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ON THE DEFINITION OF THE CENTRE OF GRAVITY OF

AN ARBITRARY CLOSED SYSTEM IN THE THEORY OF
RELATIVITY.*

By C. MULLER.
I—CLASSICAL THEORY.
I.—CENTRE OF GRAVITY. RELATIVE ANGULAR MOMENTUM TENSOR.

ONE of the simplest and most fundamental conceptions in Newtonian
mechanices is the notion of the centre of gravity of a system of masses.
As is well known, this notion loses its simple significance already in the
special theory of relativity on account ‘of the changes in the conception
of mass brought about by this theory. For an arbitrary closed system it
is, however, as we shall see, comparatively easy to define a point which
has very similar properties to the centre of gravity in Newtonian
mechanies. _

In Newtonian mechanies, the centre of gravity® of a system of mass
points is defined in the following way. If m,, m,, ... m;, ... and X,, X,,

. X;, . . . denote the masses and coordinate vectors of the different mass
points respectively, the coordinate vector X of the centre of gravity is
defined by the equation

where . (1)

is the total mass of the system. Or, if the mass is continuously distributed
with a mass density u(X, ), we have

X = ﬂl[j,u(x, t).x dv
()
M - fﬂ(x, £)dv

where the integrals are extended over that part of the physical space in
which u is different from zero. !

#T,ectures delivered at the Dublin Tnstitute for Advanced Studies, July. 1947,

1gince we are, in the following, nowhere concerned with gravitational fields it
would be more adequate to speak of the centre of inertia instead of centre of gravity,
but we shall follow the usual terminology.

[A]
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According to (2), the centre of gravity is a centre of mass corresponding
to a kind of average position of the mass in the system. For a finite
closed system, ie. a system contained in a finite region in space with no
interaction with systems outside, the centre of gravity ‘moves in a straight
line with constant velocity. This follows at once from the theorems of
conservation of mass and momentum. The first theorem is expressed by
the continuity equation
%’»} + div (uu) = 0 3)
where u(x, ?) is the velocity of mass at the point X and at time ¢. In the
first place, we get from (3) by integration over the whole system

,,,,,,, - J%% & = - [div @wydo = 0, 4)

%.6. M = constant.
Further, from (2) we obtain by means of (4) and 3

ax 1¢(9 1(,. 1 P
— J'é;i cxXdv = —delv,(pu) L XAy = ]le,uudv = 3 5)

d = M
where P is the total linear momentum of the system. Now, for a closed
system P is constant in time and (5) shows that the centre of gravity is
moving with the constant velocity

U= | (6)

The definitions (1) and (2) of the centre of gravity in Newtonian
mechanies cannot be immediately used in the theory of relativity on
account of the variation of mass with velocity. We could, of course, for
a system of mass points use the definition (1) with m; replaced by the
proper mass m;° but the centre defined in this way would not perform
a uniform motion for a closed system of mutually interacting particles
with no external forces. For

dX 1 :
T 2™

would not be proportional to the constant total momentum of the system.
A similar difficulty arises if m; in (1) is to mean the relativistic mass

in this case, even M = 3m; will not in general be constant for a closed
system.  Only in the case of a system of free particles with no
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interactions at all, the centre of mass defined in this way will
perform a uniform motion. But even in this trivial case, the centre of
gravity ean, as remarked by Fokker,? in general be defined by (1) in
one definite frame of reference only, for instance, in the frame in which
the total momentum of the system is zero. In another system of inertia
the centre of gravity will then not in general be a mass eentre. This is
a characteristic property of the relativistic centre of gravity, which we
ghall find also in the case of an arbitrary closed system.

To get a useful definition of the centre of gravity of an arbitrary closed
system, we must take into account that also the potential energies of the
forees acting between the different parts of a system contribute to the
total mass of the system. According to Einstein’s theorem, an energy
density (X, t) corresponds to a mass density N

wim iy = H&Y M)

and, if h(X, t) includes all types of energies in the system, the energy
and, thus, also the mass will be conserved as in Newtonian mechanies.
This obviously opens a possibility of a useful definition of the centre of
gravity, also in the relativistic region. ‘

In the special theory of relativity, an arbitrary physical system, say,
an elastic body, an arbitrary field or a system of particles interacting by
means of an intermediary field, is described by a symmetric energy-
momentum’ tensor

Ta = T = Ta(2r)

whose components are functions of the space-time coordinates

z; = (%, ict) = (2,9, 2 ict) 8)
Throughout this paper, Latin indices 4, k . . . are running from 1 to 4,
while Greek indices 1, k, . . . are running from 1 to 3; @ denotes a quantity

whose square is —1. (It is convenient to distinguish between the %
introduced in the theory of relativity and the ¢ oceurring in the com-
mutation relations in quantum mechanies.) For a finite system, the
components T (X, 1) are, for fixed ¢, zero outside a finite region in X-space.
This means that the T’y are different from zero only inside a tube in the
fourdimensional space-time continuum and the normals to the walls of
this tube are everywhere represented by space-like vectors. The physical
meaning of the components T’ are given by

1
ic

Tu = g0 = (8.21) ®)

where g and h are the momentum density and energy density, respectively.

e ———————— T «

2 A, D, Fokker. Relativiteitstheorie, Noordhoff Groningen (1929), p. 190.
[A2]
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For a closed system, the theorems of conservation of momentum and
energy are expressed by the equations :

0Tw _ g, (10)

(Dummy Latin indices like % in (10) are to be summed over from 1 to 4,
while dummy Greek indices are to be summed from 1 to 3) For
1 = 4 (10) may be written

09: _ '

oo = ° ()
an equation which on account of (7) and (9) is equivalent with the continuity
equation (3) for mass conservation. If we multiply (10) by dz,, dz,, dz,,
and integrate over the whole x-space, we find at once that the four
quantities

P; - Jgi(x, 8 dv = (P, i—H) (12)

are constant in time for a finite closed system. From the physieal meaning
of g and % in (9) we see that P and H represent the total linear momentum
and the total energy of the system, respectively.

Further, from (10) and by use of the Gauss’ theorem applied to a
suitable region in fourdimensional space-time, it follows in a well-known
way that the four quantities P; transform like the components of a four
vector by Lorentz transformations. P; are the components of the
momentum-energy veetor. Therefore, P;P; will be an invariant, and for
all real physical systems the value of this invariant must be negative or
zero. We may, thus, define the proper mass M, of the system by ‘the
equation

PP = - M2 ‘ (13)

In what follows, we shall assume M, > 0, thus excluding the case of a
plane electromagnetic wave. We can then always find a system of inertia
8¢ in which the total linear momentum P° is zero. Thus, the components
of the momentum-energy vector in S° are by (13)

PP = (0,0,0, i M,0). (14)

The system S° is usually called the centre of gravity system without any
closer specification of the position of the centre of gravity in 8°. In view
of (7) (9), (12), it is now natural to define the coordinate veetor X° of
the centre of gravity in S° by the equations

2 RO (XO, 0 9 (x0, £°
X = %}J_ﬂ%ézw), x°dy® = %JW) x° d® (15)

in analogy with (2).
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Although h° is time dependent, it is easily seen that X° in (15) is
constant in time. For, by means of (11), we get in-any system of reference

0gi%k

‘axi = gt&,k = Gk
or by integration over x-space

d

azjg,xkdv = Py. (16)
Now, in the rest system S° we have P° = 0 and (16) becomes for

=:¢=123 . Foo
d 0 .0 0o _
dx“*:oj‘h A dv® = 0.

Thus, the centre of gravity defined by (15) is a point which has a fixed
position in the rest system and it is a centre of mass in this system. In
an arbitrary system of inertia S the centre of gravity will then move with
a constant velocity
¢P

. H ’
Le. the relative velocity of 8° with respect to S. The time track (world
line) of the centre of gravity will, thus, be a straight line in space-time,
the space-time coordinates X; = (X, X,) bheing linear functions,
X; = X, (7), of the proper time = of the centre of gravity, If

ax;
Ui= 47

denotes the components of the corresponding four velocity, we have

P = M, U;. - (18)

U:

and

The last relation is obviously true in the rest system S° and, on account
of the four vector character of P; and U;, it holds in any system of
reference. Thus, the system as a whole has similar properties as a particle
of proper mass M, placed in the centre of gravity of the system,

Besides the four constants P; any closed finite system has six other
integrals: the components of the four angular momentum tensor M.
From (10), we get

5-%!(3&‘1'1:1 ~wxlyg) = Salu - uly = T - Ty = 0. (19)
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on account of the symmetry of the tensor 7% By integration of (19)
over the whole X-space we get

d
%—J(z,- To - a3 TYdo = 0
which shows that the quantities
M,’k = “Mki = ](xigk - ackg,) dv (20)

are constant in time. By Lorentz transformations, the My transform-
like the components of an antisymmetrical tensor. This may be shown
by a similar method as that used for the proof of the four vector
character of P;. ‘

Let us introduce two space vectors M and N by

M = (Mz: My; Mz) = (Mza; Msu Mlz)
iN = i'(Na; Ny, Nz) = (ﬂ[lb Mz4, Mu)

the vector
M- I (xxg)dv

being the total angular momentum vector of the system with respect to
the arbitrary origin of our coordinate system.

‘We may now define a new antisymmetrical tensor mg;, the relative
angular momentum four tensor with respeet to the centre of gravity, by
replacing «; in the definitions (20) by z; — X;. We then get

mg = Mg - (X; Py - X Py). - (22)

Although X; is varying with the proper time r, my is independent of =,
for, on account of (18), we have

dm;
=7 = ~(U:P- Ux P) = 0. (23)
my  is also independent of the choice of origin in our coordinate system.

‘We may now introduce two spaee vectors m and n related to Mg in
the same way as M and N in (21) are related to M, i.e.

m

(g3, Mgy, mlz)
(24)

in

(’mu, My 'mu)

m is the relative angular momentum vector with respect to the centre of
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gravity, i.e. the inner angular momentum. For ¢ = .= 1, 2, 3 and
E = 4 (23) becomes '
in = iN - (XP, - X,P)
or
P

X'= 5. X+ iNPC - in P (25)
- |

Now, we get from (21), (20), (9) and (12)

iN = J(x.g4 -g.2)dv = i—'[hxdv - &y . P, (26)

Although each term in the right-hand side of this equation depends on
xz, we know that N is constant in time. We may, therefore, for instance,
choose z, = X,(7) in (26). Introducing (26) into (25) we then get

1

en
H

24 =Xy - H

where the time variable z, in & has to be put equal to X,(s). On
account of the last term in (27) the centre of gravity is a centre of mass
in every system of reference only if the relative angular momentum
tensor my is zero; generally, the two centres .are differing from each
other, which means that the centre of mass has no relativistically invariant
meaning.® ‘

A comparison of (27) and (15) shows, however, that the vector n must
be zero in the rest system S° of the centre of gravity, i.e.

X = Jk.xdv

(7

n =0, m = 0. (28)
Hence, we get the covariant relation
Mk P, k= 0 . (29)
or by (18) ‘
my U = 0. (30)

The validity of (29) in S° follows at once from (14) and (28) and, on
account of its covariant form, it must hold in any system of inertia.
(29) contains a relation between the vectors m and n; in fact, we get by
means of (24) from the three equations (29) corresponding to ¢ =1, 2, 8

n=-%(mxr?. (31)

2 This result, as well as some of the other results about mass centres obtained in
this paper, has already been obtained by A. Papapetrou in a paper in Prahliha de
I’Académie d’Athénes, 14, 1939, p. 540, which has come to my eyes after completion
of the present investigation.
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Multiplication of (22) Wii}h Py, gives, on account of (29) and (13),

0 = MuPr + X;(Ue) + (Xy Pr) Py
or '
_X%LP ,  MP
(Mye)* = (Myep’

X =
If this expression for X; is introduced into (22) we get

mg-= My + s (M PPy — My P 1), (32)

(M

Thus, my is that part of M; which is orthogonal to the direction of the
fourvector P; in accordance with (29). The physical meaning of the
vector n is seen from (27), which gives

g j'i%(x—x)m::Ju.(x - X)dv

Thus :}3 is the moment of mass of the system with respect to the centre of

gravity.

2. CENTRES OF Mass.
In an arbitrary Lorentz system S the centre of mass has by definition
coordinates X(S) given by

X(S) = ljhxdv. (34)

H

According to (16) or (26), the centre of mass is moving with the same
constant velocity

P

H

as the centre of gravity. FEach system of reference has its own centre

'oi mass, the centre of gravity* bemg the centre of mass corresponding
to the rest system 8° i.e.

U -

X = X(5.

All these mass centres will coincide only if the relative angular momentum
tensor m is zero.

If we choose the same orientation of the spatlal axes in S as in 8°
the Lorentz system S is uniquely defined by the relative velocity veector

V=U=”jf (85)

‘The most adequate name for the centre of gravity would therefore be propf»r
centre of mass.
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of S° with respect to S. From the transformation properties of the
antisymmetrical tensor m; we then get on account of (28)

P (36)

where m° is the relative angular momentum vector in S°.

The difference between simultaneous positions of the centre of gra,Vlty
and the centre of mass in the system S is, according to (27), given by
the time-independent space vector

a(S) = X(8) - X = %‘
or
a(s) = Y«»ﬂ—;{ﬂf (37)

on account of (36) and (35). Since the transformation from S to S° is
given by a Lorentz transformation without rotation of the spatial axes,
and since a is perpendicular to the relative velocity v, the distance between
gimultaneous positions of the two mentioned centres in the rest system
8¢ is also given by (37).

In the rest system S° all mass centres C\(S) obtained by varying S or
v in (37) form a two dimensional circular disc perpendicular to the
angular momentum vector m® with centre in the centre of grawty C and
with radius :

p = ",_:26' (38)

All these mass centres are at rest in the system S*.

It v=v, +v, is written as a sum of two vectors v, and ' v
perpendicular and parallel to m°, respectively, we see that a in (37)
depends on the perpendicular component v fl only. Each point on the
dise is, thus, a mass centre in an infinite number of systems S corresponding
to an arbitrary variation of v in the interval.

~ ETR <y < /ETTRF

Let us now consider a system which in S° lies entirely inside a sphere
with centre in C and radius r, ie. a system for which all components of
the energy-momentum tensor are zero outside this sphere. If we further
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assume that the energy density » of the system is positive in any system
of reference it is clear that the whole of the disec of mass centres must
lie inside the sphere; for if we consider an arbitrary point, C(S) say, on
the dise, this point will in the system S be a centre of mass, and since
h is positive it must then lie inside the system. We thus get

m°
r > (39)

i.e. a classical system with a positive energy density and with a given inner
angular momentum |m°| and a given rest mass M° must always have @
finite extension, given by (39) in the centre of gravity system. If the
system is smaller, h cannot be everywhere positive in all systems of
reference.

me

3. Marnisson’s Equarions or MoTioNs FOR A SPINNING Bopy. PsEupo-
CENTRES OF GRAVITY.

In a paper in the Acta Polonica from 1937, M. MaTHISSON® “has
treated the motion of a classical spinning particle according to the general
theory of relativity. The equations of motion derived by MarHISSON
have many strange consequences. In the first place, the motion of the
particle should not be uniquely determined by the initial position and
velocity of the particle, the equations of motion having an infinite number
of solutions for fixed initial values of these quantities. In the case of
a free particle without any gravitational fields, these solutions correspond

*M. Mathisson, Acta Phys. Pol. VI, 163 (1937); ibid,, 218 (1937).
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to cireular motions around a centre which itself moves with constant
velocity. On account of the similarity between these motions and
Sehrédinger’s ‘‘Zitterbewegung’’ of a Dirac electron, MaTHISSON and
WEvsSENHOF® have considered the Mathisson particle as a classical pieture
of the Dirac electron.

However, since a particle may be regarded as a limiting case of the
general system considered here, MaTHISSON’S result is in contradietion
with our result, if the coordinates of the particles are identified with the
centre of gravity of the system.

Besides the centre of gravity defined in section 1 there exists, however,
in every physical system an infinite number of points which have very
similar properties as the centre of gravity, and a closer consideration
shows that Mathisson’s equations really are the equations of motion of
these false centres of gravity and the multitude of solutions of these
equations then merely shows that there are many of these pseudo centres
of gravity in any physical system.

Among all the mass centres in the disc in Fig. 1, the centre of gravity
only has the property of being a centre of mass in its rest system S°,
an arbitrary other point C(S) with radius vector

vxm® "’
aj(s) = “ﬁ;;r

being a centre of mass in the system S moving with the velocity —v
relative to S°. For a given a and m® we can always choose the direction
of v in the plane of the dise, ie. v, = 0, and v and the system § are
then uniquely determined. A point p with radius vector

Ep) =20 -X = (40)
and with velocity
a& (p)
=V (41)

in 8° is then a centre of mass in its momentary rest system S. From
(41) and (40) we get

M"c"f" + (gg; x m°) =: 0. (42)

*J. W. Weyssenhof, Naturey 141, 328 (1938); Acta Phys. Pol. IX, 1-62 (1947).
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which shows that P;u; is a constant of the motion. The physical meaning
of this constant is found by introducing the momentary rest system 8’

Py = i¢Py=-F =-MNc

where M’ is the (constant) value of the total mass in the rest systems S
"If we introduce this value of P wu; into the preceding equations, we
get

M0’$i + Mkuk + Pi(a:kuk) = 0,
M,-kz'zk + u,;M’c’ - Pic' + Pi(.l’kﬂk) = 0,
If we work in the centre of gravity system S°, the first equation is

easily seen to be identical with the equations ‘of motion (42) for the
point p. The second equation becomes, by means of the equation

My vy = Quptiy — Py (23 %)

1

following from (22’),

1 .
Pi M’u,; + (,“E Qi 2r .

il

This equation, together with (23’) and the equation

Qutix = 0

following from (23’), leads to the set of equations
W 1 =0
it Qiptig = 0,
. 1 , N
Qi + c—,(uiﬂlclul - Quuuy) = 0, (M)

which are just the equations of motion at Mathisson (loc. cit. eqﬁdtion).
The solution

Q. = constant, u; = constant
of these equations represents the motion of the centre of gravity; all

other solutions describing the motions of the pseudo-centres of gravity
defined above do not seem to have any simple physical meaning.
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A closer investigation shows that the equations (42) governing the -
motion of the p-points are equivalent with the equations of motion of
MaTHISSON, S0 that these really are the equations of motion of the above
mentioned pseudo-centres of gravity.

“Let z; for the moment denote the space time coordinates of the pseudo-
centre of gravity p considered in an arbitrary system of inertia, and
let 7 be its proper time. The angular momentum four tensor Qg with
respeet to this point is then

Qi = My — (2:Pr - 2 Py) = may - [(; - X)) Py ~ (o - XF;) (22

From this equation we get

Q.ik = d(%k = - (u,;.Pk - uk.P,-) (23’)
where ’ '
u dz; U, - ¢t
T = d_;’ T =

is the four velocity of this point p.
If 8" denotes the system of inertia, which is the rest system of p at
a definite proper time 7, p is by definition a mass centre in & at that time.,
By an argument similar to that used on p- 8 for the centre of gravity, we
may then eonclude that the mixed space time components of Q; are
zero in the system &, i.e.
Qu =0, (28
an equation which may be written in the covariant form
ﬂﬂ,uk = O, . (30’)
If we introduce (22’), we get from this equation

My — 2 (Prug) + Pi(mpug) = 0

and by differentiation with respect to 7

M - wi(Pyug) - m(Ppig) + Pi(-¢* + Zpug) = 0

From this equation we get by multiplication with 7,

Py = - (Pyw) = 0
dr ¥
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Therefore,
Z'—'"‘-(ac)=€ () + 26 [g rdv — ¢ J.a' ?gf«x'-dfv (61)
G"h 4 c"h 4 4k. kL7 k! la-l'k 7 .
By partial integrations and by means of (11) the last term becomes

€l jx; @'—g}* z;dv = & K@%ﬁ{{:’ﬁ = 9471 3ik> dv

ai&'k 4
0 vy L;
= &uj %) - & j!h @ dv
= 541'[%%@ dv - 2 &k Nk

1]

mj 9k By + Spar)dv ~ f—} €3k Nk

1

Ealf(glwi + gizy)dv — ijik Nk

Introducing this into (51) we get by (20) the transformation formula

ii(e) = mi(2) + enm () + seadl. (52)
Now, we have
X;=H ‘g - my P}
})4-l = Pt - fucPkaz
Mig = Mgy + €Myg + E1 M.

and by means of the equations (23) and (52) we finally get, after some
calculation,

Xi (%) = X; (x4) + e X (xﬁ - & Xp (xa) . (Pi P[l)- (53)

This équation really shows that X; is a four vector; the unusual last term

is due to the peculiar choice X, = X, of the time variable.
For ¢ = 4 we have, of course,

A . X(x‘t) = X, (xa) = Xy
and for i = ¢ = 1, 2, 3 (563) may be written

X,

X, () = X + ek Xp — E‘kX"'m

since
0X, 0°X.

It 2 222 = PP
0X, 0%y BBy
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4. TRANSFORMATION PROPERTIES OF THE SPACE INTEGRALS IN THE
) PRECEDING SECTIONS.

The equations (27) may also be written in the fourdimensional form

X; = %!J’h (& z)adv - my Pyt = Xi(2s) } (47)
i=1,2,34

since the fourth equation reduces to

X, = %ﬁjm = (48)

Although X, is a four vector, this is not obvious from the expression
(47) for X;. The reason is that (47) gives X, as function of the time
barameter z, instead of as function of the invariant proper time = of
the centre of gravity. Nevertheless, the expression (47) is, of course,
a covariant expression, and the asymmetry between the space and time
variables in (47) is a natural one. It is connected with the physical fact
that the region in Minkowski space, in which Ty differs from zero for a
finite system, has the form of a tube stretching from — o to 4+ o in a
time-like direction. ‘

Let us consider the transformation of the different terms on the right-
hand side of (47) by an infinitesimal Lorentz transformation

;U_i =& + &g, } (49)

&k = — Ekie

We shall first consider the transformation of the quantity
mi@) = J R (x, @) a;dv . ' (50)

Since this quantity is a function of the time variable z,, only, we can
expect to find a simple connection between 7;(#) and (%) only for
equal values of the time variables, i.e. for #, = x,. In order to find 7z,)
we shall need the connection between % (#;) and h (z;) for & = ;, ie. the
so-called “local ” variation of .

On account of (9) we have

94(®) = gu(z) + 2eagx(2)
and by use of a Taylor expansion and of (49)

3,(]4.

9u(®) = 96 (®) + 2engx (%) - ema s
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The physical meaning of T;, is given by the equations

where g and & are the momentum and energy densities, respectively. The
last mentioned quantities are Hermitian g-numbers, ie. gt =g, At = h.
We shall now make the convention that the symbol # introduced to make
the Minkowski space formally Euclidean does not change sign when we
take the Hermitian conjugate, in contrast to the imaginary unit <
introduced by the quantum mechanical commutation relations. We then
have

SCED RS PP

and g; and all components 7 are Hermitian.
From (1) it now follows exactly as in the classical theory that the
guantities. \

Pi = Jg,;ozv - (P, Z—H)
and ¢

. 4)
My = J($igk - T g;) dv

are the components of a time independent four-vector and antisymmetrical
tensor, respectively. P; and My are Hermitian g-numbers representing
the total four momentum vector and the total angular momentum tensor
with respect to the arbitrary origin of our space-time coordinates,
respectively. '

In general, the system will be deseribed by a number of field variables
F(x;) which are g-number funections of the parameters (x;). For our
purpose, we need not make detailed assumptions regarding the field
equations or the commutation relations between the field variables. We
shall only make the following general assumptions B and C:

B. By an infinitesimal displacement of the origin of our space- tzme
coordinates corresponding to a transformation

.’l‘i = X; — & R (5)
with infinitesimal constants ¢ the field variables F(x;) are

transformed into new field variables F(z;) so that the “local”
variation

1l

o* F(z;)
is given by
o* F(x;)

F(z) - V() (6)

it

& [.Pk, F(Z'l)] . (7)
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(53) may thus be written

= . o4X;
X () = Xp+ ein Xi — e Xie 35X, (54)

_ If we had taken X; at the time X, = & = @ + ea X instead of
X, = & =« = X, we would get the usual transformation law for the

four vector X;
X (&) = X; + e Xi. (55)

The equations (53) and (55) are, thus, completely equivalent. From
the point of view of a geometrical representation in the fourdimensional
Minkowski space, (55) is the most natural form, since X; (%) and X;
may be regarded as coordinates of the same point in this space. For a
guantum mechanical system we shall later see, however, that the form
(53) or (54) is not only the most natural but the only possible form of
the transformation equations.

IIL—QUANTUM THEORY.

5. GENERAL ASSUMPTIONS.

Let us now consider an arbitrary quantum mechanical system. In
crder to make the treatment as general as possible we shall base our
discussion on a few fundamental assumptions only. In the first place,
we assume that

A. The system has a symmetrical energy-momentum tensor satisfying
the conservation laws

0T
o 0. 1)
Here, the components 7% = Ti (%) are g-numbers which are functions
of the space-time coordinates x; = (&, ¥, 2, ict). The x; are characteristics
of the classically defined frame of reference and are, consequently,
throughout to be regarded as c-numbers. They are simply parameters
labelling the dynamical variables of the system. The equation (1) is a
relation between g¢-numbers, and, since the dynamical variables are
functions of f, we are here working in the so-called Heisenberg picture.
Tt is, of course, at any time possible to go over to the Schridinger picture,
where the states are considered to be variable.

[B]
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C. By an infinitesimal homogeneous Lorentz transformation

X; = X; + &Xk (15)
& = — &
the “local’’ variation of F(x;) is given by
S#F(x) = Flx) - P(x) = 5 (M, F(x)]  (16)

where My 1s the ongular momentum four tensor (4).

The “substantial’’ variation is in this case, by (10), (15), (16), and (12},

F
SF = 8*F+ g-;;ek;xz

= %I [(Mu = (xxPe - 21 B), F]= %’ my (%), F], (1'7)

where {
mu (%) = My — (%n Pr — %1 Py)

is the total angular momentum four tensor with respect to the point (x;)
in Minkowski space. The my defined by (I. 23) is identical with

m,-k(x;) for X = Xz.

The formula (16) for the ‘‘local” variation holds also for an arbitrary
polynomial f(F(x:), x;), 1i.e.

O = fFF @) x) - F(F(xi); ) = fg (Mu, ] - (18)
The transformations of dynamical variables contained in the assumptions

B and C are obviously quantum mechanieal contact transformations of
the form '

S) = Uf(x) U™ (19)

where we have written f(xz;) for f(F(x:); z:).
In the case of the transformation (5) we have

€,
U=14+ ;;‘.i P, (20 &)
and for the Lorentz transformation (15) U is given by

U=1+§§%M}d. (20 B)
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Since P; and M,, are Hermitian, the operators U in (20a) and (20B)
are unitary, ie. S
vut = UtU = 1. -(21)

If §=F(x) is a covariant quantity of the form
§(x) = [ F(PG); w)dmdnds, (22)
g0 that the corresponding quantity 5(5:4) in the system of &;-coordinates is
5 @ - [ r @@s 2 avasda,
the connection between %(x,) and §(x,) is given by
F(x) = J FOP R, ); X, %) dbdade; = J FF ), %) dmydada,
= J [f(F(x), x) + S*F]dv = F(w) + J S dv .

Thus, for the transformation (5) we have by (13)

%(wl) =g (@) + & [Pk, %(@'4)] (137)
and, in the case of the Lorentz transformation (15), by (18)

§(e) = §@) + 5 [Mu, ()] (18)

6. CoMMUTATION RELATIONS.

From the general assumptions A, B, C we can now derive commutation
relations between all the quantities in which we are here interested.
The quantities T;x are functions of the field variables F. These functions
cannot depend explicitly on the coordinates x;, for this would mean
an inadmissible inhomogeneity in space and time. Application of (14) on
the functions g; then gives

09
Pl LPiy gi]. (23)
By integration over the whole z-space we get for the term on the left-hand
side
Ofori =1,2,3
I 09 J
2= dy =4 0 0 .
0x; Efgkdv—éﬁpk=0 for « = 4

on account of P, being constant in time.
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From (23) we, therefore, get
[P, [gud) = [Pi, B3] = 0 2

ie. all components of P; commute. Since each P; is of the form (22),
this means by (13’) that P; is unchanfred by a change of origin of our
coordinate system.

Further, we get, using (23),

[P;, My] = j @ [Pi, il - @[ Pi, ] do

0
[ -nl)w

j(é@i} (@xg: — gs) ~ Oagn + 3ﬂ9’k> v

- 0Py + Sul (25)

]

ginece
5 0fori=1,2,3
0
.[5;:: (g1 - mgy)dv = (8_3; My =0 for s =4,
4

f

Now, (25) gives S
E:[Panz] -gPi+alP;

and, since M is also of the form (22), we see again by (13’) that a
displacement of the origin x; — z; — ¢ changes My by

My > My — (e; Pr — &1 Py) (26)

This may also be seen direetly from the deﬁmtlon (4) of M;z. Further
we get from (25) §

& (M, P] = »‘" - f-"i Py = Py

which by (18’) is seen to be in accordance with the vector character of P;.
Conversely, we could also from the condition that ;= P;+ ¢y Py by any
infinitesimal Lorentz transformation deduce the commutation relatmns
(25).

Similarly, we get from the condltlon that the constant M transform
like the components of a tensor the following commutation relations :

[]’[ik; Mlm] = 8t‘ljl)l}cm - Sim Mkl - SklMim + Slcm ]'[il- (27)
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If we now define the proper mass M, of the system by the equation
.PiP,; = - 1'10262 (28)

it follows at once from (24) and (25) that M, commutes with P; and
Mz We have, thus, found the following commutation relations between
’P,-, My, and M, from the basie assumptions A, B and C.

[P;, Pr]=10

[(Pi, My) = — 8 Pr + 8y P

[My, Mim] = it Mym = Sim Mu: - Skt My + Siom M
[M,, P] =M., M) = 0.

(29)

For i, k, I, m equal to one of the numbers 1, 2, 3 these equations contain
the usual commutation relations for angular momenta in quantum
mechanics. In particular, we get from the third equation

[M,, M)} =M, ... (29)

7. RELATIVE ANGULAR MoMENTUM TENSOR.

We shall now try to define the coordinates of the centre of gravity
of a general quantum mechanical system in such a way that all relations
derived in the classical theory hold as g-number relations in the quantum
mechanical ecase. First of all, we define the relative angular momentum
tensor my, by the relations (I, 32), i.e.

M = — M = My + MlePk—MkszPi)- (30)

1
(M,c)? (

By means of the second commutation relation (29) one easily finds, since
My and P; are Hermitian,

m.,-kf = Mg , (31)

ie. mg is also a Hermitian g-number. Further, we get from (30) and
(28) the relation

Yz Pk = 0 . (32)

on the analogy of (I, 29).
If we introduce
m = (s, Mg, M)

mn = (mu, Moy, ’m':u) (33)

(32) is equivalent to the equation (I, 31), i.e.

n= -4 @xP). (34)
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By means of (29) and the defintion (30) we get by a simple caleulation
the following commutation rules:

[P:, mu) =
[(M,, my]=0
[mig, Min] = 8umpm = Sin Mz + Sn Mt ~ Op Mine
PP\ [y .PiPa & (35)
[ma, mm] = ( du + (Mg ) Szm M c)5> Myy
(8;,,,, (—ﬂ"—cl;z\)mu (8;d + ( M )2\

The first equation shows that the m; commute with all components
of P;. In contrast with the tensor M, the tensor components mg; are,
thus, independent of the choice of origin of our coordinate system. The
third equation (35) expresses the tensor character of miy;. According to
the last equation (35) the components of the relative angular momentum
vector do not satisfy the usual commutation relations for angular momenta.
‘We have instead

mP
[mg, my] =mz+(‘/i—[(;‘j2 ., .... (36)

8. SPACE-TIME COORDINATES OF THE CENTRE OF GRAVITY.

The space-time coordinates X; of the centre of gravity must now
satisfy equations analogous to (I, 22), i.e.

’l)ii), = Mgk—(X-.Pk—Xk.Pi) (37)

where the bar over a product of two factors denotes the symmetrical
combination !

A.B = (4B + BA). | (38)
Since X; must be Hermitian, all terms in (37) are then Hermitian.
It seems now natural to define X; by an equation analogous to the
classical equation (I, 47), namely,
X; = H' [ hagdo — my, P, (39)
It is easily seen that (39) satisfies (37). From (4) we get

M. Pt = H' [h.x;dv - 2, P; P
and (39) may be written

Xy = . Py Py i PO = mg L PV (40)
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Theréfore, we get by means of (30)

Xi.Pk —.Xk.P.' = (M“—mu).P{‘.Pk—(Mh—mh).P(‘.I’i

M; PP, - M,P,P,) . P!, Py, - (M PiPy - MyPPy). P Py

1
=~ @t
(41)

If we could disregard the bars, we would then get

1
X Py - X Ps = - (g (MuPi Py = MuPP;) = My - ma (42)
[

which is just the equation (37). Now, it is obviously allowed to disregard
the bars, for we have quite generally

4B = 48 -2 (4,5

and, since [My, P:] is a real polynomial in the.commuting variables P;,
the right-hand side of (41) could only differ from the right-hand side of
(42) by a purely imaginary function of the (P;), and since both sides
of (42) are real, this function must be identically zero. Thus, the
definition (39) of X; is in accordance with the equation (37).

From (40), (29), and(35) we now get after some calculation

[Xi, Pk] - [Mi;, Pk]..P4_1 = Sik - 8k4PiP‘-l.

(Xi, M) = - Saky + SuXy + Sur . Xi. (PPY) - Sudi. (PiPiY)

1
[Xe, mu] = - ‘—”—( Hyey {ma Py - myPy + Pomp, PP — PPy Pty b (43)
0

[X:, Xi) = - my PR Pt 5 mp PPCY)

1

(Moc)z ( ’Lk
[X:, M)] = 0.

For ¢ = 4, (39) becomes

X, = H'.xH = x, (44)

s0 that X, is always identical with the c-number z,. For+ =, =1, 2,3
(39) gives the components of the coordinate vector X of the centre of
gravity

X=WH".‘rhxdfu—an‘1 {45)

on the analogy of (I, 27). The covariance of our scheme now requires
that X, must be a c-number in any system of reference. This seems to
be in contradiction with the four veetor character of X;, and it is certainly
in contradiction with the Minkowski form (I, 55) of the transformation
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equations. However, if we consider the form (I, 53) or (I, 54) whieh, in
the classical case, is equivalent to (I, 55), we shall see that it has its
quantum mechanical analogue. Since X; in (39) is built up of quantities
of the form (22), we have according to (18" for an infinitesimal Lorentz
transformation (15)

Zi@) = Xi(w) + % [Mu, Xi(a)] (46)
or, by means of the second equation (43),
X-',(z;) = X+ eq Xy - eq Xy . (i):Pfl) | (47)

which is the quantum mechanical analogon of (I 53).
Further, we get from (40)

oX; _oXi _ o
oX, ~ om Pi by (48)

so that (46) may be written in a form analogous to (I, 54):

Xi(w) = X; + ea Xn - ea¥Xi © g‘:‘% (49)

4 .

In this sense, we may say that X; is a four vector also in the quantum
mechanical case. Since (46) is a contaet transformation, it is elear that
the whole scheme is relativistically covariant; in particular, all com-
mutation relations will hold also for the transformed variables.

For the statistical interpretation of our formalism it is also essential
that the time variable X, is always a c-number, for it has no simple
physieal meaning to ask for the probability that the clock defining X,
shows a certain value. On the other hand, it has a well-defined meaning
to ask for the probability that any of the components of X(z,) = X(X,)
has a certain value at a definite time X, = x,. It thus seems that the
geometrical picture of Minkowski, so useful in eclassical theory, *is
unsuited to give an adequate representation of relativistic gquantum
mechanics. Instead, we must use a formalism in which the time variable
plays a distinguished rdle. This asymmetry between space and time
variables should not be considered to be a defect of the theory, sinee it is
deeply rooted in the physical difference between space and time which
was so entirely veiled in the Minkowski representation. This is also seen
if we consider a little more closely the notion of proper time of a particle.
In the Minkowski representation, the space-time coordinates X ;s of a
particle are naturally regarded as a function of the proper time r which
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The inverse relation of (52) is

s
Moo mp).P (59)

Hxl
m +

m = M, P

as is seen by introduction of (59) into the right-hand side of (52). The
equation (51’) may then be written

X xX

ih (Mc ¢ (mP) Py. (60)

S Mo\ H " H@EY M)

In a state corresponding to a definite value j and the mean value zero

for P the “ area of uncertainty ” in the determination of the position of
2

the centre of gravity is thus of the order j . w-IL) and this is quite

( M,c
independent of the possible uncertainties in the value of P.

9, A CenNTRE oF Mass wWiTH CoMMUTING COORDINATES.

We can always work with a representation in which, for instance, the
set of quantities M,, P, m?, and m, are diagonal, since all these quantities
commute; but we cannot in general replace the P in this set by X, since

the components of X do not commute neither with m nor with each other.
However, in a definite system of reference it is always possible to define

X X
a ‘‘point’’ whose coordinates X commute with each other and with m.
According to (37), we have

M=m+X x P, (61)

ie. m is the angular momentum vector with respect to the centre of
gravity. Let us now consider a point with respect to which the angular
momentum of the system is equal to the vector 1;1 defined in (52). If J’i
is the coordinate vector of this point, we must have
M-m+XxP. (62)
Comparison of (62) and (61) gives, by means of (52),
2
. 1Pl
x H
(X—X) xP=m—m=——-—~P;«——[(mP)P-—mP2]

2

[
- - W@ (mxP)xP, (63)
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To prove these equations we may use the fact that P commutes with all
quantities occurring in (52) and (36). ‘We may, therefore, treat P as a
c-number with definite numerical values, and since (52) has vector form
we can choose the z-axis, for instance, in the direction of P, without
spoiling the generality of our results. Then, we have

M =M My = Tpmg mes Tpmme (54
and the equations (36) reduce to ‘

[msz, my] = m,

P Hz
[’m,y, le:l = My (1 + (M:”éj;) = My (’m - (55) )
[m2, ma] = m,
Therefore, we get !
x x M" c? M c? X
[m, s m,,] = "“’“E”" [m, y y] = —ji%' m,; = M,
X x M c2\2 M c2\e Hs x
(s m)= () Umgs ] = (P e s, = e =
M, c M,c? x
['m'z; mz] = "7{“[ £ ml] = W;Y“ Mmy = My.

Thus, we have proved the equation (53) for this special choice of the .
coordinate system, but, on acecount of the vector character of the equation
(52), the equations (53) must hold generally.

On account of (53), |m [> must have the eigenvalues j (7 + 1)h* where
2j is an even number and any of the components of m have the eigen-
values m.h where m can take the values

-4, -J+1, . ..... J-1,7.
X X
It is easy to see that m? = |m|? is an invariant; in fact, we have

77};2 =m* - n® = §my mi. (56)
For, from (52), we get o

H } Vil H H H
My, &
- (7‘;-[%) s @)

and, on the other hand, we have an account of (34)

m_-nte=m?— S (me(me) (M;”)m +-m(mP)2 (58)
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Thus, since M° commutes again with all quantities oceurring, we
have the following list of commutation relations :

[X.,, X.] = [P., P =0

[ju Px] = Sm
[X., m] = [P., md = 0 > (1)

[M,, X] = [M,, B] = [¥,, m] = 0
[;){z“ n};y] = 7;,“ Ce e

X X
Thus, X, P, and m have similar properties as coordinates, momenta, and
spin of a particle in ordinary quantum mechanics. But, in contrast to

X
the spin, m is a constant of motion also in the relativistic region.

X
We can now use a representation in which M,, X, m?, and m, are on
diagonal form. From (64) and (45) we get

3
M

'H”(HJ;],]OC) n. (72)

X » "

X = H'. [ hxdy -
The “point’’ with the coordinates X corresponds eclassically to a point
on the line joining the centre of gravity and the centre of mass of our
system of reference, ie. it corresponds to a point on the dise of mass

X
centres. But in different systems of reference, the X corresponds to the

coordinates of different points on the dise. X increases liﬁearly with
the time, and the coefficient of increase is the same as for the centre of
gravity : PP,

10. APPLICATION OF THE G(ENERAL SCHEME T0 DIRAC’S 'THEORY OF
ELECTRONS.

The theory developed in the preceding sections of this chapter may
be applied to any system with a well defined energy-momentum tensor,
as, for instance, Born’s nonlinear electromagnetic fields, meson fields of
different types or Dirac’s electron-positron fields. If any of these fields
are considered separately we meet, however, with the difficulty of the
infinite zero point energy which makes an immediate application of the
definition (II, 39) of the centre of gravity impossible. This difficulty may
be overcome by interchange of certain non-commuting factors in the
expression for the energy-momentum. Strictly speaking, this procedure
means, however, a change in the system considered.
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We may, therefore, put

[
graa® oY

on account of (34).
By means of the commutation rules between X, H and n afforded by
the equations (43) and (85), it may be shown by a simple calculation that

the components of f( all ecommute
[X.,, X =0. (65)

X
Since n and H commute with P, the commutation relations between X
and P have the same canonical form as for X and P, i.e.

[Xi, Pe] = Suc. | (66)

By a rotation of the spatial axes of our ecoordinate system the
X .
components of X will transform like the components of a space vector.

The equations (18’) applied to X for the case of a pure spatial rotation
then lead to the usual commutation relations for angular momenta and
vector components, i.e.

[M,, X,]=0, [Ms, X,] = X, .. .. (67)
or
[Arz.) ]I[KA] = - 8«,&}4\ + 8u\-"?-évlt (68)

where ¢, k, A may be any of the numbers 1, 2, 3.

If we now put m = (m,s, My, Mmy,) (62) may be written
My = Z'[Lx - (j‘rLPx - j-,x ])¢)~ V (69)
Thus, we get by means of (68), (65), and (66)

["YL, ’nbn)‘] = - SLKX)\ + 8u\Ava - jn 3u\ + AX’:\SLK = O (70)

X X
ie. X commutes with all components of m,
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By a Lorentz transformation the functions % and % transform in the
well-known way.” The quantity

8 = lellyu = teutyiyu = sutau
a = {a, i}, ' (80)
which satisfies the relation
08 _
is a four vector for all Lorentz transformations including spatial reflections
but a change of sign of x, changes the sign of s while s, is unchanged.
By the method developed by Rosenfeld® and Belinfante® one obtains for
the (symmetrical) energy-momentum tensor the expression

T—?.Ef(" ﬁ+ﬁau_2@? q/_?.z ’ll/)
* = gy 7V o Yigm o ™ om T

— u a;
2 “ox; 0%

0

)
h ‘ t t
¢ (ufak gu ta; ¥ out a — % am). (82)

This Hermitian tensor satisfies the equation

axk

=0 (83)

and represents the energy-momentum tensor of a closed system of non-
interacting electrons in the original Dirac theory of electrons. In the hole
theory of electrons and positrons in the form given by Heisenberg' we have
to add terms in which the order of the factors in (82) are reversed. We
shall later treat this case, but for the moment we consider the case of the
original Dirac theory.

The commutation relations for the field variables may be written

[ulg, t), u(g, )]s = w(g )u(f, ) + u(g, Hu(g ) =0
u(g, Hut(e, t) + ut(¢, Hu(g, t) = 8(¢ - 9) (84)

where ¢ = (%, {) is an abbreviation for the set of variables x, y, 2, §{ and

8(g - ¢) = Sz -X).

1 See for instance W. Pauli, Relativistic Field Theories of Elementary Particles, Rev
of Modern Physics, Vol. 18, No. 3, p. 203, (1941).

$T.. Rosenfeld, Mémoires de 1’Academic Roy. Belgique 6, 30 (1940).

*F.J. .Belinfa‘nte, Physica 6, 887 (1939); Physica 7, 305 (1940).

1'W, Heisenberg, Zeits. £, Physik 90, 209; 92, 692 (1934).

[C]
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“We shall illustrate this by considering the case of Dirac’s theory of
electrons and positrons. Dirac’s field equations may be written in the
form

ow 0 , .
a‘&;‘(“aa‘xu'*‘ikﬁu:o, (73)

where x, = ¢t, x = myc/h and the w; (x,¢) are the g-number field variables
with four components corresponding to the four values of the index &.
o = (az, ay, a;) and [ are the usual Hermitian Dirac matrices with four
rows and columns. If we put

K
0X

H(g) = cpop + pmc
the field equation (73) may be written

ih %th - H(g)u. (74)

H(q) is an Hermitian operator working on the variables ¢ = (X, {).
Further, defining four quantities ; by

o =I—3f—‘, Vs =71~? ~(75)
(73) takes the form
O = 0. (76)

The «; satisfy the relations
yiye + vevi = 28
'Ytt = Yo 'Yl? = = 74' (77)

Thus if ut is the Hermitian conjugate of w. (It should be remembered that
the symbol t changes the sign of ¢ but not 7) it is seen at once that the
adjoint field variable % defined by

% = uty, (78)
satisfies the equation
ot

5;6;_75—mz=0. (79)
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where L(g) is a Hermitian operator working on the variables ¢, the com-
mutation relations (84) give

[13,’%(9, 9] = - —T1~L(q)u(q, t) |
[L wt(0#)] = 53 ut (3, 1) L(g). (94)

Since P; in (90) is of the form (93) the fundamental equation (IT, 12) gi\ies

0
[Py ] = -y @

in accordance with (86). Further we get, by means of (91), (92) and 94,
from (IL, 17) for the substantial variation of the function % by an infini-
tesimal Lorentz transformation

Su = %"I [Myr = (@ Py - @7 Py), u]
== 535 HMu@) - @p-up)lu

= %‘—' (yive = yrys)u

which is in accordance with the Well-known tra.nsformablon propertles of
Dirac field functions.

 The quantity - N = J ut. udg (95)

is easily seen to commute with any quantity Z of the form (93) and we can
always use a representation in which N is in diagonal form. In the
conﬁouratlon space tepresentablon the state considered is represent;ed by
- -a-succession of Schrédinger wave- functions

Cconst 4 (@), ¥ g, b W), (96)

corresponding to the different eigenvalues.of the quantity N The sub-
matrix (N | L | N) of L corresponding to a given eigenvalue N working
on the wave-function (g%, ...q%) then gives the result

VLD p e f) =BG+ DG+ LN ™)
SLSZENE ™) )

s . s 1 L
Slmllarly we get for the reclprocal quantlby L

I D ) = [ LG ) (99)
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- If we-define a Hermitian operator p;(¢) by the equations

, Ei for 2 =¢=1,2,3
. T ox, .
P ==, ‘
E'H(q) for i = 4 (85)

we have, on account of the field equation (74),

on )
o =i P , . (86)
and (82) may be written '

Lo = 2 [ut. (api + aipr) v + wt (piax + pras) . u] . (87)
In particular we get for the quantity (II, 2)
gi.r_ilcT“:iI’uf.(p,-fg‘g-i)y+ui(pi+%ﬁ).u]. (88)

For the total energy momentum vector we then have

or since , ﬂi{;jﬂ" =P o (89)
2¢ e :
P, = ( ut. prudg. | (90)

Similarly we get, by a simple calculation, for the angular momentum four
tensor My, defined by (11, 4),

Mik = J(aa- gr — T gi) dv = Iu'f. M (q) udgq (91)

where the operator My (¢) is given by

M (q) = @ palg) + 2. pi(g) - i‘: (a; ax + ay a;)
b
= @ipe (@) - mpe(a) = (viya + ). (92)

Now, for any Hermitian quantity of the form

L= fm L(g)udg = IuTL(g).udg - ' _~(”_9.;1)
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thus in the configuration space representation

n = 3z HO. (106)

For the space-time coordinates of the centre of gravity, defined by
(11, 39), we thus get the following configuration space representation

X, = H'. gy —my Pt

=[S HY]. [34@. H ”(a“)] - ms ;[2 H®"]- (107

where m;, is given by (104).
In the case of one particle only all the sums in the expressions (100) to
(107) reduce to one term, and if we suppress the index ™ we then get

(& “(ho ¢
ep=p, tB =122, th
Pisp ;p c } {i 0X ¢ }
H =c(ap) + Bm,c’
ai= s, &} = {pio, §)
M, =m,
My =25 pp — @ . p; — % (a; ax - az as) (108)-
M=xxp+g°'
_E +w_*§‘-_
m=3° 2mocp2(°'><p) /
¢ ,
n=- g @mxp) == 5o e xP)

% = (X, , = ict}

where x now means the coordinate vector of the particle and ¢ is the time
variable (c-number).

The inner angular momentum m is thus closely connected with the
h s s
5 o This is also
apparent from the fact that m is a constant of the motion (commuting
with H) while the spin vector is not constant in time. The invariant
Jm|?-|n|* isidentical with the square of the spin vector, i.e.

spin, but it is not identical with the spin vector s =

lm|®-|n]?=gn=]s| ;- 108)
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and for two quantities L and M of the type (93) we get
(N ZM] ) 4 (g, ™) = [ £ (@] M@ 1) (99)
In configuration space the quantities (90) and (91) are thus given by

the operators
P, = 210;(”

My = 3 My (100)

with P = P, %H(');, H® = ¢a p™ + B my™ ¢

M =T8T, ) - g0 pf - %(a‘m a = a® a; ")

; - 101
= a:..(’) pk(r) - xk(r) 10&") - Z’?} (')’-'(r) Yk(r) - 'Yk(r) '}’i(r))- ( )

" = (X, x, = ict}

a = {a®, 7).

7

All the quantities (101) are operators working on the variables ¢ = (x™, L")
of the 7th particle with the exception of the quantities /" =, =#ct and
a" = i which are ordinary ¢-numbers.

In the same way we see that the quantity

£ = jm. udg (102)

in configuration space will be represented by the operator ,
& = Sz, (103)

For the total proper mass M, and relative angular moméntum tensor
my, defined by (II, 28) and (II, 30), respectively, we then get in the
configuration space representation

1 H Hs
2 (r)e _ " p®) —
Mo ? my po ris [P P c? ]

3 pa P - My pu® pi®

My = 3 My® + 222 «

. 1 HO H® (104)
2 mo{r)z b 072 . 2 [p(r) p(") - 02 ]
”r ks

r¥

By means of (88) we obtain for the quantity »;, defined by (I, 50),

= Jw,- hdy = %J'(uf.vz Hu + vt Hx; . u)dg = ‘J'u*.(w,;.ﬂ)udq (105)
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- If we define a new spin vector - by putting
§,=§§1=¢+(p3-1)[¢-1’—-(;-?-)] - (116)

ie.

o

x -
m =

| : ooy
a simple calculation shows that Tl

X X X X X

G0y = — O0yGz = T v vy -
x x x '
62 = g2 = o2 = 1, - (118)

Thus the components of the vector ¢ satisfy the same commutation rules

as the Pauli-matrices o .
b-4

x X
1f we further define new variables p,, p:, ps by

- X b- 4 o T X - LT . T
gL = p1 g-z‘})‘, pr = P2 %og y P3 = Ps (119)
we have ‘ :
X X XX ’ o . o .X XX ) AX X X .x
PPz = = Pap1 = PiP2 = s = 05, Paps = U I

X X X
pt o= ph = pd =1 _ ) ; o .
. i 7

i x
and the new variables p, commute with the variables p and & . -
The inverse relations of (116) and (119) are easily seen to be

v=:+(;a—1)[§-¥%,!ﬁ]

X X
. X x x
P:‘—'Pl‘(‘r’*}): P2=P2-‘(¢"‘”]“DI"): Ps = P .

Tn the new variables the Hamiltonian thus takes the simpie form

N RN R
H_cpl?w(o-p)+ Ps M C® = Cpy* p + psm,C, (120)

x - N
The coordinates X are increasing linearly in time with the same - constant
2 - . x
velocity EEE as the coordinates X of the centre of gravity, while the variable x

in (114) is oscillating with the freqﬁen'cy,of Schrodinger’s. « Zitterbewegung.”
If ¢ is the Schrodinger funetion in the Heisenberg picture i (¢) is indepen-
dent of time. We can now always write ¢ as a sum of two parts

Yo=Yy + P
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From (107) we get for the coordinates of the centre of gravity

X = m -cn H?
| ek - Hep) B o HY
o . x-X+% (110)
with ’ - )
x = zhc (« - H-%cp) Hf,‘,+, cn. ij. (111)

"Aceording to (I1, 40) t;he first term in ‘the decomposition of x in (110)
increases linearly with time. The other part x is oscillating with the
frequency of Schrodinger's “ Zitterbewegung.”

By means of (108)~(111) it is easily verified directly that the commutation
relations (II, 29), (I1,-35), (11, 43), (1L, 50) and (II, 51) are satisfied.

For the quantity m defined by (II, 52) we get after some calculation

. j ' ‘
m=5{0+m-u[«—%§ﬂ (112)

which satisfies the usual commutation: rules (II, 53) for an angular
momentum, The vector m is & constant of the motion like m and it has the
samemagnitude as the spin-vector 8 = 3 @

Im|* = b : (113)
according to (II, 56) and (109). '

'The coordinates X of the mass centre defined in section 9 are given by
(64), thus

c ~ ¢

X
X=Xt gimes 7 X=Xt T e
R 3 U R SR S L. ol
=R (e - Hep)  H- H(H + e (114).

sx- X
Tha eomponenhs of X commute and satisfy canonical coxnmutatmn relatlons
wwh the cnmponents of p. Further the components of m commute with X
and with p. According to (IL, 62) the total angular momentum M may be
written ag & sum of two terms . . o ‘
M - X xPp+ m (115)

each of which are consta,nbs ‘of the motioh.
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which in the Fourier expansion correspond to positive and negative energies,
raspectively. In a state described by a pure i, -function or a pure _-function

the mean values of x, X and X are increasing linearly in time with the same
constant velocity. The “ Zitterbewegung ” of the variable x appears only in
the mean values of states which are represented by a super-position of a
Y, -and a _ -function. e
Following the prescription of Heisenberg we now pass over to the positron
theory by replacing any quantity of the form «*t+ L(¢)» in the original
Dirac theory by
Y(ut Lu — w-ut L).
Here L = L(g) may be any operator working on the variables ¢.
Similarly we have to replace any quantity ¥ L . » by
Tt L w- Lu-u").

Thus, we get for instance for the total energy-momentum vector instead
of (90),

P;

Bt p - wutp)dg

%j(u*‘mu - piw - ut)dg. (121)

On account of the commutation relations (84) the expression (121)

deviates from the quantity (90) by an infinite constant amount
- [[qlu;’q 3pi(g)d(e - q’)} dq .

This is the infinite zero-point energy of the vacuum which is characteristic
for the positron theory. A neglect of this infinite constant thus means that
we are going back to the original expression (90) for P;.

For the same reason any of the quantities My, n;, X; ete. will in the
positron theory contain an infinite constant. Neglecting these infinite
constants thus formally amounts to a return to the expressions (108)-(119)
of the primitive theory. But in the physical interpretation of the formalism
there is an essential difference. The Schrodinger wave function of an
electron can in the positron theory only be of the form of a ¢, -function
while the state of a positron is always given by a i_-function, a super-
position of a ¢, -and a ¢_-function having no meaning in this theory. The
mean value of for instance the variable x in a given electron- or positron-
state is thus always increasing linearly with time, while the Schrodinger
« Zitterbewegung ” is unobservable in such a state.

Added in proof —In the meantime a paper by M. H. L. Pryce has been
published in Proc. Royal Soc., A, vol. 195, 62 (1948), which contains a
number of the results communicated in my Dublin lectures,



