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Summary:

GEOMETRICAL OPTICS IN MOVING DISPERSIVE MEDIA

by

J. L. SYNGE

When light passes through media which are all at rest, the freqency
is constant, and so, in the geometrical optics of fixed media, freaquency
is merely a passive parameter, with one value in one problem and ancther
value in another. This is changed if the media are in relative motion,
for now the frequency varies along a ray, and di spersion must be taken
into ac cunt. Dispersion is usually small in practice, and one might be
tempted to regard it as a troubl esome complication, tu be deslt with by
some suitable approximation. But this would be a mistake from a theoretical
standpoint, because it is dispersion that brings Hamiltonian dynamics into
opties, and enables us to link together, as two aspects of a single mathe-
matical theory, physical theories seemingly distinect, namely, geometrical
mechanics (parti~les and associated de Broglie waves) and geometfical optics
(phase waves and as-ociated photons).

In this paper Hamilton's method in geometrical optics, suitably general-
ized, is used as a basis for relativistic geometrical optics in moving dis-

persive media. In mechanics it is natural to start with a particle, and

develop seconiarily the associated de Broglie waves. In optics, on the

other hand, the natural datum is a refractive index, expressing phase velo-
city in terms of freguency ani direction of propasation, and so one starts
with waves and develops secondarily the associated photons.

As for the physical validity of the theory here developed, no new

assumption is added to existing geome trical optics in the case of media
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which move without acceleration; all the theory does is to replsce by
a single systematized plan the known method of reducing each medinm to
rest in turn by a Lorentz transformation. The results for accelerated
media, on the other hand, mst be regarded as tentative; the assumption
is mede that, in the local rest frame of the medium, phase velocity ié

given by the refractive index for the medium when completely at rest.



Section

(o] e | oNn i 4= A

10

11

12
13
14

15
16

17

*>43LE OF CORTENRTS

Introduction.

Kinematios of a 3-wave. Lamination.
Phase 3-waves. Frequency.

The slowness-frequency 4-vector.

The slowness-frequency equation.

Media in uniform mot ion.

Isotropic fluid medium in general motion.

Hamilton's partial differential equation. Characteristics
or rays.

Ray velocity and group speed.

Photons.

Emission of a photcn by an atom. Source-event.
The laws of reflection and refraction.
Connection with standard Hamiltonian dynamics.

Determination of the medium function (Lagrangian) for an
isotropic medium in general motion.

Medium function (Lagrengien) for a special class of media.
Rays in a rotating medium.

A photon as a dynemical system with four degrees of freedom.

REFERENCES

Page

10
17
18
20

22

24
26

31
53

4

47

54
62



-] =

GEOMETRICAL OPTICS 1IN MOVING DISPERSIVE MEDIA

Introduction

~ Geometrical optics, as ordinarily understood and as developed by
- Hamilton in particular, deals with the propasation o” light in fixed

~ media. The frequency of the light plays a minor part; it is a

B

i_.ged paraneter in any optical problem, since ‘recuency is unchanged
by pas=age through fixed media.

: The special theory of relativity shows us how to treat media in

-

L

*'miform motion. We can reduce each medium in turn to rest by a

orent z transformation, investigate the optical problem for this

‘ ,;eﬁium by the classical method, and then, by the inverse Lorentz
ransformation, restore the original frame whioh"shows the medium

~in motion. Frequenéy is no longer a fixed parameter, for it changes
-‘5‘ light enters a moving medium.

There is a case not covered by the above plan, namely, when two
dia slide past one another with no intervening vacuum. The;'e is

1en no frame in which both media are at rest. We may meet this
'-f.ﬂoulty by inserting a fictitious layer of vacuum l;etween the media,
vaouum being essentially a "fixed medium" for any Galileian cbserver.
1%.-;(' device may fail, however, for the passage of light from one medium
) ) the .other may be prevented by total reflection which keeps the

from entering the fictitious vacuum. .

At best, this method of reducing each medium in turn to rest is
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mathematically clumsy, and we are tempted to embark on a general and
comprehensivé scheme for geometrical optics in moving media, the case
of media in uniform motion being contained as a special case, but with
accelerated motions also included. That is what the présent paper
purports to give. IThe method is esgsentially Hamilton's method in
geometrical optics, now formilated in the fOur-dimensionai space-time
of Minkowski:instead of in thrze-dimensional space. with frequency
elevated from its unimportent role of constent parameter to be the
fourth partner in t“e slowness-frequency tetrad, or, emivalently,
fourth partner in the momentum-energy tetrad of the photon.

How far is this mathematical theory physical? To what extent
can it bé used to predict the results of Cpt{Cal experiments performed
with movineg media?

We are familiar with tBe physicai limitations ¢ the geometrical
optics of fixed media. The wave lengths infolved mist be very small
relative to the dimensions of the apparatus (macroscopic lengths), and
they mus£ at the same time be large relative to the microscopiz structure
of the mediuﬁ; the frequency rust be small compared with the absorption
frequencies of the mediur::. These limitations apply, naturally, in the
case of moving media.

But there is another limitstion, present in the case of fixed media
but somewhat more important in the case of accelersted media, and that
is the contribution which physical optics mist make to geometrical

optics before the latter can make physical predictions. Uonsider a
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Pixed medium. Geometrical optics is a mathematical theory involving a
certain function, the refractive index n characterigzing the medium,
depending on position for a heterogeneous medium and on direction for

ani ;otropic medium. It is not the business of geometrical optics to

say what form that function n has; that is a datum to be supplied by

physical optics. Likewise, in the case of movine media, a datum mst

be supplied.
In developing the geometrical optics of fixed media, Hamilton

offered two altermative approaches corresponding respectively to corpus-

mlar and wave theories. In the second method, he postulated a slowness-

frequency equation of the form

IL(Q'J?s'u'ly:x:Yo‘Z-)"On (101)

where (O, T s ) 1is the slowmess vector for waves, Y the fregquency
and (x, y, z) ocoordinates of position. This equation is the datum

which ph§31031 optics mist supplye For example, for an isotropic medium
it reads
0'2 +* 1:2 % u2 - n2/02 = 0 ’ (102)

where © is the velocity in vacuo and n is the refractive index, which

may be a constant, or, more generally, some specified function of position.

The formal passage from fixed to moving media is extremely simple:
we insert t as an eighth argument in (1.1) , so that we have an equation

of the form



Q(U-’r(lu’)}px;YnZ,t)zo (1.3)

(we shallchange thenotation slightly later). It may even happen that t
is absent; this occurs when the motion of the media is steady. But once
a7ain it is the duty of physical optics to supply the form of the function
{1 , now complicated by the fact that it depends not only on the properties
that the medium would have if at rest, but also on its motion.

Ignorance of the forms of the function {1 which occur in nature does
not prevent us from developing a guneral theory, valid no matter what that
form may be. Here are some physical situations to which the general method
is applicable or may be applicable:

(a) A set of unaccelerated media, separated by vacuum, the optical

properties of each medium (when at rest) being known., The media may

Le heterogeneous and anisotropic.

(b) As in (a) but without the vacuum separation, the media sliding

past one another in contact.

(¢) Fluids in accelerated motion, assuming them optically isotropic

in the local rest frame.

We can feel quite confident about (a); nothing is involved but the geomet-
rical optics of media at rest plus the special theory of relativity. It is
unlikely that any one wonld bother to test theoretical conclusions in (a) by
experiment. There is on the other hand an element of speculation in (b)
and (¢); the present theory here offers predictions which might be verified
by experiment, or might not.

We would like to be able to follow light through a rapidly spinning
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disc of glass by the methods of geometrical optics, and we certainly
could if the equation (1.3) was given to us in explicit forme This
problem will not be treated in the present paper, but there is no harm
in sket.ching an approach to it. Yirst, we wonld have to solve the
elastic problem and find the stfess in the glass. Secondly, we wonld
write down the equation of form (1.1) expressing the optical properties
of stressed glass at rest (it is optically anisotropic). Thirdly, we
would assume that the statical slowness-frequency equation held in the
local rest frame. Thus we would arrive at an equation of the form
(1.3) (in which t would not actually appear if the angular velocity
was constant ).

When viewed in full generality, the mathematical strmicture of the
géometrical optics of moving dispersive media is essentially the same
as that of geometrical mechanics as I have developed it recently
(Synge, 1054 ). But there are two differences, the first bsychological,
the second a matter of sign, trivial and yet at times confusing.

The Pirst difference is that for historical reasons the particle
comes easily to our minds in mechanics, and the de Broglie waves
associated with it are regarded as a secondary and rather surprising
phenomenon. This means that geometrical mechanics is most naturally
developed by means of Harilton's first method of approach (refractive
index, principlé of Masupertuis). But in optics we think first of
waves, and derivelfrom thém the photon concept, still very surprising

to us. This indicates an approach through Hamilton's second method,

the eqation (1.3).



<

The second aif°erence is tha# in mechanics we generally have de
Broglie waves which travel faster-than 1igﬁt in vacuo, whereas the speed
of optical phase wéves in transparent media is generally less than this
fundamental velocity. Equivalently, the momgntum-energy 4-vector is
timelike for a particle, but spacelike for a photon in matter, For
neither particle nor photon can the speed exceed the fundamental velocity;
£hat would Be inconsistent with relativity, since they might be used as
sigals. |

On account of these differences it seems best to set up the geomet-
rical optics of moving dispersive media as a theory in its own right and
not as a corollary to geometrical mechanics, in spite §f the fact that
they are different aspects of a.single general mathematical theory.

The theory of the present paper is set in the special theory of
relativity. The extension to general relativity would involve some
formal complications but no essential change. There is however one point
that-shonld be mentioned. It is commonly stated in genergl relativity
that the history of a light ray is a null geodesic. Does this mean that
light uses a mull geodesic to>traverse a transparent gravitating mass?
Thét seems most unlikely.  Rather, the mull geodesic hypothesis, when
applied inside a transparent medium, would seem to mean that, if we bore
in the medium a hole having the form of a null geodesic, all matter being
removed from the hole, then light wiil travel through that holé without
running into the wallé. provided the ray ié aimed proPerly at the

beginning. Tn fact, the null geodesic hypothesis, whether outside
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matter or inside it, refers to licht propagation in vacuo [ef. Synge (1937)].
The treatment of reflection in vacuo in general relativity given by Synge and
McConnell (1928) is in accordance with the theory of the present paper, but
their treatment of refraction is not, since it is based on the null geodesic
hypothesis for the propagation of light in a medium.

The material which follows was presented in Seminar lectures at the
Dublin Institute for Advanced Studies in 1954, in lectures at the St. Andrews
Mathematical Colloquium in 1955, and, in ﬁrief form, in lectures at sevefal

places in the "nited States and Canada in 1956.

- Kinematics of a 3-wave. Lamination.

We shall use the flat space-time of Minkowski with coordinates

X, (x4 = ict) such that the fundamental form is dxndxh v - hatin

suffixes take the values 1, 2, 3, 4, Greek suffixes the values i: 23,
and the summation convention is understood for both, unless it is in-

dicated to the contrary. We note that

dxndxn » O for spacelike dxr

dx dx = 0 for null dx | (2.1)
ds® = -dxdax < O for timelike ax_ 3

the element of proper time is dy = ds/c .
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The motion of a transparent medium may be described by giving the
world lines of its particles. Let s dxr/ds be the unit tangent
vector to the world line at any event; then the moving medium is described

kinematically by the unit vector field

Mr o )(""'r x) AL Al o P S (2.2)

This is the 4-velocity of the medium; its 3-velocity wﬁ‘ is related to

the 4-velocity by

/U‘P " '\ﬁlw W.p [, /U.4 s .Xw ’

: ” (2.3)
= 2, 2\=3 5

’_JW i (l W /G ) . » w - WF:, W‘Q -

(o)

At any event there is a local rest frame, say S » and we shall

use (o) to indicate components relative to it; we have

‘/LA(E,O) 0, M(Z)..»:. & 5 s (2.4)

If F (x) is any function of the space-time coordinates and C o

constant, the eqation
Filx) =5 € (2.5)

defines a 3j-space. Its intersection with 2 o constant is a 2-space
which changes with Xg o and so we may regard (2.5) as a 3-wave, which is
the history of a moving 2-vave. Note that the 3-wave is an sbsolute thing,
ﬁuf the 2-waves which compose it depend on the frame of reference. It is
easy to show (cf. Syngs, 1954, p.27) that the 3-velocity u!:> df the 2-wave

(taken normal to it) is.
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u 5% - ic ﬁLF—!—" » (2-6)
"n"' :1’7"

the commas indicating partial derivatives. For the speed u of the 2-wave we

have

F2
: o? ot — (2.7

P =
it > e ¢

o
I
1

It is immediately obvious that uw ) ¢ if F | P r e e T T k: is
» » 5 - Ll

timelike, and that u £ ¢ if F  is specelike.
’
2
Now u- as in (2.7) has not an invariant meaning, but u(o)2 has, this
being the speed of the 2-wave in the local rest frame of the medium. VWe easily

verify that this invariant is

Gy
u(o)z = 02 /LAI" 23 2 ’ (2-8)

B {
F.s F.s : (fis F,s)
for this is an inveriant expression which reduces to (2.7) when we substitute

from (2.4 ).

If we give a odntinuous range of values to the constant C in (2.5), we get

ml 3-waves, ordered in the sense of C increasing. This we may call a lamination

‘of space-time.

To bring out a distinction between a set, of phase 3-waves (see next section)

end a lamination, we note that the Punction F (x) which defines a lamination is

by no means unime. For, if G is any monotonic function, then the lamination

(7.5) is emally well described by the equation
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R-Ge) e Dy (2.9)
where

L = 611, Pedn. (2.10)

3 Phase 3-waves. _Frequency.

Let C (Fig. 1) be the (timelike) world line of a source which emits light

e

Fig. 1

Phase 3-waves emitied by a soirce with world line C.
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of period T , measnred in the proper time of C . The phase angle ¢ of
emission is
. S L e s (3.1)
where T 1is proper time on C . The phase is exp i or, eqiivalently, the
mmber pair (cos ¢ , sin ¢) .
Te think of the phase angle as propagated out from C according to some law

not yet specified, with the result that space-time is filled with phase j-waves on

each of which the phase angle ¢ is constant. This means that to any given event

x, there corresponds a value of ¢ , so that we can write ¢ = ¢ (x) ; it is

convenient to introduce the phase function F (x) defined as

F(x) = -c¢/2m = =-07T/T. (3.2)

Note that if x  1is A (Fig. 1), then T is the proper time on C of that event
C

A where the phase 3-wave W through A cuts .

By giving all values to T in (3.2) we get a lamination, but a set of phase
j=waves 15 something more than a lamination because a definite value of ¢ is
at*ached to each 3-wave; in Fact, the function F (x) is physically significant,
and we cannot make a transformation as in (2.10) (preserving the lamination) with-
out losing this sisgnificance.

Note that the phase 3-waves have a natural order, viz. that of increasing T ,

or emivalently increasing ¢ .

The formula (2.6) now gives the phase velocity uP H (2.7) gives the

phase speed u ; (2.8) gives the phase speed u(o) in the local rest frame.

We recall that
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& P
mye i F F 0 (F_ timelike),

S e S (F_r null), (3.3)

L F.r F,r > 0 (F,r spacelike ).

(o)

Naturally these also hold for u . The second case oorrespdnds to a vacuum; the?
third is the most usual in optical media.
If we pass from an event A (Fig, 1) to an event B on the next phase 3-wave

with the same phase, we have

JB
¢ & ® 2N ,
el
Here we encounter the fundamental restriction of geometrical optics (high frequency

or short wave length), for we wish to replace this eqation by an apparently ri-

diculous one:

b  dx i b R | (3.3a)

dx‘r being the displacement AB .

This last emation is accurately true for finite increments dxr _provided

¢ (x) is a linear function, so thet ¢ e 0 and ¢ . are constants. We have,
. ] 3

then, a choice in making (3.3a) acceptable: either the wavelength is very small
(then dx | is very small and ¢.r very large), or ¢ is approximately linear in
the range of the finite step dxr . The unattained limit here present is an un-
avoidable source of confusion in geometrical optiés, and we have to put up with it.

Accepting (3.3a), we translate it, by (3.2 ), into
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F,r dxr_ R T e B (3.4)

the mimis sign here. Had we defined F (x) with the opposite sign in
y we wonld have got ¢ instead of -c¢ . But to discuss all cases, we must
e a definition of F (x) and stick to it; (3%.2) seems to be the most con-
t in later work.

i)

~ Let ns see what (3.4) implies, taking F , to be in tum timelike, null and
N »

ike; in the first two cases we whall take F w: pointing into the future (it is
’

o make the requisite changes if it points into the past).

F s timelike, fiture-pointing.

A timelike F 2 implies u » ¢ . Let W be the phase 3-wave (orthogonal

). Then (3.4) implies that dx . and F _ point to the same side of
»

F = null, future-pointing.

Now u = o. The phase 3-wave W tonches the mll cone, F s S
-_' '
vector on the line of tangency. By (3.4) dxr points ont from that side of W

i which the future null cone lies (Fig. 3).

F . spacelike (1snal case in a medium).

.L;i A spacelike F  imolies u < ¢ . By (3.4) dx_  and F o point to the
3 Blde of - 7 (Mg, 4) '

b The sbove resnlts are easily established by using special frames of refe rence
_i.eontinuity.

Fiz, 5 illustrates a phenomenon which may appear strange but is by no means

ossible. C is a source in vacuo, emitting phase 3-waves. Two adjacent

raves of the same phase are shown, the waves being curved in space-time on
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Null ccne Fr' mﬂlpmw

Fig. 2 :

Case where F 3 is timelike (phase speed ) 6¢) and points into the future

Null cone Null cone
W
. ’I'
iii;///
A
/ \ 1
i,
Fig. 3
Case where F is null (phase speed = ¢} and points into the future.

2T
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Null cone w Null cone

Figa 4

Case where F - is spacelike (phase speed 41 c)e

?ig- 5

Case where the natural time-order of phase waves is

eversed.
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passage throngh a medinm, in which the phase speed is less than ¢ .. D is the
world line of an observer. The two waves give four events in his experience. The
first two (A, B) occur in the natural time-order, but the others (B' , A') in
the opposite order. The natural time-order is r;eversed. For this to happen, it
is necessary that the phase 2-waves come to rest in the frame of the observer; but
t.here is nothing strange sboit this, for any wave which travels w1th speed less than
¢ can be reduced to rest, or indeed made to go backwards, by merely changing the

frame of reference.
Let us now consider the frequency of a set of phase 3-waves as measured by

(a) any Galileian observer and (b) by an observer carried along by a particle of the

medinm.

In the first case t.: observer's world line is parallel to the t-sxis. Let it
cut the phase 3-waves T , T+ T at events A , B respectively. If dt is the

increment in t in pascing from A to B , then dt is the period of the waves and
the frequency is VW =1/dt . By (3.4) we have

P lodt = wsg (3.5)

and so the fregiency is given by

$y w Ff4 : : (3.6)

To find the freaiency V(o) relative to the medium we put dxr = /U-r_ ds
in (3.4), so that

F'r s SRR (3.7)

for the passage from 3-wave T to 3-wave 7T + T ; hence

_. F.r/b_c;‘ . (3.8)

v(o) = c¢/ds
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the normal case (A8 in Fig. 5) ds is positive and (3.8) gives a positive
16y; in the sbnormal case (A'B') ds 1is negative and we get a negstive

A nesative frequency means that the phase waves are received by the ob-

(in particular, by a particle of the medium) in the order opposite to that

they were emitted.

glowness-freaiency 4-vector.

pértial derivatives F % of the phase function form a 4-vector which is

tal in the theory, and it is convenient to have another notation which shows

d-vector without re‘erence to the fact that it is a gradient. e write

u

o, F'r s : : (4.1)

O‘; the slowness-frequency 4-vector (or briefly the slowness 4-vector)

ons indicated by the following formulae. By (3.6) we have

L Fak | | (4.2)
(2.6), (2.7)
A BB TR s
2 T T T O 9 %
(4.3)
o u
o T e e
E - - +

| positive, the 3-vectors 0}; and ug have the same direction and the
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magnitude of G;o is vec/u. Thus O?:» measures the slowness of the phase

2-Waves.

The 4-vector 7, 1is the relativistic generalization of Hamilton's slowness

3-vector; to within a constant factor, O‘é is the wave-number vector of modern
physics, but Hamilton's terminology is more suggestive of its nature.

Let us write (2.8) and (3.8) in terms of the slowness 4-vector:

(. G=)°
(o= _ .2 r“r By & -
u - c mnq,n + ( [ln (};)2 » V - }AE.G.;_ . (4'04)

We note that a positive value of v(n) implies that, in the local rest frame,
O‘P p-zoihts in the direction of propagation of the phase 2-wave and not in the
cpposite direction; but further, since /-Lr is necessarily timelike, a positive

\;0) implies that - points into the future (inside or outside the null cone)

= 2 )
- .

in the local rest frame (for which /ULF o /Ja_

5. The slowness-freqiency emation.

. 8o far our work has been purely kinematical and has involved no hypothesis as to

the optical character of the medium. We now set up a very general hypothesis in the

form of an emation

]
=3

L (o x) (5.1)

connecting the 4-vector o'r with the coordinates R This slownéss-—frequency

eqiation expresses (complketely, as far as geometrical optios is concerned) the optical
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er of the mediym in motion.
¢ slowvness~-fremency emation may be interpreted in several ways. It it is

for O, , so that we write

o

1H((Ti,0’2.'03.x1.x2.x5 ox4)3
(5.2)

<
1}

H(O'I.OE.U;.xl.xzoxﬁax‘l).
sses the fregiency of phase waves in terms of their slowness 3-vector, position
On the other hand, if it is solved for (O—'{TG;J% » 80 that we write

¥ _
(O“n’c‘;f) i f (O—E/G‘a ’ o.-’z/og » 0-:]_ ’le » x2 » x5 ] x4 ) » (5‘5)

by (4.3), the speed of the phase waves in terms of the direction of
e

i

jon, ‘requency, position and time.

.-: general mathemstical arguments it is best to use the general form (5.1);

B iho pcosant thoory with faniliar Hemiltenisn dynemics (H is essentislly
miltonian ); (5.3%) connects the theory with physical ideas, the speed of pro-
ation beinz expre~sed in terms of direction of propasgation and fremenocy.

a vacmm the slowness-freaiency ecuation is

2 -r]. ( 5 s X') " 2 g % o) 0 . : (5-4)

b ngiead o

-y
T

4 later the factor 2 1is introduced merely as a notational convenience. It is
nation, not the function, which is basic.

~ For an isotropic medinum at rest we have

el (arex) = OF QR+ sfa? = 0.0 (5.5)

3) this is emivalent to n = c/u « The refractive index n is in general a

' of 0"4 (to allow for dispersion) and a function of Xy , Xy s x5 (to allow
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for heterogeneity).

For a crystalline medium at rest* we have

o 2 2 2 %
g LYo o) 0'1A2A5+U“2A5A1+(T§A1A2 &
wiod 2 il e P2 (5.6)
Al al(T,;.rC')'na+ 0;74 3 A2. .aZO-rr O"’,i_r"' 00’4,
2 2 I
A5 = aao;Tq;T+ c“T .

Here the axes are principal and ap are t e phaze speeds in these principal
directions, functions of CT:q_ to allow for dispersion. The equation (5.6) reduces

to (5.5) if wg puit & = &, © a5 = ¢/n .

6. Media in uniform motion.

Let there be any number of media, each in uniform motion; they may be separated
by vacrim, or they may slide on one another. Egach medium is, when viewed in its rest
frame, either i=otropic (but possibly heterogeneous) or crystalline (we consider only
homoeeneons crystalline media).

The history of each edium carves out a domain of space-time and for each of
these domains we have, as in (5.5) and (5.6), the slovness-fregiency equation in the E
rest frame of the domain. Our problem is a simple one: to pass from the local rest

frames to a single Galilei an frame from which all the media are viewed. This we do

%  of. Hamilton (1931), p. 280; there is a slight change in notation since Hamilton's

= ; -1
(0, T, U ) have the dimensions [L : T] whereas our 0‘; have the dimensions [T ]




8

jotine Lorent gz-invariant emations which reduce to (5.5) and (5.6) in the

t frames. For a vacuum we have of course as in (5.4)

et (O S i) wogp g e ton (6.1)

T
~invariant ecation.
,Mi‘ be the 4-velocity of a medium; this vector field is constant in the

# the medinm, since the motion is wniform. For an isotropic medium we have

B o) - oo S etin ol =iel G

putting /M'F' w2 P ). Here n is a function of O"rp.r

for dispersicn) and also of xf (to allow for heteroseneity), subject to

%‘- M= o0, (6.3)
r

nit vectors forming an orthogonal tetrad with S o We denote them by J\( )

1) A8 = N3 - i)

: 2 >

other components vanishing. Then, for a general Galileian frame, we have

R0 o - o sl « o),
s R o 6B (O
(6.5)
b " RG-S T LS .

+ (& g Ilg gy .

=
N

1]
\Nmm
1
A

.
r
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Here A(fj) and A4 are constants for the medium snd a are functions of <U_ W
r r I ri>

to allow for dispersion. ' In each medium (L is independent of X, s but for the whole
of space-time (the totality of media and vacuum) it is to be regarded as a discontinuo

function of xr =

To follow the propagation of light through media a5 considered sbove we need the
concept of rays and also the laws of reflestion and refraction; these will be treated

in Sections 8 and 12 respectively.

7. Isotropic fluid medium in general motion.

e cannot here attempt to set up a frequency-slowness equation for the accelerated
motion of a crystalline medium or even of a solid isotropic medium, such as glass.

But we can make a reasonsble hypothesis for the case of en accelerated fluid medium.

(o)

We shall assume a basic relation between the phase speed u and the fre-

(o)
gaency V/° /, both measured in the local rest frame. Since we use the =need and not
the 3-velocity, this amounts to an ascumption of isotropy even under asceleration. . It

is convenient to introduce the refractive index n by the definition

B = o/ 5ol ~£7:1)
Then by (4.4)
' o, :
MWl Al LS e A%
NCATRS Y > 5

The following equation then holds:

20 loras) = e LW RO e )

i
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is the required slowness-frequency equation for a fluid in general motion provided -

(o)

:'sume a knowledge of n as a function of and P(x) , the proper density
_‘he flnid; we write
P (O-rfu’r . f’) 5 (7.4)

te that (L involves J7. » explicitly and alsc implicitly through n ; it involves

2 2
BN D, ¥
2 . N M . M "M
n o 1 2 7@ 2 = Z 2 y(o)z ] (7'5)
-2 M Vy -

D, and VM (the sbsorption freqiencies for the medium at rest ) are to be

ded as known functions of the density P . Thus for a Sellmeier medium the

e

ess-frequency eaation is

: ' 2
R N T 1 L

- 2 G-’J » - CT' . y 12 2
; G rr at: = ¥ (o, Pﬁ»)

. (7.6)
Y-
fu formla becomes physically invalid as we appraach the sbsorption frequencies;
relatively small fregiencies the approrimate form is
: = 2 2
e d) (0 x) = O.0; - (0 -~ A(A7 L) .
(7.7)
2 = : 2
-1 = A(P) + B(P) (T L.
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a Hemilton's nartial differential ecquation. Characteristics or rays.

e

When we substitute F 5 for O“r the slowness-freqiency equation
P
rla ;=) <0 (8.1)

becomes a partial differential equation of the first order for the phase function

F (x) . This is Hemilton's partial éifferential equation and we shall refer to it as
HPDE; it is essentially thc same as that equaticn which, in dynamics, is called the
Haemilton-Jacobi equation. .

Te are roncerned with the problem of solving the HPDE subject to certain initial
conditions, viz. F assigned on a given }-space. The method of solving this problenm
by means of characteristics is Qell ¥novn, but the argument will be presented here
hocemse it is desirable to have i+ before us in the present notation and in g férm
which shows us when the method breaks down.

-2 (g, x) is any Dunction of the eight quantities g7, » X, (not neces-

sarily satisfying (8.1)). the ordinary differential equations

dx ax Q. (3 1 ) 7
-.._..__..}'._._.-_- - = _.__.d_'-.-.-—-_.- = 1 - = __._..__.._ﬂ'_-—-—- (8.2)
aa/ao'i 3n/3 T = aﬂ/&-:l - an/ax4

As?ine a congruence of curves in the 8-dimensional (_crr x )-space. one curve passing

throigh any assigned point in that space. These eqistions may also be written

ax, s érL ¢ . = a@_ (8.3)
2 ey s =Y < - 8': - .
(i:{ BC% s r

X; being a parameter suitably chosca along each curve. It is evident that (8.3)

imply

T S
E:;, = 3 & .(8.4)
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Instead of thinking in terms of ( (T, x)—-space, let us use space-time. Then

{8.2) or (8 3) gives us a set of world lines with associated vector fields G, along

them; each s1_1ch world line with the associated O’; is & characterlstlc or ray, a
saracteristic or ray being determined by an initial event and an initial G—;' s pro-
vided the Fﬁnction LL (G, x) has been assigned. We get the same ray if we change
in- into any function of ,it’ the cnly difference being in the parameter 'X, .

We note that the condition for a timelike or null ray is

3L
30,

3

e

& 0 (8.5)

L{I

(This is an essential relativistic condition when we come to identify the rays with
the world lines of photons, since otherwise we would have a signal speed greater than
b . )

We now turn to the HPDE,

o, ) =0 e ¥ R AR (8.6)

r s

nd seek a solution F taking assigned values f on some assigned 3-space S .
(Por emission, as in Fig. 5, S wonld be a thin tube enclosing C with
s ¢ = o/ T onit.)

The plan is to choose &7, on S. to satisfy
gobx. * 85 “Fiaya) (8.7)

for every displacement in S ; since there are three degrees of freedom in this dis-
placement , we have fonr equations here for four quentities. But although the number
of equations is right, it may happen that no such vector (j'; can be found. To

|
investigate this, we fix our attention on some event x, on S eand think in terms of
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a Minkowskian 4-space in which (7 are coordinates. The first of (8.?) determines
the orthoronal projection of (T; fqn the tangent 3-flat of S (say I[l) s and the
second places the extremity of (7 on a certain 3-space N=0. We can solve.
(8.7) if, and only if, the orthogonai projection of fL = 0 on JL contains the
assigned ortiogonal projection of CF; on ]i- p And if a solution exists, there
may be more than one. ‘ ‘

Having thus opened up the guestion of the possible insoluﬁility of (8.7) and of
miltiple solntions, we shall assume that a solution exists and that it is unigue.

ith the initial values of Cr; on S given by (8.7), we proceed to draw the
rays by (8.3). In general these rays form a congruence filling a portion of space-

time, but there is en exceptional case. If, on S , we have

20

ao—r o T - 0 (848)

(we have taken the equation of S tobe S5 =0 ), then the rays do not leave S .
Let us suppose that this does not occur.
We have then a congruence of rays emanating from S . At any event x, in

the domain filled by them we define F (x) by
X
Fi{x).  m kel ¢ s 4% (8.9)

va
where a, is the event where the ray through X, meets S , and the integral 1s taka

along the ray. Here f (a) is the assignedvalue on S , and we see at once that

F (x) satisfies the initial condition.

We have now to show that F (x) satisfies the HPDE, and to do this we vary x

r ’

cbtaining



~ab (8.10)

Pt 5f (a)-+ & (7 dx

he variation being from the ray to a neighbouring ray. Since we made n(g, x) =

m S , it follows from (8.4) that I‘). 0 everyvhere. and therefore sfL= 0.

r}{mce, on integraﬁion by parts, the last term in (8.10) is

u

X . X X’
(o, - oo, « [ Coe - a0

a
. - 4 a (8011)
; o
' 5 o8 0 5 o 1x
| = [G:" er]a + silaw = [T, ,cha 5
: -8,
end 50
F,.r - 6¢ (a) * G‘r bx = (G‘; bxr)s . (8.12)
Ising (8.7) we have then
F,r‘ er = G-r 5‘cr - F,r = G’; 3 (8.13)
od therefore T satisfies the HPDE since . L(,x) = 0.

Thus, to get the solutiom of the HPDE with F assigned on 5 , we first determine
the rays by solving (8.3) with initiel values given by (8.7), znd then write domm F (x)

as in (8.9).

e note that the rays satisfy the variational principle
& [G"r d.xr S ! S : O..(C", vy w0, (8.14)

l
for fixed end events and for (J earbitrary except fTor “he condition shown. This is

evident since the variationel eaquation with the side ctondition leads at once to (8.3 ).
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9. Ray velocity and gronp speed.

The world line of a ray with emations (8.3) may be regarded as the history of

a moving point, and the 3-velocity of this point, or ray velocity, is

dx A1/ ¥
* = P
VF = jo a‘% = ic m . (9.1)

Let us connect this with group velocity, or, more precisely, group speed.
We can use any form of [L which yields the correct slowness-freqiency emation,

ani it i+ convenient to take it in the form (5.3):

' 3 gy o
= s 2 _.....:-I.‘.. —..2- =
.n-(O““.X) (G;)UP’) - f U——B’O._a.oo;:xlsxgnxa:xd_) 0.
(9.2)
Then, since f 1is homogenecus of degree zero in U_F , we have
3N % 3L A
O, === = (U0} s B w o m=—, (9.3)
F BCTP (0 P 30’1 301
Then (9.1) gives
(Gt; O'(; )‘%
‘VF CTF,J i - ic Bf / 301 ’ (9'4’)
or, with Nfj defined by
Tz
ST A e G 7
(G_i‘.‘,.. qul.)
we have
1 1. af 1 3f .
Bl ln Tamheedl L @O RS (9.6)
v‘o NF ic 30‘1 c JV

u_./ u (the direction cosines of the

(D

But, by (4.3) and (9.2), we have Ng




normal to the 2-wave) and

. (O‘E; O(’o) = Yo/u. - KG9 T)
Thus (9.6) reads
1 3 %
- =. ( s ) F) (9-8)

the nartial differentigtion being carried out holding NF‘ fixed. (Note that for
fixed NP end x (9.2) is an equation connecting u and W .) But a general

formila for t e group speed g is

LA By, (9.9)

e Ix

where u 1is the phase speed corresponding to frequency Y , and so (9.8) tells

us that the component of the ray velocity normal to the phase 2-wave is equal to

the group spéed. The above proof of this fundamental result is a variant of the

method givlen elsewhere (Synge (1954), p.33).
Although the isotropic fluid in general motion is covered by the above argument

it is interesting to examine it direectly. By (7.3) we have

Bl iy S Lo aes - : o

9 Tp & 0 SRS = A0 g 1T, Ly) (9.10)
e ¢ BRE 2 . - 2

a_....; = g - (n® = 1) p4 T js - non' i, (O )

where n' is the derivative with respect to <74, . Substitution in (9.1)
gives the ray velocity. In the local rext frame we have /u.P = 0, /u_4 LB B

and so by (4.3)
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(o)
v(o) = ic S CEB
F O"(Z} (n2 e ot O-(Z))
. (o)
= 02 - uP
u(052 (n2 i V(O)) (9.11)

.55 40) n®

P ne - r}n’ y(o)

We observe that the ray velocity and the phase velocity have the same direction

(or possibly oppogite directions) in the local rest frame, and we have

2 ' (0)
c Sl . o ont 8l 2 (o) @on = (
sz) n REYe N avfoi avios (ny 0))

(9.12)
The right hend-side is a well ¥nown form for o/g , equivalent to (9.9), and thus
we verify in this particular case the more general result established above.

This brief discussicn of group velocity has been included here in order to
link the ideas of the present paper to those current in physics. But, having
seen this connection, one mey very well forget sbout group felocity and think in-
stead of ray velocity, to which it appears to be emivalent. In the theory of
media at rest group velocity_seems an artificial addendum; wvariation of the
frequency plays no role in ordinary geometrical optics. But in the p?esent theory
variation of fremency is inherent, since in the stationary principle (8.14) for
rays, frequency is one of the quantities to be varied. Thus the essential idea of

group velocity is built into the present theory.

The inequality (8.5) is the condition that “he group velocity chould not

exceed © .



~-31-

10,  Photons.

We may introduce photons into geometrical optics by the following statement:
Each ray is a possible world line of a photon, and the momentum-energy 4-vector of
the photon is

. "o RO, (10.1)

where h is Planck's constant and cr} the slowness-frequency 4-vector associ-
gted with the rayv.

This statement gives to the photon a role in geometrical dptics analogous to

the role of the particle in geometrical mechanics. It is a moving point endowed
with momentum and energy. It is a scalar photon which does not exhibit polarization
mich as the particle of geometrical mechanics does not exhibit spin. :

The components p_  in (10.1) have the dimensions of energy. We may write

i " o Mg , g %0 B (10.2)
where MF is the 3-momentum of the photon and E its energy. Then by (4.3) and
(10.1) we have . .
ool B L olE oo ate L TGS
[ c c - u2 i 1
(10.3)

where U is the phase velocity.

The stationary prianciple (8.14), satisfied by a ray, may be written

5fc'1prur= o, N (p/h,x) = 0. (10.4)

The integral oceurring here may be written (it is convenient to change the sign)

P S S jo_lprdx'r L J(Mpdxﬁ - Eadt),
' (10.5)
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so that we recognise it as an action integral. For integration along anv world

line (not necessarily a ray) we have

1

Ao vaan _.goir L SRR PSR Y S B 2 (10.6)

where F (x) is the phase functior., If the world line leads from an event on a
certain phase 3-wave to an event on the next phase 3-wave with the same phase,

then by (3.2) we have [F] = - ¢ and therefore

A h ; (10.7)

in words, the actiog_petween adjacent phase j-waves of the same phase is equal to

Planck's constant. (Cf. the process of primitive quantisation, Synge (1954),

p.113. )

One may raise the guestion: Has a photon a proper mass? Such a question
is of course me2aningless without a definition of proper mass. It is natural,
perhaps, to take the definition appropriate “o a material particle, for which the

proper mass m 1is given in terms of energy E eand 3 -momen tum MF, by
P e e ey (10.8)
When we substitute on the right from (10.3) we get
ne ot - h2.1)2 ' e c? / u2) = K 0. O - (10.9)

For a vacimum this gives m=0 [Cf. (6-1)]-» . But in the ol"dinar'y case of a

transparent medium, for which u <: ¢ ¢ or eqivalently CT; is spacelike, it
makes m2 negative and m imasinary.

It may not be useful to speak of the oproper mzss of a photon at all. But



8 ol
should we wish for a definition which makes m = 0 for a vacuum and m real for
a medium in which u ( ¢ , we have merely to change the sign in our definition,

gso that

-1)% = Lo o")%. (10.10)

(o] l::‘
e & 4
P
= Io
n e

Q

i Emissidn of a photon br an atom. Sonrce-evernt.

Let us try to form a picture of the emission of a photon by an atom in terms
of ceometrical optics.
First we recall the argument of Section 8. Given a 3-space S5 with F

assigned on it, we sought to draw rays, and for that we had to solve (8.7), viz.

U;er 2 g, %) =0, (13.1)

where F=f on S . If these equations can be solved and the exceptional
case (8.8) is avoided, we get rays emanating from 5 and filling a 4-dimensional
resion of space-~time.

Suppose now that S is a 2-space instead of a 3-space. Then the eauations
(11,1) are effectively three in mmber (instead of four), and so (if we can solve
‘these equations) we get ool values of 'cr} at each event on S . Thus we have
u:>5 rays altogether, enongh to fill a A-dimensimal region of space-time as before.

I¢ S is a world line (l-space), then we have cnly two eqations in. (11.1)

. . : 1
snd hence 032 values of ETP at each event on S . There are @ events
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on S , and so again we get rays adequate to fill a 4-dimensional region of spac
time. If this world line S is regarded as the world line of an emitting atom
(the freaiency of emission defining F on it), we see spmce-time filled with rg
We do not think of a photon on each of these rays, but only one photon for tﬁe
whole process. The rays constitute the possible histories of this one photon,
and the associated values of h(j; its possible momentum-energy 4-vectors.  One.
can =ee in this picture a semblance of Heisenberg's uncertainty p;inciple. The
initial frequency is assigned and the initial time completely undetermined, and
the later position, momentum and energy of the photon have that degree of in-
determinacy exhibited by the fact that, although we have a definite pattern of
rays in space-time, we do not know which one the photon has chosen to traverse
until it shows its presence by colliding with matter.

If Ab is the 4-velocity of the source or atom and \Qo the assigned fre-

quency of emission, then we have as in (11.1) the two equations

i

g A T e PLeor. )% 0% 12y

; Al & o

to be satisfied by CT; on the world line of the soirce, and the totality of rays
is to be found by solving (8.3) subject to these initial conditions. The phase
function F 1s then given by (8.9) with f (a). = -e¢T/T = g Yo *
Interference phenomena can be treatec only crudely in geometrical optics.
If, by means of two pin-holes or otherwise, we offer two paths to the rays, we
get brightness if the actions for the two rays differ by N h and darkness if

they di®*fer by (N+ $) h , N being an integer, these two cases corresponding

to difference of phase angles of amounts 27TN and 27N + TT ,. respectively.
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In terms of probability, we may say that, in the first case, it is very probsble that
the photon will choose one or other of the two rays and in the second case that it is
very improbable that it will choose either.

Suppose we know of a photon only one event in its history. This we may call a

sonrce event. The possible yelues of O°. are subject only to fL (T, x) = 0.
(In fact, we have (11.1) with the first equation deleted.) This means that there
are c35 initial values of {I; and we would expect, as in the cases considered
gbove, a set of rays filling a 4-dimensional resion of space-time. Let us examine

the question, taking an isotropic medium with L (g™, x) as in (7.3).

"‘h’iting %!’ = dxr / d_x_; G 1'12 -1, q' - aq / a(CT'r}..Lr) »
we have
o Bbk ; 2
Er = IS e QM T My - %q M (Ozf"n) ’
(11.3)
Let us use the local rest frame, so that (7.3 ) becomes
20T, %) = Opoy * (@I = 0, (11.4)
and (11.3) becomes
E " O‘; , 34 = (1+q)<7j4 e q‘a‘i - 15)
Then (1l.4) gives
T % 2 o
Se Se + (q+1)0'4 B (11.6)

wherein 0“4 is to be recsarded as a function of 34 determined by the second of
(11.5), in which G oconrs explicitly and also implicitly in g and 8l
In general the rays fill a 4-dimensional region of space-time, obtained by

joining the origin of Sr-space to the points cn the 3-gpace (11.6). But if the
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the medinm is non-dispersive, then ¢’ = 0 , g being a function of P only and

hense a Punction of position only; the second of (11.5) reduces to

Eo 2 Oea i, (11.7)

end (11.6) receds

(11.8)

]
o
-

R et
i |
o 8
Tig is a cone, confined within the null cone (as it_ shouid be to make the speed of
the photon less than ¢ ) if n % 1. The fact that it is a cone means that the

ri73 from a source-event in a non-dispersive isolropic mecdium fill only a 3-dimen-

~4onal region in space-time. This is of course true in particular for a vacuum,

L "

:he cone being then the null cone (Sr SR

1

12. The laws of refliection gnd refraction.

IL.et S be the histery of a moving surface separating media M , M. When
tigat passes from M into M (refraction) or is rcflected back into M, -a dis-
continuity cceurs, and the variational equaticn (8.14) leads at onoe to the
caation

£ & pasR O""r) 6}{? 20 (12.1)
furtall displacements er in S . G’“ and CT; being the sl_umess-frequency
i-vectors in M' and M respectively at the svent of reflection or refraction.

Emivalently,



n
~
=
-

O =Gy = (12.2)

where Nr is the unit normal to S , pointing from M' into M , and k is an

nndetermined factor. This is the law of reflection and refraction; it tells us
that the increment in the slowness-frequency 4-vector is normal to the history of

the surface of separation.
Regarding CT;. as given, and also the event at which the reflection or re-
fraction ocours, we have in (12.2) four equaticis for the five auantities O'; 3 &}

for refrasction a fifth equation is supplied by the slowness-freaiency emation of M ,

Sl to-.») * v, (12.3)

while for reflection we are to use the slowness-freaiency emation for M' , say

_(L' (O.JJ X) = 0, (12-4)

which mist be satisfied not only by O but also by g7, -

To investigste refraction,we mist see whether (12.2) and (12.3) possess solu-

tions; if they do, we have =till to investigate whether the refracted ray actually

passes into M . To investigate reflection, we mist do the same, using (12.2) and

(19,4 )

Tn work of this sort we try to simplify the algebra as far as pos:ible by

choice of the frame of reference. Supposing, as 13 natural, that the speed of the

snr“ace of separation .s less than ¢ , the 4d-vector Nr' is spacelike. Let us

take the xl-axis in its direction, so that N 1, §, = N 4

Then (12.2) gives

= ! = i = -1
e tadnet b D08 Tl - Q8 Tl o Spive 2
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Note that now we are dealing with a fixed surface; fremency is not changed.
Suppressing the dependence on X, (we are at a fixed event on 3) , (12.3) and (12.4)

may be written

i (Sepmen E o r:r"; Ny <~ 0,
g (12.6)

K] zoma 1
Eail rr ¥ gt T )
these eqhations are to be solved for k , the first in the case of refraction and the

gecond in the case of reflection.

Let ns examine the case where the media are isotropic, so that by (7.3)

sh s o s oW S
' (12.7)
20 2 gt L T AN Oy 0

where n' , n are the refractive indices of the media and /LLL s fhp their

4-velocities. But these 4-velocities lie in S , and therefore

/LLi » ‘}11 AR TSl (12.8)

The surviving components of /J;‘, jo form two timelike vectors in a 3-dimensional
Minkowskian space-time, and we may complete the specification of frame (of which so

far only the x,-axis is Pixed) by demanding that

el EE B ot - e Jy T s B8

This may be called the standard frame of reference for a pair of media (Fig. 6); in

it the two media slide past one another on the plane x, = const. with equal and
opnosite velocities. Denoting the common speed by w , we have
VS = e iy = S et )

LY S Rhes fhy 8 kT 0a L bR M3 Ll

% (12.10)
T e ¥ = a-vnf),
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I~

Pt

, : AN
M? : M

Standard frame of reference for a pair of media.

Fig. 6

Upper diagram: space-time.

Lower diagram: space.




and (12.7) become

2{) = s U e~ 1) ‘52 (<T3 w/e - i cra)e e
, (12.11)
Y = ol o o (Orwhl > AOE ¥ 0,

Accordingly the equations (12.6), to be :olved respectively for refraction and re-
flection, read

R i | 2 f2 ‘2
(o 1 ! k) +'<7’2 ¥ crz

? ka - (0% - 1) (@5 w/e - 10'4)2 = 0
(12.12)

2 2 2 12 12 2 R e >

@3+ x) +o*é +(T’% +_o—4 - (n'® ~1)H (.u;W/O*lU:}‘) = -0,

Consider r:fraction. For the reality of k , it is necessary and sufficient

that
£ _wwige ' 2 ARl R At .
or equivalently by the second of (12.11)
y2 * 2 ~ 2 1 13 2 p2 . - 1 2-5
O, * 9 i@ +1) ((TB w/e - 10;)" - (0% - 1) (CT5 w/e + ig))°]
307, (12.14)

or in terms of phase velocity by (4.3)

021.1'2 u! w ul w
maE de T L L e

ue4 u

(12.15)
the frequency -\V, disappearing as a common factor ( *9'2 ) , although still present
implicitly in n' (dispersion).
Unless the above condition is satisfied, refraction from M' into M cannot

take place. But there is a further condition for refraction. It must be possible
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for a photon to pass from M' into M , and the condition for this is v ) 0

where, by (9.1),

o/ ao"l

Voo 8 io W 5 (12.16)

This we are to calculate by differentiating the expres=ion in the first line of

(12.11). Assuming M non-dispersive for simplicity, we get

= 1
vl = e i > >
ey ke 5 (O‘§w/c -10,)
ol + ok
= . > >
O’& ok Cn” W )) of (O'%W/O . io""l)
Sy Tk
¢ 1
= ey -y . (12.17)
ul

Now assuming (12.13) satisfied, the first of (1°.12) gives two real values of
(U‘i + k) , one the negative of the other. One makes v, positive and the other
mekes it negative. This mesns that the satisfaction of (12.13) (or eauivalently
(17.14) or (12.15)) ensures the existence of a refracted ray proceeding from M'
into M , and only one such ray. If dispersion is admitted, there is no such
simple result in genefal.

Actnally, the case of equ=lity in (12.13) should be ruled out, as then we

have v o= 0. We may say that the condition for total reflection is

: W
o ‘62[<n2-1)(% vy ad e Qe gl L
u

ate

(12.18)
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We recall thst wu! 1is the component of incident phase velocity normal to the

1
surface of separation (fixed in our standard frame) and u; is the component in

the direction of motion of the final medium M ; w 1is the speed of either

mediune.

e can check (12.18) by reducing both media to rest, so that w = 0 ,
55 1 sogh! , cbom i @ ui / u' , where 1 1is the angle of
jncidence. Then (12.18) becomes

12

n'? cos2 1 + n? - n'? R (12.19)

which is immédiateiy"récognised as the elementary formula for total reflection.
To discuss reflection we use the second of (12.6) instead of the first, or,

for isotropic media with the standard frame of reference, the second of (12.12)

instead df the first. But {3’; satisfy the second of (12.11), and so the

equat ion simplifies to

ey & s at e o (12.20)

This gives the two solutions
A R s | k = .-2':;?’1’ 2 (12.21)
The first is mled out (it merely gives the incident ray); from the second we

get for the reflected slowmess-fremency 4-vector cj;

= 1 - ' - 1 = o]
ry < O 20 T3 ;5 - %Y
(12:22)

This is the'véry simple law of reflection when the standard frame of reference is

used.

Since the momentum-energy 4-vector of a photon is Pe = h CT; , and this is
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changed sbruptly by reflection or refraction, we conclude that a 4-impulse acts on
the photon and (in view of the conservation of momentum and energy) that an emal

and opposite 4-impulse acts on the mirror or mecdinm. By (12.2) the 4-impulse on

the photon is

L. A2 o ER (igi2%)

k being determinzsd by (12.2) , (12.5) for refrasction and by (12.2), (12.4) for
reflection. For a fixed mirror this gives an impulse of magnitude 2hy/ ¢ with

no fourth component. For a pair of isotropic media referred to their standard

frame the energy of a photon is unchanged by reflection or refraction, and the

only component of momentum to be changed is that along the normal to the (fixed)

gurface of separation.

13.  Connection with standard Hamiltonisn dynamics.

The theory of this paper has been developed by methods very close to those
used by Hamilton in his geometrical optics, and if T did not translate the results in-
to the mich more familiar langiage of Hamiltonion dynamics the reader might fail to

gee that what is here developed is in fact the Hamiltonian dynamics of a photon.

This is not a modification of Hamiltonian dynamics (e.g. with replacement of

ordinary time by proper time); it is precisely Hamiltonian dynamics of the form

familiar in Newtonian theory.

The best way to make the translaticn is by means of a dictionary of notation,

one colum containing symbols used in the present psper and another those univer-

sally recognised in dynamics, with the linkages indicated. For simplicity of
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translation we use those units for which ¢ = h = 1.,
Present paper. Standard dynarics.
Coordinates X (x = q )
P F P *p
Time X4 (x4 = 1t) t
Momentum w g (o7 p,)
e £ 407 (P | i
Fhergy CZE ({71 = i H) H
Hamiltonian* (). (O, x) = Cﬁ - iH (CT{'E, ’ xr) = 0 H = H (p,q.%)
Equations of motion (8.3)
o ey = 3 P = p) » e o
dxdr n/ ] T dt app
(13.1)
A AN/ Hp aH o H
e AN N R - R RE T e
4 4 P e
Variational principle
6Jo~;dx»r g 5 f (p‘oqu- Bdt) = 8. G2

Note that in (13.1) and (13.2) the familiar Hamiltonian equations of motion and
action principle are the exact transcriptions of the corresponding formilae in the

present theory.

In stendard dynamical theory (Newtonian) we are used to starting with a

Lagrangian L = L (q, q' , t) vwhere q' = dg/dt and Hamilton's principle

# We golve for (72 as in (5.2)
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i

0 4 (13.3)

& J‘L dt

We define the generalised momenta by

= L / 3q' 13,
and solve these equations for %; . We define the Hamiltonian by
H(p s 4 o t) = PJ q'. - L (q ' q' » t) . (13-5)
i ,
Then
Ldt = d H dt i 13.6

and we recognise the equivalence of Hamilton's principle in the form (13.3) and
the acticn principle written second in (13.2).
On the other hand we might start with H(p , q , t) , define q%; by

dy WLy (13.7)

solve for %ﬁ s and define L by

L(q.q'-t) 5 PF

which is simply (13.6) written a little differently.

q}: - H(p,q,t), (13.8)

This second plan is not the usual one in classical dynamics, but it is
essentially the plan we must follow here if we are to obtain a Lagrangian for our
photon dynamics. In view of the dictionary, we can do this by the method of
(13.7), (13.8), but it is better (having seen the connection with standard dynamics)
to go back to oir general method, which takes (). ({7, x) in a general form and
not in the special form CTE - 1iH.

The technique is contained in the equations (cf. Synge (1954), p. 14; I here

write © instead of 1/6)
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ok, 't T Otersx) =05 oigte - G
(13.9)
with
ol de ™ =1 _ (13.10)

The plan is to solve the first of (13.9) (four emstions) for Q';_ in terms of

(8L, »x, ) , substitute these values in the second equation and solve for ©

as a function of (aLr,xr); hence we obtain (7, in terms of (u{r,xr).
Substitution in the last of (13.9) gives
£ RETEY (13.11)
Taking any timelike world line with unit tangent o(r = dxr / ds , we have
?(x el )ds = -e-lo-r—g?%ds = -O’;o{rds-'- - O, »
(13.12)
and so we reconcile the action principle 6 5 CT;_dxr = 0 with the
Lagrangian principle
1 i, A e =20, (1%.13)

In faot, £ (x ,eol ) 4is a Laerangien or, if we prefer Hamilton's term, the medium
function or its reciprocal.

The variational principle (15.15) gives the Euler-Lagrange equations for the

rays,

a of aF
- o = 0, (1%.14)

provided f is homogeneous of degree unity in the ol's . As a matter of fact,

if we find f as described above without using (13.10), it will come out auto-
matically with the requisite homogeneity. But if in the process we use (1%3.10) in

order to simplify the algebra, we can always restore homogeneity by means of (13.10).
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14, Determination of the medinm function (Lagrangiasn) for an isotropic medium

in general motior.

For an isotropic medinm in general motion we have the slowness-frequency
equation (7.3)
2N(T, %) = @) - q@OMW° = 0, (141)
where for the scalar product of any two 4-vectors we write

A RN ), ' (14.2)

and whe re
w ol d e W B OA), P (14.3)

Te shall denote by q' the partisl derivative of g with respect to (T pM4) .
We recall that n 1is the refractive index, computed in the ordinary way for
the local rest “rame, and that in that frame the frequency is \)(O) S (O’/J-) .
If we are not given the explicit form of the dependence of q on (CI’}J-) ”
we cannot hope to carry out explicitly the determination of the medium function
? (x , o) as described in the preceding section. Even if we are given that
form, tﬁe algebra may be very complicated. But we can at least analyze the
problem with a view to explicit calonlations in the next section for a medium
which is only slightly dispersive. Here we proceed without approximation.
The basic equations are (13.9) with (13.10). We have then

afL

Bee gy - e W Rt @M, (14.4)
to be solved for CT; . Miltiplication by Mo gives, since }Lr’pL? T e

O (Ap) = (TM) (L+q) + Faq (TMF. (14.5)
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'I'his is to be regarded as an equation for ((T/.A) ’ which appears not only ex-

plicitly, but also in q and q' . Let the solutn on be

(o) = G[e(xm), L1, (14.6)
s #umotion of two varisbles, now supposed known. Then by (14.4) '
gz = Bk, 4 A (40 + Ba' € (14.7)
but by (14.5)
qG + $q' @ = 8 (oM - G, (14.8)
and soO
gan = Bk ok B Lo - ] . (14.9)
Hence

(o a)

_@+ o) [0 (*pM) - 6] - [8(*p) -0

1}

[ wpyP - 1] - 6%, (14.10)
Our instructions are to substitute for O‘; ‘in (14.1), which is the second of
(13.9), and we do this by substituting (14.6) and (14.10); we get

R [ (k) - 1] = 1+ q) @ w0y (14.11)
Now q is a #mectim of G and P , and G is a function of 6, (gt/u.)
and P : thus (14.11) is an equation to determine © as a function of (::L/LL)
and P ; let the solution be

6 = kK[ (@m).pl- (14.12)

By the last of (13.9) combined with (14.4) we have

2 $
°0L.

[ @) - al@M? - Ba @],
(14.13)

82 = e
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or, by (14.1),

]

r = 2(x.&k) = 6 g (TP

]

e g @, (14.14)

It is easy to see thot this is in fact a function of X and °Lr » known when the
funetions G and K are known.

The two key emations in the above work are (14.5), to be solved for . (O"/J-) .
and (14.11), to be solved for © ; it is here that we are likely to meet practical
dif°i mlties in any explicit calculation.

Te ean however concentrate the algebraic difficulties in a single equation by

eliminatine © between (14.5) and (14.11). By (14.5) we have
6 () = %4 & + (1+qG. (14.15)

Substituting in (14.11) snd dividing by G° , we get

2
(»‘-/;*) ); Lot a v 1 gl - Urg = 0. (1416)
5 2k

This equation has to be solved for G (we remember that q and q' are known
Amotions of G and e ). When G has been found, © is given by (14.15). By

(14.14) the Lagrangiasn or medium function is

% q' G?
f (xl i ) it (&-P) % ql c + 1 + q a (14017)
The case of a non-dispersive medium is singular. For such a medium q' = 0
and G disappears from (14.16), which reduces to
q (o'k,w)‘? s g (14.18)

in which q is a function of F/ only. In fact, the method breaks down for a
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non-dispersive medium, and the reason is not hard to see. A Lagrangian principle
of the form & Jf ds = 0 can be expected to hold only if two arbitrary events
(or at least events :-.‘h?'."*.ary between limits) can be joined by an extremal, or
equivalently if the rays from an event fill a 4-dimensional recgion in space-time.
That is not the case for a non-disparsive medinm. Only a cone is filled, as
indicated in (11.8). It is easy to reconcile (11.8), which uses the local rest
frame, with the more general formula (14.18); in the loeal rest frame we have

)U.P = 0, /‘bl.4 = 1, and (14.18) may be writien in the following equivalent

forms:
2 =
= qat.q_ » B q »
q o(i o0t o (14.19)
2

3 I ;,L o = 0 &
( Q) f'd‘f’ Ay
2 : 2
n OL 3( + ¢L- = 0 ]

e :

the last of which is the same as (11.8) in a different notation.

We see that the Lagrangian or medium fimotiocn does not exist for a non-
dispersive medium, and even in the case of a dispersive medium its determination
in explicit form is in general not possible. It is in fact b_et.ter to discuss
rays by means of the Hamiltonian equlations (8.3) instead of trying to make use of
the Buler-Lagrange equation= (12.14); ihe equaticns (8.3) can be used for non-

dispersive media as well as for dispersive media.
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15, Medium functim (Lagrangian) for a special class of media.

In-the Sellmeier formla (7.5), let \)M be large; expanding and retaining

only the leading terms, we get [of. (7.7)]

n2 -1 = A (f) B (F’) Y(O)Q ’ (15.1)
where
1
. = = X} 2
A (F’) 75 Zl DM 1 B’(P) Z D / oA M - (15'2)
M M
Here B (P) is emall. £ = 0 gives a non-dispersive medium, and we may

think of the formala (15.1) as referring to a slightly dispersive medium.

Let us apply the metl.od of Section 14 to find the medinm funcfion (La-
grangian) of a medium for which (15.1) holds. OCur work applies in particular
to a slightly.dispersive medium ( B small), but the approximations are tricky,
and it is clearer to accept (15.1) as an'exadt formila and make no épproxi-
mations based on the smallness of B . Jccordingly in the notation of
Section 14 we have

foou s+ pylode . A+3(O'/A';2.. q' = 2B (M),

(15.3)

The key equation iz (14.16), and for the values (15.3) it is cuadratic
in G. Accordingly the calculaticns can be carried out explicitly.

To simplify the writing, we note that (gtij is an invariant, and its

value may be obtained by using the local rest frame; we have
2 1
L - = = ¥ -7 o
(-.::{/LL/ i ‘344 (1 6 ) B (15 4)

where

8 = g (15.5)
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v(o) being the ray speed in the local rest frame (or the group speed). Then

2
(d‘M) E 1 = ’32 & (15.6)
(et M)
We have
Fo o+ u. o= )tk ORT,
(15.7)
Fo3 o8 v 3ok kbW
and if we define X by
X = 1 + A + 2BG, (15.8)

(14.16) gives the following quadratic eqiation for X :
Pige <

Hence, selecting the positive root,

X = 12[14 J1+832(1+A)].(15.10)
48
Then, taking B to be positive, we have
2t 0w Pt o R Loy
-5 /
2 = B@® = BE(B 2y/2 (15.11)
1
S R ke
end (14.17) eives
S ofohiay Lt w1e
PAx , K) = ( T - (15.12)

Remembering thet X is given in terms of (dx/.‘l.) by (15.10), we have here the
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reqiired medium function (Lagrangian). To sum up, for a moving isotropic disper-

sive medium, with refractive index as in (15.1), the rays satisfy the stationary

principle & j £ (x ,ol )ds = 0 with £ as in (15.12), X being given by

(15.10) with B as in (15.6).

The stationary principle may also be written

3/2
s fo =1 =4V 4 oax (15.13)
X

n
O.
L]

A r r
B2

If the medinm is in uniform motion, we may reduce it to rest, making /P75= 0,

}44 = i everywhere; then the stationary principle becomes

: /2 ;
5 J (z -xlB%A)i & = 0. (15.14)

If, further, the medium is homogeneous, so that A and B are constants, we have

5 [ R L .0, (15.15)
no matter how small B may be, provided it does not vanish. This stationary

principle is not to be confused with Fermat's principle for which the frequency is

held fixed and also the end points (but not the end events). In fact, (15.15) is

a Hamiltonian principle ( 6 [ Ldt = 0 ) , whereas Fermat's principle is the

analogue of Jacobi's stationary principle, usually written in dynamical theory as
gu

s [ e-mFfa = o.
If we wizh to use the Euler-Lagrange eqatiors (13.14) for the rays, we mist be
careful to make f (x , . ) homogeneous of degree unity in the ol's before taking

the partial derivative of / 9¢t,, -  This homogeneity iz obtained in (15.12) if, in
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substituting for X from (15.10), we make it homogeneous of degree zero by using for

182 the following expression, eaquivalent to (15.6 ):

; ; 5 :
2 (JF) ¥ (o(ol ) (15‘16)

e o (aLfL)z <

16. Rays in a rotatine medium.

On asccount of the stresses set up by rotation, we camot discuss the passage
of light through a cylinder ¢f glass spinning sbout its axis by supposing it isotropic
in the sense of Section 7. But we may reasonsbly assume that a rotating fluid re-
mains isotropic in the local rest frame, so that the slowness-frequency edquation is
of the form (7.3).

Consider, then, a fluid (e.g. water) spinning about the x5-3x1 with constant

angular velocity «J , so that its 3-velocity is

w1=-u)x2, w2=u3x1. w5=0,
(16.1)
w2=632r2, pe = xf'*'xz.
Writine
2 -5
¥ e PR e s e
(16.2)

k (r) ; CDE(W/O.

we have for the 4-velocity JAp of the medium



i ‘Sw : (16.3)

Py
}15 S8 Ij”, his AL4

1
o<
=
'—l
S
o
|
!
w
"
no
-
no
il

I

We shall assume the medium to be non-dispersive and of constant proper density;

otherwise our calculations would be much more complicated and less explicit. As in

(7.3), the slowness-frequency equation is

2 fllo,2) = {G@) = (@ pMF = 0,  (16:4)
where q ( = n2 -~ 1) is a congstant. For the rays we have the eaquations (8.3):
dx
et T
aﬂ—-‘- - aG’r s O..r oy q/-tL‘r (G-—/J) ! ]
(16.5)
d J° :
e N :
ay - e q (@p) T pAy s
the comma denoting a partial derivative (/U-t o ¥ e / er) . [Explicitly
dxl . dOi . - O—‘
T A L RSN IO i, W i
7 (7 1) et (o ) (T ‘
e = e q b, (O ’ & a0 -
a’X 2 = ax AR A )G
dx o g
e 0
: (16.6)
=y | o ey
dy = T - M e iy = -
Here (since /45 = 0 )
) = O3 g + O, * T M. (16.7)

We note the first integrals
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(T% = constant, CT; = e¢onstant, (16.8)

on account of which we may say that a photon conserves its axial component cof

momentum and its energy [cf. (10.1)].

Let us define P and Q by

S R e Q = crf % e O w3 (16.9)
then, by (16.3),
G S0l 2 KB Ja by, " He g 80,

. = (16.10)
(LT"/J) = Qo+ (7'4 Jog

Also by (16.3) with k' = dk/dr

%S K] - §o @
/Lkl,l s ok X, X, fap }11’2 ok "SR X, f ey
5 (16.11)
- ! — 1
Mo 1 S Xy EF, ‘;42’2 k Xy X, e
go that
4+ e + k'
< L 70 s H1,2 (? k' r) x, ,
2B 1
and
Xy Moty om Xy bl 57 7 e Rais
(16.13)
XpAbas =l Poge i TR

We now differentiate P and Q as given in (16.9), substitute for the derivatives
of Xy »%, ,C07 » J, from (16.6), snd make use of (16.10), (16.12), (16.13).

This gives
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: dP
o = o-i +a"§ + k'rq(G’/’-)Q. (16.14)
dQ =
| E_Xm =B , (16.15)
Thus
Q = O s i 0’1 X, = constant , (16.16)

which tells us a photon conserves its angular momentum sbout the axis of

rotation.

By (16.4) we have

i g R e - 0, 06

and so (16.14) may be written

ae - 2 2 2 '
T - % R Frald) 8
- i : (16.18)

<05 S MR G P (et B A

Note that the right hand side consists of constants and known functions of r .

We have also by (16.6)

dx iy
d 2 = S SE. a
Y Che™) % % : ta e ¥ (16.19)

and so (16.18) gives a differential eai1ation of the second order to determine r as

a function of ’k :

LGB = -0l -gh ¢ akQ O ) (Y DA s

ax? 5 e 4 M r) @ * Ty pyl
(16.20)

in which
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k(r) = WY /o, My Trioe - e o Ry Rl
(16.21)
Since, by (16.6), we have
dxy = Ty 2y (16.22)

and (73 is a constant, we can at once change the independent varisble from x

to x if we want to.

3
Let ns write (16.20) more explicitly. From (16.2) we find

k + Krewgfl/e, (16.23)
and if we define a real dimensionless constant K by

L Q

our equation for r becomes
2
ag, (1 - K)
dze(%’z) z -°‘§ .2 42 s i Ka 3, 24
dx : 1 =w o [eo l-wr/e
(16.25)
or, by (16.22),
2
2 a-
@3 - -1 Jas Q(;"zK)g[l- s=——, 11 . (16.26)
d.xg : 0'5 1 iy /e leegdr-/e
Everything on the right is a constant except r .
We now introduce the azimithal angle ¢ by
xl = r008¢¢ x2 o= rsin¢, tan¢ = xz/xl.l (16-27)
and obtain by (16.6)
dx dx
re . ke i 2
r ax N Tx T %o ax Q - q @WKk, (16.28)



=59~

or
@ .. g ¢
dx = b ak (kQ + T, }*h)
= 9__2_ _q%‘éii%(l-K)
r
win‘(l-—K)
= 35 - i g 3 5 (16.29)
r el Lo

"hen r has been found as a function of “%¢ from (16.25), then (16.29) gives ¢
as a Mmectiom of K . Thus the path of the photon is determined. As for
time-dependence, we have by (16.6)

dx
X Tyoom o q ol (TR)

1+ q (1 - K) ; (16.30)
oz [ o ] 5

Since it is easy to get a first integral of (16.26) (mltiply by d (r°) / dx3 5
the complete determination of the rays is essentially reduced to quadratures.

The formilae are much simplified if the ray starts from the axis of rotation,

the angnlar momentum of the photon about that axis being then zero. Let us take

as initial conditions, for X = 0 ,
x1=x2=x5=x4"0,
(16.31)
r 2.0 (lx‘/dx5 = taneo,

6, being the inclination of the initial ray to the axis of rotation. By (16.9),

(16.24) we have

o= 0 Eee'i0, (16.32)
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end the equation (16.26) for r simplifies to

2
2 o :
9—5(%13) = -1_—-—‘2*&1 + ‘32 o . (16.33)
dx a I ow kg ¥ /o
p) 3.
Applying (16.31), we get
2
g ig
tan29 = =1= ng*-é, —t -}-seoe : (16.54)
0 2 0% n 0
0“5 5
and so (16.33) may be written
: e
q sec” ©
9’%—(%:-2) = Leecfo -1+ — iaprae  {36,35)
d.x5 n n° {1 -« 3 * [/ a%)
Waltiplying by d (r°) / ax, end integrating, we et
2 2
¢“ q sec” ©
[%;—(%rz)]z = r2(—lé-se0260 - 1) - e olog(l-u)zrz/ce),
3 n n’ (3
(16.36)
which, if we define © by
tan & = dr / dx (16.37)
may be expressed as
2 -
: : c® q sec” ©
tan © = -1-5- sec? 60 - 1 - S 20 log (1 - W2 r° / 02) . (16.38)
n 1l e

As for ¢ and x, , we substitute from (16.32) and (16.34) in (16.29) and (16.30),

obtaining

0
B s (16.39)
dx; OBy h B R 59
e g ec ® [ 1 + 2 ] (16.40)
'-fdx5 n ° 0 1 -wzr‘?/ce : :
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Hence
5 O P o db
S 3 RSmen 80 e, (16.41)
3 3
so that
Wt = & = 0 e B X (16.42)
nao 0 L 5 E ] L]

$f we choose the rzos so that & = 0 initially for the ray under discussion.

_This gives us the angular lag of the ray or photon behind the medium; note that

it is proporticnal to x5 .
So far all calenlations are exact. Let us now gpproximate taking (Jr /o

small. FExpanding the logarithm in (16.38), we get

( %5‘ )2 5 tanc 8 -+ 12 r° , (16.43)
o)
3
where
: 2
(Ve q (7)) ;o T
L = — gec B = — gec O
c 0 }2 =3 c 0 ,l 5 LIS (16.44)
Hence
r = L-l tan BO gsinh L x5 é (16.45)
or :
" iy g )
r tan GO . Xz + ztan 8 . L X3 (16.46)

to the order gg? £ 02 inclusive. The first term corresponds to rectilinear
propagation; the second term indicates a cnrvature of the ray away from the axis

of rotation. To the same order (16.39) gives for the rate of twisting of the ray

dd e v b
E§; o (16.47)

and hence

¢ = = g sec 80-. x5 - (16.48)
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or, by (16-46)’
g '%? . % cosec O . T . (16.49)

We recall that the argument of the present Section deals with the propagation
of 1light in an isotropic medium rotating sbout an axis with constant angular velo-
city, the medium being non-dispersive and of constant proper density so that the
refractive index is a constant. The theory was general to (16.50) inclusive;
then we considered rays emanating from a point on the axi= of rotation; and finally

we approximated in this case by assuming (O T / ¢ small.

: & 4 A photon as a dynamical system with four desrees of freedom.

In the dictionary of Section 13, a photon appears as a dynamical system with

three degrees of freedom; coordinates x{g , momenta O » X imaginary time,

P
and oy imaginary energy (if we put ¢ = h = 1) . But there is another way
of looking at this dynamical system.”

Let L)L (o~ , x) be any given Humction of the eight variables C}‘r T

Congider the emations

@R At 3L (17.1)
— = 7 = ey > .
dy o, d % x .,

We recognize these as Hamiltonian eaquations of motion in classical form for a

dynamical system with four degrees of freedom; the coordinates are x, , the

*  Suggested by Professor C. Lanczos at a seminar.
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nmomenta are CT;.: the "time" is )( , the usual Hamiltonian function is ) ; this

Hamiltonian is independent of the "time", and so (17.1) possess the first integral
1 (0=, x) = oconst. (17.2)

This constant does not have to vanish.

1f )L (g, x) = 0 happens to be the slowness-freqiency equation of some
optical problem, then the solutions of (17.1) provide us with the rays, as previously
discussed. But these rays are included in the wider class of solutions of (17.1),
becange we can start with arbitrary initial values of X, » <j; , not subject to
Q(g,x) = 0. This wider viewpoint may be of advantage in discussing systems

of rays, because it brings us more closely in touch with classical theory; for ex-

ample, we may think in terms of a phase-space of ten dimensions, in which the co-

ordinates are X, . (T; s ‘7{ . [). , and then we recognigze

§> (O ax, - f14%) (17.3)

as that relative integral invariant which is usually written

(b (pr de o w Hadt) . (17.4)
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