactic nebulae will have no
observable effect on small scale systéﬁisi,"_provided that there is no sensible
alteration of the field of gu» in th'j region oecupied by the system; and
the observable results for small se lo systems will be the same in_ the
actual irregular expanding universe ‘as in the uniform static uranoid used
for calculation. We take into decount the whole uranoid, because
mathematically it is easier to tregt 'a whole universe than part of one.
If we do not ‘include the whole, we' give ourselves the extra trouble of
discovering boundary conditions which shall have the same effect as the
part that has been left out. On the other hand, it should be realised
that the remote environment only affects the problem through integral
properties which could he expressed as boundary conditions.

Einstein’s theory removed the absolute distinction between gravitation
and inertia; but in practice we continue to separate them conventionally,
and, for example, we distinguish the gravitational energy - m,¢ of
an electron from its inertial energy m, ¢®. In the present nomeneclature,
the standard environment provides the inertial part of the gu.-field, and
the deviation between the actual and the standard environment provides
the gravitational part.

‘We shall confine attention almost exclusively to uniform probability
distributions of particles. It might be thought that it would soon beeome
necessary to pass on to non-uniform distributions, so as to obtain the kind
of system studied in quantum theory. But atoms, ete., are constructed,
not by introduecing non-uniformity of distribution of nuclei and electrons,
but by introdueing correlations. Consider, for example, a vessel known
to contain an electron and proton. ‘If they are uncombined, they are cach
equally likely to be anywhere in the vessel, If they combine into a hydrogen
atom, the electron is still equally likely to be anywhere in the vessel,
and so is the proton. What has happened is that the coordinates of the
electron and proton have become correlated, though they each econtinue -
to have uniform probability distribution. Atomic wave funetions, such as
““the wave function of the hydrogen atom,’’ are correlation wave functions.
These must be carefully distinguished from the - distribution wave
functions of protons, electrons, ete. Except in a fow special problems
(deflection in a molar electromagnetic field), there is no occasion to consider
non-uniform distribution wave funections. Thus the distribution wave
functions are generally limited to the “infinite plane waves’’ introduced
in elementary wave mechanics, and all the eomplication is reserved for
the ‘eorrelation wave functions. g
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6. The extraneous standard and sca.e-free physics.

We adopt a'system' of “‘natural upits” such that ’
c = 1 Bach? =1 ,.. (22)

These particular relations are convemtional; but the imposition of two
fixed relations between the three upits of length, time and mass is
. ecssential to the theory. It removes & redundant iluidity of deseription
of physical systems, which is occasioned by referring them to three
extraneous standards when one standird is all that is required to fix the
scale. In modern physies fluidily ¢f deseription is provided for by a
systematie transformation theory (tenmsor calculus, ete.); and we lose the
benefit of systematic treatment if we graft on to it a haphazard traditional
transformation of units. :

The relations (22) leave one unit at our disposal. It is immaterial
whether this is taken to be a mass, length, time or any combination of
them. If, for example, a mass is adopted, the corresponding units of
length and time are fixed by (22); and every physical quantity has just
cne dimension-index. showing how it varies with the unit of mass,

We have seen (§ 2) that in the physical frame the linear scale has an
uncertainty oe. This may be regarded as an inherent uncertainty of
the staindard of length, By expressing our results in natural units, all.
characteristies of the system are described in terms of the standard of
length; and a characteristic ‘of dimensions (length)* has an uncertainty
yoe arising from the uncertainty of the standard, as well as the scatter
contained in its own geometrical probability distribution.® For a mass we
find that y = — 8. ' If the mass were measured by comparison with an
independent standard (the gram), the uncertainty would have no relation
to o,. The definitions of physical quantities must state explicitly the
nature of the comparisons by -which they are understood to be measured;
and the traditional system of definitions which involves three extraneous
standards, whilst adequate for exact quantities, is not precise enough for
the treatment of probability distributions, and leads to the same kind of
ambiguity as the confusion of ¢,, -and §&., (§4) ‘We remove such
ambiguity by introducing the system of natural umts wnth on]y one °
extraneous standard.

- One extraneous standard must be retamed.. We . can t}escnbe the
internal strueture of a physical system wholly by numerical ratios; but
to complete the deseription it is necessary to fix the scale by reference to
some outside standard. - If the whole universe were investigated as one
system, no outside standard would be needed. But the analytical method
of physics divides the universe into simple svstems of various types, which
~ are investigated one by one. Hach system is supposed to be surveyed
from outside. - The single extraneous stindard is the ‘‘loose end,”’ which
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enables us to put together in their proper secale relation the fragments into
which our analytical method divides the universe.

The standard uranoid has two linear characteristies o - and I,
which we can regard as independent. Our reproducible standard of
length has (apart from its small uncertainty o,) everywhere a fixed
ratioto ¢ and to R,; but in a considerable part of physies, the actual
value of the ratio is not involved. We shall call this scale-free physics.
Scale-free physies deals with strucetures which ean be adapted to any seale.
The criterion is formally stated as follows:—if we specify the
characteristics of a system in terms of an extrancous standard, and consider
the series of systems formed by varying'the standard, then if one system
of the series is a physically possible system all are physically possible.
This abstract ideal can only be approximately realised in the actual world;
for the homology must break down when the system is enlarged to a size
comparable with the universe or diminished to a size comparable with an
atom. The exact equations must always involve ¢ and ZX,; but there
are many investigations in which to a very high approximation we can
set ¢ = 0, or R, = e, .or bothhy’ We therefore distinguish
three branches of physics :— : :

(1) Secale-free physies: problems involving neither ¢ nor R,.
(2) Cosmical physies. problems involving IR, :
(3) Quantal physies: problems involving o.

The term quantal physies is not intended to be synonymous with
quantum theory; because text-books on gquantum theory inelude a great
deal of scale-free physics as well as quantal physies, and wave analysis is
applied to both. In general, wave functions which are not self-normalising,
and are arbitrarily normalised to represent a certain number of particles
per unit volume, are scale-free. '

The scale-free approximation neglects the ‘‘transverse’’ part of the
ficld. When we include the transverse part of the electric field we pass
over into quantal physics. When we include the transverse part of the
gravitational field we pass over into cosmical physics.

7. Stabilised characteristics.

In .theoretical investigations we do not put ourselves quite in the
position of an observer confronted with an objeet of which he has no
previous knowledge. The theorist is considering, let us say, an electron.
with coordinates =z, ¥y, 2. He recognises that knowledge of 'z, y, 2
could only be obtained by observation, and is therefore limited by the

¢ Actually they are not independent, because it appears in later developments that

N necessarily has the value ; % 186 x 238
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uncertainty principle; but knowledge of the mass m and the charge e
is treated on a different footing. The values of m and e are taken
from a table of constants. It is true that they rest on observation, but
not on observation of the object at z, vy, 2. They are treated as free
information, not to be pald for by a reeiprocal uncertainty of the conjugate
variates. :

The theorist would explain that this free information follows from his
knowledge that the object is an electron. But how has he got to know
that it is an electron? The answer seems to be: “I know it is an electron
because (as stated in the title of my paper) that is what the investigation
is about.”  The conventions of theoretical physies accept this as an
ocdimissible source of knowledge; and we shall not dispute it. But it must
be recognised that it creates a disjunction with observational physies.

We shall call a quantity whose value is given as free information a
stabilised characteristic.

Consider, for example, a simple spinless particle characterised
mechanically by a momentum veetor- p,, p,, p; and a proper mass .
It is generally understood that p,, p, p, are observables; but m
may be either an observable or a stabilised characteristic.” By stabilising
m, the probability distribution of momentum is reduced from a four-
dimensional distribution over p,, »,, p,, m (or equivalently over
Py P2y Pa, P, where P (,nz : 4 p12 23 sz *+ paz)é) to a
three-dimensional distribution. We shall find that the number of
dimensions of the probability distribution enters as a coefficient into many -
leading formulae, and that particles must be classified primarily aceording
to this number, A particle whose probability distribution has k&
dimensions will be called 'a 7 particle. Thus a spinless particle is
a Vy; or a V, particle aceording as its proper mass is or is not
- stabilised: - The number % may also be described as the number of
degrees of freedom of the system; and stabilisation corresponds to the
mtroduction of eonstraints which reduce the number of degrees of freedom.

Stabilisation is used lavishly in speecifying the environment of a system.
There would be no gain in separating for mathematical treatment a
simple object-system with only a few degrees of freedom, if we did not
af the same time limit the complexity of the environment considered in -
conjunction with it. Henee we take the environment to be uniform, statis,
clectrically neutral, zero-temperature. So much restriction is imposed
that only two observables ¢ and K, remain; and of these only o is
concerned in the ordinary problems of quantum theory. The restriction
is given as free information. When we treat the theory of a hydrogen

" The term ‘‘observable’’ is used ungrammatically in guantum theory with the
meaning ‘‘supposed to have been observed’’; a stabilised characteristie might have
been olserved, but Las not been observed.
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atom in the standard environment, the information that the environment
is uniform, statie, ete,, is on the same footing as the information that the
-object-system is a hydmgen atom. We might alternatively consider. an
atom in a universe found observationally to agree with the standard
uranoid within certain limits of uncertainty; but then it would be only
* logical to treat the atom as having been found observationally to be
hydrogen within limits of uncertainty which do not exclude a chance of
its being helium, lithium, ete.

Individual ecomponents of a veetor or tensor cannot be stabilised without
abandoning the tensor transformation properties. Stabilisation can,
however, be applied in the form of invariant conditions imposed on the
vector or tensor as a whole. We ecan, for example; impose on a tensor
of the seecond rank the stabilising condltmn that it is antisymmetrical,

or that it is the outer product of two vectors or that it is the outer square .

of a veetor. These conditions are invariant for tensor transformations;
and; since they reduce the number of independent quantities required to
specify the tensor, they reduce the number of dimensions of its probablhty
distribution. :

€. Pseudo-discrete states.

Two kinds of wave funections are employed in quantum theory. The
more typical kind represents concentrated distributions of probability
whose density falls off at great distances, so that the integral converges.
The “‘normalised’’ density distribution p.(2, ¥y, #2) is such that the
total mass is the mass of one particle; the state is then said to be in unit
occupation. But we may associate with the state an occupation factor j
different from unity, and the density is then jpa(z, y, 2). The
occupation factor represents the probability that there is a particle in
the state, or the number of particles in the state. Strictly speaking, it is
a symbolic operator J which only reduces to an eigenvalue when there
is definitely an integral number of particles in the state. But in
clementary theory we take it to be a number j which is the expectation
value of J. _ : '

The foregoing ‘‘se¢!f-normalising’’ wave functions ocecur only as
correlation wave funetions. The distribution wave functions are of the
other kind, typified by the ‘‘infinite plane waves’’ of elementary quantumn
theory. The infinitude is not to be taken literally, but implies that the
distribution extends uniformly to a distance large compared with o but
small1 compared with R,—anything from a thousandth of a millimetre
to a million parsecs.  The degree of occupation of this type of wave
funetion cannot be speciﬁed by the number of particles in the whole
undefined extent of the distribution. We accordingly select an
arbitrary density p, as the density of unit oceupation; or equivalently
we seleect an arbitrary . normalisation volume V,, and define unit ’
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oecupation as ‘‘one particle per volunie V,.” This docs not mean that
there is one particle in a volume Vau.  (That would be represented
by a wave-packet, not a simple plane wave function.) Each partiele has
an even probability distribution over the whole extent of the wave funetion.
Any particle ocecupying a wave funetion of this kind must be regurded
as an unidentified member of a large assemblage,

Wave functions of the sécond kind are pseudo-discrete. It is
important to realise that pseudo-discrete wave funetions are not a limiting
case of eontinuous wave functions. A set of diserete eigenfunctions has
the general form ¥ (¢, ¥, 2, o), where '« stands for a set of para-
meters defining constant characteristics of the cigenstate.  When the
eigenstates are continuous we have to consider the oceupation of a
continuous range of values of «. This may be described by a distri-
bution function j§ (a) or a wave funetion x (a). In the latter casc
the wave funetions y, x ean be amalgamated into a continuous wave
function y(z, vy, 2, a) over the coordinates and parameters. In
practice, however, we do not extend wave treatment to the distribution
over a, and are content to use the distribution funetion 34a). A
pseudo-discrete state is formed by concentrating a finite amount of
occupation j into a range of « small enough to be treated as
infinitesimal. When the whole probability of the system is concentrated
in one pseudo-discrete state, its state is said to be almost exact,

Relativity mechanies is based on the energy tensor T,  which
includes the density (energy-density or mass-density) as a component.
T, The energy tensor is a scale-free characteristie, since the density
contributed by any kind of particle ean be varied at will by varying the
volume over which its probability distribution extends, On the other
hand, the mémentum veetor, which includes the mass as a component, is

not seale-free. We have, therefore, the distinction that the particles of

scale-free physies are characterised by energy tensors, and the particles
of quantal physies by momentum veetors, Evidently the pseudo-discrete
wave functions are the wave functions of scale-free physies, and the
self-normalising wave funetions are the wave functions of quantal physies.

Pseudo-discrete wave functions appear as the first step in the passage
from molar relativity theory to microscopic theory. They represent the
molar object as a large assemblage of particles in one or more pseudo-
discrete states. The molar energy tensor is represented as the sum of
contributions AT  of the particles, .ATu» Dbeing a characteristic -
of the state of the particle. The particles are unidentified ; so that, ‘as
regards any one particle, we know only the probability of its being in the .
various states; in other words, the occupation factors j, of the pseudo-
diserete states may be interpreted cither as frequencies in the assemblage
or as probabilities of an individual particle, Since it is usually

(2]
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unneecessary  to consider non-uniform distributions, the molar object
subjeeted to this analysis may be taken to be a uniform gas.

It might be thought that the seope of seale-free theory in mieroscopic
physies would be very limited, sinee the masses of partieles are not seale-
free.  But results usually expressed in terms of mass can often be equally
well expressed in terms of density. Our next aim will be to determine
theoretically the mass-ratio  m,/m, | of the proton and eleetron. This
can alternatively be described as the density-ratio of two constituents
(positive and negative) of molar hydrogen. As a deusity-ratio it is a
problem of scale-free theory, and we'shall treat it in that way. It may
be recalled that Dalton’s atomie theory was scale-free, and enjoyed a long
fruitful eareer before anything was discovercd as to actual scale of
the atom. {

In the ecourse of development of the theory, it is (ound that the self-
normalising wave funetions represent eleetric c¢nergy, whereas the
pseudo-diserete  wave funetions represent mechanical energy. By
“electric’”” we here mean distinetively cleetrie.  (Naturally in unified
theory eleetric and mechanical energy merge into one another, like inertial
and gravitational energy, and the exact line of separation must be
conventional.) The ratio of the eleetrical to the gravitational force
between two particles is of the order /&, and the counterpart in
mechanical theory of the quantum of electrical angular momentum h 1s
hy&. Thus o and 4§ R, which are in the ratio /N, are cor-
responding linear units of strueture. If the same principles which provide
a definite scale of strueture for electrical energy are applied to mechanical
energy, the structure of the latter is on the scale R,. This is the
quantum aspect of the cosmical eurvature of space. IExcept in cosmical
physies R, is treated as infinite (L£,/VN rcmaining finite), and the
mechanical waves in wave mechanics are structureless plane waves.

So long as we deal only with protons and eleetrons, the argument
£, 5, C of aself-normalising electrical wave function is geometrically
related to the argument 2, ¥y, 2z of a mechanical wave function. DBut
physically £, g5, ¢ is an electrical characteristic, namely, polarisation
(separation of an electric doublet) or an analogous quantity (separation
of two like charges). Existing quantum theory may be said to have been’
primarily designed for the intensive study of electrical polarisation.
Although it is ideally possible to develop unified theory from an arbitrarily
chosen starting point, it is not surprising that we should prefer a less
specialised point of entry. Accordingly, the typical quantum wiave
funetions referring to polarisation only begin to appear in the theo
towards the end of the present investigation.
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Parr 1l.—Murrienicrey FACTORS.

9. The rigid-field treatment.

Quantum theory and relativity theory from the very cutset employ
opposite methods of treating the field. The root of the difference is thi
wave mechanies, whieh is the principal analytical method used in quantum
theory, depends on the concept of a vigid field. The metrieal (o
gravitational) ficld gu.» is unconditionally assumed to be rigid. The
molar electromagnetic field . is also assumed to be rigid, provided that
(following the wusual practice in quantum theory) we exclude the
“‘transverse’’ part, which is treated separately as radiation. Even
radiation is not a genuine exception, because it appears in wave
mechanies, not as a field, but as an assemblage of particles (photons).

A rigid field of guy and k. having been specified, we econstruct
in it a frame of eigenstates, leaving ourselves free to deecide later to what
extent each eigenstate is oceupied. This flewibility of occupation is
essential to the methods and conceptions of wave mechanies; for the main
subject of study is the transition of particles between eigenstates. There
is no such flexibility in relativity theory, where the gu,» are conditioned
by the matter present. :

The rigid field treatment is at best an approximation, and, if it is not
nsed circumspectly, it is liable to be altogether fallacious. In order that
it may be legitimate as an approximation, small changes of oceupation
ol the eigenstates must produce only changes of the second order in the
field :—

The field must be stationary for small changes of the occupation
factors of the eigensiates.

This condition must be regarded as incorporated in the definition of
the particles eontemplated in quantum theory, so that they may have the
characteristic freedom of transition which wave mechanies postulates.
That is to say, we define a quanium particle as the occupant of a state in
a rigid field, in contrast to a relativity particle which is a singularity of
an essentially non-rigid field. We must avoid the widespread error of
applying to quantum particles familiar formulae which have been
developed for relativity particles.

It would be inconsistent with this definition to contemplate a system
of quantum particles in a non-rigid field. We, therefore, call the field
which satisfies the stationary condition the self-consistent field for the
state of oecupation contemplated. As we shonld ordinarily express if,
failure of the stationary econdition implies that the field assumed in
caleulating the eigenstates is not the ficld produced by the particles
occupying the cigenstates. ‘
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We shall first take the eigenstates to he diserete.* Wo have then a sot
of states represented by ¢, (r == 1,. 2, 3, . . ) to each of which
is attached an occupation factor jr. Sinee changes of the system are
specified by changes of the j,, the j, are regarded as generalised
coordinates (or momenta). The total enerzy of the system, including
that of the self-consistent field, can then bhe expressed as a funetion
B s e It will T(}f in general be a linear funection
of the j,. Let : ‘

E, = aH°/a;, (23)

=0 that : :
AH" = Sl df, (24)

And let :
z E° = Eerr > Efraﬂo/ajr (2:))

Then the energy of a particle in the state Y- must be identified wiih
L, For, in order that the field may be rigid, the whole change of
cnergy  dH° must be accounted for as a change of particle encrey
alone. 'This condition is expressed by (24), E,dj, being the change
due to the addition of the f‘ractmn d Fs of a partlele of energy K,
The dlfference

We sl LB = B 2 00 o5 - (20)
is the energy of the field. By (24) and (25)
¥ dW® = - 35.dE. (27)

We note that if H i ey, 59T AL R ~is a homogencous function
of the n th degree, (25) and (26) give

E° = nH® =(1 - nH" - Lon) -

We have considered the energy for deﬁmteness, but the same theory
of partition applies to any other characteristic conceived as additive,
¢.g. energy-density, momentum, angular momenmm, pressure.

By (23) the energy I, of a particle varies with the initial state of
occupation. But, having chosen an initial state, we can then make small
changes of occupation keeping E, and W° fixed.

10. Eig-id fields in scale-free physics.

We shall now apply the rigid-field condition to seale-free systems.
Some modification is necessary, because the eigenstates becone continuous.

*There is then a one-to-one correspondence of elgenstates when the oceupation
factors and the corresponding self-consistent field are varied; so that we can identify
unambiguously the same eigenstate ¥, (4), ¢,(j’) in two different states of occupation
of the gyatem. ;
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Discrete states are identified by quantum numbers, and there is no
ambiguity in identifying the ‘‘same’’ state in a system after the occupation
factors have been changed. Quantum numbers being no longer available,
we have to introduee some other set of classifying characteristics in order
to specify the states.

Let the adopted set of classifying characteristics be

Xq (ﬂ = 1, 2, AP ke b n).

We shall use characteristics of the same physical dimensions (usually
components of a tensor) and adopt an extraneuus standard of the same
dimensions, so that the Xa, have dimension-index 1. The system heing
scale-free, we obtain another physically possible system Ly the trans-
formation X« ~> AXa, the corresponding transformation of a. charae-
teristic Y of dimension-index ! being ¥ — MY. The transformation
must be applied to the whole system, including the self-consistent ficld.

The Xa are pictured as coordinates of a point in a representation
spuace of n dimensions. An arbitrary point in representation space will
not necessarily correspond to a possible state of the system. In general,
the possible states will be restricted to a k-dimensional locus. We shall
call this locus the phase space of the system. The volume of an element
of phase space will be denoted by dr. This implies that a metrie,
giving a definite reckoning of volume, has been defined. For the phase
spaces which we have oceasion to employ, it is possible to develop a
systematic metrie based on the conception of relativistie equivalence.
But for the present purpose, any continuous metric will serve, provided
that it is scale-true, i.e. it must be such that the transformation
X« = AX. transforms a k-dimensional element of volume dr into an
element of volume M¢dr.

The discrete occupation factors j, are now replaced by a continuous
occupation | funetion j (X), such that j(X)dr is the probability.
associated with the states in the range dr. The consequent changes in
the formulae of § 9 are easily found, summations being replaced by
integrations and ordinary differentiation with respeet to a variable j, by
Hamiltonian differentiation® with respeet to a funection j (X) Corres—_
ponding to (23), (24), (25), (27), we have ;

v

E=hH"hj ' - (29
SH° = [E8jdr ' (30)
E° = [Ejdr (31) -
dW*° = §H® - 3E° = - [;3 (Bdr) = . (32)

Let 1 be the dimension-index of H°, the dimension-index of JXa
being 1 as already stated The equation_s show that FE (X), E°, W°

¥ Eddington, Mathematical I‘hr wy of Relativity, § 60,
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also have the index !. Thus %2dr has the index I + k. Sinee the
system s scale-free, we may take as a possible variation an infinilesimal

change of secale Xa — (1 4 ¢ Xo. Then W° - Wo (L + ¢! and
lidr — Edr(1 4+ ¢'**; go that, e being infinitesimal,
W = le W° O(lidr) = (I + k)eBdr

Hence, by (32) and (31),

W o - {_}l‘m 'El B i ;'J_v, (33)

By arbitrarily dividing phase space into small numbered cells
dr), (r = 1, 2, 8, . . ) weean replace the eontinuum of states
by pseudo-discrete states (§ 8) with odeupation factors Jr = (J(X)dr),.-
Comparing (33) and (28) we sce that—

The scale-free condition makes H® q homogeneous function of degree
- U/k  of the pseudo-discrete occupation factors.

In particular, if the whole probability is concentrated in one pseudo-
diserete state, e.g. if the system is in a state of almost exact rest, we have

% ‘e gk,

This shows the importance of distinguishing between observables and
stabilised characteristies. For, if stabilising conditions are imposed on the
classifying characteristics Xa, the number of dimensions k of the
phase space is reduced. ;

Lf the additive characteristic H®, whose partition is being considered,
s itself one of the classifying characteristics, we have ! = 1; and (33)
becomes ;

H® = - L E° We e~ ((k+ 1)E° (34)

11. Standard carriers,
The ordinary momentum vector and energy tensor have respectively
4 and 10 independent components. But when spin momentum is taken
into account, mechanieal characteristics are specified by a complete
momentum vector (consisting of a linear momentum 4-veetor and an -
angular momentum 6-veetor) with 10 independent components, The
corresponding complete energy. tensor has 136 independent components.t®
There are in addition 6 dormant components of the momentum veector
and 120 dormant components of the energy tensor (making the totals
16 and 256), which are distinguished because they change sign when left-
handed axes are substituted for right-handed. These are suppressed
because the standard physieal referéence frame (unlike a geometrical

* Protons and Electrons, §§ 5-3, 6-4, 106,
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coordinate frame) is without chirality, Chiral characteristics are electro-
magnetic, and the standard urancid is stabilised as electrically neutral.
The term ‘“‘particle’” survives in quantum theory, but very little of
- its classical meaning is vetained. It is now best described as the
_conceptual carrier of a set of variates, The simplest kind of particle in
scale-free physics is the earrier of an element of complete'energy tensor
and nothing more. If the energy tensor is unspecialised, i.e. not limited
by stabilising conditions, the particle will be called a standard carrier or
V1s6 particle. - e
An ordinary energy tensor is separated into

TH = pyv* 0" + s* e (39)

where p, is the proper density and v* the veldcity vector of the molar

motion, and s“” is an internal stress-system. When s*” = e il
reduces to the outer square of a vector

T#. a0 b p; 0"t s i 98)

We shall call v u\'py the root vector. In natural units the root vector
has the dimensions of a momentum vector, and it can be made to agree
with the recognised momentum vector by suitable choice of normalisation
volume. We shall, therefore, generally refer to it as the momentum
veetor.i? '

The mechanical characteristics of a classical particle are completely
specified by a momentum vector, so that its energy tensor is of the
restricted type (36). But in quantum theory there is no imperative reason
for excluding particles containing an internal stress-system, more
especially as quantum particles (electrons and protons) admittedly contain
an internal angular momentum or spin. Thus we have a choice between
particles characterised by an unrestricted complete energy tensor with
136 components and particles characterised by a complete root vector or
complete momentum vector with 10 components. The former have been
called standard carriers; the latter will be called vector particles (V,,
particles). Vector particles are ab!.}a'ined by imposing on the complete
energy tensor the stabilising condition that it is the outer square of &
complete vector. This condition is invariant for tensor transformations,
and it reduces k from 136 to 10. T

By further stabilisation we .obtain the 7V, and V, particles
(spinless particles) mentioned in § 7. , But there is an important difference.
A general energy tensor can always be represented as the sum of the
outer squares of a number of vectors; so that by substituting V,, for

1 There are imﬁorta.nt distinetions between the root vector ‘and the recognised
momentum veetor, e.g. the root veetor has ambiguous sign, but they do not concern us
here. : ' ' ‘ :
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V,sc particles we du not lose generality. They eorrespond to dlfferun
modes of mieroscopic unal)qm of Hm sume molar energy tensor,  But if
we substitute spiviess V, or  V, particles, we lose the possibility of
representing vorticity; so that the analysis refers to molar material
subjeeted to a constraint which dues not exist naturally, The V, and
V. partieles are, therefore, 1000{;1@130(1 to be ficlittous particles.  The
V,s partieles are actual particles.* ~ 8o also are the V,, particles;
hut, since they include an internal stress system, they are from the ordinary
classical outlook regarded as composite. The V,,, particles will be
identified later with hydrogen atoms:

The components 1'4, of the energy tensor muat, be taken as the
classifying characteristics of the states of these particles, since no other
characteristies exist. Thus the total energy tenmsor is partitioned into a
particle energy tensor Euy and a ficld "‘energy tensor Wyus by the
formula (34). We have :

-Tyur - k'&,#ﬂ I‘Vp.r- = - Ul?' o 1)-Ep.w '_ (37)
The factor %, which represents the number of. independent components of
the energy temsor, will be called the multiplicity. factor.

To apply the rigid-field treatment we choose an ‘‘initial state,”’ and
partition the initial energy temsor (Z,), into (Zuv), and (W M,,)
by (387). Sinee Wy, is unaltered by transitions, we have

(L'uv)e = = k(Bus), (initial energy) . (38)
8Tuyv = 8lpuy ‘ (transition energy) }

It is understood that the particle is an unidentified member of a large

assemblage of which-all but a small proportion remain in the initial state.

The classification of states was determined by T ,, but it is now
more convenient to use the equivalent classifying characteristies

Xup=.= Turfh ki 0)
so that, for a state X,, = (X,,),+8X,,, we have.
Iﬁ’ﬂ.p = (Xpy)u = kSX.u.y . (40)

We call X,, ‘the generic energy temsor. Like T,, (to which it is
constantly related), it has the ordinary Lorentz-invariant propertles that
is to say, a change of velocity of the particle produces in X u» the same
alteration as an opposite change of velocity of the reference fmme The
generic energy tensor is therefore the energy which we should expeet the
particle to have by the ordinary rules of kinematical caleulation, dis-
regarding the presence of a rigid field. Lorentz-invariance does not apply
to L uy and Wy the latter being unaﬁected by a clmnge of veloelty

; s Sub;ect to adaptations which may be found necessary when clectrio eharge is tnkon
into account. :
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(transition) of the particle, but undergoing the usual tensor trans-
formation if the velocity of the frame of reference is changed. Thus the
meaning of (40) is that, owing to the rigidefield, the dransition energy
is -k times as much as we should have expected.

The treatment is simplified if we analyse systems in such a way that
the initial energy and transition energy are associated with different
particles (carriers). We then d.istlngulsh-— : .

Initial particles, for which no change of state is contemplated They
are generally taken to be in a state of almost exact rest.

Transition particles, which have many possible states thelr initial state
being a state of zero energy tensor.

This kind of analysis is not a device invented for the present theory.
It is the normal procedure in classical mechanies and astronomy for
systems of more thun one particle; and it was followed in the earlier

. developments of quantum theory, though later writers have unwisely_
abandoned it. The system is replaced by an external particle moving with
the centre of mass, and having the total mass of the system, together with
internal particles deseribing relative orbits and having suitable ‘‘reduced
masses.””  The rest energy of an internal particle is zero. The external
and internal particles correspond respeectively to initial and transition -
particles,

12. Mass-ratio of the proton and electron.

Consider a standard carrier of mass m, in an initial state of rest.
It it makes a transition to a state of momentum ~ p,/; p,/, ps, the
generic energy (i.e. the expected energy) is, to the ordinary approxi-
mation,® e ;
£ 8 i (41)

2 m,

3

Xl

so that by (40) the particle energy is

g1t o Pyt + Py
. 2 (4

E = m, -
where : :
Bpo= m, /k = m,/136 : (43)

'Io preserve a formal analogy between rigid-field dynamlcs and classical
dynamies, we adopt in quantum theory a momentum which is 1 times
the classical momentum?* . -

P P Sl smpapiaps (44) .

¥ We have no oceasion to consu]cr large values of p,', ».’, p,'. It would not be
a better npproximation to adopt X = (my® + p,/* + p,'? + p, ’)i since the Lorentz
formula 1+ not valid in a gravitational field.

¥ Further explanation of this step is given in § 13.
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so that by (42)
E=my+ (p? + pd + pd)/2p . s 4 440)

We have already remarked that the standard carrier will from the
ordinary point of view be regarded as composite, since it ean contain an
internal stress. The deviation from the classical conception of a particle
is further indicated by the fact that its rest mass n, differs from its
mass-constant p. ‘We therefore divide it into two carriers, an external
particle carrying the initial energy and an internal partiele carrying the
iransition energy, if any. Thus (45) is separated into

By ="my -~ By (p 4 pat o+ pd) 2 (46)

I"urther, sinee the ordinary outlook admits only vector particles, we must,
along with the separation, 1ntr0duce stabilisation reducing the multiplieity
from 136 to 10. ;

Consider a distribution of = particles per unit volume at rest, and
let the total density 7,, be given. Then by (37) the density apportioned
to the particles is p = E, = - T,/k. If k is changed by
stabilisation from %k, to k,, the corresponding densities are in the

ratio  p;/p, = ky/k,. If the masses are m,, m,, we have
P = AMy ;. pg = 'nm.‘,i so that
mll/ My = kgl L& R, (47)'

The formula (47), being based on' (37), applies only to the external
pariicles, which represent the initial part of 7',,. The transition part
of 1, is by (38) wholly particle energy, so that the transition part of
fi,, is independent of changes of k. Hence when we apply stabilisation
o the whole energy of the standard carrier, Z#, is changed in inverse
vatio to k, and E; is unchanged; so that (46) becomes

goens. 136 8 5 P+ pt o pg
‘Ee i 10 o -b’l- 5 2# (48)
Denoting the mass (rest energy) of an external Vm particle by /5. we:
have o
136 1
M = w Wiy M = lgf—i m, (49)

The internal V,, . particle has no rest energy; but its mass (mass-
constant) is defined as the coefficient p in the expression (48) for the
energy, just as in classical mechanics.

Presumably this combination of an external and an 1nternal particle
- of the simplest kind (V,, particles) is realised in a hydrogen atom.




EvpingroN—LRelativity and Quanium Theory, 21

Acceepting this identification, which is checked in a great many ways 4n
subsequent developments of the theory, the ratio

mo=Z %— - 18496 (50)

is a fundamental constant of the hydrogen atom which can bé determined
observationally. It is here found primarily as a density-ratio in an
assemblage of standard carriers; but, -lsinec the division of the standard
carriers gives one internal particle to each external particle, it can also
be interpreted as a mass-ratio for individual atoms.

If the masses of a proton and eleetron are mp, m, the masses of
the corresponding external and internal particles are given by

M= my + m, o= mymef(my, + m,) (51)
so that mp, m . are the roots of '

m* - um + up= 0 i - (82)
or by (49) ;
- 10m? - 136mm, + m,2? = 0 (563)

which is the equation found by the author in 1931 From this we obtain
the mass-ratio 5E

mo= 2 = 184760 (54)
- : }¥ a2

We call mj,, m, defined in this way the standard masses of the
proton and electron. When we pass over to electrical theory (§ 17)
modifications of the definition will suggest themselves, and thie ratio may
be slightly changed. But there is no very obvious definition of the mass
of an electron; and in any comparison with an observational determination’
of mp/m,. the question arises, What precisely has the observer deter-
mined? Having ascertained this, we have to re-reduce his results so as
to correspond to the definition adopted here or in later theoretical formulae.
The full comparison is given in § 20, and the agreement is found to be
perfect. '

13. The inversion of quantum energy.

In molar relativity theory, as in classical theory, matter is supposed to
be composed of particles to which the uncertainty principle does not
apply. Such particles can be included in the present theory as a special
case k = 1. This implies that the velocity (represented hy a unit
vector in four dimensions) is treated as free information, not involving *
any reciprocal uncertainty of position; and the only mechanical

“ Proc. Loy Soc., A, 134, 532,
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chivaeteristic whieh is a genuine observable is the length s of the
momentun veetor.  This is econsistent with the usual elementary relativistic
outlook, in which m appears as an absolute quantity, whereas the
orientation of the momentum veetor is relative to an unobservable space-
time frame. V, partieles, . therefore, resemble classieal particles in
being exempt from the usual uncertainty conditions; but, as quantum
particles, they are superpositions oy a rigid environment, unlike elassicl
particles, whose essential chamcterl;tm is that they carry fields of force
which disturb the environment.' We, therefore, deseribe the V),
particles as semi-classical. By then}ieﬁmtlon of generic energy, X, is
the particle energy of a classical particle; if £, is the particle encrgy
of a V, quantum particle; we have in a transition

’ SEpv =;"' SXpr (56)

by (40). The change of sign of the tra.nmtmn energy will be rcferu,d to
as the inversion of energy.

The inversion of energy ecan be understood by consuiermg a system of
gravitating particles in a steady state, e.g. a star cluster. The initial state
is taken to be that in which the stars are nearly at rest, and the cluster
is, therefore, widely extended. If the eluster contracts to a mew steady
state, the kinetic energy K is increased, but the whole encrgy
I' = K + V is diminished, V being the potential energy. The
condition for a steady state is I' = - K. Treating the cluster as a
classical system, the gain of particle energy - is 38X = K; Dbu,
treating it as a system of quantum particles superposed on a rigid field,
the whole ehange of energy must be represented as a change of particle
energy, so that the gain of particle energy is 8F = T = - K.

The mass or rest energy of a body, as defined in molar physies, is not
a net addition to the energy of the universe. It is an addition made in a
particular region; but elsewhere there is a decrease, which is recognised
as the negative potential energy of surrounding objects due to the
gravitational field emanating from the body. This distinction, between
the direct change of energy due to the presence of a particle and
the indireet change due to its field, can only be made if the particle is
localised. Quantum particles are not localised, and only the total energy
change in any region can be considered. The non-localisation is
accentuated by the fact that in mechanical theory the particles are
represented by ‘‘infinite’’ plane waves. :

We generally confine attention to steady statcs, because a quantum
particle is defined as the occupant of an eigenstate; but a brief reference
may be made to the relativistic theory of unsteady states. In general
relativity .theory the mass M of a system is defined as follows. Taking
axes such that the centre of mass is instantaneously at rest, M is equal
to the mass of a single particle, having the position and acceleration of the
centre of mass, which would produce the same gravitational field (i.e. the
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same geodesies) at a great distance from the system.' It is found that
for a system of gravitating particles'
M < M + 3K + 2V (56

where M, is the sum of the vest masses, K the kinetic encrgy and V
the internal potential energy. Using the identity*®

7o SR S gfl“-o/tzt’

where € is the moment of inertia of the system absut the centre of
mass, (56) is reduced to either of the two forms

M=M+ K+ Vi LdiC)de (57 a)
M=M-K+diC)de . (B7D)

If the system is steady, (57b) gives M = M, — K, the negative
sign indicating the inversion of energy. TFor an unsteady system there
a:C
7.
would be represented as a series of transitions between steady states; and
the expansion energy is then the perturbing term in the IHamiltonian,
which induces the transitions.

We have scen that, in order to ecompensate the inversion of sign of
transition energy, a quantum momentum p, (e = 1, 2, 3) is intro-
duced which is ¢ times the classical momentum p o . This is the origin
of the / Ti which appears so mystenously in guantum formulac.
The classical momentum operator would be p.’ = - hd/dza.

Both in elassical and guantum theory we deal with momenta which
are real; so that effectively there is no overlapping of eclassical and
quantum systems, except when the momentum is zero. This is illustrated
in equations (41) to (45), where we proceed as though we were going to
give the earrier m, an external velocity p)//m,, p./m,, p/Mmg;
but it turns out that our analysis, as applied to a real rigid-field problem,
refers to a- system in which the carrier remains externally at rest and
has a steady infernal motion with momenta p,, p,, p,. The fact is
that the mechanical quantities in quantum theory are analogues, not
necessarily direct representatives, of the correspondingly named classical
quantities; and in some cases the direct representatives are imaginary.

is also an expansion energy In wave mechanies the expansion

14. Rigid coordinates.

In order to validate the rigid-field treatment adopted in wave mechanics
we have to put the system into an extravagantly strong gravitational field,

“If M is varying, the time to which M refers is earlier than the time of comparison
of geodesies by the amount of the light-time.

¥ Eddingtoun and Clark, Proc. Roy. Soc., A, 166 469,

“Mon Not. R. Astr. Soc., 76, 525.
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The standard particle, for example, is put into a field which gives it a
potential energy — 137 tines its own mass. If the gravitational field were
““transverse,”’ i.e. irreducible like the field of the sun, the results obtained
in these fantastic conditions would have no praectical application. We
are, therefore, limited to initial distributions for which the self-consistent
gravitational field is “‘longitudinal,”’ ie. creatable and removable by a
coordinate transformation,

The basis of our investigation kxas been that -vave mechamcs, which
mtroduees particles as occupants of states in a rigid field, is only valid if
the luaracteristies of the field are 'stationary for small changes of the
occupition factors. - We can now elucidate the proviso by making it read,
““1f the coordinates are chosen so that the characteristies of the field are
stationary . . .”” Such coordinates will be called rigid coordinates.

We can determine the rigid eoordinates for a uniform distribution of
particles at rest, which is the initial state usually adopted. The required
transformation - from Galilean coordinates 2 YV ke vigid
coordinates «, y, 2, ¢ is

2/ =2z Yy =y plm g bl o kil ~ (88)

Sinee the g¢,,” have Galilean values, we obtain

= k2 gt = k-* JTQ:-k

By general relativity theory' the energy a,nd momentum per unit
coordinate mesh (which by (58) agrees with the space volume in rigid as
well as Galilean eoordmates) are T . = 70 / — ¢g. Normally a pseudo-
tensor density tu.* is added, but this vanishes here because the Jur
are constants. The transformation (58) gives

-

T = T T = - kTN, (59)

Since the space coordinates are unchanged, the number of particles
per unit coordinate mesh is unchanged, and the momentum and enerey
of a single particle are transformed in the same way as Z,'.  This makes
it .necessary to represent the momentum and energy of a particle
by a covariant vector p.; for the transformation (58) gives
Py, = p', »p, = - kp/. This agrees with the quantum definition o’
the momentum vector by the covariant operator pu = - 1hd/dz,.

To create a field by coordinate transformation we must, as it were,
mistake the transformed coordinates for (Galilean coordinates; so that the
change of T,' and pu. is attributed to additional field energy and
momentum. Thus, adapting our former notation,

ass;=z;-zp'; E#wﬁﬁ’

e T o ——

* iddington, Mathematical Theory of Relativity, § 59.
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Since we are considering particles at rest, the only non-zero eomponen!
is T#; and by (59) the condition
T, = - k€, W, =~ (k+ HE, ~

is satisfied. This (in rather more elaborate notation) is the condition (37).

The rigid-field condition, therefore, in practice reduces to this:—in
wave mechanics we must G’mPZOJ a ttime t which is . 1/k  limes Lhe
true time  t/.2° '

This is, of eourse, covered up in eurrent quantum theory by empirical
adjustments of the constants. But our aim here is to ‘develop the theory
without empirical constants. S '

15. Mutual and self energy.

- By observing an object-body in conjunction with a reference body, we
determine characteristies whieh belong neither to one body nor to the
“other, but to both jointly. It is, however, customary to allot these mutual
characeteristics, to the object-body as self eharacteristics, or more defensibly
to partition them between the two hodies according to some logical plan.
This conceptual transfer, by which self properties are substituted for
mutual properties, is a habit of thought which has been elevated into a
convention.  Since the language of physics is bound up with this
convention, we can scarcely do otherwise than aceept it in principle.
Consider two particles, one of which is the object-particle and the
other, used as a reference body, is called a comparison particle. Let the
particles be of the simple type for which the mechanical characteristies
ave completely specified by a momentum veetor. If the momentum veetors
are pu, pu’ the mutual energy tensor is necessarily of the form

Muv = $C(pupy’ + popu’) (60)
where € i8 a pure number; for there is no other symmetrical tensor
of the second rank, having the dimensions of an energy tensor, depending
symmetrically and inseparably on the mechanical characteristies of the two
particles. If self energy tensors are substituted, these must for the same
reason be of the form

Luv = Apupy Lpr' = A'pu'ps’s . . (BL)
Ifor particles at almost exact rest the three energy tensors reduce to
densities ;
' pm=Cmm’ .p=Am? Ppla AN I (69)
The usual practice is to allot the mutual density wholly to the object- _
particle. This would give 5 = 5,,, or

Am?* = C;mm” . (63)

* This is additional to the inversion of emergy, which gets vid of the negatne sign,
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This is an inconsistent procedu.e, since it makes no provision for the
self density of the comparison particle. We must not shilly-shally with
the comparison particle, assuming its presence when- the measurement is
made, but assuming its absence when the measurement is interpreted in
physical terms. The correct relation pt o = p, gives: '

Adm® + A’m!¥' = Com’, (64)
We have already found that the|masses m of the elementary V,,

particles (protons and eleetrons) fulfil a relation (53) . which is of this
form. By comparison of (64) and (5?), we obtain

m’ = m, A: A’ : 0 =10:1:136. (65)

The factors 10, 1, 136 are the muitiplicity factors of the respective
carriers. The distribution of unspecialised energy M u» of multiplicity
136 is replaced by two distributions of specialised energy, one being the
cnergy of object-particles of multiplicity 10 and the other the energy of
comparison ‘particles. By assigning to a comparison particle the
multiplicity 1, we express the faet that it is employed as a standard, and,
therefore, idealised as a ecarrier only of that characteristic of which it is
the standard. ; :

We have, therefore, the following result :—For particle energy the
three coefficients are equal, and the densities are simply .

o A’ m¥y A A" mm’ . (66)

The relation p + o = P, applies to the folal energies; and the
quadratic equation giving the mass of the proton or electron expresses the
partition of the total mutual density 136 A’m m” into total self densitics
10 A'm2, Ams, ' Sy %

The root of the problem is that probabilities are multiplicative, In
wave mechanics we deal, not with particles, ‘but with .probabilities of
particles (occupation factors).. Thus a system appears primarily as the
produet, rather than the sum, of its parts. When wave mechanics gets
fairly started, this condition is met by consigning the ordinary additive
characteristies to the exponents of wave functions; so that they get added
when the wave functions are multiplied. = But we are here occupied by
this eondition as it affects the beginning of wave mechanics. There can
be no observable without a double probability -distribution ;" so that the
most elementary mechanical observable is a product of two parts m, w’
or more generally 4, 4, . We have to reconcile this with  the
common conception of the composition of mechanical characteristics by

addition of parts. ‘ ity 41 :

' The same method gives the mass ux of an internal particle. In this
.case p = 0, since the internal particle has zero rest energy. Henee

P‘ = Pm oy or

A'm’* = Cum’ = 136 4" um*, (67 a)
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Henee p = wm’/136, which agrees with (49), w having been
identified with m, by (65).
The value M = 136m,/10 of the mass of the external V,,

particle gives 10 4’ y? = 136 A’ arp” L iR
Ax* = Cum', ol ' (67 b)

This corresponds to the erude formula. (63), which makes no provision for
the density of the comparison partiele. It appears then that, when a
hydrogen atom is analysed into e)hemal and internal particles, the :
comparison particle associated with the internal partiele serves for both;
but when it is analysed into a proton and electron two comparison
artieles are present. Presumably this is connected with the fact that the
proton and electron can be taken apart, but the external and internal
particle cannot be dissociated from one another. 'We can think of a
proton without an electron, but not of an inside without an outside. The
““decoupling”” of the proton and electron will be treated in § 28.

For comparison we eollect the formulae showing the partition of the

mutual density into self-densities. THe more definitive notation A4, m,
is used instead of A/, w’.

104,m* + A;m,* = 136 A,m wf, (proton or electron)
Aymy* = 136 4, pum, (internal particle) | (68)

10 4,2 136 A o arm, (external particle),

It is significant that the partieles which have eomparison particles attached
to them (proton, electron, internal) have electrical characteristics, whereas
the external partiele is neutral.

ParT IT1—ELECTRICAL THJEORY.

16. Interchange of comparison particles.

A measurement is an operation in which four entities are physically
mmvolved; for the observable to be measured is a relation between two
entities A4,, A4,, and the measure is its ratio to a comparison
observable which is the corresponding relation between another pair of
entities  A4’,, A4’,. Accordingly— :

A measure is o statistic of a quadruple probability distribution.

In a casnal measurement the form of the quadruple distribution is
unrestricted; but the foundation of scientifie investigation is the substi-
tution of systematic for casual measurement. In particular, the definitions
ol physical quantities are based on an ideal systematic plan of measure:
ment. In systematic measurement one or more of the four entities is an
average of a large number of particles, so that its varianes is standardised.
The quadruple distribution has then a simplificd form, the simplification
being unsymmetrieal as regards e S ln it A,

[c]
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Normally two entities A4’,, A4’, are secleeted as the comparison
system and standardised by averaging. Their sole funetion is to provide
the comparison standard (i.e. the extraneous standard materialised in a
form in which it can be imagined to take part in the physieal process of
measurement), Thus the comparison system is so mueh simplified by
averaging that it retains only one dimension of probability distribution
and is the carrier of only one variate, namely, the scale.”* In short, it
reduces to a V, particle. .

The entities  A4,, 4, are treated differently, according as we aro
studying distribution or correlation. In distribution theory A4, is
selected as object-particle and A4,, standardised by averaging, is the
reference particle or physical origin. 1In correlation theory A4,, A4,
form the object-system, and the quantity measured is admittedly a relation
between A, and A4, in which both play a symmetrical (or anti-
symmetrical) part. In that case we introduce an internal particle as the
carrier of the relative coordinates and momenta; and the scale is then
correspondingly associated with the internal particle of the system
A4,, Ay standardised by averaging. '

The ordinary outlook regards a single particle as a carrier of mass.
This, as we have seen, involves a eonceptual partition of mutual propertics
into self properties. The self mass of A, may be arrived at by two
routes. Either we measure the mutual energy of A,, 4, by com-
parison with the mutual energy of A4’,, A4’,, and partition the result
between A, and A4, ; or we partition the mutual energy of A4,, 4,,
between A, and A,, and measure the part allotted to A, by
comparison with the correspondingly obtained energy of A4’,. These
correspond to the two methods by which we have obtained and interpreted
the equation (53) for the masses of protons and electrons, sinece the method
~of §12 was based on treatment of the system A, 4,, and the method
of §15 on treatment of the system A, 4’,. Both presuppose 2
preliminary simplification or stabilisation which has reduced the quadruple
to a double probability distribution. We have now to examine this
preliminary step, so as to rescue what has been lost in assuming it.

A system such as A,, A4’, consisting of an object-particle and a
comparison particle will be called a perfect particle. We consider a
measurable, denoted by [4, 4, 4, 4,’], furnished by a perfect
electron and a perfect proton. The transformation i

[did) A 4] o fdcde dedit] (69)

in which the two perfect particles exchange comparison particles, will be.
called interchange. ;

“ Regarding the scale as a momentum, it has a conjugate coordinate which we call
the phase coordinate.
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Sinee comparison particles are alike, interchange hasg no observable
effec.t. All observable results must be invariant for interchange. Inter-
change is, therefore, a relativistic transformation of the system of
reference, which is to be treated in the same way. as relativistic rotations
of the space-time frame. ' :

In treating a double probability distribution, it is necessary to dis-
criminate ‘between two kinds of distribution function or wave function—

1
(a) Expressing the probability tlat two points =z, . are
occupied. |

(b) Expressing the probability that particle No. 1 is at z and
No. 2 at . o', :

So far as. I am aware, no mathematical theory of wave functions of
type (a) exists, and treatment is always based on functions of type (b).
This involves the assignment to the particles of identification suffixes which |
have no observable counterpart, thé phenomena being invariant for
interchanges of the suffixes. We may assimilate this invariance for inter-
“change of suffixes to the afore-mentioned invariance for interchange of
comparison particles by making the comparison particles the carriers of
the identifieation suffixes. _

Thus in a perfect particle the object-particle is the carrier of the
coordinates and their conjugate momenta, and the comparison particle is
the carrier of the scale and the suffix. We have found (§ 15) that when
a proton and electron are brought together into one system, so that they
are replaced by an external and internal particle, one of the eomparison
particles is eliminated. This is true in so far as the comparison particles
are carriers only of the scale, since it would he redundant to have two
- versions of the extraneous standard associated with one system. But
since they carry the suffixes, it is necessary to retain a permutation variate
whose changes represent the transformation (69), which would otherwise
be lost. Either we replace the two comparison particles by an external
comparison particle carrying the seale and an internal comparison particle
carrying the permutation variate, or we combine them into a V, ecom-
parison particle with two degrees of freedom corresponding to the scale
and the permutation variate. . : '

The permutation ‘variate is most conveniently taken to be an angular
coordinate 4, such that the transformation (69) corresponds to
0 = @ + = Since the coordinate itself is unobservable, it is a eyeclie
coordinate which can be eliminated by ignoration of coordinates; but the
angular momentum conjugate to it constitutes an interchange energy’
which must be taken into acecount in the Hamiltonian of the system. I
pointed out in 1928 that this interchange energy is the Coulomb energy

# Proo, Roy. Soc., A, 122, 358.
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of the proton and electron. It will be shown in §§ 19, 20 that the exact
value of the Coulomb energy can be found in this way.

It seems to be commonly thought that the difference of mass of a proton
and electron makes them “distinguishable,”” so that the theory of inter-
change does not apply to them. But this is a rudimentary fallacy.
Clearly we must distinguish the individual particles before the masses can
be measured, so that the mass cannot be used as a eriterion of distinetion.
This applies even in classical mechanies. If =z (f), 2/ (f) are the
coordinates of two occupied points observed at two times ¢, 1, the
veloeity of the partlcle originally oceupying =z (¢,) ma,y be either

z(ty) — @ (t)) o 2 (t) - 2 (¢,)
tg—tl t’ == tl_

Since the velocity is observationally ambiguous, the whole dynamics is
ambiguous; and the mass of the particle is undefined. The only way to
proceed is to assume identification numbers (at both times) as free
information. Then the velocity, mass, ete., can be deduced. We may
then, if' we like, employ the distinetive masses to identify the particles;
but this can only reproduce the distinction already assumed as free
information, on the basis of which the masses were determined.

Let (z,1; a/,2) denote the state in which particle No. 1is at =
and No. 2 at a’. A passage to the state (z, 2; 2’ 1) may oceur as
the result of motion through space, i.e. by a coordinate interchange; or
it may occur as the result of an increase = of the permutation eoordinate
giving ‘the transformation (69), i.e. by suffix interchange. The term
‘‘inferchange,’” unless otherwise stated, refers to suffix interchange. The
important point is that\the equation of continuity of flow of probability
' ot satisfied if we take into aceount only the flow through space; and
the mechanieal equations must include the extra-spatial flow representing
suffix interchange.

17. Electric energy. :

The standard carrier is a Vg partlcle, ‘which carries an energy
tensor and nothing more. We have now to consider a particle which
carries a permutation variate in addition; so that when it is divided into -
two particle distributions the particles are distinctively suffixed. This
will be called a bi-particle. There are two points of view. The additional
degree of freedom can be provided by extending the complete energy
tensor so as to include one’of the ‘‘dormant’’ electric components (§ 11).
The bi-particle then appears as a V,,, particle; and by (47) the relation
between the masses m,, m, of the standard earrier and bi-particle is

Mm, = }jz = MLy (70)
where

gy 86 T (71)
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But, although completely  wmified treatment of gravitational aund
eleetrical cnergy is sometimes uselul, it is ordinarily held in reserve, since
our subject requires more intensive treatment of eleetrieal than of
gravitational phenomena. We shall, therefore, not admit the electric or
permutation degree of ffeedom on the same footing as the rest. Both
standard particles and hi-particles will 'be treated as V,,, particles, the
electrical properties of the latter b ing taken account of by inserting
special eorrecting terms in the Hami tonian. The principal eorrection is
the Coulomb interchange energy. Bﬁ-t, before this is inserted, we have 1o
remove an averaged electrie encrgy, which is present in the adopted initial
state in our scale-free investigations, and ineluded in m, as though it
were mechanical energy.

There is an obvious reason for the difference of mass in (70). In the
initial distribution of standard particles at rest the occupied points are
at rest, but there is a econtinual interchange eirculation of the suffixed
particles which ocecupy them. Thus standard particles at rest arc
equivalent to bi-particles in (extra-spatial) motion; and by (70) it follows
that u’ is the energy of this motion. Thus in passing from the standard
particle to the bi-particle representdtion of the same distribution, there
is a reduction ' in the initial energy and an inerease u’ in the
transition energy; so that (46) becomes

-

Be = mg—-p' = g™ o= '+ (0% + pi?+ pa?) 20, (72)

In a Hamiltonian of the form E; we distinguish  x’ as the rest
mass and p  as the mass-constant. When they agree the particle can be
described as free. It is a feature of the new form (72) that the internal
particle is very nearly free. The reason why it is not quite free is that
the gravitational equations are non-linear; so ‘that the separation of K
into two additive terms does not coineide with the physical separation into
two systems which we can think of as existing separately. In the next
section we shall follow the physical separation by treating ¥ ., and E;
as at first existing in separate worlds; it will then appear that the
difference. g = p* = p/137  is introduced in combining the two
worlds.

When the rest mass and the mass-constant differ, the ordinary inter-
pretation is that the mass-constant is the true inertia, and the rest mass
includes in addition ‘either gravitational or electrical potential energy.
“Longitudinal”’ electric energy can be treated indifferently as electrical
or mechanical. If we count it as mechanical, the longitudinal eleetric
energy in the rest mass is counted as true inertia, and -is, -therefore;
included in the mass-constant. If we couns it as electrical, it is not
included in the true imertia; the rest mass is unchanged but the mass
constant is reduced. Naturally before introducing electrical theory we
~include as much as possible of the electrical energy in the mechanical
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energy. Consequently the standard particle (an element of the meehanieal
energy {ensor) includes eleetrie energy in the incrlia or mass-constant,
and m, is the mass-constant as well as rest mass, as assumed in (41).
When we introduce electrieal theory, the mechanieal energy is more
narrowly defined.  The energy m, is split into the pure mechanical
crergy of a bi-particle at rest both spatially and extra-spatially, together
wilh the electrieal energy of its extra-spatial motion in the state in which
it is equivalent to a standard particle. The inertia or mass-constant is
then the pure mechanical energy w/,. Let

B = 137/136. (73)
Then for a bi-particle in the initial state in which it is equivalent to a
standard particle at rest

mass-constant (m,") = rest mass (m,) + 3. (74)

Lot standard particles and bi-particles are being treated as  V,,,
particles, and the stabilisation which reduces % from 136 to 10 applies
to both.  Thus for a hydrogen atom, when the electrical energy is
distinguished from the pure,mechanical energy.

mass-constant (a”) = rest mass (x) + f3. (75)

““Transverse’’ electric energy cannot be included in the mechanieal
energy; but it only becomes important when the momenta are large.
i‘or that reason we have hitherto considered only small values of
Vs P2y DPs, deferring the higher approximation until bi-particles are
veached and the whole electrie cnergy can be treated together.

* The formulae
M=m+m p o= mm’ [{m + m’) (76)

vefer  to mass-constants.?®  On  the other hand, in the formula

pe 136*/10, obtained in the treatment of standard particles in
$ 12, a refers to the rest mass. It would be troublesome to change the
notation in (76); so we shall denote the mass-constant and the rest mass
by a and uB. Then n = 186m',/10, M3 /p = 1362/10; and
the quadratic equation for the masses m, m’ of the suffixed particles
1S g

10m?* - 186 mm’y + Bm/,2 = 0. 77

This gives a mass-ratio mp/m, = 1834'1. The difference from the
former result 1847:6, which applies to unsuffixed particles, iz that the
masses of the proton and electron are now freed from clectric energy; .
formerly they included the eleetrical energy of the simple (but highly

* This appears formally in (79) below. But in any case it is clear that the formula,
(76) cannot refer to rest masses; since in its ordinary use in classical mechanics the
rest mass of the internal particle is zero.
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utiatural) distribution adopted ag initial state.?* Having eleared away
initial ecleetrie energy, we can make & clean start in ecaleulating and
inserting the Coulomb interchange encrgy of the particular eonfiguration:
we wish to treat. : '

The result (77) was obtained in Protons and Electrons, equation
(15.84). But we shall see in the next section that it is not yet final.
The trouble is that in removing the electrical energy from the system, so
as to obtain purely mechanical masses of the proton and electron, we
upset the self-consistent gravitational field which was adjusted when the
clectrical energy was present. We have to devise a treatment which
adjuste the field after the electric energy has been removed. The fact that
the internal particle in (72) is not completely freed is a symptom of this
trouble. 'We shall, therefore, first complete the freeing of the internal
particle, Cr

The familiar classical formula (76) ought not to be taken over into
relativity theory or quantum theory without re-derivation. In wave
mechanies it originates as follows :—Let L T O S OSeE 1
(e=1, 2, 3, 4 be the coordinates and times of the four particles
then : ' '

]

Xa = (Mo + m’za") | (m + m’) i = 22’ = 2a, (78)
and, defining # and u by (76), we immediately derive the identity
n m M u

where [1 is the usual wave operator 0*/et* - V2 for the set of
coordinates indicated by its suffix. :

For a free particle we shall now use the relativistic Hamiltonian, valid
for all values of the momentum, namely, 0 :

Po= (m®+p,*+p? + p0)}, (80)
and the wave equation of a free particle is then ¢
.~h’0 & m?, . (81)

It is not possible fon all four particles to be free, because (79) would then
give - m + m’ = ¥ + p,  which is untrue. We take the proton
and electron, to be free, because it is their free masses which we wish to
determine. 'We further decide to make the internal particle a free
particle; so that only the external particle is abnormal.

The reason for the last decision is that the internal particles (eorre-
lation wave functions) have to bear the brunt of all the important

* It is unnatural beeause in an actnal uniform assemblage of protons and electrous
the total eleetrical encrgy would be zero. By treating it as an assemblage of two-
particle systems not interacting with one another, we omit the positive energy which in
et caneely the internal uegstive euergy of the proton-electron pairs.



i developments of wave mechanies, which are highly complicated ;
50 Lhat it is essential to have the simplest possible concept as a basis. By
freeing the internal partiele and giviis it the normal IHamiltonian of
relativistic mechanics, we arc able to represent it straightforwardl. by
Dirac wave functions. External particles (distribution wave functions)
are only passengers in the theory. They ean be left to be added at the
end, although, as we shall sce, the addition is not quite so simple as is
usually assumed.

It will be seen that we here make a slight change in the separation
shown in (72), by letting the correcetion ' — u  for non-linearity of
the combination fall on %, instead of on E;.

18. The p-factors.

Thus far we have been content with a mathematical separation of
mechanical and eleetrical energy co-existing in the same space. The
detailed development of quantum theory demands a more drusiic
separation, which virtually puts them into separate worlds. The internal
particles, now completely freed and representable by Dirac wave functions
from the “electrical world’’; and it is in this world that the whole
development of quantal physics takes place. Quantal theory—the typical
part of quantum theory—is concerned exclusively with cleetrical encrgy,
for we have seen (§8) that the corresponding quantum of mechanicul
energy has the much higher order of magnitude h \/ N. The
mechanical world, so long as it is kept separate from the electrical world,
is scale free, except in regard to cosmical scale.

This separation of mechanical and electrical worlds may be regarde
as a ‘‘dis-unification’’ of our theory; but, of course, such a step is
necessary if we are to correlate unified theory with the existing non-unified
development of theoretical physies, which contains an immense amount of
technical development that is of permanent value. We have to exhibit
non-unified physics as included in unified physics, just as we have to
exhibit Newtonian gravitational theory as included in Einstein’s theory.
But, having seen the genesis of the separate mechanical and electrieal
worlds in unified theory, we shall be able to combine them rigorously
instead of by guesswork. The combination is not linear, but introduces
certain B-factors which will be investigated in this seetion. The B-factors
must be taken into account in any comparison with observatlon, since the
world which we observe is the combined world.

The internal particle being now recognised as purely electric, the
hydrogen atom is a combination of a mechanicsl (neutral) external
particle and an electric doublet. The coordinate £ of the internal
particle is the separation of the doublet, and it is primarily significant as
a measure of electric polarisation. Picturing it, however, as an ordinary
coordinate, it locates the electric particle in a £-space, which is distinet
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from the ordinary z-space in wu . the proton, elestron and external
particle (occupying the eentre of nipss of the electron and proton) are
situated. The &-space is the space of the electric world. There is a fourth
coordinate ¢, which formally comtesponds to imaginary time, in the
clectric world; in physically real srstems the probability extends over
real values of o—unlike the mechagice.l world where the values of the
time are required to be real.?®

We here deal with the electrical WOrld only so far a.s it is introduced
in an assemblage of hydrogen atoms; but a brief reference may be made
to more complex systems. In systems of more than two particles the basis
of the separation into. mechanical and electrical worlds is the separation
of symmetrical and antisymmetrical wave funections. This reduces to
the separation of external and internal particles in the simple case of a
two-particle system. It is commonly said that the wave functions of
systems of simpleé particles are antisymmetrieal ; but that is merely becausc
current wave mechanics selects the antisymmetrie (electric) characteristies
as its special field of study. The general theory of the separation has
many ramifications, which we do not enter into here. It is sufficient to
call attention to a practical point. In practice the external energies of
complex particles are compared with one another by mechanical methods
(atomic weight determinations), and the internal energies are compared
with one another by optical methods (wave-length determinations of the
emitted radiation). Thus the observational data follow the theoretical
separation into two worlds; and the corrections  (B-factors) which we
apply in combining the two worlds appear in practicc as cerrections to be
applied in ecomparing energies measured on the atomic-weight scale with
energies measured on the wave-length scale. By considering the hydrogen
atom, for which the precise theory can be worked out, we determine once
for all the correction neeessary to adjust the two scales.

Consider two steady distributions both containing = particles per
unit volume spaua]ly at rest, the particles being—

4, standard particles, regarded as bi-particles with electric energy.
B, bi-paftic]ea without electrie energy.

By relativity theory, only one density of a steady distribution of
particles at rest, namely, the density of an Einstein universe, is compatible
with the actual constants of nature. All our previous work has been
based on 4 as initial state, so that we have implicitly assumed natural
constants compatible with it. 'When the electric energy is removed to
obtain B, the density is reduced from nm, to » m/,, and the -
distribution is no longer in equilibrium with tke same natural constants.
It would be troublesome to introduce a new set of physieal constants

*See § 19.
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associated with B; and it is, therefore, simpler to couple with the removal
of the electrie energy a change of extrancous standard such as to multiply
densities by the factor B. This restores the density to mm,; so that
it is compatible with the original physical constants (the same numerieally,
though the number refers to u different unit). In natural units length
has dimensions (density)"# so that the change of standard multiplies
lengths by B¢ - Thus the effeet of removing the electrie energy may be
stated as follows:— -

In passing from A to B there is no change of density, but lengths and
limes are multiplied in the ratio f~ 3 (82)

Now A is the initial state in our unified theory which deseribes the
combined world. By the analysis in (78) and (79) we separate off the
Iree eleetrie partic!. . and consign them to a separate world. The system B
which is left forms the purely mechanical world, in which longitudinal
eleetric energy is no longer counted as mechanical energy.
Let wa as before be coordinates in the combined world, and e
be coordinates in the mechanical world. Lt £a = %) -, Z«

Ea = &d’ -~ Za. By (82), Z, = 3 ¥wa, sothat Ex = 3" $E.. Thus
if we calculate the mass of an internal particle from the wave equation
-h0Og = u*, instead of from - h*'0; = u*, we obtain

p=pu. (832)
There is no change in density or in =, so that the rest mass of the
cxternal particle is unchanged. But, as pointed out in §17, the ux
which appears in (76) is the mass-constant in system A ; and the rest '

masgs in either system is

A= 3. (83 b)
The analysis of the energy temsor 7 .. in §§ 9-12 applies to the
combined world or the mechanical world according as we do or do not
include longitudinal electric energy in  7'w»  We are now excluding the
eleetric energy, so that the result (50) is m/m = 1362/10. This
applies to system B. Passing to system A (combined world) we then have

M -4 136° -4

st o ol i
This transformation from B to A does not mean that we cease to exclude
longitudinal electrical energy from the mechanical tensor 7',,. (If we
re-admitted it, we should get back to standard particles, and obtain
M/p. = 1362/10 as in our original discussion.) The transformation is .a
re-measurement of the purely mechanical energy; the same mechanical
energy, originally measured by the consi: M, pin a world cor-
taining no electrie energy, is re-measure« .+ world where there exists
one free electric particle for each mechanical partiele. The re-measure-
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ment. consists in a change of extraneous standard, which introduces the

factors B "L, B in (83a) and (83b). The masses resulting from (84)
represent purely mechanieal energy in an environment whieh is not purely
mechanical—which is the condition in wlmh the current dis-unified theory
requires us to treat it. ;

Using (84), the quudmuc equation 1‘01 the masses  m,, m,, becomes

10m? - 136 mm , J B me? =0, ' (85)

m, being correspondingly re-defined. The resulting mass-ratio is
Mmyfm, = 183634,

These masses may be distinguished as the dis-unified masses of the proton
and electron. We shall adopt this definition of the masses in § 20, where
comparison is made with observation. |

We shall briefly recapitulate the ideas leading to (84) and (85). The
analysis of a system into two suffixed particles, or u;uwalcntly into a
mechanical external particle and an eleetrical internal particle or doublet,
is necessarily made in the combined world. In quantal theory the electrical
part is treated quite separately (which is possible, since the analysis
in (79) is arranged to give free elcetric particles), quantisation of angular
momentum is introduced, and for the first time a definite scale of structure
is fixed by the discrete unit of angular momentum 4 which then appears.
This scale of structure is imported into the other half of the combined
world by the condition of one-to-one correspondence of external and
internal particles which the analysis imposes. 1t is adopted as the normal
scale for all purposes, and the constants of nature are referred to it. We
turn now to the mechanical half of the combined world. Owing to the
omission of the rest masses of the frea electrieal particles its density is
less in the ratic 1/f, and it could not be in self-equilibrium consistently
with the scale and physical constants already fixed. But we wish to
cousider it by itself, because our plan is to treat the mechanical and
electrical worlds separately and then put them together—a plan not only
conforming to current theoretical procedure but also to observational
practice.  Having first separated it mathematically, we change the
extraneous standard so as to multiply densities by B and lengths by

B4 keeping h  nominally unchanged. That puts it into self
equilibrium, and we can proceed with investigations according to the
steady state theory already developed. In partienlar, the result
m[p = 1362/10 applies. Reverting to the normal scale, 3, which
is proportional to the density, is replaced by & = a/3; and 7, .
which is a mass-constant unassociated with rest-mass in the mechanieal

- A
theory, is replaced by p = u/B°. The result (84) then follows.
Mass, momentum, charge, cte., are primarily defined by ntolar measure-
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ment.  In some ecases the definition ean be extended to microscopic
quantities by the eonvention that the mass of a particle is  1/n  of the
molarly measured mass of an aggregation of n  similar particles.
Similarly, the elementary eleetrie charge can be defined as 1/n  of the
molarly measured charge of a body from which =« eleetrons have heen
expelled. Quantities defined in this way are said to be molarly controlied.
Molar control applies to the mass of a hydrogen atom and other neutral
atoms, but it is obviously inapplicable to the masses o electrons or other
charged partieles. Similarly, there is no molar econtrol of .

In quantum mechanies a fresh start is made, and the terms mass,
momentum, charge, cte., are applied to quantities which appear as
analogues of the molar quantities in a “well-known analogy between
elassical and quantum mechanies. Kven when molar control exists, the
quantum quantity is not neeessarily equal to the molarly controlled
quantity. We fix the quantum units so that the masses of neutral atoms
agree; but it then turns out that the quantum charge ¢, which is
analogous to molar charge, is not equal to the molarly eontrolled charge c.
That is to say, the Coulomb term 2 2,¢*/r, which appears in the
quantum Hamiltonian of two particles with 2, and 2z, eclementary
charges, is not identical with the Coulomb term Z,Z%,¢”/r, which
appears in the classical Hamiltonian of {wo molur bodies with
Z, and Z, -elementary charges. The reason for this difference is that
action is not invariant in the transformation from 4 to R.

To find the relation between ¢ and ¢, we compare the microscopie
and molar methods of extending pure mechanies to ineclude electrical
energy and momentum: (1) the quantum method of combining external
and internal (or more generally symmetrical and antisymmetrical) wave
funetions; (2) the classical method of adding an electrical action to the
mechanical action, and determining the pondermotive electrie force, ete.,
by applying the variation principle to the combined action. In (1) we
had to lay stress on securing a steady initial state of equilibrium
compatible with the natural constants employed; but this is irrelevant
in (2), since the classical equations apply equally to steady and unsteady
motion. In (2) we have still to multiply densities by B in passing
from A to B; but this is only to satisfy molar control of neutral
masses, not to restore equilibrium, and it is unnecessary to couple with

it multiplication of lengths and times by (3~ ¢, Instead, we impose
another condition, namely, molar control of action; for, since we want to
express the electric action in A in such a way that it can be simply added
to the mechanieal action in B, it must be unaltered in the change of units
between A and B. In order that action may be unchanged when the
density is multiplied by B, lengths and times must be multiplied by

Bt Calling the resulting system B’, we pass from B’ to B by
multiplying lengths and times by ;8"‘1""” = }3")’"' - But the particles
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in B, B’ are neutral particles with the same molarly controlled masses.
Their actions will, therefore, differ in the same ratio as the times in
B and B’; so that for an action h, we have y
h = Bi%n’, (86)
For example, if in quantum mechanies n neutral particles of mass
cach receive additional action h as the result of taking into account
electrical characteristies, the corrcspoﬁding deseription in molar physies
will be that a molar body of mass | # ar has, besides its mechanical
action, an electromagnetic action «h’.
In § 19 the elementaiy charge is identified as

e = (he/13N)%, (8T)
Hence by (86) the corresponding churge in classical eleetrodynamies is
¢ = B, (85)

It may be remarked that masses are multiplied in the ratio B! in
the transformation A4 — B, and by B! in the transformation
4 — B'. But neither result applies to the mass of a particle. The
reason is that the number of particles is not kept constant in the
transformation; the constant quantity is the number of particles = per
unit volume. It is to be remembered that there is no natural subdivision
of the seale-free mechanical system into particles; and the density-ratios,
which we aetually determine, are interpreted as mass-ratios in cases in
which there is a one-to-one correspondence of particles. In transforma-
tions we must remember that the masses of external particles are really
densities and transform them as such; or equivalently we must always
consider the same number of external particles per unit volume whatever
unit of length is being used.

19. The fine-structure constant. )

The factor B can be considered from another point of view. The
continuous matter and mther treated in molar theory may be regarded as
systems with an infinite number of degrees of freedom. For such systems

Y ke .

- - == g 89
Wy k+ 1 " i
The total energy is then pure field energy; and, in faet, molar relativity
theory is generally deseribed as a ‘‘pure field theory.”” To pass over to
particle theory wp divide the energy tensor into a large number of

elements borne by standard carriers, each limited to 136 degrees ol -

freedom. This step introduces a particle energy E,, = - W, /137
not previously recognised, and the total energy is redu: 1 to W.,./B
The factors are such that it is legitimate to rigidify the field and treat
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small ehanges of energy as changes of particle energy alome.  Thus the
phenomena are represented s an activity of mieroscopic partieles in a
fixed metrical field, instead of by changes of field variables,

Thus at the very first step we divide the molar energy tensor hy g.
Since this does not refer to any change in the physical system, but only
to our mode of regarding it, it is most suitably deseribed as a change of
extrancous standard., When we change from standard partiele to
bi-particle representation (system A to system B) we again change the
extrancous standard so as to multiply densities by B. This brings us
back to the original molar standard. It will be seen that the introduetion
of suffixed particles (unlike unsuffixed particles) does mot directly add
anything to the energy ; but indireetly it adds the energy arising from the
interchangeability of the suffixes. I'urther additions may be made at a
later stage by stabilisation.

For a standard particle in the initial state

Wy = - 137 E,, . ' (90)

The coefficient 137 is the fine-structure constant.

The fine-structure constant may be thought of as the ratio of two
separable elements or ‘‘atoms’’ of action. Such an atom is formed when
we multiply a separable element of energy by a time intrinsically
associated with it. Two atoms of action are known. Multiplying the
energy - ¢®/r  of an elementary doublet by the time-ecuivalent /¢
of the separation, we obtain the constant - e*/c. ' Also 1 is a disercte
clement of angular momentum or action. The ratio - he/e* is - 137,
the value being verified experimentally to 1 part in 10,000 (§ 20). Thus
the atoms are corresponding quantities of particle action and field action .

By considering field energy we obtain a direet interpretation of the

~constant 137. But usually it arises-in the form 136 8. That is to say,
it comes from the total energy of a standard particle, together with a 2
factor introduced in the transformation from standard particle to
bi-particle representation.??

We shall now explain briefly the caleulation of the Coulomb inter-
change energy. We have seen that the internal particle of a hydrogen
atom is a free electrie particle represented by a Dirac wave function. It
is well-known that such a particle has a half-quantum of spin momentum
in every spatial plane of rotation. This is an analytical result obtained
immediately from relativity theory,® and consequently applies to extra-

“It will be noted that the sign, as well as the value, agrees. Two like charges

do mot provide a separable element of emergy; since v give an electric field
cxtending outwards until it merges into the fields of ot/ . rtieles.

“In other words it is the k of a WV, particle ratli than the k + 1 of a 7',
partiele,

* Protons and Electrons, § 8-3.
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spatial rotation (interchange) in o far as the conditions are eomparable.
It is found, however, that there is, exeeptionally, a whole quantum of
interchange rotation. This can be shown analytically, but we shall be
content here to give a physical explanation. When we introduce spin
angular momentum in a single particle, it is implied that an equal recoil
angular momentum is given to the rest of the universe; but sinee the
standard form of analysis applies to an assemblage of particles with equal
probability of spin in opposite directiﬂ(.l;ls the recoil momentum eancels out
and is ignored. In the case of interchange, there is no way of putting a
reeoil interchange into the rest of the universe; and we, therefore, have
to modify the wave furction, so that the reeoil interchange is contained
in the particle itself—where it simply doubles the circulation which inter-
changes the suffixes.?® -. '

The quantum of angular momentum h gives the internal particle a
- linear momentum h/r normal to (72 = £ 4+ »* + {*). For
extra-spatial interchange this is in the direction of a coordinate ¢ normal
to space, which we call the interchange coordinate. This coordinate is,
of course, associated with the relative £-space in which the internal
partiele is located, and plays the part of a relative time » = {, -
of the two particles; but the actual identification is ¢ = 77, so that
't rotates circularly (not hyperbolically) with the coordinates &, 5. .
Since the physieal distribution is over real values of o, the con-
nection with ¢, — ¢, is only formal. The intrusion of 7 is due to
the inversion of energy-density of the internmal particle, which makes it
necessary to employ quantum momenta ¢ times the classical momenta
in order that the Hamiltonian p*/2m may give the right sign to the
energy. The eomponent p, of a quantum momentum vector would
naturally represent a ‘‘quantum energy’’ which is ¢ times the classical
energy p,. But the interchange energy is a real classical energy, and
therefore corresponds to imaginary time in the £-space.

The interchange momentum h /r has to be inserted in the bi-particle
before it is scparated and stabilised as two vector particles; so that the
system is then in the rigid field of the bi-particle. Using the method of
§ 14, the time coordinate is then k-* times the true Galilean time; this
applies also to the differential time = and to o. Correspondingly
{he momenta - tho/0¢t and - tho/doc are k {times the frue
momenta. Thus the true (Galilean) interchange momentum is h /L7
It is to be noted that this reduction does not apply to spatial momenta,
the space coordinates being unchanged in the transformation (58). Thus

® Another point of view is that the mass of a particle is a mutual energy which
really belongs half to it and half to the rest of the universe, but the interchange energy
of two particles is a mutual energy belonging solely to the two particles. Since our
standard reckoning of energy gives a double reckoning of mechanical energy, we have
to double the electrical energy to correspond.
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the half-quantum of spatial momentuwin 3% /r  (which is inserted at the
same time) appears unmodified in the wave equation, or in the associated
integrals of angular momentum, after they have been reduced as usual to
Galilean coordinates. , %

Treating the bi-particle as a V,,, particle, we obtain direetly
h/137r  as the true interchange momentum. It is, however, more in
keeping with our previous methods to regard it as 1/136 », modified by
a p-factor through the change of extraneous standard in reducing the
standard carrier to a bi-particle. :

Thus in the internal wave equation of a hydrogen atom we have to
insert an interchange momentum .

h/187 . ' (91)

with the same symbolie coefficient as the internal energy. Current practice
inserts such a term under the hame of Coulomb energy, and denotes it
by e*/er. ‘We have therefore

hefet = 137. o (92)

20. Comparison with observation.

The theory determines two important constants m,/m = 183634
and he/e* = 137  (equations (85) and (92)). We shall compare
these theoretical values with the latest observational determinations given
by R. T. Birge.?* His results require correction because (like other writers)
he has not distinguished between ¢’ and e in obtaining the constant
e/ m .c. His deflection value corresponds to e/ m , ¢, and his spectroscopic
value to e¢’/m,c. His data are

deflection e e/mee = 175959 = -00024

spectroscopic - ... ¢/m.c = 175880 = -00028
whence we obtain by (88)

deflection /m.c = 175905 = -00024

The correction removes the disecrepancy between the two determinations.
The resulting mean value 1-7568925 of &' /m .c is 1 part in 6400 less
than Birge’s adopted value 17592.  This constant enters direetly into
dirge’s mp/m, which must accordingly be reduced in the 'same pro-
portion. The results are then—

Birge, uncorrected 1836-56, corrected 183627 ; theory 1836-34.

The probable error is given by Birge as. = ‘56, bnt this is considerably
reduced by the removal of the internal diserepancy of the spectroseopic.
and deflection data. :

% Physical Society ‘‘Reports on the Progress of Physies,”” 8, 90 (1941). Tuller
details of the comparison with theory are given by the author in Proe. Phys. Soe., b4,
491 (1942).
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Denoting I’lc/_e2 by A, the observational value of A-? econtains
the p;‘odllct of the foregoing constant ¢/m,c¢ and the Faraday constant
e’/Mc. 1In both cases the numerator should be e, Thus Birge’s " e

- requires reduction by 1 part in 6400, and then multiplication by ,BTl'f to
reduce ¢ to e The resulting values of A are then—.

Birge, uncorrected 137-030, ecorrceted 137:009; theory 137.
The probable error is given as = 'Ofl_ﬁ, but is smaller in the corrected
value. ' ;

Both constants accordingly agree 'with observation, the tests being
accurate to about 1 part in 10,000,

PArT IV.—GRAVITATION, EXCLUSION AND INTERCHANGE,

21. Physical and geometrical momenta, -

We go back to § 2 to take up another line of development. When the
distribution funection f (z,) of the physical origin is known, we can
convert the distribution funetion ¢ (2) of the geometrical coordinate z
of a particle into the distribution function h (€ of the physical
coordinate ¢ of a particle, or vice versa, by a method familiar in the
theory of statisties. .

Since z = ¢+ z,, and z and Z, are uncorrelated, we have

W@ = [ 9€+ 20 /@) du, (99)

Denoting Fourier integrals of the funections f, 9, h Dby corresponding
capital letters, we have the reciproeal relations ;

@

F@) = 5o [ etef@yan. (94)

F@ = [ e F@ag. (9)
Then by (93) ; :
'[_mm e h(E)dE = j:r gTARRE O T2 )™ eyt dr.

The right—hand side is separable, and by (94) we obtain
: H(g) =2rG(g) F(-9g) . (96)
For a QGaussian distribution of the physical origin we have

F(2) = (2ma?) “He= %012 hichgives 20 F(-g) = 6= ? . Hence

CHg) =17 gy, (97)
Thus from & (& ~ we can derive successively H (q), G (9), g () by
(94) (97) and (95).

: [p]
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In most quantum problems we are more concerned with the distribution
of momenta than of coordinates; and we wish therefore to be able to
transform a distribution of physieal momenta (eonjugate to &) into a
distribution of geometrical momenta (eonjugate to z).* :

We shall first consider the case in which g(x) is a Gaussian wave packet

(2mat) = =220, thaty A(€) = (2ms'?) "2~ 8/2"  where
=gt 4 gt (98)

The distribution funetion G( p) of momentum corresponding to a (Gaussian
distribution funection g (z) of position is well kncv)w'n,nz namely

G (p) = (wnrfzs?)-*e-ﬁ"ﬂ’fh’. (99)

We have similar expressions for the momentum distributions H(p), F (p)
corresponding to the position distributions 7 (&), f(x;). Hence by (98)

H (p) = const. x G (p) F(- p). (100)

This is of the same form as (96). Comparing the form 27 F (- g) = e3¢’
with (99), we see that our previous variate q can be identified as

g=2p/h. . : (101)
The factor 2 appears because the distribution funetion is effoctively the
square of the wave function. The result (100) states that—

The probability of o physical momenium, p is the combined probability
of a geometrical momentum p of the particle and an opposite momentum

-~ p of the physical origin. (102)

In other words the transformation of a distribution of physieal
momentum into a distribution of geometrical momentum is made subject
to the eondition that the resultant geometrical momentum p = Jis 30 - R T
Zero,

Proceeding to the general case in which g () is non-Gaussian, we
have to notice that the ecaleulation of # (§) from g (z) and f(z,)
would have been impossible without . the knowledge (provided by the
definition of the physieal origin) that = and &, are uncorrclated.
Similarly, if the corresponding momenta are denoted by p¢, p, o
the caleulation of H (p ¢) from G (p) and F (p,) is impossible with-
out information as'to the correlation of p and p,. Sinee p and
o are unobservables this information must ultimately be a matter of
definition. We can determine the correlation eithcr by serutinising the
definitions of wave mechanies or by applying the formulae of wave

* Roughly speaking, (96) is a formula for converting a physical distribution of
momentum H (p) into a geometrical distribution G (p), as may be seen by comparing
it with (100).

*2 Darwin, Proe. Roy. Soe. A, 117, 268, 1927.
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mechanies which depend on the definitions, When the wave mechanical
solution is known, it is’easier to adopt the latter course; and accordingly,
fer a Gaussian wave packet, we have determined the correlation of P
and p, and found that it is complete, namely p, = - p. But, since
the caleulation does no more than reveal a truism contained in the
definitions of wave mechanics, the result is general and must apply also
to non-Gaussian wave packets.

The result p, = -p isa conseq!uence of the fundamental coneception
cf wave mechanies as a system of dll eription and prediction employing
anly observable coordinates and mome(:fta £, ps. Such a system makes
no provision for the momentum 2, and is therefore bound up with the
convention that 7= 0. The convention may be stated in the form that,
whenever a partiele receives a momentum p, it is to be understood that

a recoil momentum -p is imparted to the physical reference frame.
I'rom the transformation (78) we obtain

p=mP/(m+mo)+;p£ p,=m0P/(m+mo)-pE, (103)
so that, when » = 0, we have indepehdently of the assumed masses
m, m,

Pr=2=-po - (104)
and the result (102) follows.
It is convenient to vegard F (-p) as a “weight function” w (p),
and to write (100) as :
H(p)dp = G (p). wdp (103)
Then we have the result—

The distribution of physical momenta is derived from the distribution
_of geometrical momenta by weighing the ranges dp with the wetght
function w (p) : (106)

Evidently the weight function is explained dynamically as a factor
which makes allowance for the recoil momentum imparted to the physical
reference frame. Corresponding to (99) we have

w(p) = F(- p) = (wh?)2*) ~ =200/ (107)
Introducing the standard deviation = of the weight funetion, this becomes
. w(p) = (2ew?)~te—2*/2@* (108)
where
w = h/2. (109)

In three dimensions the weight function becomes

-év(pl, Py po) w (Gee S TP SR ARINE ol 110)
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22. The creation of proper mass.

The weight function has the effect of reducing the probability of
very high energies. The value of # is about 200m, , Sinee the
weight funetion is always ignored in current investigations, there is
considerable scope for improving the existing theory of problems involving
energy transitions of order 200 m,. The application of the weight
function in such problems will, of eourse, require detailed investigation
(taking account of multiplicity factors) in each ecase; and it is not
suggested that there is any simple way of introducing the correction.

Naturally the omission of the weight function has led to the divergence
of certain integrals. It has been pointed out by H. C. Corben® that the
supposed infinite transverse self energy of an electron is due to this
omission. These divergences, about which so muech is still being written,
are merely the difficulties of infinitude which relativity theory encountered
osnd overcame in its infaney. To omit the weight funetion is to sct
#= o and ¢ = 0, and brings us back to the infinite universe. The
“‘infinite universe’”’ was dead and buried 25 years ago; and those who
insist on digging up the eorpse must expeet to be haunted.

In the uniform steady distributions hitherto considered we have
generally taken the particles to be at rest. I.et us now consider a
distribution in which the geometrical momenta have unlimited uniform
probability distribution; that is to say, the number of particles in a
range dp, dp, dp; is simply proportional to dp, dp, dp, for
all values of p,, p,, P, from - o to . According to classical
statistical mechanies this is the distribution in a gas at infinite
temperature; and we shall therefore call it an ‘‘infinite-temperature
uranoid.” Tntroducing the weight funetion, the distribution of physical
momenta is w dp, dp, dp,,- where w is given by (110). Then the
‘mean values of p,?, p,2, p,2 in the physieal distribution are

PP =P =ps = w® = h/do?. d11)
Since the momenta are very large, the accurate energy formula
E* = m?® + p2+ p,* + p,® must be used. For a reason that will

appear later we consider particles with no proper mass, so that
E* = p2 + p.? + p. Hence

E* = 85?. (112)

By the well-known formulae of molar relativity theory,*® the pressure
P and density p of a unmiform static distribution of matter satisfy
STﬂtP = - .Ro_= + A,
8mkp = B8Ry * - A }

Here R, is the radius of space curvature, and X 1is of the nature of -

(113)

 Proc. Camb. Phil. Soc., 35, 195, 1939,
¥ Tolman, Relativity, Thermodynamics and Cosmology, § 139.
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a constant of integration. When the total number of particles N ig
fixed, R, is a fixed constant 2¢VV N by (13), but A is at our
disposal. By varying A wevary P/p and consequently the temperature,
Lt

Po density of proper cuergy

PP =P density of thermal energy : (114)

The proper density p, = p — 37. Hence by (113
=30 ~ 1eo-=)‘=/(51=,.,—2 ) (115)

As A increases from R,* to 1’ ", 1" increases steadily from 0
to e . From the definition of 7 in (114) it is reasonable to adopt
it as a measure of the temperature in relativity theory. In classical
theory infinite temperature involves infinite energy, and 7' would be
made infinite by taking p infinite in (114) But in relativity theory
an increase of temperature diminishes p,, and 7 is made infinite by
the vanishing of p, while p is still finite. It is for this reason that
we have assigned no proper mass to the particles in the infinite-
temperature uranoid.

Distinguishing values which refer to the infinite-temperature uranoid
by an aceent, we have

A= 3R daip’ = 3B 2 po = 0. (116)
In the zero-temperature uranoid
: Al - Wegn B G (117)
[ience . ;
po=p =4%p" (118)

The transformation from (116) te (117) shows how proper mass
originates. The particles initially without proper mass acquire proper
mass by the lowering of the temperature. The proper mass of a particle
is created by the change of temperature of the environment; for it is
invariant for changes of veloeity of the particle itself. This effect
can be explained roughly by Newtonian theory. The object-particle is
in the gravitational field of the rest of the matter of the universe, and
has a negative potential energy in that field. If the field is reduced by .
reducing the mass (emergy) of the 1< ! of the universe, the particle
undergoes a decrease of negative energy, i.e. an inerease of energy. The
proper mass is accounted for as energy added in this way.

It should further be noted that the proper mass of an object-particle
does not depend on the temperature of its actual environment, but on the
temperature of its standard environment. For the deviation of the-
actual from the standard environment is represented by a gravitational
field ; and the potential energy due to it is kept distinet from the inertial
mass (mass-constant). The usual eonvention is that the proper mass or
mass-constant is the mass of the particle when at rest in the zero-
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temperature uranoid; and we have only relaxed the convention to show
how this mass originates, and thcreby obtain a means of caleulating it.

Regarding the energy tensors of the two uranoids as made up of the
self energy tensors of the particles composing them, we set the encrgy
tensor of a particle equal to Apup, as in (61). When »u 18 specified
by a probability - distribution, the mean contribution to the energy tensor
& ;

1

Luv = Apupy. (119)
IFor a particle in the infinite-temperature uranoid this gives
.Tr“ o] sz -.’lr“ = 31.‘1‘!!'2

by (111) and (112), E being now denoted by p,. Summing for the N
particles, the total pressure (7,,) and density (T,,) are

P’ = Nd»* p’ = 8NAw". (120)
Now reduce the temperature to zero. The particles are all reduced to

rest, so that the momentum veetor becomes (0, 0, 0, m); -and the total
pressure and energy are

P=0 p=Ndm®, (121)

Since p = 4p’, wehave m? = 4x?. Hence
m = 2% = 2h/N|R,. (122)

by (13) and (109).
23. Determination of m, and .

The particles in the foregoing analysis are V, particles. For we
liave represented them by wave functions deseribing a triple probability
distribution.  If they carry any other characteristics besides e G
p; and their conjugate coordinates, these must be stabilised; for no
provision has been made for incorporating a probability distribution of
the proper mass m or of spin momenta, since we have not investigated
the uncertainty of the ‘“‘origin” or zero-point from which the coordinates
conjugate to these momenta are measured. In particular the m which
is carried by the V, particle in the zero-temperature uranoid is stabilised.
It has been computed theoretically from the' temperature and number of
particles in a standard environment which we postulate, not in the actual
environment which we observe.

We have seen (§ 2) that the uncertainty of scale may either be taken
into aceount directly or may be replaced by space eurvature, In the

preceding investigation it is taken into account as Space curvature. -

Normally in quantum theory, which is not adapted to curved space, it
must be taken into account direetly, so that m ‘has an uncertainty
arising from the uncertainty of the mass-standard or comparison particle
with which it is ecompared. ' The probability distribution is then four-

B
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dimensional and the particle is . V, particle. Denoting the masses
of V, and V, particlesby m,, m,, equation (122) gives m, ; and
by (47) m, = img. Thus

ms = 2h/N/R, m, = }h/N|RE,. A23)
This is confirmed by the following considerations :— :

The relation p, = §p’ in (118) implies that, when proper mass is
released as kinetic or radiant energy, a quarter of the energy disappears.
It is easily verified from (113) that this remains trte when only part
of the proper mass is released in this way, so that it should apply to
nuclear transmutations. The experimenter tells us that there is no
change of energy in nuclear transmutations; but that is not really a
contradiction. We cannot even imagine the experiment to be performed
on'a V, particle without inconsistency; for if a change of mass is

- measured experimentally, the mass is not a stabilised quantity and the

particle is ipso facto not a V, particle. Substituting a measurable
mass makes it a, V, particle, and the mass measured is, not m,, but’
my, = 3$m,. This anticipates the loss of } of the energy in the trans-
mutation of a V; particle, so that the conservation of cnergy in
transmutation is experimentally satisfied.

The constant in (123) is not the definitive h accepted as the well-
known natural constant, because in deriving (123) we have not paid any
regard to the rigid-field condition postulated in the wave-mechanical
theory in which & is officially defined. We shall therefore change the
symbol h in the preceding analysis to y, and investigate the relation
of y to the true h. .

The V, and V, particles arc fictitious particles, and it is only
by imposing an artificial constraint on matter, so as to prevent irrotational
motion, that we are able to analyse it into tkese particles (§ 11). To

' obtain the actual natural constants we must consider V,, particles of

mass i — {%ym,;; so that by (123) in the new notation

M = 3y NE,. (124)
Consider a wave function corresponding to a small velocity. The momenta
P. = - 1y0/0w., which we have been using, have been assumed to be

such that E* = m?® 4+ p,* + p,2 + p,* ; so that for a V,, particle
with small veloeity : : _

' E =+ (' + p + p)2H = M - 24 (125)
In the rigid-field treatment we introduce separate carriers for the initial
and transition energy, and by (48) the momenta p, = - 1hg/d«, are

such that ;
' E =M+ (p° + pa' + p)2u = ¥ - 1 y¥f2u. (126)
Comparing (125) and (126) :

v = hy/ (M[p) = 1361h/,/10 (127)
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An adjustment is needed, hecause in sepavating the carriers of initinl
and transition energy we double the number of particles.  Starting with
an actual  V,, uranoid, the N particles are half external and half
internal.  Kliminating the scparation of initial and transition energy,
these fuse into § N partieles with the constant y. Keeping R, fixed
md equal to radius of the actual uranoid of N protons and cleetrons,
when: N = N, o - o V2; and the extensiona of all quantum-
specified systems, which have a fixed relation to o, are multiplied by
V2. With our natural units, angular momentum has  dimensions
(length) =*, so that when o = o V/ 2, y = 41y. Thus when N and
R, are the eonstants of the actual uranoid, (124) is ehanged to

- Y VN 9
i Sedisop (128)
Hence by (127)

a = 13638 h\/{l_\f

10 4 . (129)
go that
_ Sh/4N . :
?nu = Ii- _._jf_;_. (1-:,'0)

This is the eentral formula of unified theory. My ecarlicr caleulation
(Proions and Klectrons, cquation (14.71) ) was in error by a factor (%)%
The correction was announced tentatively by Hddington and Thaxton,
Physica, 7, 122, 1940. Although the theoretical caleulation of N cannot
he dealt with here, it may be added that a correction has also been made
in it which makes N equal to i1 Ny, N, being the cosmical number
2 X 136 X 2%  which represents the number of independent quadruple
wave functions at any point of space. The two changes compensate one
another in the caleulated value of the constant of gravitation (§ 24), but

not in the caleulation of o and of the nehular recession. The eorrected
value of N is

N = 3 x 136 x 2ws, (181)

To take aceount of eleetric charge, we have to make the transformation
from standard particle to bi-particle representation; which leaves ar
unchanged but multiplies lengths by Bg-%, This changes I!, to
R,B-%, and we have finally

a - 186 3 %h\/%ﬁ? (10::»)‘
7R R oI 32

the constant ¢ being inserted so ay to remove the limitation to natural
units.




EppiNgroN—Relatwity and Quanium Theory. 57

24. The constant of gravitation.

Since h/Me¢ is determined observationally with high aceuracy,
(132)" gives a very accurate determination of o = /2y N).
Previously we have had only rough determinations of o from the range
of nuclear forces and from the recession of the galaxies (§ 4).

By combining (132) with the ordinary molar equation (20) we obtain

136 . 137 3« 3° F2 ¢
it e | e Wy
where: F = ¢ /uec. For practical purposes it is better to write
B*F’'*c? in place of B¥F2¢?, where I’ = ¢/xuc by (88). Then
£ is the Faraday constant for hydrogen determined by molar experiment,
This provides an experimental determination of the number N of
electrons and protons in the universe. Alternatively we can use the value
(131) of N, and so obtain a purely theoretical determination of the
numerical constant «/F’2¢*.  Sinee F’e is known much more
accurately than «, we can use it to obtain a value of «, which should
be accurate to 1 part in 5000. The result is 6-6665 .10 - ®,  The direct
observational value of &« is (6-670 £ -005).10-5.

In deriving (132) we have postulated an environment consisting of a
steady uniform zero-temperature distribution of protons‘ and eclectrons
only. We are, of course, allowed to re-arrange the matter of the universe
in a way that simplifies the theoretical caleulation of «/F’2¢* just as
the experimenter is allowed to re-arrange ‘the matter in his laboratory
m a way that simplifies the experimental determination; only we must be
careful not to violate the conservation of energy in our re-arrangement.
There is therefore an implicit assumption that the energy of free radiation,
cosmic rays, ete., is just sufficient to transmute the complex elements into
hydrogen and leave a uniform distribution at zero temperature. T think
that one of the results of unified theory is to show that this is necessarily
true, as the result of the way in which energy is defined; but this is not
yet fully proved. The practical question—whether the formula (133) gives
the ratio x/F’2¢* in the actual universe, or only in a somewhat
simplified model-——can he settled in another way.

Our theory supposes « to be measured for a system in a standard
environment, and it also supposes ¥’c¢ to be measured in a standard
environment. To most simple phenomena the prineiple of equivalence
applies, and the effect of changes in the remote environment is automatically
compensated by changes of the local reference system; indeed the remote
environment only appears in the theory because it is mathematically -
simpler to include it than to introduee boundary conditions, But even if
k and F’c are affected by changes of the remote environment, the
effect should be eliminated in the purely numerical ratio «/F’2¢2.
This would scarcely be questioned, were it not that by (133) the ratio

(133)
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involves a constant N apparenily furnished by the remote environment.
But it is equally legitimate to regard N as a coustant furnished to the
remote environment; for the natural constants «, #”, ete., determine
how far the uniform distribution extends and therefore the number
of particles it will include. That is actually the way I have
proceeded in determining N. I introduce first the cosmical number
N, = 2 X 136 X 2% which is the total number of independent
quadruple wave functlons at any pimt These wave funections are not
integrable in spherical space, and thh corresponding number of particles
is N=4%N,, a quatter of a partg&lc being, as it were, lost in joining
up the wave functions in different regions. If we substitute 3N, for
N in (133), we have a formula which contains no reference to the remote
cnviromment.  The detachment is indeed emphasised, because the N,
wave functions to which it refers are non-integrabl'e and ecannot be
continued far outwards.

I therefore conclude that the value 6:6665.10-% is the result to
be expected from accurate measurement of x in actual conditions.

25. Exclusion.

The exclusion prineiple can be formulated as follows :—If the 6-space
cbtained by taking z, ¥, 2, p,, P,, P, as coordinates is divided
into unit cells of volume h* (h = 27h), then in a steady state the
maximum number of particles per cell is two protons and two electrons,
or equivalently two external and two internal paiticles of hydrogen.

The exclusion eondition for internal particles eoncerns eleetrical theory,
and the eonsequences in quantum theory are familiar. The condition for
external particles eoncerns mechanical theory; and we arc going to show
that it leads to the same formula (130) for the masses of the particles as
that obtained by gravitational theory. Thus exclusion is ¢ wave-mechanical
substitute for gravitation. We can replace our former gravitating (non-
excluding) particles by excluding (non-gravitating) particles.

Consider a unit volume of ordinary space, so that a unit cell of
momentum space is dp, dp, dp, = h®. Let = be the number of
cxternal particles per unit volume. ILet p, be their mass-constant, so
that the kinetic energy (according to the eclassical formula) is-
E = p*/%p,, where p* = p2 + p* + p?.

For a zero-temperature distribution the energy is a minimum, and we
have to distribute p,,.p,, p, so that X E is a minimum, subject to
the density not exceedmg two particles per ce!l. The momentum
distribution then fills a sphere of radius p = p determined by - -

gnh® = $ap
and the ‘“top energy’’

2 In\: A2
.E.. > (__n v (134)

S 21ty
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The mean energy is

s SuNE P
A = 3 i o ? DY
- . 3 (8#) 21, (139)

i

This is a well-known result in the thebry of white-dwarf matter. Applying
(134) to the 3N external particles of the zero-temperature uranoid, we
have n = 4N /22*R*; so that

N o\ e
=2 T, (wafo)- s
where b e
mo= p, (FNV)E, - (137
We can also write (136) as -
S I
€ = §(5) = 1= (138)

by (109). :

The eigenstates, representing stationary oseillations of the uranoid,
cori‘espond to the surface harmonies of the hypersphere. By a well-known
theorem each discrete cigenstate corresponds to a unit cell. Owing to the
symmetry the harmonies of the same order coalesce into a multiple state,
and the particles are arranged in a series of levels. There are “(s -+ 1)*
independent harmonies of order s ; so that the % th level, eorresponding
to harmonics of order %k - 1, contains k® cells or 2k® external
particles. ' We call & the quantum number of the level. If & is large
the number of particles up to the %th level is 3 k% The top quantum
number f is given by %f° = } N ; so that

= (2N)y (139)
and by (137)
e = mlt. : (140)
The top quantum number of the universe is 2607. 10%, and the
particles in the top level would form a planet of mass in ¢ ediate between

Neptune and Saturn.

Consider a top particle. It is one of a distribution of particles at zero
lemperature, and therefore from the ordinary point of view G is its rest
mass. & is here exhibited as exclusion energy ; but in any case rest mass
is some kind of concealed energy, and it makes no difference in meehanies
whether it is aceounted for exclusionally or gravitationally or (as is more
usual) left unexplained. We may distinguish the present analysis of the
source of the rest mass as ‘‘sub-threshold theory’’; as soon as we pass -
te ordinary quantum mechanics the rest mass is accepted as an intrinsie
attribute of the particle. In particular the original mass-constant py, is
peculiar to the sub-threshold theory, and is replaced in quantum mechanics
by a mass-constant equal to, or at least associated with, €. Tt will be
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seen that, although the ecaleulations are precisely similar, there is a
difference in the practical interpretations oi these results for external
particles and the results for internal particles in white-dwarfl matter;
because the plane of ordinary experience is the top level of the former
and the bottom level of the latter. _ _

Let us compare uranoids with different numbers of particles. We
keep the rest mass € of a particle and the uncertainty eonstant o
unaltered, so that masses and lengths of quantum-specified systems are
unaltered, and henee h is unaltered. Then by (138) u, is unaltered;
and by (140) p, varies inversely as .

This holds rigorously down to £ = 1. - The foregoing proof is limited
to large values of N ; and indeed the rclation of N to f hecomes
ragged for small values. But the relation of p, to P must remain
uniform.. For the uranoids corresponding to different values of f are
cvidently replicas of the same uniform distribution on a series of «isercte
scales. This is not contradicted by their association with surface harmonies
of different orders; cach level forms one unsplit state, fully oceupied when
{ is an integer. (The surface harmonies were only introduced for the
purpose of determining the multiplicity.) It is fairly obvious that the
cigenscales will form a regular series. By formal investigation of the
scale and its conjugate phase variate, we can show that if the extraneous
standard is an angular momentum the eigenvalues of the scale are
proportional to the integers, the integer being the guantum number €.
Any mechanieal characteristic varies as a power of the seale; and hence
the relation of pux, to ¥, which has been shown to hold for large
values, will remain exaet down to £ = 1. :

To justify the treatment adopted in wave mechanies a quantum particle
has been defined as an addition to a rigid environment. This condition
is automatically fulfilled by a top particle: it ean be inserted or removed
without disturbing the fully packed energy-levels below. Thus the
replacement of gravitating by exeluding partieles replaces the gravitational
field by an exclusion field, which, unlike the gravitational field, is
automatically rigid.** ‘We must, however, distinguish between i, /ical and
lateral exelusion. The part of € due to lateral exelusion, i.c. due to the
particles at the same level as the objeet-particle, is usually insignificant;
but for £ = 1 the exclusion is wholly lateral. The lowest level is a
single cell consisting of two particles which mutually exelude one another
irom the state E = 0. Either particle is a top particle; but it is not
in a rigid environment, sinee its removal would allow the other particle
to drop to the state E = 0. Regarded as a quantum particle superposed

1

"For ﬂns reason exclusion theory is not an nltematwe to gravitational theory in
ordinary gravitational problems, any more than gravitational theory is an alternative
to exclusion theory in ordinary quantum problems. In saying that exelusion is the
wave mechanical substitute for gravitation, we mean for the gravitation which enters
into wave mechanical problems.
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on a rigid environment its energy must be taken to be & = @ + 9 /2,
where C (the ‘‘sub-threshold rest mass’’) is the change of energy of the
actual environment, ie. the other particle, due to its presence. Thus
C= 9p2/2p,, and €= 20C.

The classical formula for the encrgy of a particle with.rest mass is
li == po + p*/ 2 py. Sinee this has to become &= (' + p2/2p, at the
(me-quantum level, we have (¢ = p?l ; and € = 24, at that level.
For £ =1, p,=p, ; sothat € = 2 p;  at the one-quantum level. But
this last result is independent of ¥ & and 1y, being constants as
shown above. Inserting it in (136), we have for all values of N

} 2 .
@ = 3N (2;’1?;) ; , (141)

Hence & = t¥h/2,.

It will be noticed that the classical expression P2/ 2p, for the
energy (hitherto used only for small values of » ) has here been used for
extremely large values of p. I have shown elsewhere® that it is the
¢xaet relativistie hamiltonian for standing waves. Here T need only eall

ntion to the extraordinary persistence of the error of applying the
hamiltonian (g2 + p*)% 1o standing waves, especially in the theory
of white dwarf matter. The argumen! which shows that this must be
the correct form of hamiltonian for progressive waves, because they can be
eliminated by a Lorentz transformation of the eoordinate frame, equally
shows that it is not the eorrect form of hamiltonian for standing waves,
beeause they cannot be eliininated by a Lorentz transformation of the
coordinate frame. The only information derivable from special relativity
theory is that, whatever the eorrect hamiltonian for standing waves may
he, it is mot (w2 4+ p?*%  General relativity theory (gravitational
theory) is more informative. But the supreme test of the correct
“relativistie hainiltonian’’ must be that it is such as to give results which
accord with relativity theory; and we are now engaged in applying that
test to the hamiltonian p%/2u, by showing that it gives the same
masses of the particles as the gravitational theory did.

26. The negative energy levels. \

Regarding the top level & as zero level, the particles of the standard
environment eompletely fill a series of negative energy states existing below
the zero level. In prineiple this agrees with a coneeption first introdueced

by Dirae, but it is necessary' to emphasise that there are important .

differences. Here the number of negative energy levels is finite; the
particlés filling them are not invented ad hoc, but are the rest of the

¥ Monthly Notices, R.A.8, 100, 532, 1940,

s
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particles of the universe in the state in which the usual quantum equations
postulate them to be, ie. not interfering with the objeet-system that is
being studied. The theory is symmetrical between protons and electrons,
so that presumably negatrons as well as positrons can exist; and the
difficulty of the infinite negative charge in Dirac’s theory does not arise.
Also, as will be seen below, it is essentially a sub-threshold picture; and
the particles and holes in it are related to, but not directly equivalent to,
electrons and positrons.

An object-particle is formed by exciting a top-level particle. But the
object-particle (being defined as an addition to the fixed uranoid) is to
be identified, not with the execited particle, but with something which
together with the unexcited particle is equivalent to the excited particle.
This analysis of the excited particle into an object-particle plus an
unexcited particle with fixed rest mass corresponds to the analysis in § 15.
We can therefore connect the particles in the exelusion theory with the
particles in our previous theory as follows :—

(1) The stabilisation which provides V,, particles is introduced
when we add an object-system to the zero-temperature uranoid, and does
not concern the sub-threshold theory. The particles treated in § 25 are
accordingly unspecialised elements of energy tensor.

(2) The top-level particles are the comparison particles in our previous
theory.

Both (1) and (2) identify & with m,.

In order to ereate a positron we must take a hole at the top level and
excite it (negatively) to a lower level. Here again the excited hole is,
not the positron, but the resultant of the positron and the comparison
hole. The treatment in § 15 ean be applied equally to holes and partieles,”
and gives the same quadratic equation for the masses of negatrons and
positrons as for protons and electrons.

‘We thus reach the conception of an object-system perched on the firm
platform provided by fully-packed energy levels, so that it begins at a
threshold energy highly boosted up by exclusion. It is essential to employ "
enly top particles in forming object-systems, otherwise the rigid environ-
ment postulated in wave mechanies is not supplied. If an excessively
large object-system were considered, we might have to excavate to levels
substantially below @& in order to obtain enough particles, and the
energy of the object-system would be correspondingly reduced. This
reduetion is the negative gravitational potential energy of large ‘bodies,
now appearing as negative exclusion energy. But confining attention to
microscopic systems, we have to notice that wave mechanics always seleets.
top particles which, by (135), have an energy 3 of the energy of an
average particle. ~'Wave mechanics therefore adds a selection energy
2 € to the true energy 2 € of unselected particles.

Accepting the prmc-lple that every particle, when its turn comes for
microseopie treatment, is a top particle with rest mass & or m,, we
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must couple with the mass a constant of gravitation « which is £ of
the ‘‘true’”’ constant of gravitation «’ in order to compensate the
selection effect. Sinee 87k h? = 1, we have correspondingly
: h* = §h". (142)

The true constant 1L’ must be used in the sub-threshold investigation by
which m, 1is caleulated; h 1is the ordinary constant in quantum
theory, in which m, is assigned asl the mass to ever;” standard particle
or comparison particle in turn. We! must therefore change h? to % h?
in (141), obtaining finally -

: % . g ) _)”

€ = m - %;N(%RU ; 9
This agrees with the result (130) obtained by gravitational theory.

It should be remembered that we have dealt with the exelusion of
external particles only, i.e. the part neglected in current quantum theory.
We thus leave the execlusion of internal particles to be taken into aceount
in the usual way. Formally the exelusion prineiple®™® also applies
direetly to electrons and protons; but the application would involve such
a mixture of theories that it is searcely likely to have a useful outeome.

The application to internal particles is commonly mistaken for application
1o electrons.

27. Interchange of extermal particles.

When provision is made for representing the inertial-gravitational field
otherwise than by curvature of space, it is usually simplest to adopt as
standard environment a uniform distribution of partiecles in flat space.
The distribution may be supposed to extend indefinitely, so that it is
represented by a pseudo-diserete plane wave-function; but the environment
of any mieroscopic object-system is limited to a sphere of radius R,
about the object-system as centre, R, being chosen so as to give the
- right uncertainty constant o. Apart from determining ¢, the only
effect of the boundary is to introduce an extraordinary fluetuation by
limiting the total number of particles N, in the environment (§ 2).
Whatever wave-mechanical substitute for ecurvature we employ is a
substitute for this extraordinary fluctuation. We shall call this environ-
ment a planoid. For a planoid we easily find o* = R,2/5N,.

We have then, as alternative environments for a mieroscopic object-
system, ' :

(a) a zero-temperature uranoid of radius of eurvature R,
containing N particles, and ;

(0) a zero-temperature planoid of radius R, containing N,
particles,

® 1 refer to the ‘‘cell”’ formulation of the principle at the beginning of § 25. The
special Pauli principle applying to electrons in an atom requires mo comment.
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It is understood that the same units are employed in (a) and (b), so
that lengths and masses of quantum-specified siructures are the same.
In particular the econstants e, i m,, M are unchanged. Since ¢
is unaltered, we have

2 : a3

i, Ko e o 144

6N 3t = fo N 350
The fundamental formula (130) for m, is slightly simplified by using
the planoidal eonstants N,, I, ; it becomes

mo = $h/ N,/ R, (145)

Denoting by [ ... ] the mean value of a quantity averaged over
the planoid, we have for the distance » from the centre

[r>*] = B8R it S AR
so that :
: ih
n, = [‘{r—] xf N (146)
o i 3 %_h)“
Moy = m[?ﬁ] N1 = EE‘(?‘; " .(147)

the snmmation being over the $ N, external particles.

Suppose that the object-particle has a half-quantum of angular
momentum about the sth planoid partiele. The corresponding linear
momentum is :

o= $0 ], (148)
Thus
m? = 33 ,p2. (149)
Introdueing the mass ‘m, = 136 m_ of an external V, particle, and
the usual transition mass-constant p=m, /136, (149) gives
My = 3,05 2, (150)

We have thus expressed the rest mass of a V., particle as the sum of
3N, elements ¥ = p,2/2u, each element being the energy associated
with a half-quantum of angular momentum about an external partiele in
the planoeid.

The significance of this result is more easily appreciated if we give
the ¥V, particle a transition energy corresponding to a state of momentum
Pz, Py, P: . By (46) the transition energy, which is independent of the
multiplicity of the particle, is (p,* + Py + P:?)/2p. The whole
energy is then . ’

Bon LLY Bt 0o b Bhay 4P ok ibipyeipins (151)

% 2p
This opens out a far-reaching conception. - Initial energy is eliminated,
and £ appears as the transition energy of a particle with 3N + 3
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coordinates. The coordinates are dynamieally similar, but are physically
distinguished by the fact that only the last three are observable; the
momenta conjugate to the others are stabilised quantities furnished by the
half-quantum rule. To determine an individual Ps it would be
necessary to determine r, by observation; but in postulating a planoid
as standard environment, we prescribe the average number of partieles in
cach range of 7, as a stabilised daft'um. An observational identification
of the particular particle to which ‘each term in (151) refers would he
irrelevant to the dynamies. \
Since the particles in the planoidal environment are treated collec'

we substitute for their separate contributions p, a 1

P = /(3p,;). Then ms;= P?/2, and

b= (£24 P Py + Ps)/2u. (152)
Evidently » must be represented in a direction orthogonal to  p,, Ly Ps
and therefore in an extra-spatial direction. ;

Why is it that the mass obtained in this simple way is that of a Vs
particle? 1t is appropriate that the particle should have a multiplicity
corresponding to the number of dimensions of the planoid from which its
mass is derived; but it is instructive to obtain a more preecise answer,

The momenta in (152) are quantum momenta which allow for the
inversion of energy. If we use instead the classical momenta, we have

E = (2 - p* - py*~ p/% = p* 2, (153)
where p, forms the fourth component of a veetor of invariant length
P.  The interpretation is as follows:—The object-particle has a half-
quantum of angular momentum about every external particle in the
* planoid, and no other momentum is ever contemplated. But the planes of
the angular momenta are unknown, and no assumption is made as to
their probability distribution. The corresponding linear momenta will in
general have components in space as well as in the direction normal to
space. Owing to the guadratie law of ¢ombination of elementary momenta,
the resultant linear momenta in the four directions will satisfy

p113+ py12+ pz/'.‘ b pn’B = Pa’ W}lere ...PE w2 Ea(%h/,r,)ﬂ,

and is independent of the planes of the angular momenta. By (153) the
‘energy is a quantity F = Po’?/2p arising exclusively from the
momentum p,’ in the extra-spatial direction. There is no way of
calculating p,’ by pure theory; but we can determine its value by
measuring observationally p, . p,, p. and using (153).

The space momenta p.', p,/, p,’, can only be zero if each element
oi angular momentum is in a plane through 7, and the extra-spatial
axis. Our earlier assumption that the elements are in these planes, so as
to give only extra-spatial momenta Py" = p, ~was correct for the special

[®]
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problem considered, namely determination of the rest mass. But it is not
a general law; and, when it is true, it is an inference from the faet that
»s, py, ps have been measured and found to be zero. No other
observational information was employed, because 2 iy a constant
depénding only on the postulated environment. Thus the result which we
obtained applies to a particle for which 2, Py, ps  and nothing
else have been measured, i.e. to a V, particle.

We have scen that a half-quantum of interchange angular momentum
is introduced by suffixing the two particles of a hydrogen atom, and that
this constitutes the Coulomb energy of the charges. The question naturally
arises, why do we not get a similar interchange angular momentum and
energy by suffixing the external particles of two hydrogen atoms. The
formal answer is that the external partiele has no eomparison particle to
carry a suffix (§ 15) so that the machinery of interchange is lacking. We
have already mnoted the sionificant fact that the partieles whieh have
comparison particles associated with them are charged particles (§ 15).
But now, by deeper analysis, we see that in appropriate conditions the
external particles do have a half-quantum of interchange angular
momentum; and the interchange energy with all the other extern:l
particles in the universe constitutes the mechanical energy—bhoth rest
energy and kinetic energy. In short, whe:n the particles are defined
quantum-mechanically as superpositions on a rigid environment, all energy
is primarily interchange energy.

28. Non-Coulombian energy.

The most elementary two-particle system has been found ta consist of
4 proton and electron. The opposite sign of the two eharges is the result
of the assumption that the system possesses steady states. We shall now
consider two like charges—for definiteness, two protons.

If &, n, £ are the relative coordinates and s e o R w5 1
the electric energy of two protons is

B = e/p (o + 0) (154)
The formal proof that it must be equal and opposite to the eleetrie
energy of a proton and eleetron ecaleulated earlier, is obtained by
considering that neutral matter eonsists of equal distributions of positive
and negative charges, and (by definition) the energy of a particle resull ing
from a neutral environment is wholly inertial-gravitational. The Coulomb
energies must therefore cancel,

If we select a proton as sole objeet-particle we leave an unpaired
electron in the environment. Since the environment particles have
uniform probability distribution, there is a charge - e uniformly
distributed over the uranoid. I¢ ¢ is the electric potential due to the
proton, and ¢ its mean value over the uranoid, the mutual electrie
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energy of the proton and its environment is
Q= - ¢gp. (155)

To eliminate this energy (so as to obtain a proton which-is superposed on
the standard neutral environment) we take the energy of a pair of
particles to be :

e & e?/p (unlike charges)) :

: (156)
E = ¢*lp + Bd(p) (like charges) j

where 8 1is the &-function, and B a constant.. The form of the
second term is fixed because (154) is established at all points execept
p = 0, Dbut there is nothing to forbid the introduction of a singular
energy at p = 0. To fix ideas, we take one particle as origin, and
consider a second particle whose relative coordinates have even probability
distribution over the volume V of the uranoid. Then by (156) the
mutual energy is

B
(A

aceording as the charges are unlike or like. Hence, if the first particle is
in the standard environment with equ«l numbers of protons and eleetrons,
the mutual energy of the particle and its environment is JNB/V.
This will agree with (158) if

B =20V/N. (158)
We thus transform the ‘‘classical charge’’, which induces an equal and
opposite charge in the environment, into a ‘‘quantum charge’’, which is
simply superposed on a neutral environment, by taking the law of energy
to be (156). The term B8 (p) will be called the decoupling energy.

The foregoing transformation can be regarded more physically. In a
uniform probability distribution of protons and electrons, we choose a
proton at random and take it as the origin of the relative coordinates
£, n, &. Consider now the original distribution referred to the frame
£, 3, &. The frame is similar to an z, vy, 2z frame except for the
peculiarity that the point (0, 0, 0) is always occupied by a proton.
Each proton has an equal chance of being the oceupant of this point; its
probability distribution therefore consists of a singular point with a chance
2/ N, and an even distribution of the rest of the probability. The encrgy
at the singular point must be determined by the condition that the total
energy agrees with that calculated in an ordinary frame =z, y, 2z-
without a singular point. This gives the result B S (p).

As usual the elementary result is eomplicated by multiplicity factors
when we compute the corresponding energy term to he inserted in the
wave equation. Our starting point is an objeet-system containing a coupled
proton and electron. 'We have to take two such systems, decouple the

jE‘%f:a N (157)
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protons and combine them into another system. It will be simplest if at
the same time we combine the decoupled eleetrons into a two-eleetron
system.  Clearly, this reshuffling must be performed on unspecialised
elements of energy tensor; and it is not until the two-proton and two-
clectron carriers of energy tensor have been formed that we can stabilise
the particles as V,, paiticles. In this stabilisation the initial energy
2m, of the two standard carriers is magnified into an initial energy 2m,
of the two protons, and 2m, of the two ¢leetrons. 1t is not difficult to
sce that the decoupling energy, being an initial energy, is included in
this magnification. Thus the coefficient for protons is

; (159)

It may seem odd that the decoupling energy is initial energy, whereas
the ordinary Coulomb energy e*/p is transition energy and is therefore
unaffected by the subsequent stabilisation. But the decoupling energy
corresponds to the initial Coulomb energy of the proton in its negatively
charged environment, and is comparable with the initial Coulomb energy
which we remove from a standard partiele distribution in order to form
a bi-particle distribution.

The value of ¢ for a spherical universe can be caleulated by general

relativity theory.®® The resultis ¢V = 2xE,%2e. Hence

- By, =4aB,%e*my |/ Nmy, = 16wae?my[m,.

A rather subtle correetion is required to take account of the faet that
the caleulation refers to a three-dimensional distribution over £, g, ¢,
whereas the wave equation of the relative distribution of the two protons
~refers to a four-dimensional distribution iuncluding the interchange
coordinate o = 17.*° It would be difficult to discuss this without a
lengthy digression; but the result gives a factor (%)%, so that

= Bt (g)* ;%: 16mater. (160)

We have seen (§ 4) that the relative coordinate of two particles ean -
be defined either as the difference £,,” of their physical eoordinates,
or as a coordinate ¢,, directly measured from one to the other. In
the foregoing discussion ¢ evidently refers to £,,, so that the
decoupling term is B, 8(p,,). But the internal wave equation of the
two-proton system is obtained by the transformation (78), and the

® Proc. Roy. Soc., A, 162, 159, 1937. I have since found that the easiest procedure
is to develop the theory of the planoid rather more fully than in § 27, and then carry
out the whole ealeulation in the planoid instead of the uranoid. The result (160),
including the factor (%)4, is then obtained.

“ Commonly mistaken for the time ¢ (which is an independent variable having no
connection with the probability distribution).
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coordinate ¢ oeccurring in it is &,2’.' Sinece £,, = 0 corresponds
to a Gaussian probability distribution of £,,” with standard deviation

e 2,
$lau)y-~ Ulguty bty tn -l (161)
Thus the decoupling term in the wave-equation is

ol (162)
where
16 \ ¥ My 2
3w/ ’nit.'o a

i

4 = (4na”) i B, = - ( (163)
This is the non-Coulombian energy of two protons. The value of A
caleulated from (163) is 5201 m, ¢?; the observational value is
51'4 m, ¢ ** The comparison of the range given by (162) with
cbservation has been discussed in § 4.

The non-Coulombian energy of two electrons is mueh smaller, m,
being replaced by m, in (163). There is no non-Coulombian energy in
the proton-electron system. The internal wave equation for hydrogen is
therefore exact, subjeet to modifications arising from the interaction of
the internal particle with the radiation field.

The result (163) , without the (4)* factor, was given in an earlier
paper.*? The present deducetion enables us to go a |  (le further. Taking
a proton as origin, let another proton and an el iron have the same
coordinates £, 7, {. Then the sum of the two energies associated with
a point &, 5, £ is By8(p) by (156). Thus the non-Coulombian
energy of a proton and neutron is the same as that of two protons. The
cnergy of two neutrons is nearly the same, sinee the mutual non-Coulombian
energy of the two electrons contained in them is very small compared with
that of the two protons.

“ T have investigated the B-faetors, and find that their effect is to multiply the value

of 4 given in (163) by gd, and multiply the range-constant 2o by Bg-%. It
may be added that the seattering experiments give only a rough determination of 4
and o separately, but give a good determination of Ao°; we therefore obtain a
much more delicate test of (163) by reducing the observations with the known value
(21) of o. The observational result is then found to be 4 = 52:26m,c®.

2 Proc. Roy Soc., A, 162, 155, 1937.
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