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Summary:

ON RELATIVISTICALLY RIGID SURFACES OF REVOLUTION

by

J. R. Pounder

A definition of superficial rigidity recently proposed by Synge
is applied to what appears to some Galileian observer as a sur-
face of revolution with its axis of symmetry fixed. It is found
that the metrical distortions of the meridians and the parallels
of latitude of such a moving rigid surface relative to the corre-
gponding surface at rest in a Galileian reference gystem are
governed by relations analogous to the FitzGerald-Lorentz con-
traction rule. The special cases of (1) uniform rotation
about the axis and (2) uniform screw motion along the axis ure
treated in detail. In (1) there is a radial contraction
without change of meridian arc-length; in (2) there is in
addition a uniform axial contraction and twist about the axis.
If the axial component of velocity in (2) is made to approach
the speed of light, the angular velocity Femaining finite, then
the moving surface shrinks both radially and axially, ultimately
having the shape of an infinitesimal circular cylinder with flat
ends; at the same time the length of the twisted curves corre-
sponding to the original meridians remains finite. These con-
clusions are verified by taking the initial surface at rest to
be a sphere and a cylinder; the meridian sections of the corre-
sponding surfaces in motion are computed and shown in graphs.
When applied to certain surfaces in uniform rotation, in par-
ticular multiply-connected ones, the conditions of superficial

rigidity are mutually contradictory, unless one allows the form-

ation of edges.
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in Sections 3, 4, 5)

£ in frame of reference So
S

; ¢, speed of light
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cylindrical polar coordinates on ¥
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ON RELATIVISTICALLY RIGID SURFACES OF REVOLUTION

1. Introduction
As a possible extension of the notion of rigidity to the special theory
of relativity, Synge (1953) has recently defined a superficially rigid body.

In this paper I shall consicer some kinematical consequences of the defini-
tion, particularly for an axially symmetric body rotating uniformly round its
axis.

_ A moving rigid body in Newtonian mechanics may be regarded as a con-
tinuum of particles in motion such that the Euclidean distaﬁce between any
two particles is independent of the time. Trom the relativistic point of
view this property is not abéolute but rélates to a particular frame of
reference. The simplest definition of absolute rigidity is that of Born
(1909), according to which two particles are rigidly connected if their world

lines in space-time are equidistant, in the sense that their normal Minkow-

skian separation (i.e. the ordinary distance beﬁween the perticles as measured
in the instantaneous rest-frame of one of them) remains constant throughout
the motion. A continuum of particies all rigidly connected in this way is
then a rigid body in the sense of Born. :

g%y definition of rigid body based on the assigning of constant ”dis—

"

tances” to pairs of particles cun be extended in the. féllowing way. If be-
tween the particles of iwo rigid bodies with different motions there exists
a one-to-one correspondence or mapping such that the "distances'" between
corresponding pairs of particles are equal, then the two bodies will be said
to correspond, and the two motions may be regarded as two possible motions
of a single rigid body, even though nothing may be known of the transition
between them. In particular one of the two mctions may be, in some Gali-
leian frame of reference, a state of ress. Relative to a perticular defini-
tion of "distance", three relatec questions now arise: :
(1) How many degrees of freedom has a rigid body, i.e. how many arbitrary

: functions can occur in the equations describing its motion?
(2) What motions may a rigid body B have if it is to correspond to an-

other body B, at rest?

(3) How does the instantaneous sppearance of B differ from that of R, ?
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(We need not distinguish between two bodies whose histories in space-time can
be made to coincide by a transformation that leaves all "distances" invariant.)

The answers are immediate for the Newtonian rigid body: it has six
degrees of freedom, its angular velocity and the motion of one of its par-
ticles being arbitrary functions of the time; all corresponding bodies are
congruent, no mattcr what their motion. On the otner hand the Born rigid
body has in general only three degrees of freedom; bdbut it may also move in
gsuch a way that no corresponding body could be at rest. In fact the world
lines of the particles either (a) form a normal congruence in space-time,
or (b) have constant curvatures and correspond to uniform screw motions in
space (sée Herglotz 1910). BEven a finite number of discrete particles all
rigidly connected to one another can be given only specially restricted
motions - such a configuration is "over-rigid".

The possibility of restoring the additional freedom of motion Ly apply-
ing Born's definition of rigid connexion only to the surface of the body was
suggested to Synge by the observation that in simple motions (see Ives 1945,
Galli 1952) one could answer question (3) above for the surface of the body
without considering the interior at all, and that in any case one can hardly
justify the assumption of flat space-time in the interior of an accelerated
body. One is thus led to the notion of a superficially rigid body, its sur-
face being locally rigid in the sense that every pair of adjacent particles
satisfies Born's rigidity condition; +the problem is then to investigate the
freedom of motion of 5uch a rigid surface. For slow motions one obtains six
degrees of freedom by taking the Newtonian rigid motion as a first approxi-
mation, and the general validity of this rosult is at least plausible: it
should be possible to impart to any selected particle an arbitrary motion and
move the adjacent particles with three more degrees of freedom by giving the
Bulerian angles of a triad orthogonal to the world line of the first particle
and requiring that nearby particles on two of the arms of the triad remain
fixed to it.

The motions discussed in this paper are however mainly very special, and

relate rather to the question of corresponding rigid surfaces: we seek the

relation between two such surfaces -, and ", where ¢% is at rest in
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a Galileian frame of reference S, and ™ has a more or less prescribed
motion relative to a frame of reference S . We may regard < as the ine-
gtantaneous appearance to the observer S of a moving surface that was
formerly at rest (&,) , and speak of the distortion of o~ relative to
v 208 (as in the FitzGerald-Lorentz contraction due to uniform translation).
This will be, in the first place, a material distortion, i.e. a comparison
of surface elements consisting of the same particles; each element in
fact undergoes the FitzGerald-Lorentz contraction appropriate to the local
velocity. When these relations are applied to surfaces of revolution G ,
& (the motion of T being symmetrical about its axis), which are charac-
terized as to their form by meridian sections m, and m , they yield other
analogous relations, e.g. between the elements of the respective meridian
sections cut off by corresponding parallels of latitude; it turns out that
m, and m are related exactly as they would be if & had no angular velo-
city about its axis.

In order to ohbtain from these local distortions the deformation of a
finite surface, the motion of < is specialized to be, in particular:
(i) a uniform rotation about the axis; (ii) a uniform screw motion along
the axis, the results in (ii) being obtained from those in (i) by Lorentz
transformation. In each case the form of ¢~ is fixed in time. Certain
conditions must b2 fulfilled by the form of &~ if &5 is to exist, and by
that of 7§ if singular lines (or edges) are not to arise on G~. The
effect of rotation on a surface of revolution is to produce a radial con-
traction without change of meridian arc-length; an axial component of velo-
city enhances this effect and superposes on it a uniform axial contraction
and twist. An increase in speed of rotation leads to a needle-~shaped figure
in the limit, while an increase in the axial velocity brings about a simul-
taneous shrinking of all linear dimensions of & , in such a way that its
shape approaches that of a circular cylinder; owing to the accompanying in-
crease in twist, however, there are corresponding material curves on 0%
and ¢~ whose lengths remain finite even in the limit.

These deformations are worked out in detail for spheres and cylinders

(including disks), the results being presented graphically.
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Some implications and possible extensions of the theory are briefly

discussed in the concluding section.

e The conditions for superficial rigidity

The only observations of moving particles we consider are those of
special relativity: relative to any inertial frame of reference we can
determine the positions of any number of particles at any instant and hence
their mutual distances. The history of these particles in Minkowskian
space-time is a congruence of world lines whose intersection by a hyperplane
t = to yields the instantaneous configuration in a particular reference
frame S . The distance d between two particles in such a configuration
will depend on the choice of S , and also in general on the instant 1o .
If, in a fixed reference system S' , d remains constant throughout the
motion, then relative to S' the particles are rigidly connected in the

Newtonian sense. They are rigidly connected in the relativistic sense if

d remains constant when S is always taken to be the instantaneous rest-
frame of one of the particles; in the rest-frame of the other particle 4
has then the same value. The world lines of the two particles thus have a
single infinity of common normals (in the Minkowskian sense), all of length

d , and are said to be equidistant, d being the distance between them.

In a relativistically rigid material continuum adjacent particles must
be rigidly connected, their world lines being separated by constent infini-
tesimal distances; we shall now express this condition analytically.
Relative to the reference frame S the coordinates x4 of the particles
of a continuum C are continuously differentiable functions of a current
parameter T and of one or more Lagrangian labels. Here xF‘ are rect-
angular Cartesian coordinates and Xy = ict , +the Minkowskian metric being

dx4 dxy = dxF de - c2 dt2 . (Throughout the paper latin indices take

the values 1 to 4 , Greek indices 1 toc 3 , with the summation con-
vention for repeated indices.) The motion and resulting distortion being

described most naturally in a definite frame, the parameter T will



5w

ultimately be taken as x, , or rather. t . Treating all four-coordinates

x; alike preserves the firmal invariance of our results; it would also
facilitate the discussion of certain special motions (e.g. linear accelerations).
Consider now an event P (x;) on the world line L of a particle A
of our continuum. We denote the unit vector tangent to L at P by Ayl
Ay being time-like, we have
{55 B e By {_ dx, 0x, }-1/2 :
ST -\ - T oL,

Iet Q (x; + 8x;) be a neighbouring event on the world line M of an adjacent
particle B . We can express the normal distance between L and M in teras
of A; and the displacement &x; from P to Q (see Fig. 2A). We write

ot
i' : - P( x;)
\/ / QO + 830
N :
}Ll \
X

B J

A (ay B (a_+s8a,)
Fig. 2A: Two rigidly connected particles in space-time

6x; as the sum of two orthogonal displacements: A; 60 parallel to L,

and 4n; perpendicular to L (and therefore space-like). Thus



6xi =08+ A &8¢ ,
0 e, i 51:11 %
Hence
Ax. Ox = dn, dn, = 5@2
b 5 | DS .

By eliminating &@ we therefore get for the infinitesimal distance &n

between the world lines L1 and M
e T sl P M G T a0 )
% i  Eaiggd. 3 i v i 3 =

If the continuum C is rigid, then for every pair of adjacent particles
this expression (2.01) must be constant throughout the motion, i.e.
independent of T .

To interpret the quantity é&n we compare C with the corresponding

continuum C, at rest in a reference frame So As explained in Section
1 4 we have merely to ensure that the world lines of corresponding ad-
jacent particleé are separated by equal normal distances. For Cy we
evidently have Ag a0y Ag = 1, 8o that

2

én = ng éxg - 5x£ ng = 6xg éx% = (6x0)2 y SaY,
where '6x2‘ is the displacement vector between the particles A and B
in the continuum C, ; 8n = 8x° is therefore the distance between these
particles.

Let us suppose that in one particular reference system S +the co-
ordinates x, of the particles have been expressed as functions. of +t ,
which is now identified with the parameter v . We may take 6x4 =0,
so that ©&x; is identified with 8x; 5 the instantaneous displacement

vector from A to B in the continmuwum C . Denoting the velocity vector

x, : A%,
S ) SES YOS o e uF u,  we then have, since % 38,
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Thus equation (2.01) becomes

o8 S -1 : 2
) i =
(8x°) = 6xF 6%& + (2 = u%)” (uﬁ bx., S (2.02)
which can be written in the forms
; 2 0 : 2 2 :
(8x°)° = &x° (1 + B_g08 8 (2.03)
\ 5 2
o
2 2 (8% cos 9)2 :
(8x°) = (b6x sin @) + g < (2.04)
=1 /b
e :
where &x = (6xﬁjéxﬂ,) is the instantaneous distance between the

particles A and B in the continuum C , and & is the angle between
the displacement 6xfA and the velocity ugz .
Equation (2 02) gives the fundamental condition to be satisfied by

the equations of motion of a relatlvistlcally rigid continuum C and shows

how it is related to thehcorre%pdﬁdiﬁg continuum C, at rest.
It follows from (2.04) and the fundamentally linear relation between
&xP and éxg that the deformation of C in the immediate neighbourhood
of a particle A amounts to a uniform contraction in the direction of the
1/2
c?) /

local veloéity U, 4in the ratio (1 = u2/ t 1 3 thus the Fitz-

Gerald-lorentz contraction hypothesis is valid for infinitesimal elements

of a rigid continuum.

By applying (2.02) in turn to the sides of the triangles formed by
- three adjacent particles A , B , B in the contimua C and Co it is
easy to deduce a relation between the corresponding angles X , X¢ sub-
tended at ‘A by the other two particles, The distances from A to B
= o <0
and to B being &x and & in C, &x and 8 in C, , we get
C k) = I o g v ;
By OX 008 Kyo=. Gxibx [océeXx + = ) ’ (2.05)
: : c? - u?
where v and Vv are the components of the velocity Ug (by orthogonal

projection) along AB and AB respectively (see Fig. 2B); this supplements
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equation (2.03) , by which the ratios of &x , 5 to &x° , 5%° are

Fig. 2B: Corresponding elements of rigid continuum at rest and in motion

determined. It follows in particular that if two infinitesimal linear elements
of C are at right angles and either of them is perpendicular to the velocity,
then the corresponding elements in CO are also at right angles (as might be
inferred directly from the '"local" FitzGerald-Lorentz contraction).

The dimension of the continuum C .being N (where N = 8.4, 0r 3) y-in-
dependent variation of the lagrangian psarameters arp distinguishing the partic-
les determines, at each peint bf C and C, , N parametric lines. (Capital
indices take the values 1 to N .) To infinitesimal elements of each of

these lines we can apply equation (2.03) , and to eagh vair we can apply equ-

ation (2.05) ; there are thus N + & (5_1) o (g}j}' independent con-

ditions to be satisfied by the functions x_ (849 sove s BEr 3 %) THose
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o : ax° :
lati btainable by putting b v =Lt s 0 = 3 =—£ s
relations, obtainable by putting xP BaR aR XP = Ba R?

directly in (2.02) and equating coefficients in the resulting quadratic

identity in the SaR , take the form of non-linear partial differential

equations, already given by Synge (loc. cit.):

i 0x ax
ggs (a1, cone aN) = Bgi ﬁgﬁ * (c? - ) (up 3= %ag - ) (w52 ) (2.06)

6;2 axg
Here the g0/ (= o= — are the coefficients of the line-element in
RS dap Oa - -

the continuum C, , and are independentxof t 3 din agreement with the
original definition of rigidity, they also give the metric in the neighbour-
hood of a particle A (a4, .... ay) whenever its velocity vanishes (i.e. as
observed in its instantaneous rest frame).

If N=73 we are led by the six equations (2.06) to the Born rigid
body, with its restricted freedom of motion. From now on we shall take

N=2, so that (2.06) gives three differential ecuations to be satisfied
ax

by the three functions _Ep_igq, ap; t) (with u,= —£ ) describing a
relativistically rigid surface @~ , and relates G~ to the corresponding

rigid surface O at rest.
For such a surface we can deduce from (2.03) , or directly from the
FitzGerald-Lorentz contraction rule, that in the neighbourhood of a particle

A (a1, a2) the surface & is contractcd relative to O°. in fhe ratio

2 1/2
( S ) g ' (2.07)

C2 - Vnz

in the direction of vt , the tanmgential component of velocity; here vy

is the component normal to <, with ué = vn2 + v_t2 . In this oon-
ncction we note that v+° 4is expressible in terms of v and Vv , the
‘quaniities so denoted in (2.05) , vwiz. the orthogonal projections of the

velocity uF on any two lines of { making an angle X with eae¢h other

(see Fig. 2C)
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{ T —

tangent plane
30 9

Fig. 2C: V.elbcity components on a surface

The condition that a linear element r%xp at any point (a1, a2) should
have at a particular instant the same length on &~ as it had on (75 is

that it should be perpendicular to the velocity:

r’ij ; axﬁ, '

Regardinfg the motion as known we can interpret this as a differential equation
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for the finite curves whose lengths are unchanged; they are the orthogonal
trajectories on. 0" of curves given'by projecting 119 on O .

In order to determine the form of the moving surface O when its ini-
tial form G, at rest is given, we shall usually have to apply the con-
ditions of rigidity in the form (2.06) . Our next task is to see how
these partial differential cquations simplify when ¢~ is taken to be a

surface of revolution in symmetrical motion.

S Surface of revolution in symmetrical motion

In this section the conditions for superficial rigidity will be applied

to a moving surface ¢~ that appe:rs to a certain Galileian observer S to
be permanently symmetric about a fixed line, its axis, its motion being axi-
'ally symmetric as well; G~ may change its shape from instant to instant.
Under these assumptions it is easily seen that with no loss of generality

the equations of motion of O can be written in the form

1l

#ils € oy
b (Sy 't)

R e A :
(3.01)

1

3

where the xB—axis has been taken zlong the axis of symmetry. Here

X, &

Fig. .JAt. Coordinates for surface of revolution in symmetrical motion

( _ ;
e b 1
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€ = 9, + 9 (s, )}, & and @, Dbeing the lLagrangian labels of a particle
A of o ; r,z and O are cylindrical polar coordinates (see Fig. 3A).

The shape of g~ is determined at any instant t by its meridian section m ,

which is a curve in an r,z-plane with parametric equations
¥oome P (s, 1) s gL =15 (s, s F G5 (3.02)

The parallels of latitude P on U~ are given by s = constant; they ars
permanent in the sense that the particles (s, 8,) forming P at one in-
stant form another parallel P' at another instant. The meridians M are
given at any instant by 0, + ¢ (s, t) = constant, and are evidently not
permanent in general.

The corresponding surface g, at restin a reference frame So is
also assumed to be a surface of revolution, as is indeed implied by the con-
ditions of rigidity; so far as its correspondence with @~ is concerned we
may suppose So and S to 001nc1de, and likewise the two axes of symmetry
(any Lorentz transformation required to brlng this about preserves all Min-
kowgkian distances, and therefore the property of rigidity). The surface
T

o
say, when the velocities all vanish. By redefining the parameter O, if

can therefore be described by eqﬁations (%3.01) at the instant t = ts

necessary, we can assume that ¢ (s, t5) = 0 ; denoting r (s, t,) and

z (s, to) by ro(s) and zo(s) s We get as the equations of (75 :

iQ

x: - x; = r.s)e =
. (3.03)
X oA zo(s) :

Thus O, is the azimuth of the particle A (s, §;) on T3 , and clearly s
may be interpreted as tne arc-length on its meridian section m, , if we add

the condition

&7 %, (3.04)

We shall say, by extension, that points (r, z) of m and (ro, ZO) of m,
correspond if they have the same s .

The parallels of latitude P, and the meridians Mo of g are given
by 8 = constant and GO = congtant respectively. The parallels PO are
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mapped at each instant into corresponding (i.e. having the same s ) parallels

A are mapped not into meridians but into

P of ¢ , whereas the meridians M,
twisted curves N on v all congruent to one another, by symmétry; and

having the equation © = ¢ (s, t) + constant (see Fig. 3B).

- P(s + 83)

; 2
n(&,) N(o, + 88,)

Fig. 3B: Surface of revolution in symmetrical motion

We next apnly the conditions of superficial rigidity (2.06) to de-

scribe the two aspects of the correspondence between (p and (G :' first
the pointwise mapping by corresponding particles, and then the relation
between the forms of (IE’ and (" as a whole, i.e. between corresponding



LT

parallels of latitude P, and P and between the meridian seations m,

and m , We put s and .06 for a4 and ap respectively. For the

x
velocity components up- = 3#2 we have from (3.01)
U4 o us = (I't i L (P't) eig 5

By W ’
with similar expressions for the partial derivatives with respect to the
lagrangian labels s and @, . (Here and elsewhere partial derivatives
with respect to s and t are denoted by subscripts.) By multiplying
one of the complex expressions by the complex conjugate of itself or an-

other one, and taking the Treal part, we gect

% up .= u2 = (r.tz * 1"2 (P.tz) + Z.t2 )
) dx dx. Ox
_ﬁi._aﬁ £ d =9 I R L 2 2 02 >
BOO aco BT ds 9ds = (rs 3 @s ) s .
aﬁg . ox
et waait] = - 2 5
U e B e T S TRP) v e

thus (2.06) giveé three equations to determine the functions r sy Z 4 and ¢:

; : -1 _ 2
rs2 - zs2 + r2_¢82 + fuk . u2) (rB R, By 4 r2¢s¢t) e B
(3.05)
1 2 ‘
o (02 <u2] (g2 ) - r02 . (3.06)
-1
20, + (P-u?) (rP0) ra + s, +r99,) = 0. (3.07)

These eocuations emphasize the distortion of material elements of O
relative to the corresponding elements of T, » as explained at length in
Section 2. But now the relation between corresponding €lements &s of the
meridian sections m and m, can be isolated from the simultaneous twist-
Ing of o~ (indicated by the curves ¥ ), in the following way: on sub-
stituting for u? , equation (3.06) gives

2
P4

1
ool ey it (3-08)
02 % rtQ = Zt2 I‘2 2
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and equation (3.07). can similarly be written

v C AR R e r2¢s$t) - CPS'(c2 SNEY O, (3.09)
or

P kB g domme)s 0, (c® - rtz - Zt2) oSl - (3.10)

The last two terms on the left hand side of (3.05) are, by (3.09) , equal
to

5P 2 AR 2 2 2 g 2
P Fols en )9y /94 = (0"~ -2g") 9 /9" .
Thus, from (3.10) , equation (3.05) takes the form

P
(rery + 2zg24¢)

> + z + PIRan e (%.11)

.
g Ty

8 S o)

e 2

Fige 3C: Velocity components in meridian plane

The relations (3.11), (3.08), and (3.10) can easily be interpreted
goometrically (see Fig. 3C). ILet
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2
+ -
s o

vy, the component of velocity in the meridian plane, with ve = r_t2 + ztg;

the component of velocity normal to o, with Ssvn ot THLY R

S be the arc-length along the meridian M (or m), with 832 =7

Vn,

\'s the component of velocity along M , with Sg¥y = TPy + 8584 §

m?
and: r=r ?t s+ the component of velocity along the parallel P .

Then the equations above may be written in the form

2
P g vy
R e R (3.12)
02 - v 2 62 - v 2
2 2 2
TS D «w S Sa L & SRR R e S 1'_%4_?(3,13)
2 2 s 2 B R
e S i s 2 2.
L SEVL e e D (_1._"_3_) . (3.14)
?y e® - ¥v° 2 b &

The first two give the contraction of linear elements of M and P relative
to MO and P0 . The third tells us that if r and 2z are independent of
t , so that v =0, and hence v, =0 , then 9, vanishes; that is, the
particles forming M, are mapped into a meridian M of (¢ .. Conversely,

it can be shown that ?, =0 only if (a) r and z are independent of t ,
or (b) 9?4 = 0 , the motion then teing a Born rigid motion parallel to the
axis of symmetry, with r constant for'eééh particle (sée Appendix A).

The three relations (3.12 - 3.14) should be compared with the general
relations (2.03 - 2.05) and (2107) , which are similar in form. We can
then summarize our results fof'the gymmetrical motion of a surface of revo-
lution ¢ as follows: Relative to its initial form Do 2 (i) each ele-
ment of the meridian section is contracted by the same amount as it would be
if it were a material element and there %ere_gg axial rotation; (ii) each
parallel of latitude contracts according to the FitzGerald-Lorentz contraction
rule for surfaces, remaining a parallel of latitude; (iii) each parallel of
latitude is rotated as a whole, in addition to shrinking radially, i.e. the

surface (T'is twisted about its axis.
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In the exceptioﬂal case where r and 2z depend on s only, so that v
and v, vanish, it follows from (3.12) that Sg = 1, and from (3.13) and
(3.14) that «3 is a pure constant. Thus the meridian m is uncontracted
relative to m, , there is no twist, and so the meridians M are permanent
and of fixed shape. This special case will be treated in Section 4.

Finally we note the condition for no contraction of a material linear
element of our surface of revolution: according to equation (2.08) such
an element (600,‘63) has at-the instant t the same length on O~ as on O,
if

2 2 &
(rsrt pii ot Rk 20 ¢3¢t) 8p S 4 PR ROP@ W0
which, by meens of (2,09) and (3.13) , can be rewritten as
e (c2 -~ u2) 88 = 1r° 32 80 ,
f : 0 ‘
or

2 s
r(‘ s 690 . (3-15)

4 (c2 - v2) és

i

Recalling the geometric significance of the parameters & and Go on the

initial surface o~ we may write the differential equation for the curves

a1
]h; that undergo no contraction in the form
ae, e = By ¥y
_d';‘ = _T-E (PB s i 2. (3-16)
LJ ro ) ro
The corresponding curves ' on & are better described in terms of ©

and s , where, as in (3.10) , @=96, + ? (s, t) ; equation (3.15) then
gives
a9 - gf o w2
i g ?
ds Ldz r2
or, in terms of S , the arc-length along M (t of course remaining fixed),
e T Vm

2

do c - : (

U TR AR ST : 3417)
ds e 2 o

(In (3.16) and (3.17) , the alternative expressions are obtained from the
relations (3.13) and (3.14).) It follows that the angle between &
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and M is not less than that between fﬁo and M, . Since the right-hand
sides of these equations involve only s , the surfaces T, and ( are
covered at each instant by an infinity of congruent curves r; and T .
: These results will be used in Section 5 in dealing with uniform screw

" motion.

4. Uniform rotation about axis of symmetry

In Section 3 we applied the conditions of rigidity to a surface of
revolution ¢~ whose axis of symmetry was fixed relative to a particular ob-
server, but which could change its form from instant to instant. The re-
lations obtained there are still toe complicated to yield solutions of our
fundamental problem, and we may scek to simplify them by restricting the
mgtions to be rigid in the Newtonian sense. As can be seen from equations
(3.06) , (3.07) , and (3.05) , the Newtonian condition &x = &x° requires
that r , ¢35, and zg should each be independent of + ; by (3.11) and
(3.08) , the same must be true of zy and 94 , which are therefore con-
gtants. Thus < must be in uniform screw motion along its axisf we shall
first suppose that the axial velocity component vanishes, postponing the
general case to Section 5 .

We consider then the uniform rotation of a surface of revolution

with angular velocity (o . This is described by the equations (cf. (3.01))
x1 R x5 - T (s) e:L(Qo + wt) :
(4.01)
x3 = Z (S) ’

where, as before, O, is the azimuth and s +the meridian arc-length on the
initial surface To * Since the velocity is now wholly circumferential,
the conditions of rigidity (3%.12 - 3.14) reduce to two equations for r
and 2z , relating the meridian section m of ¢ to the section me of the

initial surface - —at rest:

0
e = 2
Bt o Sq o : (4.02)
1 1 w* :
EBraT g e S .  (4.03)
o r c : x

(o]
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These equations are fundamental in all the following work of this and later
{igections. The second of them can be written (cf. (3.13))

=178 - ?
r : (~12 I‘02 / u‘? r2 1/2
o =, (1 L BRET 5 o e (1 A R K2 R ) ? (4-04)

i

o o Be

and yields on différen'tia‘tion

~3/2 3/2

2 . 2
{ i To 2 el
- . (1+_.____) =(1_.¢u_ S
=5 02 y . 02 :

Thus the elements of the meridian section m, are not contraeted by
the rotation; +the meridians M and My now consist of the same particles
and have the same length, 2 ff.o y Say: As in the more general ca-se, the
parallels of latitude, also formed of the same particles on ¢ as on 0o »
undergo the FitzGerald-lorentz contraction due to the rotation.

The problem of determining either of &~ and g When the other is
given is evidently now reduced to the evaluation of an integral for =z (a)
or z,(s) 4 obtained by substituting from (4.05) into (4.02) ; this
will be done for particular surfaces @7 in Sections 6 and 7. But
without actually integrating, we can make several deductions from the re-
laticns above. We first make some abbreviations, needed again in later
sections: we denote the products of wi/c with r 9y To 9 2 5 25 4 8nd 8
by 't;ﬁe o rresponding barred symbols, and introduce ol and Ao » the in-
clinations of the tangents of the meridian sections m and m, to the

equatorial plane (see Fig. 3C), between which there are such relations as

cosd=rs=-§-§-, ainrx=—zs=~;—§-.

In this notation equations (4.04) and (4.05) becone

-1/2 . -1/2
L s SRR T B S R (4.06)
: Yk : = (s S o .
C0sol = o8 oL, (1 =BT = cos o £ % E:) £ (4.07)
thus
1/2
= -3

B - sin = + ]_1 - 0092.7(0 (1+ f'oa) ‘) . (4.08)
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From these relations it is easy to infer from the mere existence of the
initial surface o~ certain characteristics of the rotating surface o,
particularly as the angular velocity «u is taken larger and larger: .

(1) According to (4.06) , T 4 1 ; iz ¢iher.vords the circumferen-

tial velocity of & nowhere ei:ceeds the speed of light, however large o

may be, although for any finite r, Wwe have (r —) c as W —) .

(11) According to (4.07) , cosst cannot exceed (1 - T y which

approaches zero with increasing 2 . In particular, & and z, cennot

vanish except on the axis, having in fact lower bounds given by (4.08) .

We mayeequally say that the curve of § against T (or of s against r )
has at every point a slope sxceeding that of the function & () of
(4.06) « Thus 2, —— + 1 _as W’ —> o , and the shape of &~ therefore

approaches that of a meedlz of diameter 2c/t and length 2.
A difficulty arises if the slope is of different signs on neighbouring

arcs of the meridian section m , since it must not vanish anywhere between;
this question, which is particularly acute for multiply-connected surfaces,
will be discussed in Section 8 .

(1ii) The preceding remark (ii)  implies that if the slope of m van-
ishes at the pole (r = 0) , then its curvature there, /& , is bounded

below. In fact differentiating (4.07) twice yields the relation

= . = K+ oy (4.09)

where /K, is the polar curvature on <, ; thus {K/ is at least J3w/e .

If o is not zero at r = 0 , the slopes and curvatures of m and m, are
equal there. : =

We may summarize our principal results for a surface of revolution T
rotating with constant angular. velocity v as follows: Relative to the

initial surface. Og 1) the meridian arc-length is unaltered; 2) there is
; 1/2
a radial contraction of amoun_"c R u_‘)z/cz) / : 1, or equivalently

1/2
y THER (‘I “* rOQu.)z/ce) / s+ Wwhere r, &nd ¥ are the initial and con-

tracted distances firom the axis; 2) the parallels of latitude are not
twisted about the axis relatively to one another; and 4) the limiting form
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of o~ as w2 5 is that of a needle of diameter 2C/u0 and length equal
to that of the initial meridian section.
We shall next see how these couclusions are modified when the rotating

surface has in addition a constant velocity along its axis of symmetry.

5. Uniform screw motion along axis of symmetry

We shall continue to designate by ¢ a rigid surface of revolution
rotating with constant angular velocity w> about its axis in a Galileian
reference frame S ; and we shall denote by 7., the congruence of world
lines of its particles in space~time, their equations being taken in the form
(4.01) » supplemented by the relation X, = ict « ¥rom this motion can be
derived others not essentially different, simply by taking the point of view
of other Galileian obserVefé, whose descriptions of the motion and the con-
sequent deformation relative to a corresponding surface at rest will depend
on their own motion relative to S . We shall show in this section that a
uniform screﬁ motion of a surface of revolution along its axis can be so de-
rived (although of course it could equally well be dedﬁoed from the general
theory of Section 3 by appropriate specialization).

The congruence of world lines J. consists of helices whose axes co-
incide with the x4-axis: the world lines of particles‘lying on one parallel
of latitude P of @~ (s = constant) generate a circular cylinder of radius
r(s) in the 3-flat Xy = z{s) . We wish to intersecct this congruence
with the 3-flat +t' = constant, where %' denotes the time as measured in
a Galileian frame of reference S' having a velocity -U .in the direction

of the xa—axis. We therefore take the new coordinates xi to be related

to those of S by the Lorentz transformation .
' £
x1 P § x2 N . i X5 9
$ 5 By ¥ UHF, (5.01)
2. = Wkt o+ B X 7 02) ’
where § = (1 - U ) y the last two relations being equivalent

x! =__x3/6 3 - % L ;TR t‘/Z(-—UxB/cQ.
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Under this transformation the congruence i: given b& (4.01) takes the

form
x' + i xé = r'(g) el (e'+ w't') | (5f02)
x = z'(s) + U, | (5.03)
oo ‘ (5.04)
with
oV Ry Bl wlw) S, o WG, - hlg z(s) , and w' =w/A,
c

‘ (5.05)
We shall denote the congruence of worldllines whose equations are expressed
in the form (5.02 - 5.04) by J.' , although it is of course idenﬁicai
with ¥' . The surface whose history in space-time is Z.' , and whose

motion in the frame of reference S' is given by (5.02 - 5.03) , will then

be denoted by ©' . _
We note first that the motion of any particle of ¢~' is compounded

of 1) a uniform rotation round the xi-axis with angular velocity &t
and 2) a uniform axial translation with speed U . Secondly, the form
of O-' at the instant t' = 0 is given by

x + 4ix r'(s) 19" (5.06)

1

%' g'(s) (5.07)

3
and is therefore a surface of revolution with meridian gsection m' obtained
from the meridian section m of o, according to (5.05) y by a uniform -
axial contraction in the ratio 1 ¢ ¥ 3 +the particles forming a meridian M

given by 90 =0 , say, now compose the uniformly twisted curve N' given by

2
i | :
ot = —-&'-%z = _<--J_2___QZ| onso i (A snapshot of &' at any
c c :
other time t' would have the same form as at t' = O ; since the increase

in azimuth ©' and in x' would be the same for all particles.) The cor-

b
respondence between unifor n rotation and uniform screw motion has now been

established: the histories of the two motions in space-time can be made 1o

coincide provided the angular velocities are taken in the ratio
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e (1, U2_/.c2)1/2 , where U is the axial velocity in the screw
Throughout the remainder of this section we shall adopt the point of
view of the observer S' and regard the quantities «>' and U (or ¥ )
as the two fundamental parametiers determining the motion of the rigid sur-
face ' , and therefore its deformation relative to the initial surface UB._
It is important to bear in mind, however, that only the product X W' = .
has an absolute significance, and we shall calculate the effect on ' of
varying ¢J' or # by first recalling the effect on ¢~ of the corresponding
change in «J2 and then superposing the two effects of the axial velocity U
established above (see Fig. 5). -
The effect of varying ' , with ¥ fixed, is easy to describe. Ag W'
(and therefors «2) increases, the radius of ' shrinks, and the length
approaches the finite value 2 EO/ X , where 2 A% is 4he length of the

initial meridian; at the same time the twist increases, the number of com-
-5

T Lt -!_,O ;!
plete turns in the curve N' ©being approximately g g . -5 when '

is large. (It should be emphasized that in this discussion we are not en-

visaging linear or angular accelerations; the words '"varying", "approaching",

etc. do not refer to time.)
More interes{ing, though more complicated, is the behaviour of o' as U

ig varied with w)' fixed, perticularly as ¥ —»® « We begin by dis-

lregarding the twist about the axis and concentrating on the relation between
the meridian sections m' and m, - The relation between m' and m 1is
given by the formulas r' =1, z' = z/%, where r and 2z are determined
completely in terms of the coordinates =r,, 2z, of m, by the relations

(4,02 = 4.03) (with which we may associate (4.06 - 4.08)). The parameter
W) occuring there is to be replaced by ' ¥ , and so varies when ¥ doess

' is uniquely com—

As ¥ increases, then, the axial contraction of m
bined with the radial contraction of m given by (4.04): according to
remark (ii) of Section 4, the ultimate diameter and length of o (as w-3®)
are 2c/w> and 2 ¢, , so that the ultimate diameter and length of o'

(as ¥ ~yw) are 2¢/(' ) and 2 Eafﬁ' . Moreover the ultimate diameter

ig the same for all points on the meridian initially at a finite distance from




Fig. 5A: Distortion of meridian section due to uniform screw motion
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the axis. The ratio of the maximum dimensions has ultimafely the finite
value ' Eo/b , and so depends only on the observed angular velocity and
the length of the meridian of the initial surface & .

More precisely, it can be shown that whatever may be the form of EZL ’

the ultimate shape of G' as § —oo, ' remaining finite, is a circular

cylinder with flat ends, its dimensions being those just given. To see this

it is sufficient to study the dependence on ¥ of the slope and curvature of
the meridian section m' . The detailed investigation is described in Appen-
dix B; a summary of the results appears below. Here we shall merely show
that, when ¥ is large, the slope of m' is fiﬁite only on small arcs for
which the radius is near its maximum value, and that the corresponding arcs
on m, are very small and lie near the axis. In the first place, we have

from (4.04)

= -1/2
SO T )
> 2 1‘02' .

so that r' will differ from c/(bJ'& ) by only a small amount provided

c/K&Jro) is small, i.e. provided c/(wi'r,) is #(%) . This allows r,

to be of order A~ M€ (& > 0) , and so arcs of J; near the axis can

correspond to arcs of (' where r'~~ c/uB . Now if m' has a finite

1 !
slope, -%g— land s = _%_Q% must be of the same order in ¥ ; they must
1 dr : dz “
therefore be of order X~ ' , since, by (4.02) , Cag) - (E;) S

But since from (4.05) we have

dro ; = e 0‘2 2 \]-3/2
kg = ———— ‘ el .
ds & 50 S et ’
- . «~2/3 ,
it follows that ro/b is of order % A It can be seen also that if

:u'ro/b is of lower (higher) order in ¥ , then the slope of m' will be

s c [&]

e w'xK

For the more detailed investigation of the curvature it is convenient to

small (large) and the corresponding arc will have r' (p' ~v

consider, instead of m' , the finite curve m' obtained from it by mag-

nification in the ratio LJ/c R S TN w'zf/c t 1 (mee Figs: 5). The




coordinates T' ,

g of &

tion 4 by the formulas

r' =

7,

where we recall_that

o

r = wro/c,

—26-

E- - U)I'/C ’

SR

o)z/c .

are related to the barred coordinstes of Sec-

(5.08)

The limiting value of T' is accordingly unity (cf. remark (i) of Section 4).

The results of the calculations in Appendix B are summarized in the following

table, and confirm the statement made above about the ultimate shape of ¢—'

as its axial speed U

fixed.
Sections 6 and 7).

is increased while its angular velocity ;'

is kept
These conclusions will be verified later in particular cases (see

W'ry /e iaey | d¥-4/5) | G« -2/3) 0'(6*1./2) Finite
T, = ¥ory/e| Finite | O( 1“/55 a3 [ a(x1?) | &%)
r' = VYw'r'/f £1 ~ 1 o9 ~1 ~1
1 -8 Finite | (¥ 2/5) | &(5-2/3) | o(x-1)
Slope of ' Small o -2/ %) Finite ol 251/ 3 Large |
Curvature of W' Small Finite g (?fz/ 3 Finite Small
Although the maximum dimensions of a surface of revolution g ' rotating

with angular velocity

7% R

aporoech zero when it is moved along its axis with

a speed U aporoaching that of light, nevertheless there are material curves



07

on @' whose lengths remain finite even in the limit; this is due to the
extreme twist suffered by ' when U is large. sty

Let us first study the curve N' on ' into which a meridian M,
(or M) is mapped; according to (5.05) , its equation can be written

o' R T i‘“—)—g-z(s) ST %K-z-' e (5.09)
c

This is a spiral, or helix: while &' dincreases by 21 radians, z' in-
creases by ZWCQ/T 52 (#U) , which approaches zero rapidly as ¥ —o00 ;
each parallel of latitude P' has been rotated by an angle proportional to
its distance from the plane of some particular one. If 7' denotes the

angle between N' and M' , and S' denotes the arc-length along M' , then

‘ -
tan 3' = ! %gr = K'r'-g ain ooy

tan ' being the slope of M' ; for any finite r, s tan k}' — K as
¥ —3 00 , so that the helix N' nmakes a small constant angle with the
pafallels P If the slopes of the meridians vanish at the poles, then it
ig easy to see that tan v LR /% 712 there, so that N' is tangent to M'
at the pole.

The element of length on this helix N' is given by the formula

; 2 e
(a E')? (1 - L e lr 72 ) as® ,

Il
|

\ e
S, c ‘

which'shows that N' and Mé have nearly the same length when U is near
the speed of light. :
Let us next find the material curves ['' on ¢ that have exactly

T
the same are-length as the corresponding curves i on ﬁ; - In accord-

0
anee with the general equation (3.17) , and keeping in mind our present

use of primed symbols, we determine (™' <from
do' ekl e
+ —— £ 6
ds hbrz ds
Thus by (5.08) +the curve {°'' is inclined to the meridian M' at an angle
53 sin 4' ) , which for any finite r, approaches tie =8 1

-1
kan ' ( s :
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as ¥ —> o0 ; near the pole of g' this angle approaches 1/3 , go that '

is there approximately an equianguiaf gpiral. The corresponding curve rg

ig determined from

M sauba oy & 500 0
TR s
C*..)I'n2 X

and is therefore inclined to the meridian M_. at an angle of order ¥ ’

(0]
except near the pole where it is a spiral similar to ' .
* The length of these curves [ and "' ‘is given by
2 4L
o 1/2
- ; o 54 2 [ &
(1o (=m0 4,
s E X Ty g
0

taken along m, e This evidently exceeds 2 !o s the length of a meridian Mo ’
by very little if K' is very large. ; |
We now leave the theory of = general surface of revolution.ih uniform

' screw motion and apply the results to particular surfaces.

6. Application to SEhere
The shape of any surface of revolution ¢ in uniform rotation can be

found from that of its initial form g= at rest by e#éluating the indefinite

0
integral for z(s) obtained from equations (4.02 - 4.0}). The effect of
the rate of rotation c¢J on such quantities as the axial dimensions of o may
be found by a process of power-series expansion and term—by-term integration,
provided (o is suffiéiently small; but for even moderately large rates of
rotation it is necessary to consider special surfaces {Tb . Iﬁ this segt%on
we take TG to be a sphere of radius R, and find its distortion when made
to rotate at constant speed wJ. As Lagrangian 1abeié we take the azimuth
9, and the colatitude «, (we need consider oly only in the range 0 to
m/2). The meridian arc-length measured from the pole is s = R, oly 5 and

the coordinates of the meridian section mo‘ are r, = Ro sin %, . and

Z2, = Ry cos &, « We introduce as a fundamental parameter j(o s Where
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wRo_/c = ﬁ:) = 'ban)(o; then according to LE.00 - 4.0%3) +the coordinates

r , 2 of the meridian section m of the rotating surface @ are

5 : 2w e .
Poo o R0 ainnAO (1 + tan X 8in ’{o) ’ (6.01)
(/2 : > ¢ : : ;3' 1/2
Booame R L Voo SO (1 + tan Ko sin ofo) ] dof , -
4 "\(‘
o (6.02)
The maximum radius of ¢~ is R = RD cos FO = (c/LJ) sin'xo s 8o that
the greatest velocity on o~ is ¢ sin), ; as Q30 , X5— n/@ . if WO
is sufficiently small, direct expansion in power series gives
: : = B =l
B % m,mnqo(1 - %RO Mn2d0+-§d% snﬁxo SR
< = 4
z = Ry cosd, (1 + -%RO 0082'3(0 e (coszaf.o ~ gcosd’rxo) % evels

. ) : ’ X
from which we get R and 2 , the maximum values of r and 32 (attained

at o =n/2 and O respectively):

By gl s,
(6.03)

1.4

W woov e e RRY S Ae EE w e

These expressions being useless for even moderate values of ﬁo y WE

transform to a new variable x , lying in the range 0 to ain)(o s, such
that
| 1/2 -1/2

: o = P = i 2 + 2 2 _
tanﬂ}o sin o (sin r = ) (cos Yo x<) (6.04)

As shown in Appendix C, r and 2 are then given by



Hi
1
-

wr/fe = (sin? ¢ F x°)
A (6.05)
2 2 -

f [(1 + x2)° - x2 gin® }*.O-I ; (x2 + cosz')(o) : ix .

LJS/C

S]]
1}

The integrand in (6.05) can be expanded and integrated term by term for

any value of .o , the result being I = Io -2 Iy-g Iy~ ..., where

1=2n

- ; o 2 2 e
T J (x sin B (1 + x¢) (x° + cos Xs) - ax g (6.06)

0
the first few of these are given in Appendix C. Putting x = sin ’)(o y We
find for Z the formula '

LR, = Y, ¥ eak, - % cot %, (tan™ 'sin Xo = Xg cosX,)
5 - &X 2 2 2 2 et
- 7 cot )’0 ‘-(8 - g cos X, = oot XO COS-Xo) tan” 'gin 'Xo
g -2
+'X, cote%y, cosx, - sin yocosz_){-‘o (4 + 5 sin'?"x.o) (140102 ;) :!
- aasas Kk (6'07)

When «> is large, i.e. ‘X, near T/2 , this can be shown to yield the
asymptotic expression

s L n =E i e E
F oo S e lE g s - ek (ws) = 00
8ol Seoy 3 (R /a3
o ZR, = § = O + 5 ke % .l ) (R/Rg) + AT

The relati.o.n- between Z2 and R given by these various expressions is
shomm in Fig. 6A as the curve X = 1 ; as we shouid expect, R decreases
from R, to O and Z increases from R, to %Ro as «2 increases from
278000

Before examining the shape of the meridian m in detail let us consider
the special case where G, isa lane, i.e. a sphere of infinite radius.

In terms of the variable x we have

o= {9 —x2)1/2 é Z = {X ‘_(1 + 1(2)2 - xzj 1/2 x° ax 5 - LD%)

.1
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where the change in the lower  1limit signifies that 2z 1is now measu:ed from
the pole; the integral can be evaluated in terms of tabulated elliptic in-

tegrals by setting x = tan ¢/? (see Appendix C). When «2 is large,

r -~ ¢/uw and we get a result for the surface <~ analogous to (6.08):

apisas vy o+ e oBfY - %K(‘I/Z)] gorioy - (6.10)

where E(k) and Kfk) are the standard complete elliptic integrals of modu-
lus k ;3 the coefficient in square brackets may be verified to be the same
as the coefficient of R/Ro in (6.08).; For small values of ¢J), direct

expansion gives

NE 2 1 o4 Tk
-2 = 3 (7 + 2 B o ey IS fa (6.11)

in agreement with remark (iii) of Section 4. The relation between Z and
r implied by (6.09 = 6.11) is of the form shown in Fig. 6B. These results
will be used in the next section on the rotating cylinder.

Returning now to the finite sphere, we evaluate (6.05) by means of the
elementary integrals I, , the convergence being quite rapid; we thus have
the meridian section m of the rotating surface <7~ corresponding to the

original circular section m, of the sphere

o} Jg

As shown in Section 5, this calculation provides at the same time the
shape of the meridian section m' of the corresponding surface of revolution
7' rotating with constant angular velocity ) = wW3¥ = (1 - U‘?/'c?)‘t/2
and moving along its axis with constant speed U : recalling that r' =1r ,
we need only divide the function z(#,) of (6.05) by ¥ to obtain the co-
ordinates r' , 2' of m' . The combined results of these calculations,
depending on the two parameters X and «J' , are presented in Figs. 6C, D, E.

The variation of the meridian section m' with <«2' is shown in Fig. 6C:
as W' —» o , ' becomes more and more needle-shaped, its ultimate length
being ERO/Qﬁ (which equals the original diameter if ¥ =mn/2 ).

The variation of m' with X is shown in Fig. 6D: as ¥ —>®, g
resembles more aqd more a cylinder of height WRO/”T and diameter 2C/Ecu'
(which are equal if w'Ry/c = 2/t ). The same curves magnified approxi-

mately in the ratio ' %¥/c : 1 are shown in Fig. 6D .
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The effect of % on the maximum dimensions of ¢' has been included in
Fig. 6A, where curves # = constant and ' = constant are plotted in an
R, %Z-plane; the axes correspond to the needle-shaped and disk-shaped limiting
forms of o' as w' end ¥ respectively approach infinity. 7

The twisting of o' described in Section 5 has been suggested in Fig. 6C
by indicating the curves N' on O°' that correspond to the original meri-

dians M0 of Ty »

Te Application to circular cylinder

We now take the surface of revolution Vs to0 be a circular cylinder
with flat ends, its radius being R, and its height 2h . The problem of
determining the corresponding surface of revolution ¢ in uniform rotation
divides into two parts, the distortion of the mantle (T;1 and the flat end
O, being found independently. Continuity is ensured since z(s) is de-
termined by (4.02) only to within a constant and- r(s) is a continuous
function of ro(s) , according to (4.03) . We must note here the ambiguity
always present in the sign of 2z ;3 it has no significance by itself, but
must be taken into account when fitting the surfaces 7; and CTé y COr-

1
responding to =751 and Top 9 together. By regarding the cylinder Ve
as the limit of surfaces with continuous tangents for which the slope of the
meridian section m never changes sign (see Section 4) s we conclude that

the ends of our cylinder should bulge out when it is made to rotate.

The shape of the mantle e 9 corresponding to T5q 9 is found a} once:?
=1 fe
by (4.03) its radius r has the constant value R = R, (1+ R, ) ;
where R, = LJRO/b , and by (4.08) we have dz/ﬂs = ginest. = + 1, 80

that the generators M4, of 7 are straight lines paralléllto the axis,
of length 2h .

As for :75 , the rotating surface corresponding to the flat end Uy
of the cylinder, we remark that the quantity .%) plays no eésential role:
CT62 might be any plane region perpendicular to the axis of rotation. The
determination of U5 has therefore been sufficiently described in the pre-

ceding section (see equations (6.09 - 6.11) and Fig. 6B). In particular
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we note that the maximum height hy, of (75 is given for 2 large by

ho = R, - 0406 E; + é?(-la} (see Appendix C). The meridian section
\.wl =
my is drawn in Fig. TA for various values of Ro . The curves have been
shifted in the xz-direction so as to give z(R,) the value zero, since we
wish to fit the surface (Té to the mantle CT; already obtained above.
The addition of an axial velocity U +to the uniform rotation so far

considered results, as stated in Section 5, in an axial contraction in the

ratio 1 : 8 where 52 = (1 - UQ/EQ)-1 ; thus we have merely to reduce
the ordinates of our meridian m in this ratio to find the meridian section
m' of the surface of revolution (' in screw-motion with angular velocity
t)' = t3/% and axial speed U . The effect of the two parameters ¥
and u)i on the shape of ¢ ' is shown in Fig. 7B, where in fitting upper

0
Fig. 7B shows the simultaneous radial and axial contraction that occurs

and lower caps ;jﬂé to the mantle -j‘% we assume h=R_,

as ¥ -— o with .O' fixed: +the maximum height and diameter are ulti-
mately 4R0/Z$ and 2¢/B) .

By taking h = 0 the original cylinder (75 Dbecomes a flat disk. It
appears from Fig, 7B that its two surfaces separate when it rotates, and
there is an additional flattening and twisting when an axial velocity is super-

imposed; these results are in qualitative agreement with those of Ives (1945).;

g Conclusions

In this paper we have shown that between corresponding elements of a
moving rigid surface G and its initial form -3; at rest there is a relation
analogous to the FitzGerald-Lorentz contraction formula: infinitesimal ele-

ments of < are contracted in the direction of the tangential velocity com-

ponent vy in the ratio (1 - vtz/(c2 - vnz)) 1/2 t 1, where v, is the
normal velocity component. For a surface of revolution < moving symmet-
rically about its axis the differential relation between the meridian section m
and the corresponding meridian section m, of rTB is the same as if the
circumferential velocity component were absent, being given in fact by the rule

above.
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The determination of the form of fﬁf when that of ¢ 1is given has
been shown to depend on a single quadrature in the case of surfaces of re-
volution rotating with constant angular velocity about their axes or in
uniform screw motion along their axes. It was found necessary to assume
that the.normal to the surface ;TB at rest was nowhere parallel to the
axis (except at the pole), in order that the conditions of superficial
rigidity should not contradict one another. The deformation of uniformly
rotating spheres and cylinders has been computed in detail, the general pre-
~dictions for such motion being confirmed: as the angular velocity approaches
infinity, the surface ¢ becomes more and more needle-shaped, its ultimate
length being equal to that of its initial meridian. In screw motion there
is in addition an axial contraction and axial twist, and as the translational
velocity approaches that of light the sﬁrface (7~ shrinks in all dimensions,
its ultimatelshape being that of a cylinder with flat ends.

The only simple generalizatibn of these results seems to be to include a
uniform translational velocity perpendicular to the axis of rotation; this
would follow by applying a Lorentz transformation to the equations of motion
given here (Section 4). Such a motion is of course reiativistically rigid,
though not rigid in the Newtonian sense; +the surface would. not be symmetrical
about its axis but would be of elliptical ecross-section. :

It would be extremely useful to have solutions of our fundamental equa-
tions of superficial rigidity other than those in which the angular velocity
is constant. It is easy to verify that it is only in that special case that
the arc-length of the meridian section m is not contracted relative to that
of m, - It was this requirement that forced us to restrict the shape of CT;.
For example our theory cannot be applied to a torus, unless we admit the
possibility of a rigid surface developing a sharp edge when it moves, and even
then we must be allowed to choose the site for this edge on the surface in
such a way that the torus will not break. If the edge persists throughout
the transition from resf to the final state of motion, then it is easily seen
that it must always consist of the same particleg and cannot be chosen at
“will. It is quite possible that the edge may not be present except at in-
stants when the angular acceleration vanishes, but this solution of the diffi-

culty only replaces it by another, since the position of the edge on a simply-
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connected surface would then be indeterminate.

In a sense our treatment of the rotating disk or cylinder with flat ends
ig illegitimate, since the normal to T  is parallel to the axis over a
finite surface; it may be questioned whether our decision to take the rota-
ting surface as convex is physically satisfactory.

More general questions might be raised: for example it has been seen
that the instantaneous form and velocity distribution determine the line-
glement of the initial surface and presumably its finite form, and they might
therefore be regarded as given quantities characterizing a rigid surface.

On the other hand, if two surfaces are given, either with or without a par-
ticular mapping of their particles, one might ask whether there exists a velo-
city distribution over one of them that would make it correspond relativis-
tically to the other (regarded as at rest)..

In applying such a theory as the present one to experiments carried out
on the rotating earth, the absence of any interpretation of observations
using accelerated measuring-rods and clocks will be felt at once. ' Despite
many previous discussions of this problem, it is questionable whether an

adequate solution can be provided by the Special Theory of Relativity.
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Appendix A: Conditions under which a surface of revolution moving

symmetrically is not twisted

o

It was shown in Section 3 that, when a rigid surface of revolution O;
at rest is made to move symmetrically about its axis. the resulting surface
of revolution ¢y is in general twisted about the axis, the meridians My, of
U, Dbeing mapped into twisted curves N on T~ (see Fig. 3B). It was
stated there that &~ could remain untwisted only if (a) the radial and
axial velocity components vanished (the motion then necessarily being a uni-
form rotation), or (b) +the.radial and rotational velocity components van-
ished (the motion then necessarily being a Born rigid motion parallel to the
axis of symmetry). This statement will now be proved: we have to consider
several possibilities in turn, and eliminate most of them by appealing to
the conditions of superficial rigidity and the existence of the initial sur-
face @7 .

Since a meridian MO of &5 with equation 0, = constant is mapped
into a curve N on O~ with equation 0 = 9(s, t) + constant (cf. (3.01)),
we have to investigate under what circumstances ¢ will depend on t alone,
so that 95 = 0 . According 7o (3.14) , 95 = O only if either the
velocity component v, along the meridian, or the component r 94 along the
parallel of latitude, vanishes identically.

(a) Iet us first assume that Vg = 0 . This means that

I‘S I‘.t + Zs Z.t = O . ; (A‘T)

The conditions of rigidity (3.11) anmd (3.08)  then give

‘ ® 2
5 TR :
rs2 + 282 % 4o r k) and e fL —_'—l—-,, (A3)
i el

where r, depends on s only, and ve = rt2 + ztz . To satisfy

(A2), (A1), let us put

I

Ty = 008l s Zg4 - sing, ry = vsine, 1z = v cosa. (A4)

Since rgy = ryo and zgy = 2y, we find by differentiating (A4) +that
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Valy 8 2 B8 (AB) and ¥ + ’Jt el f e (AG)
(1) Let us first suppose that (A5) is satisfied in virtue of v =0 ,

so that, ry =0 and 2y =0 . (A1) and (A2) are then satisfied, and

(A3) tells us that ?; is a constant tJ, so that ¢~ is in uniform rotation.

(ii) ZLet us now assume that v _is # 0 . Then, from (AS) , o must
depend on t alone, and (A6) gives v = V(t) - swy . According to (A4)
we have

r = gcosd + alt) , g2 = « g aing + Wt) 5 (A7)

the three functions of t thus introduced are connected by the relations
at{t) = Ve sin ot Bt = Wt cesar . (A8)
We can now write (A3) in the form
2
Pt
1 = 1 e = (A9)
r 2 (s coss + a)2 T & s&t) :

The right hand side of (A9) is a rational function cf‘ 8 , and must be
actually independent of t , i.e. equal to its value at any particular in-
stant t, . The resulting identity in s can be transformed into a poly-
nomial identity, and therefore holds for every value of s s whether physic-
ally significant or not. It follows that the zeros, poles, and residues of
the right hand side are pure constants. In particular, since the second
denominator cannot have a double zero, we conclude that of and a(t) mst
be constants. Assuming for the moment that o 4is not zero, we see from
(A8) that V(t) =0 , and thus v = V-s8axy = 0. But this is in
contradiction with the assumption, made at the beginning of the paragraph,
that v#0 . The alternative is that .« =0 , with v = V(t) ; from (A3)

we then have

s e L (cdnsfant) ;

(s + a)? 2 c? - V2

and, by differentiating with respect-fo S ,
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1 : 1 0
; e B el e 0
(s + a)? ro3
droi. ‘
Since = cannot be greater than 1 , it follows that S e e TER S .

and that C =0 , i.e. ¢t = 0 ..q This moﬁibn ig a very singular one: +the
surface ¢~ is plane, and moves normal to itself with arbitrary velocity V(t)
and without rotation. (The initial surface G; is also plane.)

(b) We shall now assume that v, Z0 , but that 9. =0 , so that ¢

is in fact constant. From (3.08) we have r = r,(e) , and from (3.11) we

get a differential equation for =z(s, t) which can be written

1/2 dz
ez, = (02 - ztz) AR (A10)

The standard methods of solution, in which s and 1 are treated on the same
footing, are not so convenient here as the following: We take By B V as an
independent variable in place of t , and write s =8, z(sy) t) = 2(S, V)
and t=17(S, V) . For (A10) we thus get “

2)1/2 EEE

(ol o oy (A11)

i

e (zs - V1)
wigh oot |

T B e ‘ P vy

Differentiating (A12) with respect to S , and (A11) with respect to V ,

we get
dz
-1/@ o} :
= 2 . y° e
c Tg V (c2 - V) TR (A14)

Thus, from (A11) ’

~1/2: 3%
e RN (A15)

ZS = c (02 o V2) as
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Integrating (A14)- and (A15) with respect to S, we 'get

-1/2

v (2 - V2) T e B S (A16)

<

c T

I

Z2 = o(c2-¥2) 8 e LT (A17)

= 1
(the dash indicating differentiation with respect to 7% ). Then, differen-

where 7 1s some function of V } we choose ¢ so that 02T62 - Zéz

tiating (A16) and (A17) with respect to V and applying (A12) , we see

5\ =1/2 /2

? S ’ : 2 = / 2 _ y2 = /
that 2= V! 0 Gys (o v2) & T and V(o v) = L0,
and so

i (E) ‘
tE T ) e R n gl - (a18)
oy I / - : i
8= BT AR e - (A19)

Interpreting /E as the proper time along the world line with coordinates
Il T (*L) » We see that the motion given parametrically by (A18) and
(A19) is the general Torn motion in one dimension (parallel to the z-axis).

We can summarize the several alternative ways in which the meridlans of

U, are mapped into meridians of &~ as follows:

e T 0
Vp = 0 . Vg £ 0
i
| | |
v =0 w0y =0 P =
| | | i
_Pttun 0 =0, P4 =-O, r = congt. Born motion

(uniform rotation) (plane moving normally)
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Appendix B: Curvature of meridian section of surface of revolution in

uniform screw motion

‘In this appendix we shall discuss, in more detail than in Section 5, the
deformation of a surface of revolution ¢ ' in uniform screw motion along
its ﬁxis. The angular velocity «.' of 'thé surface is to be kept fixed;
we shall be especially interested in the form of o' as the axial speed U
approaches ¢ , the speed of light. As before, the deformation of ¢!
relative. to the initial surface T at rest will be found from that of the

intermediate surface of revolution  rotating uniformly with angular velo-

-1/2
city W = ¥ , where B = (1 - U2/e2) 1/ =

The fundamental egquations connecting the corresponding meridian sections

my;, my, and m' are (cf. (4.04) , (4.02) , (4.07) , (5.05) , and Fig. 5):
el
= ( _L’_-jifg_ ) oo S
1 = I‘O 1 + 02 : ] cos -'..V'o = ds .
2 2 cos %

dr) dz _ dr 0

%) =+ (=] = 1 cosid = == =

(s ds 2 e s i Mt

; 0 .

r! = r - z! = Z/ B '((,j_‘r = '2{{#}') .

Here s is the arc—lengfh along m, (and m ) ; ry=ry(s) ; and of, o
are the angles made by the normals to m , m; with the axis of symmetry.

If we congsider a definite parallel of latitude on {3, , i.e. fix s,
then no matter what its initial radius r, may be, we shall have r/c — 1
as ¥ —> @ , so that all the particles of ¢75 (except those at poles,
where r =r5 =0 ) ultimately find themselves at the same distance from the
axis. (This is the point of view adopted in Case C below.) On the other
hand, for a fixed value of ¥ , no matter how large, there will be values
of r intermediate between 0 and the maximum possible, c/(_,_‘; . In order
to study the shape of ' <(i.e. of m' ) we therefore fix % at a con-
veniently large value and then investigate how the slope and curvature vary
as r is varied over the meridian section m, . (This is the point of

0
view adopted in Cases A and B below.)
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It turns out that by restricting ¥ to sufficiently large values we
need consider mainly the neighbourhood of a pole (r, = 0) . TFor definite-
ness we shall agsume that (a) a-(o = 0 at the pole, so that T, hasa

unique tangent plane there; and (b) the curvature K, of U, has the
finite value K atthe pole and is a continuous function of s in its

00 p
neighbourhood. Accordingly there exists a number & such that for Ty ( &

we have
0 o}

of €€ 747 Jot, - Ko B R

from which it follows that

Fo O M (B1)
00
For r, ) & we make no assumptions about the curve m, other than that L
and Ko ‘exist everywhere except possibly at isolated points.

We are now in a position to fix 2" . As already stated, w' (Y 0)
is a given fixed ciuaﬁti‘ty; iﬁ :E'ac‘l'; a fundamental dimensionless parameter in
this d:}scuss:l'.on is (;J’/ (¢ Koo)w y for which however we may substitute D'/ .
We choose for ¥ a number at least so large that ¥ a'8/c }} 5 in+-this
way we guarantee that T = wro/c can be large even though o(o is suffi-

0

ciently approximated by Koo 5 We may note here a consequence of our

o it
choice of 7 : wusing. (B1) we have |
5w /fe > Mg vt o B ol R (B2)

219 JEE G

We shall need exact expressions for the slopes p , p' and the

curvatures K , /K' of our meridian sections m , m' ; these are readily

found to be

2)-3/2

Ree 3 '1'-0(,300329(‘0
p = tand , K = (1+TO ),

£ K .
cosec of ( o s:.ne(o + o
L w

(B3)

< b : -3/2 ‘ ~3/2
p' = p/¥, g = '%'(0082% +";SL§sin2nt)5/ = “%58039{.(1-9-1)'2} /-

(B4)
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In discussing the ultimate shape of @' it is more convenient to consider
instead of m' +the finite curve @' obtained by magnifying m' in the

ratio wW/c : 1, i.e. ¥w'/c t 1. The coordinates of a typical point

on m' are F' =7F, 7' = w'afc; thus the maximum radius of &' ‘approach-
es 1 as ¥-—o (see Fig. 5). The slope of ®' is P' = p' , but the
curvature K ' is smaller than that of m' , being in fact K'c / ) »
Now by using (B1) , (B2) it can be seen that, so long as r, ¢ & , the first
term in the numerator of the expression (B3) for. K is negligible in com-

parison with the second, and we can therefore write

% ' -3/2
. S (,gj‘) seco (1+p'2) i : . (B5)
d W :
where /
=5/ ;
c K - e
g B cemodl (A4 T (ps o los B) s (B6)
On the other hand, since f‘o ‘;3 1 .when =% 8 , we can writel.
: A
K 3. ¢ co8” of . '
oK 1 ks : g
e o ”53( == slnel, + % ) e S AR 8
: )

the bracket being independent of A By the symbol 7y% we mean that the
relative error being made will approach zero as ¥ increases. .
In writing (B7) we anticipated the fact that singl =~y 1 when ro’} 8+
We can write such approximations for cosgt and sinel in three exhaustive
cases: s
() T2 v, € & wnl F,(< 1, then cossk 21 -'2502 and sin xas/3 fo ;
' (B8)
_ ; -3
(B) If r, (& and ¥, ) 1, then cos« TR E Y and sinel ™41 ;(B9)
(8) Y& r,» 8 , then cosel mycos o (fo)_3 and sin oL 1 . (B10)

, Let us write (o rc/c = PO » 80 that T, = "6(30 ks follows
from (B4 - B6) by using (B8) that in Case A , viz. % & L

p' o~y /3 PO and K' ¥R sl (53¢ {B11)



ol B

In Case B , viz. B -3y we see from . (B9) .that

p.' 23 0,2 1003. an§ % %- 5 Y4 foo—4 : (B12)
but to estimate K ' we must distinguish two sub-cg'ses according as p' 2 13
then (B5) shows that

(131) SopSie kr ot Pt '~ Je' "oy 3 gt PO5 ’ (B13)
(B2) PNy 5 then K' oe 3 .5’"2 f‘o'4 . (B14)

Finally, in Case C, viz. r, ) & , the same equations with (B10) show

that

P oy 8P, wee, | e
P ) % aa W il 3 cos sl
£ 2 ¥ B el e T (316)
0

or we may say that |¢' is @(4"2) .

Cases A and B are separated by values of [% of order '6"1 s for
which r, is finite, ‘p' and ' being ('), i.e. both emall.

Cases B1 and B, are separated, according to (B12) , by values

2 : - = A =2

6f P of order B /3 , for which p' is finite and K ' is 8’(62/3) :
i.e. large. Shoas

The curvature & ' is finite twice in Case B : first when P is
(g _4/5) , p' being @'($ﬁ2/5) ; 1.e. small, and secondly when @i is
L?"(?f"1/2) , p' being 6'(’5'1/2) , i.e. larze.

Ultimately, in Case C, p' is at least U(ISZ) god gt 8 c?('a"‘?).

These conclusions are in agreement with the summary in Section 5.
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Appendix C: Evaluation of Integrals in Section 6

This appendix supplies some of the mathematical steps omitted in Sections
6 and 7 on the rotating sphere and cylinder. Starting from the funda-
mental equations (601 - 6.02) for the coordinates r and 2z of the
rotating surface <7, we inmtroduce the variable x by the relation (cf.
(6.04)) :

tan™1 (x sec XO) s #in™! (coa._x’o Sin)(o)"".-,i"" g I

In terms of =x wc have

F = -‘—fcr = fedn X+ %) ’ (E 2P ") w008 S ¥ 8 ¢
= 4 ) ) ]
- oo n TON y 5 (cos ¢ R T
-, 2 1/2
gl w5 P L(1 + x2) - x2 sin2 'X,_.,] ’
so that the integral for 2z can be written
| - 1/2
- x2 2 s
: , 8in® "Y
- Iz 2 2 oy=1 [ oJ dx , (C1)
R B e (1.+ x°) (cos e 1 - ’

which is equivalent to cquation (6.05) .
By putting x = tan ¢/2 we can express z in terms of incomplete
elliptic integrals: ==

L

- 1
z = tan.—‘zk (1 - ¥ sir® ¢)" + 2 tan'), tan“’{

tan’X  sin ¢
2 ' )

2 J(1 - %2 gin® ¢)

¢ ' ¢
R e At ¢)1/2 5t % ( (1 » i e ¢)—1/2 ad
5 ‘ /0
2 + tan® X, ! -1/2 o
+ 4 { (1 - ¥2sin2) (r & & tan27(0 sin” ¢) ' at s

0
(c2)
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where k = % sinX_ . The elliptic integral of the third kind not being
a tabulated function, the last term in (C2) would have to be expanded in
series. That being so, it is just as convenient to return to (C1) and

expand the square bracket by the binomial theorem. (The convergence in

: 1/2
either case is at least as rapid as that of the series for (1 - -}) )
We thus get

> o . = |
where
: 2 1=2 1
3 s 5 -2n &
R [ (xpin% ) (14 2°) (cos? oot %) ‘d%x . - In
~0
particular we have
I, = x + YWaindotaak
Iy = tah"' x s R cos¥, »
I, = (8l ~ -g‘coszxo - cotz)(o 0052"3.0) tan™ | x
+ Y cot? ')('0: cos’)(O
: p 4 einz')( b d
& &g e i 0
e (8 - £ coe ) s :
Y 2 4 (1 + X2)2

By putting x = sinX, in (C3) we get formula (6.07) for Z , the height
of the pole above the equatorial plane.

The analogous formulas for a plane can be obtained by letting Ro —3 D
in either (C1) or (C2) . It is convenient to measure 2z from the pole
r a0 ¥ -tho-rearlt Se

/2

7 = (4 - gin® ¢)1/2 cosec? ¢ ad

v

1l

H (¢) , say. (ca)
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H (¢) can be expressed as

1/2

H(P) = cotd (4 - wain? ¢)
"T/2. :'Tf/2 =
+ ( (4 ~ sin? ¢)1/2 b - 3 { (4 - sin® ¢) s a$ ,
S g

or as a series corresponding somewhat to (C3) :

H() = 2cotd + (2¢ ~m) é-(1 + ?% + ?3“%"32 i)

We are particularly interested in the behaviour of these various ex-
pressions as w —3)® . For example, from equation (6.07) , on putting
cos Yy = & = R/'R0 » we get the expansion (6.08); and similarly from (C5)
we deduce that if ¢ is small, T, large, then

z T [1 o 15 e i analiiss ) o+
H 0 8?0 32 16 = 64 e .

rfd_ ro (1 - i 0'406 /-f'o ) -

The equality of the coefficients of the terms linear in (c/hj) in these
expansions for the sphere and the plane omn be established directly by taking
the appropriate limits in the integral (C1) .

Received September 1953%
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Fig. 6A: Maximum height 7 and radius R of rigid sphers in uniform screw

motion with speed U and spin @' « ¥ = (1 - U2/02)—1/2
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$=wlg =r57 (U =0.77)
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Fig. 6C: Deformation of meridian section of sphere in uniform screw

motion (¥ fixed).
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Fig. 6D: Deformation of meridian section of sphere in uniform screw

50-

motion (C' fixed). (The simultaneous twisting of the sphere

about the axis is indicated for ¥ = 7-0.)
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Fig. 6E: Meridian section of sphere in uniform screw motion enlarged by

t _
a factor 1R o Jw'/fe (R = Tan)
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Fige 7A: Deformation of meridian section of flat end (cap) of circular
cylinder in uniform rotaticn
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Fig. TB: Deformation of meridian section of cireular cylinder in uniform

screw motion (W' fixed)



