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STUDIES IN THE GENSRALIZED THEORY OF GRAVITATION IT:
THE VELOCITY OF iIGHT
By
O. HITTMAIR and E. SCHRODINGER.
(Received July 1951)

1. The various meanings of the velocity of light.

As is well known, the influence of.a gravitational field
on the propagation of light was in Einstein's theory of grav-
itation one of the main issues, which by good luck was just
within the reach of careful observation, that decided in
favour of this theory. In its recent non-symmetric gener-~
alization the question arises, how the gkew field, which is
tentatively regarded as the electromagnetic field, influences
the propegation of waves of this very field itself, that is
of light, if our tentative view is appropriate. The subject
is touched upon in seversal recent'papersl). Pondering these

remarks we found that the first requirement'is 8 revision of

the concept "velocity of light" which has two fundamental
meanings in the older theory, but three in the new one. We
shall discuss both cases briefly, beginning, of course, with

the older one.

1)
R. L. Ingraham, Annals of Math., 52, 743, 1950,

P. Udeschini, Rend. Lincei, 9, 256, 1950; 10, 21, 121, 390,
1961.
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fo declare that the symmetric tensor-field 843 18 the
world metric, implies the physical assumptions that we have
unit measuring rods and clocks which measure the invariant
interval

as® = gik dx4q dxyi
.in particular csases, viz. a rod for simultaneous positions of
its end-pointa (irrespective of its orientation), and a clock,
when at rest, for the two world points 1ndicéted by its having
advanced by one unit. - A second and independent pPhysical
hypothesis is about the propagation of light: the dx; for two
neighbouring points reached by one light signsal shall satisfy
as? = o.

If we lay out & local frame with the help of such rods
and clocks, choosing rectangular Cartesian space coordinates,
the gix acquire the values gqq = 822 = 833 =kl 844 =1, all
others zero (we shall call this "Galilean"), and the velocity
of light% becomes 1 in all directions; all this in virtue of
our assumptions, which would have to be discarded if experience
contradicted. Needless to say that in this local ffame there
cen be no question of rods or clocks changing, contracting or
being retarded, ete., by the gravitational field or by orient~
aﬁion, etec.

In an extended gravitational field one can always adopt a
general world frame of which this locsal Ffranme at a given world-
point forms part, and usually, with sufficient accuracy, in a
wide neighbourhood (it may be a geodesic frame, but that ié not

the point; the one we use every day is not)?

This is the first meaning of the velocity of light in the
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older theory. It is the only invarient meaning, although -

nay, because - it refers to a very special frame. However
the very nature of a true gravitational field makes it im-
possible to choose a world-frame that produces this simple
state of affairs everywhers. We cannot avoid using a gen-
eral frame for studying extended phenomena such as the deflec-
tion of light passing near the limb of the sun, or the wave-
length of a spectral ray, emitted on a white dwarf and meaﬁ~‘
ured in a terrestial observatory. One can as a rule - and
does; of course, if one can -~ avoid Zia 0 (i =1, 2, 3).
This leads to

2 A

A ]
- 2;, ;gikdxidxk .

This induces one to interpret a g44 # 1 as a change of rate

of the clock, and non-Galilean spatial gix' & as a change of

length of the rod, depending also on its orientation, and
inally to say that the velocity of light is £ 1 and is

"enisotropic", But it is quite clear that all these notions
are eminently non-invariant and locally meaningless, since
they disappear in the local frame. In fact you may, if you
are provoked, produce all kinds of freakvby choosing a suit-
ably unsuitable frame !

This, then, is the seccnd, the non-invariant concept of
the velocity of light. That it ié sometimes needed for pre-—
dicting very definite and substantial phencmena, is well
known,

In the way of a digression I should like to repudiate a

third meaning, used by Udeschini 1. c. and hailing, it seems,
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from Levi-Civita, viz. to regard Jg44 as the velocity of light.
The idea is, to regard in the above equation the double sum as

the square of the distance, sa& drz, and dx, as the time inter-

val so that ds® = O entails gr._; = _-t;‘\/gzz. * The physicist
has no use for this concept. %t combines the defects of being
non-invariant and yet producing wrong results for the gravita-
tional deviation of a light ray. - |

We now turn to'the genefalized theory in which gj) is non-
symmetric. To regard its even part g€ix @s the world-metric
amounts to hold on to the agssumptions about clocks and measur-—
ing rods, now with regard to the invariant

as? = 81y Ax; ax.

In the local ‘rame the 84y Will then turn out Galilean, as the
81k did before. But what asbout the propagation of light? It

consists of waves of 8y’ and the latter are controlled by the
v

field equations just. as much as the 8ixe S0 there is now no

room for en assumption as ds? =0 or any othef. If we wish

to know how such waves are propagated we have to consult the
field equations. These stipulate an intimate interaction be-
tween the giE_ and gik—fields. Hence, with & rapidly chang-
ing gik-field the giglcould in general not remain Gsalilean for
more g%an a split second!

It is, however, reasonable to define the "behaviour of
light" in the following manner. We split the total skew gik
field additively into two parts: an infinitely wesak, rapidi§
oscillating part that represents the light-wave whose behaviour
we wish to investigate, and the remaining background-field,

which we do not restrict as to itsg magnitude but which we
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consider to vary slowly in space and‘time,_éo that we may regard
it as constant in the neighbourhood of the point in question
Just as we do with the Galilean gix» Whose distortion by the
infinitely weak rapidly changing light wave we neglect. In
this way we shall find

i) with the Eix Galilean and no hackground-glk the propa-
gation of light i® normal, ds? 0, the velocity of llght being

constant and = 1.

Nii) With the 8ik Galilean and a‘background—g%%, the latter
modifies the propagation of light, owing to the non~linearity of
the equations controlling gy This behaviour may still bhe
called local and invariant f%asmuch as 1t is only an interplay

of local fields and undergoes surveyable changes on Lorentz
transformation.
iii) In a general world-frame the background-giy, by act-

ing as a source of the gravitational field €ik» has also indir-
ect, non-local, non-specific influence on th;wnon~invariant
behaviour of light in such a frame; very generally speaklng
this influence is of the same type as in the older theory and
raises no new problems.

Phese are the three meanings of the "velocity of light" in
the new theory. The feature of specific interest is, of course,
(1i), comprising (i) as a special case. We deal with it in

the next section,
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2. The influence of ﬁhe local background-field,
It is easy to showl) that the density A?%F and the tensor 8ik
are, if you allow for the generalized éetric g€ixs in the same
relation to each other as the 2 six-vectors in Born's non-lin-
ear electrodynamics; Agj3fia.to bhe identified with the
(B,E)-tensor, the 8ik with the (H,D)-tensor. Then the re-
1ation_ﬁ?;¥,k = O '~ the only Maxwellian set that the unified
theory yieldsz) - corresponds to curl B + B = 0, div B = 0,
while the other set. is obtained by defining g[%k'l) as the
4-current and putting it zero where there is to be none. This
yields curl B - D = 0, d4iv D; = 0 (generalized for the
metric gik)a Hence the local velocity of light (the only one
that haéwgn inveriant meaning), since it is obtained by intfa-
ducing a locel Galilean frame (-1, -1, -1, 1), is governed
precisely by Born's theory, and we can make use of results
worked out previouslye. \

We shall use the lettérs By E, D, H for a field of arbit-.
rary strength (the background field), that we think of as

,1) , |
E. Schrbdinger, Proc. Roy. Ir. Acad. 51 (A), p. 214, 1948.

In equation (5,6a) the factor h is missing in the second term

of the 2nd member,

2)

Equation (4,8b) l.c. and the suggestion (5,7) become void in
the more stringent form of the thepry, which we are using here,
- Also, in the present connection, being interested in locsal

phenomens, we discard the cosmological term eltogether,
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looally homogeneous and static or, at any rate, as varying slow-
ly in space and time compared with the vibrtations of the light~ .

fields whose propagation we are sbout to investigate (but for

which no notation will be required). In the case of a purecly
glectric field E (and the corresponding D, see below) it has

been founds), that the veloecity of propagation u in the direction
of the wave normal of a weak plane wave crossing.the background

field is, irrespective of polarization and frequency, given by

w = A% sinfL o+ cos%w, (1)

where Ly is the angle between the wave-normal and E. Thus the
field E produces anisotropy, but no double refraction, and it
does not upset the central symmetry ( (o a3 - (3), The
scalar A, which we regard as positive, is

A = ’1-—E2. | (2)
Its reciprocal plays the part, Sf dielectric constant for the
background-field 1

D = At gw . (:3)

’

It is not difficult to generalize the argument N. O. 1. ¢. SO

as tc embrace the case of parallel fields B and H. The only

change is that then

A = l“Ez'-Hg (2&)
while (3) is supplemented by4)

3) .
E. 8chrbdinger, Non-linear Optics, Proc. Roy. Ir. Acad.

47(A), p. 101 . (This paper shall be quoted as N. O.)
4) N. 0. p. 81, equations (2,6)
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To obtain the gensral case when E and H are not necessarily

parallel, the simplest way is to put (1), without changing its

content, into Lorentz-invariasnt form. We first express A? by

the inveriants of the (B,E)-tensor. From (22) and (3a)

22 = 1 - - B
o 1 - &2 2 - E° 4 B _ E° 4 BO
A" = = -1 = 1 - T 77 (4)
1+ B 1+ B 1+ B
1 - 42 B + B I
1+8% 2. o 1 .1
where we have put
= 1(RS 2 -
I; = %(B° - E9) Iz = (BE) = +|B| |E] (5)

2 '
I = J Il + 122 .
+:

From the last equation (4)

14+T; -1 |
A.2 = (6)

1+Il+I

Now we divide (1) by the square of the wavelength) >\: in order

to introduce the coverient wave vector kq, kg, kz, kg, the lat-

ter being u/\, while kg shall be the component in the direction

*
Onewcould~.avoid specializing in harmonic waves; but by doing

80 no harm is done and language is simplified.
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of the background field (& = 0), Thus, from (1):

2 &y
k® = A% (k7 ¥ k5°) + koo, (7)

Inserting the value of A° from (6) we easily obtain

(1 + 1) (ka® - %1% - kg® = k3®) = =1 (k42 + k5% + K42) + T K2
‘ (8).
It remains to put the second member into invariant form.

Using transitorily the contravariant compone.:is klz

| 1 2 3 4
(1 +I)klky = IKk -=Ik%k +Ik ky - I X%k, . (8a)

We now introduce, &s a purely mathematical tool the conventional

Maxwellian energy-momentum-stress tensor of the tensor (B,E),
and call it.éﬁblm, It is easy to see that in our special frame,
with both B and E parallel to the direction labelled 2, Tl is
diagonal with components |

- I, I, -1, I.

Hence the invariant form of (8a) reads
; 1 Ll om '
(L+ ;) k3 = ~T,k ky, (8b)

and must, of course, hold in every frame; which means inter
alia for any field (B,1). Given this field, we shazll still

try to use the most convenient frame. We cannot without loés
of generality make T diagonal, because there will be a "Poynting-
vector'" unless B and E are parallel. But we can reduce that

P. V. to one component (say in the 1-direction) and take for

"2" and "3" the other two axes of the (threedimensional)
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"stress-tensor". It is not difficult to see that T°p is then

the following arreay

- W 0 0
0 I e
. (9)
0 0 - I
-W2-12 0] 0

The letter w has been chosen for the "energy density". This
we introduce in (8b), which at the same time we multiply by the
“'sq'iiéi"':e“ of the wave-length end thus replace the (covariant) ki
- coa@ - sln@cosg{ - 5ine 81n¢ U,

So . is the angle between the wave normal and the "Poyntlng-
vec,tor", 94 is the azimuth sround the _latter dlrectlon. _ _Taking

good care of the signs we get in this way from (8b) and (9). .,

(; + Il)_(ug - 1) = 2u cos@® ,’WQ - I%-w cos?® 4+

+‘I sin2@ cos 2(# - w u?

or
: (2 _ 12 2 P osin? 'R
We - T w cos“® -~ I sin®Q cos 200 e~ I} -1
uz ~ 2u cos(® ‘J + o ‘ St : , —
1+ I +w Sl eI +w

This quadratic.equation gives u, the velocity of propagation

of the wave plsne in the direction of the wave normal J'..Andicat.ed
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by the angles €, ¢. The most striking feature is the term
linear in u, which is bound up with the non~vanishing "Poynting-
vector", It means that the centre of symmetry is lost; wu has
in general different values ffor opposite directions (¢)Gﬁ s
(¢-¢TT, iT-©). Apart from extreme cases (see below) the

two roots have opposite'signs; the negative root, with reversed
aign, gives u ffor the opposite direction. The esasiest way of
procuring a synoptic view of the rather intricate state of afx .
fairs is to construct the eikonal -~ the envelope, after unit
time, of all the weve planes that ﬁave passed the origin simul-
taneously in all possible directions. We skip the proeoof that
this eikonal is an ellipsoid in standard orientation, but with
its centre displaced in the 1-direction. Taking this for
granted we easily find the half-axes and the displacementi by
computing v in the directions of the coordinates. In this

way one obtains for the half-axes

(1) (2) ‘ ' (3)
2 ' .
J; + 214 - Ig 1 +I1+1 1L+ I -1
et R R S s e NG A 1 .\
1+ 1 +w 1 +I4 +W 1+Il_+w.("1)

and for the displacement cf the centre in the direciion of thz

"Poynting-vector" (+i-direction)

2 _ 12

. (12)
1+11+W

In general the three half-axes are different. Rotational

symmetry around the 2-axis occurs for w = I; this is @he
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spécial case of B and E parallel, from which we started;
u = 1 for the %+ 2-directions. The ellipsoid‘is "prolonged!.
The displacement is zero. - & flattened ellipsoid of rota-
tion around the l-axis is obtained when both invariants
venish: I; = Ig = I = O. The displacement (12) sub-
sists in this case, and cannot be transformed away. The
velocity u in the direction of the "poynting-vector" is un-
changed |

1 oW
u o= +
1 +w 1 +w

= le

It is the case of E and B orthogonal and équal, and from (6)
also equal to D and H. It is almost a gift from heaven,
due obviously to continuity, that this singular case is em-
braced, though it seems out of reach of the considerations
that led to equation (10). |

Since a plane wave progeeding with the maximum velocity
u = 1 does so in every Lorentz frame, there must also in the
general case be just two directions in which (but not in the
opposites.) u = 1, (For B || E these are the directions |
+ 2;  in the éingular case they happen to coincide in the
direction + 1), Obwviously we have to seek them in the
(1,2)-plane, i. e. for é:—. O or T . 80 we have cos 2,¢)

= 1 in equation (10), which we write

(1L + Iy +w) W - 2u cos@.fwg -1° 4 (w + I) cos® B -
~I-1I1 -1 = Q (13)

To determine, when u as a function of cos® hss s meximum,
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we might write out the differential of the first member for in-
crements du, dcos®, and then put their gquotient = O. But that
emounts to putting the factor of dcos® equal to zero. Prus

the mexima are-determined by

- 2u \/wz -I% & 2(w + I) cos® = 0,
We have the legitimate presumption that the maximum values

of u are 1; hence

T
cos® = (14)
w + I

-+~

gives the two directions, symmetrical with respect to the

+ l-direction. It is easy to check that (13) actually has the
root w = 1 for this value of cos®. The exbreme cases mention-
"ed before are correctly encompassed by w = I and I =0,
respectively. -

It is hardly necessary to point out that all these deviations
from normsl behsviour, i. €. from u = 1, are presumably minute,
gince the unities in which our fields B, E, etc. are measured
are presumably cxtremcly outsized. Even so, the consequences
of non-linearity have some interest by principle. Basily the
quaintest event is, that in an'extremely outsized backgroﬁnd
field the displacément (12) can become bigger than the 1-half-
axis of the ellipsoid, which then excludes the origin, so that
within a certain cone of wave-normals np positive u is available,

and wave fronts cannot proceed in those directions. The con~

dition for this freask to occur is, from (12) and (11),



(14)

VAR G \/1 + 21 - Ip°
or W= 1esn 5P 20 = (1+1)°
W = 14+ I1
or L(B® + E°) = 1+ (B - E°)
2
or E > 1. (15)

But cen thet be? - Well, the only irrescindible requirement

in Born's electrodynamics is

2 2
S 1i+I; -1 (L +I7) -1I
A = . = \ O.
o z
1+ I +1 (1 + I + I)
Thus
2 2 2
or
1 +8 -B -(eE)° ~ o0
/}
or
2 l-FBz ‘
E° £ — (16)
1 + B cosgl

where o is the angle between B and E. Hence E2 is well

allowed to surpsss 1, provided that B° £ 0 and cosz.,L £ 1.
éne might be inclined to brush aside this freak (as I
called it) hecause it requires field strengths thsat cannot ever

be reached. Far from this, given any non~vanishing (E,B)-field
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whatsoever, you can, in a suitable Lorentz frame, make E2 sup=
pass unity. This is almost self-evident, since the independ-

ent invariants are

(8% - ), (BE).

Thus !Bl and |E! may be increased indefinitely, in step with
each other, provided that cosd« approaches to zero, so as to

keep also the second invarient invariant.



