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PREFACE

The following lectures, given in 1957 at the School of Theoretical
Physics of the Dublin Institute for Advanced Studies, are devoted to the
theory of group representations. This theory'is-nhw better undcrstood
than it was when I wrote, some twenty years ago, my book "The Theory of
Group Representations"; and its exposition in the present lectures is
considerably simpler in many respects than that in my book. I may mention,
for instancc, the treatment of the modification rules for the rotation,
symplectic and orthogonal groups, in which I have been able to use with
great profit the ideas of Professor M. J. Newell. The treatment, in
these lectures, of the analysis of the product of irreducible representa-
tions of the unitary group is more satisfactory than that given in my book.
In the last lecture I have given a simple solution of the problem of
analysing the representation l“}'_mi’\ @ {_2 49 )\2} of the 2-dimensional
unimodular unitary group. This problem is important in applications to
nuclear physice and was nut'treated in my Vook.

I have, once again, the pleasure of ending a preface with the pious
inscription:

rd 7’
Do chum Gloire De, agus Ondra na hEireann

To the Glory of God and Honour of Ireland.

December 1957 Francis D. Murnaghan
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Dublin Institute for Advanced Studies
School of Theoretical Physics .

frnfesanr F. D. Murneghan October-November, 1957

THE ORTHOGONAL AND SYMPLECTIC GROUPS

. Lecture 1

1. Hbtatiﬁn.and'terminulggz

We shall concern ourselves. in these lectures with certain linear
transformat ions in finite-dimensional linear vector spaces. The concept
of a finite-dimeunsional liunear vector space is quite abstract and our
First task is to explain it as concretely as possible. To do this
we must first decide upon the number field in which we shall work
and we restrict our attention to two number fields, the field of complex
opumbers -and the field of real numbers. Of these two the simpler is
the field of cnmplggigﬁgstn the fact that it is algebraically closed,
every polynomial function, with complex coefficients, of a single com=
plex variasblo being zerp for at 1eagt one value of the variable.
On the other hand, the field of real numbers is not algebraically
closed, the polynomial xa + 1 , for example, not being zero for
any real value of x . We suppose, then, that our underlying num-
ber fiald is the field of complex numbers -and we shall indicate, when
we wish to restrict ourselves to the real nmumber field, the changes
in the argumeunt that are made necessary by the fact that this number
field is not algebraically closed.

We demote by X & nx 1 matrix i.e., a matrix of n rows ané
1 column whose elemermts x1, ey xn- are arbitrary complex numbers,
n being any positive integer, and P Xqy eeey X, 8T€ n such nx1
matrices we denote by X the mxn, or n-dimensional, matrix
whose column matriceELara X4 ...:ixn'. We suppose Xgg eroy X,
so chosen that X hes reciprocal X = §3 then an arbitrary n x 1

£\
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matrix may be written in the form Xc , ¢ . being tﬂe;pﬁuducf ﬁf the
given m x 1 matrix by X-1 .  The pair of matrices X , ¢ defines
an. u-diﬁensinnailﬁectnr and the collection of vectors obtained by
varying c¢ , X being held fixed, is known as an n-dimeunsional

linear vector space. Multiplicatiﬂn'ﬁf'a vector by a complex
number and addition of any two vectors are defined by performing
these operations upon the n x 1 matrices ¢ 3 thus, if we

denote that v is the vector which is defined by X , ¢ by

writing ¢ — v and if m is any complex number, then mc — mVv
and, if Cqy = V4 9 ©Cp -ﬁ Vo then -c + cz-—4 v1 + Vo e

1
If e,-—3 vj y, jJ =1, «esy n, where e, is the n x 1 matrix

all if whose elements are zero save thaJ jth which is 1 , then
?‘ = ¢191_f e + ﬁnan so that v = c1#1 + 4o + cnvu .

We term the set of n vectors LSREREREY v, @ basis in our
n-dimensional linear vector space and we say that this basis is
defined bﬁ'li ; furthermore we term the elements of c ‘the
coﬁfﬂinatea of 'v ﬁith respect to the basis which is defined
by X . . S

"~ If X' is any other u-dimensional matrix which possesses
a:feciprncal our arbitrarily given n x 1 métrix'may be written in
the form X'e' where X'e! = Xe and the elements of ¢! furnish
“the coordinates, with respécf ta-the basis which is defined by X',
nf'thé'veétﬂr v whose coarﬂinaﬁés, with féspﬂct to the basis which
is defined by -K, are furnished by the elemewnts of ¢ . Thus we
may régard. ¢ and c¢' as different reﬁresentatiuns of the vector
which is defined by the pair of matrices X, ¢ or equivalently, by
tﬁe.péir of mﬁtrices Xf, c','the fundamental connection between the
twWo rebfesenfa%inns being given by the relation Xc = Xte! which"'
it ié.cnﬁveﬁient to write in the form | | |

x~1x .

Il

el = Ac; A

We term A the matrix of the transformation from the basis which is
determined by X' to the basis which is determined by X' .
If B is any n-dimensional matrix which possesses a reciprocal

Bo tranefmfms the collection of all

I}

the relationship ¢ - 4d
nx 1 matrices into itself and, hence, the collection of all n-dimen-

sional vectors into itself. If v 1is the vector defined by the pair
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(X, c) and W is the vector defined by the pair:. (X, -d) we write

vV — W = v . | Since B (mc) = m Be and B’ (c uz) = Bc1 +=Eb2
we have |

k o 2oy e 7 - x (3 AR

(f (av) = mfviy 0 (v, + wé) By + vy

and we express these properties of the transformation #2 by the
statement that & 1is linear. Since d' = Ad = ABc = ﬂB#_1c‘
=1 -1

we have B' = ABA A = X'"'X. Weregard B and B! as
different preseutations, in the bases defiﬁed by X and X' ,'
respectively, of the same linear transformation ﬁ% « The linear
transformation /4 itself may be defined as the collection of all pairs

(x, B) , (X', B'), ... of non-singular n-dimensional matrices where

-1

B! ABA A = X

2. TEE_nﬁdimensiuual unitary and orthogonal groups.

If ¢ is eny n x 1 matrix we denote by Iﬁt its transpose
i.c., the 1 x n matrix (31, cse 9 cn) and by ¢ its conjugate
j.ee, the n x 1 matrix whose elements are the conjugate complexes
of the elements of c¢ . We denote the result of dﬂmbiniqg these
operationg, in either order, i.e., the 1 xmn matrix (c y essy C )
by c¢¥ sud we term c* the star of ¢ . Similarly, if C 1is
any n-dimensional matrlx whose cnlumn.matrlces are Cl’ sre 9 Cpoy
C* is the n-~dimensional matrix whose row matrices are cl*, cee g un*.
If Cy and C, ere any two n x 1 matrlces we may associate with
them either one.cf the_twn_numbera 02401 and cétc1 « The first

of these has the property, which the second does not have, of being

real and non-negative when Cy = Cy 9 it being'pusitive save
when S, is the zero n,x 1 matrix. If C1=*ﬂlv1 y Co—} ¥y we

term the two numbers cg*c1' and cétc1 the first and second scalar s
products, respectively, of v, by Vo with respect to the basis
defined by X . The transpose of a 1 x 1 matrix, or number, is

this number 1tself while the star of a 1 x 1 matrix is its conjugate
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and either the transpose, or star, of the product of any number of
matrices is the prﬂduct,.in;the_reverﬂa order, of their tr&nspmses.
or stars, as the.case may bé. Thus the second scalar prndﬁnt'of
any two vectors, with respect to the basis defined by X ; ia a
symmetric function of the two factor vectors while the first is
not, in general, such a symme%ric function, an infEfﬂhﬁngE:Df the
two facter vectors sending the scalar product into its conjugate.

If is clear that néithér ﬁhe.firgt'nﬁr second scalar product
»f two vectors is, in general, indEpenﬁent of the ba%is used to

define it. : The first scalar product of vy by v, with respect

to the basis defined by X' 1is c¢j*c; = o, A% A o, and for
this to be the same as 32* G, » 1O matter what are the n x 1
matrices ¢y and c, A* A must be the n-dimensional identity

matrix E o Similarly, in order that the second scalar product
of v, by v, be the same for the basis defined by X' as it is
for the basis defined by X , no matter what are the vectors vy
and Vo, o ﬁt A must be Eﬂ . We term any n-dimensional matrix A
which satisfies the.relation A* A = B uﬂi#EP? and wetterm any
n-dimensional matrix A which satisfies the relation A A = Em'
complex orthogonal. Since det A* 1is the complex conjugate of

det A the determinan£ of any'unitar? matrix is of modulus unity;
gimilarly the determinant of any complex orthogonal matrix is either
1 or «l. Thus

1) An ﬁadiﬁeﬁsianal unitary matrix U 1is one whose reciprocal is
its star, det U beihg a complex number of unit modulus.

2) ﬁn'n;dimensimnal complex orthogonal matrix O is one whose
reciprocal is its transpose, det O being either 1 or =1 .

It is clear, from the mannher in which they were introduced, that

if U, and U .are any two n~dimensiunal unitary matrices so also

1 2
is U1 U2 and that if Gl and O, are any twc n-dimensional com-

2
plex orthogonal matrices so also is 01 02 . Thus the collection
of all n-dimensional unitary matrices constitutes a group which is
termed the n-dimensional unitary group and the collection of all

n-dimensional complex Grthngnnal matrices constitutes a group which

1s termed the n-dimensional complex orthogonal group.
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When we restrict ourselves to the real field there 1is no distinction
between the unitary group and the orthogonal group since, when A 1s
re 1, A¥ = ﬁt. Thus the real unitary group is the same as the real
complex orthogonal group. We shall be concerned in these lectures
with the real complex nrthngﬂnai_grnup rather than the complex ortho-
gonal group and we shall use the adjective orthogonal, without the
qualifying adjective complex, in the sense of real complexX orthogonal.
Phus the n-dimensional orthogonal group is the un-dimensional real
oomplex orthogonal group or, equivalently, the n-dimensional real
unitary group. An n-dimensional matrix O is orthogonal if

1) 0 is real |

2) dt is the reciprocal of O .

Det O 4is either + 1 or - 1 and those nfthugonal matrices whose
determinant is 1 coustitute a group known as the n-dimensional
rotation group. We term any matrix R of this group a rotation
matrix so that an n-dimensional matrix 2 1s a rotation matrix if

1) R is real

_2) Rt ig the reciﬁrucal of R

3) det R is 1
When n = 2 the reciprocal of R = {133. ;) i '(’_: r“'”) y

a
gince det R = 1 , and since this must be the same as Rt_ we
have d = a , ¢ = =b where 82 + b2 =1 (since det R = 1)
Thus sny 2-dimensional rotation matrix is of the form
{
R = { ¢ > 7} C = cos® . & = sin @ , —n,{ @_i_ﬂ .
\ g c } | &

Exercise. Show that the first scalar product of any two vectors

with recs-ect to a given basis is invariant under a linear transformation
v— vl = @A v of the n-dimensional linear vector space if, and only
if, the n-dimensional matrix B which presents {2 in the 5i?eu basis
is unitary and, similarly, that the second scalar product wifﬁ respect
to the given basis is invariant under @& if, and only if, B is

_éamplex orthogonal.



Lectufe 2

The Lorentz and symplectic groups

The concepts of the first and second scalar products of any two
vectors with respect to a given bésia may be geéneralised as follows.
TLet M be any n-dimensional matrix, not necessarily possessing a
reciprocaly then we may associate with.any two vectors Vis Ty
and the basis defined by any non-sipgular n-dimensional matrix X
one or other of the two numbers cQ*Mc1 y EEMC1 and we term these
mumbers the first and second scalar products, respectively, relative
to M , of v, by v, |
These scalar products, relatiive to M, will be the same with respect

, with respect to the basis defined by X .

to the basis defined by X', for every pair of vectors v, and Vo

if, and only if, AMMA = M and A'MA = M , respectively, where
A % .K"1I . The collection of all non-gingular n-dimensional
natrices A which satisfy the relation A¥MA = M constitute a
group as do also the collection of all nonssingular n~-dimensional
matrices which satisfy the relation AtMA. = M. The relation

A¥MA = M 1is cquivalent to the relation A'*M'A' = M' where

M' = UxuUu , A = U¥AU , U being any n~dimensional unitary
matrlx, and so the group defined by the first scalar product relative
ta M' is the same as the group defined by the first scalar pfnduﬂt;
b Sonpis to M. Similarly, if M' = 0 Mo, O being any
n-dimensional complex orthogonal matrix, the group defined by the
second aéalar product relative to M! 'is the same as the group
defined by the second scalar product relative to M .  Furthermore
it is clear that M may be multlplled by any non-zero number without
affecting thﬂ Zroups defined by either +the first or second scalar
prmducta relative to it.

Exﬁmﬂle. When n ='2. and' M = (10 ?) the group defined by

the second scalar prndunt relative to M is the cullectlnn of all
2-dimensional matrices I which satisfy the equation L ML = M.
This is known as the 2-dimensional complex Lorentz group. The real

Lorentz group is the subgroup of this obtained by restricting L to



be real. Writing L = (: g ) we have
(1 0;) _fa D ( 1 0 ( a c‘) _ (= b}{ a c\ _
0 -1 c d 0 -1 b d c dfi-b =~d
52 - b2 ac - bd )
= 2 2

ac - hd ¢ -d/

go that 32-b2==’1, ac - bd =0, 02-d2 = -1 Since M
is non-singular, det L = + 1 and we may restrict our attemtion

to the Lorentz matrices for which det I = 1 , since any Lorentz
matrix whose determinanf is = 1 may be obtained from one of these

by changing the sign of either of its two column matrices. Writing

b = sinh® , a = +cosh® , ¢ = kgink® , d = + k cosh®
where k=1 since det L = 1 . Thus the 2-dimensional unimodular
real Lorentz group is a 1-parameter group,the typical elemeut of the
group being |

+ cosh @ sinh O . -
L@) = ( sinh ® + cosh @ i ~o L8 w

There are two cssential differences between this group and the 2=

dimensional rotation group whose typical element is

_ fcos® -ain@) ,
RO) = (20 TuRg ) -w e

Firstly the unimodular 2-dimensional Lorentz group is divided
into two distinct pieces, a typical element of the first piecs,

which is a subgroup of the Lorentz group, being

_ cosh® sinh ® ) ) y s
I"l(@) B (sinh@ cosh @ ’ -0 (&l

and a typical element of the second piece being

_ [~ cosn® sinh 6 ) ) a /
LE(@) ( sinh @ - cosh @ ' o L8 { o,

while the rotation group has all its elements furnished by the single

formula



R (0) = (cns@ - sin © \ : ”-ﬂ: L

sin ® cos © / K

™~

Secondly, the parametric space of the Lorentz group 1s unbounded

while that.nf the rotation group is bounded. On setting

Co=1/28 01 1 Lot __-'01)
R = 2 {_4 4 ) wehave M' = RMR = h o

and so the 2-dimensional Lorentz group may be:presented as the

collection of matrices L' which are such that

£ /0 1 | (o0 1

! 1 -

()" {; o) b {1 o)

. $ ' | " exp -B 0’
1 ' -
L' being R'IR . Thus LT(@) = ( 0 exp@)' and
‘_ o o fexp © o . Co |
.LEFQ)- = (1 0  exp ﬁ@‘). ﬁar any value of nh the Lurent%

- group ‘is the collection of all n-dimensional matrices L' which -
satisfy the equation LtML

n-dimensional matrix whose first n-1 diagonal elements are 1,

M where M is tne .diagonal

I

the last one being - 1 . Since: ¥ is non-singular det L 1is
gither 1 or =1 and the matrices L whose determinants are 1
cnngtitute a_subgrnup.ﬁf the Lorentz group (any element of this
subgroup being knﬁwn as a nroper Lorentz matrix). Any non-proper
Lorentz matrix may be obtained from é proper Lorentz matrix by
changing the sign of one (or any odd number) of its column natrices.

2k 1is even and M is the Zk-dimensionel matrix

When n

1
L

o0 - .
I = ( Ek. 0 ‘) the group diéfined by means of the second.
scalar prﬂduct-relaiive to. I is known as the 2k-dimensional
symplectic group. Since : I  is non-singular, its reciprocal

being - I , any 2k-dimensional matrix which satisfies the equation

StIS = I is non-singular and so the 2k-dimensional symplectic
grﬂuﬁ is the collection of all 2k-dimensional matrices which satisfy
the equation StIS = I . \VWriting S in the form g g g.) ’

where A, B, C, D are k-dimensional matrices, we have

t t

, (Bta._AB B’JGC-AD)
I8 - = pa - c'B Dc - o'p .



so that S 1is sﬁﬁplebtic if, and only if,

1) A'B  and ¢'D are symmetric

2) Dta - o' = E,
For example, I is itself a 2k-dimensional sympléctic matrix. When
k=1, A B C and D are 1-dimensional matrices, i.e., ordinary
campiéx numbers, an& condition 1) becomes vacuous while condition
2) étatea that 'S 1is unimodular, i.e., of determinant 1 « Thus
the 2-dimensional symplectic group is the 2-dimensional unimodular
group, i.e., the collection of all 2-dimensional matrices of deter-

minant 1 . = The real‘E*diménsiDnal symplectic group is a 3-parameter

group; if S = (.E 3) we may take a , b and C as our 3
parameters, d Dbeing arbitrary when a = 0 and determined by the

formula (1 +be) /a when a £0 . - The complex 2-dimensional
symplentic group is a 6-parameter group (we may take as our 6 para-
neters the. real and imaginar& parts of a, b and ¢ e

Exercise. Show that the Ek-ﬁimensiﬂnal matrix (‘Ek G H% ial

unimodular and that it is aymplectip'if, and only if, the k-dimen-
sional metrix C is symmetric.  Show, further, that the 2k-dimen-
sional symplectic matrices of this type constitute a group which is

isomorphic with the additive group of k-dimensional symmetric mat-

rices. |

Exercise. Show that if S is symplectic so also is St . Hint.

T is symplectic and St_ = IS“1Idﬁ .

Exercise. Show that [ A 0 *)_ ig a 2kx-dimensional symplectic
( o (" |

matrix if A is an arbitrary k-dimeunsional matrix.

It is a remarkable fact that the 2k-dimensional symplectic
group is unimodular and not, like the orthogonal group, composed of
two .pieces, one consisting of unimodular matrices and the other con-
sisting of matrices of determinant - 1 . To prove this we first

A C
B D

-1 ( pt - |

observe that S = ( ). is symplectic if, and enly if,

so that det (At) = (det A) /det S . Thus
L
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S is unimodular if A is non-singular. If A 1is singular we
consider the symplectie matrix S" = S'S =

E C'\[A C |

0 y C' YDbeing an arbitrary symmatric k-dimen=-

Ek B D

sional matrix. A"

I

A + C'B is not singular for every choice of
C'sy for, if it were, it would follow, -on taking C! to be a diégnnal
matrix all of whose diegonal elements are zero save one, that each row
matrix ¢f B is a linecar combination of the row matrices of A and
this would imply, since A is singular, that S is gingular. Hence
S" is unimodular and it follows, since S' ig unimodular, that
S = 3‘_18" is unimodular.

We conclude this lecture by an indication of the importance of
the symplectic group in mechanics. . The canonical equations of a

conservative dynamical system with k degrees of freedom are

— - H - J = H g 1 2 " e
(PJ )“t qj ? (q )‘t Py ? J y &9 y K
where q = (q1, e qj) and p = (p1, cees pj) are the co-

ordinates and momenta, respectively, of the system, t is the time
and H = H (q, p) is the Hamiltonian function. On denoting by
x +the 2k x 1 matrix whose first k elements are those of p and
whose last k clements are those of q , Hx is the 1 x 2k matrix
(ﬁp , Hq) and the canoaical equations of the mechanical system appear
in the form
1

x, = I (H)
Under a differentiable transformation x —}x' we have
t
)

: _ | -.,_. -t H-.'.. .
g, = Jx = JI (Hi) = J1I (Hx,J

+ t
JIJ (HK,)

where J 18 the Ck-dimensional Jarobian matrix x‘x y 1e8«y the matrix

. " _%h . ' m : [l : ! _
whose m'f? row matrix is .( x;1 y seny K;Ek ), @™ = 1, <v., 2k, and
these will be of the cannnicai form x% = I(Hi!)ﬁ if, aﬁd only if,

t . ST 5 |
Jd IJ = I, i.e.y if, and only if Jt or, equivalently, J 1§ symplectic.

If £ and g are any two differeutiable functions of x , the Poisgson
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bracket of £ and g 1is fx I (gx)t and this will be unaffected by
the differentiable transformatiom x-—s x' if, and gnly if, the

Jacobian matrix x; is symplectic.

Exercises.
Te Show that the 2-dimensional matrix (; g) , whose elemeuts
are k-dimensional matrices, is both symplectic ﬁnd unitary if, and
only if, 1) B'A is symmetric, 2) D = & C = -B, and 3)
A¥A + B¥B = Ek . Hint. Thz-lz re?iprocal of {; SJ must be
both ( D: - C: } and ( Av B¥ H, . Note. We term a 2k=-

- B A C¥ D¥ J .

dimensional matrix which is both symplectic and unitary U-symplectic
and the collection of all such matrices is the 2k-dimensional U-
gsymplectic group.

2. Show that if U is an arbitrary k-dimensional unitary matrix

then (Lg g ) = U+T is a 2k-dimensional U-sympléctic matrix.
3 Shnw:thé% if M is alternating, i.e., if Mt = -~ M , then the

second scalér product, relative to M , of any two vectors with respect
to any basis, is an alternating function of the two factor v:octors and
deduce that the second scalar product, rclative to M , of any vector
by itself, with respect to any basis, ig zero.

4. Show that if M dis of the Torm N¥N , where N 1is any n-dimen-
sional matriﬁ which possesses a reciprocal, then the first scalar
product, relative to M , of any vector by itself, w'*th respect to any
basis, is a non-negative real number which is zero only when the vector

is the zero vector.
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Lecture 3

1. The parametrisation of the unitary group.
The 1-dimensional unitary group is the collection of all com-:

plex numbers exp @i of unit modulus. Thus it is a 1-parameter

group whose parameiric space - T { ® £ m™ is bounded. This

parametric space is not closed but we close-it by identifying its

end points -T and 7T ; thus, ﬁhen we spcak of a function £(0)

ﬂf'thé grnﬁp, rather than of 8., we refer to a periodic function

of period 21W , . ff (-) being the same as £(m) . Since

exp@i = e+8l, ¢ = cos® , 8 = gin® , there is an

icomorphism between the 1-dimensional unitary group, whose typical

clement is exp ©® 1 , and the 2-dimensional rotation group whose

o\
typical element is ( : z } . The 2-dimensional rotation

group is g real representation, or realisation, of the 1-dimen-

sional unitary group, the realisation of 1 being -{t? _'; } .

From this we deduce, on multiplication by r = (a2 + 52)1/b y &
realisation of the algebra of complex numbers r exp i = a + bi ,
the realisation of a +'bi being é : - Z } . |
| The é-dimensiqnal unitary group congists of the 2-dimensional
matricea U which are sucﬁ that U“1 = ﬁ* . The determinant of U
is a complex number exp &1 of unit modulus and so f is ﬁhé pro-

duct of a unimodular 2-dimensional unitary matrix by Exp'g n

If (ﬁ% ; ) is a unimodular 2-dimensional matrix its reciprocal is

( '% - ; } and so any unimodular 2-dimensional unitary matrix is el the

form fa - E-\) where aa + bbb = 1 Writi a = u, +a,l

b = a, - 331 , where 8, 1 85 5 8y and a¢ are real, we see that

any unimodular 2-dimensional unitary matrix is of the fomm a, £, + a,%,+

+ + s here 2 4, 924+9%2+a% = 1 and
83 %3 By Ty WHSTE By T ByT T 80 T 8y

;'; = E y L = ( 0 - ) E = ( 0 -1 \ EE'—- =( 1 0\
1 2 2 -1 o/’ 3 -1i 0} 4 N0 -1/
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Si‘ﬂée | £22 - 5 2 - '&_42 = - EE, 13_3

'5_1:-__4 - {:..2::- !".‘...4&3 y

.:; ‘:;. :; —_— = 'E ';-.--
42 7 73 2747

!

- —

= r_ = 2= e £
2 3 4 3 72

unitary group is a repretentation (in the field of complex numbers)

we see that the unimodular ?-dimensional

of the group of unit real quaternions in which the represcntations
of i, j amd k are *2 y 7.5 and g respectively. From this

ve obtain a 2-dimensional I‘Epr‘ESE'ﬂfﬁtiﬂﬂ of the algebra of real

erni ' e + pi + + v ai +bPi_ +ca2,+dz, =
quaternions in which a * bi cj dk — a 5 bg,z cZy a 4

- (a+di - b - ci

beci . a- -:11) an@ 'I:his.furnlshes, in turn, a 4-dimensional

#

realisation of the algebra of real quaternions In which

| /a -4 =D c

| | d a =-¢ =0

a + bl + ¢cj dk“—;}, b o o 3
- C b -4 a

the realisations of i , j , k being, respectively,

‘00 -1 0 /00 O 1 /0 -4 00
1 = o 0 o -1 3_100-10‘ KR o= | 0 0 0
=l10 o 0]’ =t o1 o0 0] “lo o 0
0 1 0 o \-1 0 0 0, 0 0 =1 0
Since, for amy uunimodular unitary A 2-dimensional mairix
(,E _:E), ga + bb = 1 weo may writc al =c¢ , bl = s where

¢ = cos®, 8 = sin®, 04 @ <« w/2. When © =0, the matrix

is of the form D () = exp{ 1 0 where - <L A & T
: - D exp ....‘;Lj_ , - _— ’

A being the argument of a . In general the maitrix is of the form

D(x)U (€, &) where G = A+ o , /i being the argument of b

and | p | 3 |
| ( c - 5 exp - 7 1

s expv 1 c

U @, 5) =

Thus the 2-dimensional unimodular unitary group is a 3-parameter group;

taking ® , < and {J as the parameters, the parametric space_ie
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0£ 0 _4_._’1:/2_ y =T L LT, =T Lﬁf'é'ﬂ:‘ . Upon multiplication by

. exp ol 1 o
exp 5 1 and denoting by D (911‘1 OL;_;) the mairix 0 expoﬂgi

we see that the typical elemeut of the 2-dimensional un':i'.tar:,r group may

be written in the form D (., ot,) U (8,T7) where ok, = sf2 + oK |

s::f-z = 5/2 .- P S Thus the 2-dimensional unitary group is a 4~
parameter group; if the parameters are taken to be v, 0, DL‘I and '0‘(2
the parametric space is 04 © £ m/2 y =MLT LT, =TLALLT r-
- LA, LT o |

1;"i'im'-‘n::u. n=>3 w.é denote by U12 (@', a) , U13 (91‘3—) ’ U23 (@r‘j—} ’

respectively, the "plane" 3-dimensional unimodular unitary matrices

c -8B exp -0 1 0 S 0 —_aexp_-ﬂ"i
s exp0 1 - c | 0 ’ | 0 1 0 .
0 0 1 | s expTU i O c
1 o | 0
0 C - B eXp - (T'.i “
0 sexp( 1 C
where ¢ = co0os® , 8 =s8in® . If U is any given 3-dimensional

unimodular unitary matrix we determine (':11 and O'TI so that (U )g 4 the

eiement in +the third TOowW and sccond cmium_n of U' = | U U*zﬁ(@ﬂ ﬂ}) , 18
ZETO » Since (U'}z = C, (U)g - E‘E. (exp U—‘i i) (U);} ﬁ-e achieve this

by setting, if (U)g = 0, @1‘ = n/_z (' g7, being arbit.rary) and,

it (U)g £ 0, :f.'j = org (U)g - TS (U); ten <, = KU)S‘/HU);"
t"‘l‘1_ bring orhitrory *f {U)g =0 . We next det{-:rani_ne, in_tl.m:-: same wWey,

&, eand g, so that -(U”)? = 0, where U" = U U*13___(HE’ 0 %)

Since (U"); = (Ut ); = 0 +the third row-matrix of U" ~is a multiple
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of 'e% 4 the multiolier being a complex number of unit modulus. Hence
; U 0

U" 48 of the form i 02 '13 where Ué ig a 2-dimensional

eXp g

unimodular unitary matrix. In other words
n . o —
=l (541 % g1 75) U12(@-3’”3).
where D (1.?*1 y 7 09 J'\B) ig the diagonal 3-dimensional matrix whose
‘diagonal clements are exp,1 , ©Xp -..*-2i , €Xp '31'3 i, =:&1 +-.1'L_~2 +.-;‘«3 = 0,

mod 2T . Thus |
U = U UL(0,,0,) = UM Uu5(6,,0%) Uy 5@ 97)

= D (g, Hpy hyg) U, (05, T5) U, PR o) Ups(®447%)
Upcn multiplication by exp % i , whecre eXp ;5;1_ is thc determinant of any
element, not unecessarily unimcdular, of the 3-dimensional unitary group,
we see that the typical element of this group 1is of the form
2‘:5’ 3) Uﬁme’ 2) Uz:’:(@ﬂ ’:T%) .

" the restriction ,1.1 + ‘-}"2 + -.:L.:.}

D (-:#-1,1:#-2, }3) U,

Wi

0, mod 2T , being lnow withdrawn.,
Thus the 3-dimensional unitary group is = 9-parameter group aﬁd, if
we use the angles © , @7 and % as parameters, the thrce angles © vary
over the first quadrant while the siX angles ¢ and oA - are unrestricted
over the imterval ( -7, T | .

When n =4 , the same argument shows that the typical element of

the 4-dimensional unitary group may be written in the form

U24(@2,IT2) U (@ {T )
where D (&X,, &y, dj,f:i.4) is the A-dimensional diagonal matrix whose
diagonal elements are eXp -%11 s ©Xp {:;Lgi y EXp f:;%i , exp <41 and, for

4
example,
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c =cos b, 8= aid

b 1]

0406 £mn/2,,

-T L G LT
Thus the 4-dimensional unitary group is a 16-parameter group, there
being 4 parameters A y 3241 = 6 parametéra Y and € parametors

. . . i N .2
d~ . Similarly, the wn-dimensional unitary group is an n“-parameter

group, there being n pardmeters ¢A, (n~1) + (n-2) + e + 1 = ﬂgﬂ—‘!l
parameters W and n(n;TJ parameters {J . In the parametric space

the parameters ® vary over the interval ”O 40 £ T/2 while the para-
- meters (7. and ol vary over the interval ( - T, 'ﬂ:'}_ « The first
factor (nq'the 1eft2.in;the factorisation of an n-dimensional unita:y
matrix is a diagonal n-dimensional matrix D ($¢1, .,.,ugn) whose
diagonal elements are expatd , ..., axptih} and the remaining factors,
cach of which is a "plane" unimodular n-dimensional unitary matrix, mey
‘he grouped into nfﬁ: get s nfrwhich the first, counting from the right,

contains n-1 factors and is

U1 n.(@n-1 7 Tyt ) U’zn('@n-@’ 1:{1;2) see U (6

n-1 n 1?1

The next set, counting from the right, contains n-2 factors and is

i 5, ¢
U1 n-1 ({5921'1—3’r '1211-3) T Uu-E',n—’T(bﬂ’ th)

and so on to the last set which contains the single factor U12(®H’ g

w
- n{n-1)

where = 5 « The n-dimensional unimodular unitary group i

the {ng-‘i )—parame‘ter group obtained by subjecting the parameters L to

the constraint =P +./¢2 T oeee +A = 0, mod 2t .
. . -

2 4 The parametrisction of the roiation ZToup

When we restrict ourselves to the real field the n-tdimensional

unitary group becomes the n-dimensional orthogonal ( = real unitary)
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group. ©oince any nrthugnnal n-dimensional matrix Df determiuaut -
( = un-dimensional reflexion matrix) may be nbtalued by multlplying an
n-dimensional rotation matrix (= orthogonal matrix Df determinant 1 )
by the n-dimensicnal diagonal matriX whnse'diﬁgnn&1 e1ements are all 1
save the last, which is - 1 , we may, when we wish a parametrisation of
the orthogonal group, confine our attention to the rotation group. The

typical element of the 2-dimensional rotation group 18

/¢ - B
R(E')) = ( ); c=cos® , 8=128in0 j§ -t l{B4Lm

go that this group ia‘ a 1-parameter group whose paramteric space is,
when we adopt ® as the parameter, the in'terval- -T LB LT, When
n =3 we denote by Rjg(f’:}) . R13(®) . R23(@) . respeetj.valy, the
"plane" 3-dimensional rnfatinn matrices |

c -8 O\ /¢ 0 -8 10 0!
8 {(‘1 0 ’ O ¢c -8 1, c=co8® , B8=2s8inb .
0

._0 1/ \s 0

"L_G E Cr

If R 1is any 3-dimensional rotation matrix we first determine ﬁ1 BO

)3 ~ 0 where R' = R 'R;:; (Ef1) . Since

that (R )3 = 0, (R

(R")z = ¢ (R)g - 8 (R)g , (R')g = 8 (R)g + C (R)_’:; , we achieve

'th'is, if not both (R)S and (R); are zero, by sctting ¢ = Kk (R):" ,
P TR SR LY N

8 = Kk (3)2 where k - I(R)E H% + ] (R)E{{ and k>0 . If

both (R)g and (R)g are zero we set ﬁ1 =0 . We next determine ©

so that (R")? = 0, (R"); > 0, where R" = R R1§I (©) . Since

')} = e (@) - o ()], ®D] = a ()] + c®)3, & is

3 ?
determined by the equations cos ® = k (R ); y sin® = k (R’)?

5 57 2 2

where ¥k - = }(R')] 7 + 3 (R') and k 3 O (not both (R )f

L

3
3
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being zero since (R')3 = 0 and R' possesses a reciprocal).

and (R')3 >

3

Since (R‘)g "&0 , ©® 1lies in the interval - T/2 b B .z’:‘n:/E + Further-

more, since (R')g =0, k=1 (R' being a 3-dimensional rotation
matrix) and (R”); =1 . Hence the last column matrix of R" is ez

and R" is a plane 3-dimensional rotation matrix, RTE(ﬁé) s, So that
- t — " TRE = .
Ro= RUR(0,) = RURG6) Rys(dy) = Ryp(dy) Ry5(€) Rys(dy)

Thus, the 3-dimensional rotation group is a 3-parameter group and, if

the angles ;J1

metric space is = T ﬁ% £

‘y ﬁé y and © are taken a® the parameters, the para-

- =

By

T, -ﬂ:ﬁ-:ﬁ'err;fm, ~t/2£0£L /20 Ve
fefer to ﬂH and ﬁé as lnngitude aqglea and to & as a latitude angle.

Thelparameterisatiﬂn of the 5-dimensianal fﬁtatiun group which we
have jhéf giﬁen is a1mndificatian nf.a pérﬁmetrisation of this group
which was given by Euler. If.we writé |

R = R ,(F) Ry (€) Ry,(4) |

where Rm(l&}) = Ré () , the angles ¢ , ® ,"q; , of whi};h d and ¢
are longitude angles while © is a latitude angle, are the three Bulerian
angles which serve to specify any 3-dimensional rutatiﬂu... Hnwarer, the
repetition of the factor R,, has certain disadvantages and we adopt the
faqtqriaatiﬂn R12(ﬂé) R13p®) R23(ﬁ%) in which none of the plan?s, in
.whicﬁ the various plaﬁg rotations are performed, occurs twice.

When n = 4 we denote by R12(®) ~the plane 4-dimensinnal rotation

matrix ,
fc -8 0 . _
R,.®) = |s c : .c=co80 , . 8 =8in@" .
12 \ o E
| 2
and so on. We first determine the longitude angle Eﬂ so that (R')g = 0,

4 | & . . o
(R? )4 2.«0 , where R' = R de (9'1) ,and then the latitude angle @1

so that (R")i:' =0 , (R")i >, 0 where R" = R RJ ©,) . We next
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determine the longitude angle ﬁé and the latitude angle Eﬂz so that,

in turn, (R"')g = 0, where R"' = R" Rég (ﬁé) , and (R"")? = 0,
where R"" = R"! R1; 032) . Then, the elements in the last two rows

and first two columns of R"" are zero which implies that the 2 x 2
matrix of the elements in the last two rows and last two columns of R""
ig a 2-dimensional orthogonal matrix and, sincce the two diagonal ele-
ments of this 2 x 2 matrix do not have opposite sigus, this 2-
dimensional orthogonal matrix. will be a 2-dimensional rotation matrix
unless both of ite diagonal elements are zero, the remaining two ele-
ments being both 1 or both - 1 . Thus, the elements in the first

two rows and last two columns of R"" are zero and R"" is a diagonal
o_dimensional block matrix, which we denote by D (/3) = D (5?1,&2) .
the diagonal blocks of D (£) being 2-dimeunsional rotation matrices

or 2-dimensional rcflexion matrices. Hence

B o= iy (f) = RMR,6)) By(d) = R Ru(d) R0 Ry(d) =

I

R"T‘ R13(@2J szv(ﬁz) 314(@1’) 32.4(,&1) =

Il

D (R) R, ;(6,) Ryu(dp) Ry, (6,) Ry, (F)

Thus, the 4-dimensioaal rotation group is a 6-parametar group; four
of the six parameters, Tle .ﬁ'a and the /4 's . are longitude angles
and two of them, the ©'e , are latitude angles.

When n =5 , we first determine the longitude angle ﬁﬁ and the

three latitude angles 431 y B, , ®3 so that the first four elemeunts of

[

, % t 4 $
the 1a st row matrix of R' = RR (f?ﬁ) Rye (01) R, ©,) R, (65) are

zero, the last element being 1 .  Then the last row-matrix and column -
matrix of R' are ﬁg and e respectively, and the matrix of the
first four rows and first four columns of R' is a 4-dimensional

rotation matrix. Thus, the 5-dimensional rotation group is a 10~
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parameter group, the typical element of the group being factorisable as

follows:
R o= D(B) Ry505) Rps(hs) Ry,(@,) By (F)) Ryg(05) Ryg(0) Ryg(b) R g (2 )5

five of the 10 parameters, the @'s and the fg 's , are longitude
angles, the ©'s being latitude angles.

Continuing in this way we see that, when n = 2k is even, the n-
dimensional rotation group is a '% n (n-1) = k (2k-1)-parameter group;

2
nf these parameters 3k-2 are longitude angles and 2 (k1) are lati-

tude angles. When n 2k+1 is odd, the un-dimensional rotation

group is a '% n (n-1) = k (2k+1.)-parameter group and of these parameters

| - .9
3k -~ 1 are longitude angles and 2k -~ 2k + 1 are latitude angles. The
first factor D (ﬂ%) on the lecft in the factorisation of an arbitrary
n-dimensional rotation matrix is, whether = is even or odd, either

R (ﬁ% ) «.. R . (ﬁg ) or the product of this by a diagonal block
127771 2k-1,2k" " k 0 1
matrix whose diagonal elemeuts are either E2 or (u1 O-> s the mumber

0 1

of elements ( ) y 1if there are nny such, being even.

1 0



Lecture 4

1. The class and in-class parameters of the n-dimensional unitary group.

Let B be the n-dimensional matrix which presents, in the basis
defined by any given non-singular n-dimensional matrix X , a linear
transformation v --3 w 1in our n-dimensional linear vector space sO
that d = Bc , v being defined by X , ¢ and w by X, d . Then

the non-singular n-dimensional matrix X' = XU , where U 1is any
. n-dimensional unitary matrix, defines a basis in which the .presentation

of the linear transformation v —3w is Bf = UX¥BU ; for Xd = X'd' =
= XUd' so0 that d' =Uxd = U¥Bc = UxBUc' . We propose to show
that U may be so determined, no matter what is the n-dimensional
matrix B (not necessarily nnn-singular), so that B' is triangular
(with zeros below the diagonal). To do this we first observe that

any non-singular n-dimensional matrix X may be written in the form
UT where U d4is an nydimenaiunﬁl unitary matrix and T dis a tri-
angular n-dimeunsional matrix with zeros below the diagonal. To

achieve this we first set u, = the quotient of =x, by the magnitude

| 2
(xTx1)1/ = m, of X, (this magnitude not being zero since X . is

nun-singular);- we: then set U, = the quotient of X, - (u%xg)u1 by

9

its magnitude m, (this magnitude not being zero since X is non~

singular); - we next sect u3 = +the quotieunt of x3 -~ (uTxS) u, - (ung)ug
by its magnitude m3 (this magnitude not being zero since X is non-

T
slngular)_and SO On. Then X, =muU, j X, = (HTKE) u, + My Uy 3

;
X; = (uTxB) u, + (uﬁxﬁ) U, t+omgu, and so on so that X = UT
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where U 1is the n-dimensicnal matrix whose column matrices are

Uyy Uy eeey u  and T is the n-dimensional matrix (with zeros

below the diagonal) whose column matrices are m,e, (u?xz)e1 +

+ mzez y (UTIE)ET + (uﬁxﬁ)ez +im3e3 and SO One. It is clear ?hat

*u;, =1, j=1,..,p uru =0, J Lk, and so U¥ = E

J i Tk n

so that U is an n-dimensional unitary matrix. It follows that any

u

nx 1 matrix X4 of unit magnitude (i.e., such that x#x1 = 1) may be

taken to be the first column matrix of a unitary n x n matrix; all

we have to do is to select any set of n-1 n x 1 matrices xé, os oy in

which are such that the n-dimensional matrix X whose column matrices

a7 . Since m1

I
f

are X ey X is non-singular and wiite X 1,

1!

the first column matrix of T is €, and x1 = Uy .

Let, naw,:l be any characteristic number of B and x{ any

1

associated characteristic n x 1 matrix of unit magnitude. If ?1

is a unitary n x n matrix whose first column matrix is X, we have

Xy = V,e, and, since Bx, = A,x, , BV, ;= ?11V1e1 S0 that

V#BVTE1 = 3ﬁ1e1 . Thus the first column matrix of '??B?1 is §ﬁje1
£y c¥ | -

and vaF1 is of the form .\ 01 Bj / where c, is some (n-1) x 1

matrix. . Applying the same argument to the (n-1)-dimensional matrix
| Ao ©2

0 BM ) where ;%2 is a

B' we see that V!'¥B'V! 4is of the form (.
characteristic number of B' and, hencc, of B, Co is some (n-2) x 1
matrix, B" is some (n-2) x (n-2) matrix and V' is a unitary

(n-1) x (n-1) matrix. On denoting the unitary n x n matrix

!
I i L]

R g
1 0 e v it follows that vﬁ'?* BV, V = 1 1 .
o V! 2 1 o2 N, C¥
2 2
O 0 B"

Continuing this argument we see that there exists an n-dimensional

unitary matrix V = V,V,...V . such that VBV ig a triangular

1 1
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- 0
n-dimensional matrix with zeros below the diagonal.  If B=U is

unitary so also is V#BV and so V¥UV 1is of the fﬁrm_ D ij,;ﬁz,...,atn)

where D (3{1’-"":iu) is the diagonal n X n matrix whose column

set of
metrices are (exp ®,i)e,y ooey (expc!ni)eu . The, n numbers m{1, voe Ay

is determined by the linear operator whose preseantation in the basis
defined by X is U , being the same for W¥UW as for U , where W

is any n-dimensional unitary matrix. The collection of u-dimensional
unitary matrices W¥IW obtained by letting W vary over the n-dimen-
sional unitary group, U being held fixed, is termed a class of the
group and the unordered collection of n rumbers 9<1, cevy oo
defines this class. This collection is unn?dered since, if W is the
n—ﬂimensipnal unitary matrix ( ? ; ) , for example,
0 E |

1: N~ 3
w*rl (%1,:;;‘2-’----?1;}“‘5.) W = D (QLEEIN;“I,E‘}"3,-||,'-?("HL)- WE may 'tElkE
s 2
'J.ﬁt 1 y -"'J'-Ef " sep {h ) WhEI‘E :}th ﬁ;.l" Jz }“f L k‘* E-j‘:ﬂ y a8 n Df thE Il

o 2
parameters of the n-dimensional unitary group the remaining n =-n

being obtained by writing V¥ in the form D (ﬁ31, ...,Ein) v, where
v1 is the product ﬁf '% n (n-1) ‘plane ?nitary matrices ﬁ#q@?,ﬁ+) .
Theﬁ" U = VD (41, vy ;LH)_ v = V¥ D (0(1, ceey '*’I‘n) V.o
since }J*(:.g“ cevy gf;;n) D (;;,é,q', coey g‘u) D (,5-5;1, ...,f;i:;n) =

= D (E:Jb(“f .oy ﬂln) N We term *%1, sees an the dlasé paramefera
and tﬁfa B's aﬁd ¢ '3 the in-class parameters (since they teil us

where, in a given class A = (:£1, cony ;Arg , a particular elememut

of the group is located.

'2. The class and in-class parameters of the n-dimensiogal rotation

ZY0oUp -«

The 2-dimensional rotation group, whose typical element 1is



. -2l -
R(@):= (; -z) , c=cosb® , s =3s5in® , -1 8 LT, is
a commutative grﬂup.anﬂ so, if R (d) is a variable element of the group,
'R*(ﬂ) R ()R [ﬁ).lé R (B) . Thus every class of the 2-dimensional
fbﬁafiun.graup consists of a single element and the single parameter ©
is a class.parameter. To treat the case n:>-2 we first observe
that the argumenm given in the complex field shows that any non-singular
real n-dimensional matrix may be written in the form RT where R

trnangudar

is an n-dimensional rotation matrix and T is a rcal -diagenel matrix

with zeros below the diagonal. Secondly, the argument given in the

complex field shows that, if A ’ ia a real characteristic number of
B , then there exists an n-dimensional rotation matrix R such that
" | [, o \ |

R'BR is of the form \{3 B!/ where ¢ is some real (n=1) x 1

-
patrix and B' is some real (n-1)-dimonsionsl matrix. Proceeding

until we have exh;usted‘tﬁé reﬁl cﬁaractefistic nmumbers of B we

may be cnnfrnnted.by o real matrix C which does not have any real
characteristic number. This implies that C does not have a reai
characteristic-.n x-1 matrix for, if x were real, the equatiaﬁ

Cx = Ax would forcs A to be real. Hence the dimensinﬁ of C is
even aﬂd.we dennfé %hié dimenéioﬂ by 23 . 1T ﬁ1 + xzi , where X,
and X, are reﬁl, iéqa characteriéfic 2 x 1 matrix of C associ-
ated with a non-real characteristic mumber N 5 so thet '::2' £0 , X,
is not a multiple of X, for, if it were, X5 would be a ﬁharaﬁterisn
tic 2j x 1 matrix af C ﬁéadciated with A . If .x3: ...,*13
is any set of 2j-2 real 2j x 1 matrices which is auch.that the

real 2j-dimeunsional matrix X whose column matrices are Xq9 ves) 123

ig non-singular we may write X = RT where R is a 2j-dimensional

rotation matrix end this implies that x, and x, are linear combinations
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of r, apd T, the first and seqnnd column matrices of R , and that
T, and r, are linear combinations of X, and X, Now C X,

and C X5 being the real and imaginar3 pafts of A x , arc linear
combinations, with real coefficients, of Xy and X, and , henge, of
T, and r, and so C r, = CR ey and C r, = C R_ag are linear
combinations, with real cgefficients, of r, ='He1 and T, = Re2 .
Thus the first and second column matrices RtCRe1 and RﬁCRez nf
RtCR are linear combinations, wifh real cqefficients, Df e1 and

€ so that RtCR ig of the form RtCR = g ‘g where A is

‘ | ‘ | matrix 0 is the zero 2j-2 ﬁjz
gome 2-@1men51nnal matrix, B i3 some 2 X 2j-2 ﬁmatrlxj and is
some (2j-2)-dimensional matrix. Continuing this argument we see
that, if C is any 2j-dimensional real matrix which does not possess
o real characteristic number, there exisis a 2j-dimensional rota-

tion matrix R such that R#CR is a triangular Jj-dimensional

block matrix, whose elements are >_dimensional matrices, the elements

below the diagonal being Zero. Hence, B being any real n-dimen=-
sional matrix with m real and 2j ncn-real characteristic pumbers,
where n = + 2j , there exists an n-dimensional rotation matrix

R such that ﬁtBR igs of the form

B, T
t 1 2
R'BR = (tj :53\)

where B is some triangular m~dimensional real matrix, with zeros

1
. 0 is the zero n-m x m matrix,
below the diagonal, B, 1is some m X n-0 real matrix,f\and B3 is

2
gome triangular j-dimensional block matrix, whose elements are 2-
dimensional matrices, the elements below the diagonal being 2zero. If

B is an orthogonal ( = real unitary ) matrix the diagomnal elements of

B1 (being the real characteristic numbers of B ) are1 or -1 and



sp, since RtBR is orthogonal, BT is a diagonal matrix and BE' is
the zero mX n-m matrix. Similarly 133 is a diagonal block matrix
whose diagonal elements are 2-dimencional rotation matrices. If

n =2k is even and B is a rotation matrix there will be an even

nuﬁber of =1's and an even number of +1's in the diagonal of B1

_ . - . - 8
and, since E, = R (0); -E, = R(n), where R (¥) = c .
2 | 2 S] C
¢ = cos® , s = sin® , we may, by transforming, if necessary,

1

-1's together, write B, as a (k-j)-dimensional dimsgonal block matrix

B. by means of a permutation matrix so as to have the +1's and

whose diagonal elements are 2-dimensional rotation matrices. Hence
we have the following result:
If R is any 2k-dimeusional rotation matrix there exists a 2k-

dimensional rotation matrix R, such that R:RR1 is of the form

R (ﬂk1,ﬁ£2, ...,gtk) where R (i~1,...,mtk} ig a k-dimensional
ﬁiagr::-n'al block matrix whose diagonal elements are (-31 - 5 ) y seey
8, Cy
°k " %k _ .
; C, = COS/A. s, = sin®&, , j = 1, «.4y ko Ve
s, Cy J J J J

term the unordered set X ...,:Ak: the angles of R .

1‘!

If R is any (2k+1)-dimensional rotation matrix there exists,

gsimilarly, a (2k+1 )~dimensional rotation matrix R1 such that
% _ F /R, O
R, RR, is of the form R (A ., +eey . ) 2k where R

1 1 . 1 k 0 1 2k

is a k-dimensional diszonal block matrix whose diagonal elements are

—
-

2-dimensional rotation matrices. In either case we may use the k
f , ha 4N ,
angles *’E“q"”?"’dk y, 50 ordered that ,__£.1 p ) ,-:t,g )i cse Z,gt e 7 88
k of the parameters of the n-dimensional rotation group. When n = 2k

is even a change of sign of an even number of these class parameters

. O 1\ fc -8\ [0 1 C 8
d ass =
oes not change the class since ( - O) (s c> ( 1 0) (.. 3 c)
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0O 1 0O
1 0 0 O
and 0 0 0 1 , for example, is a 4-dimensional rotation matrix
0 0 1 0O
;0 1
gven though \1 0 ) ig not a 2-dimensional rotation matrix. On

the other hand, when n = 2k+1 is odd, a change of sign of any number,

even or odd, of the class parameters does not change the class since
0 1 0

1 0 0 , for example, is a 3-dimensional rn'tatinn'matrix even
0 0 -1 0 1
though (1 0) ig not a 2-dimensional rotation matrix. Thus =a

class function of the n-dimensional rotation group is, when n = 2k+1
is odd, an even symmetric function of the class paramebers o ,» <o+ ok,
while, when n = 2k is even, it is a symmetric function of .11, eevy ol K

which remains unchanged when two of these class parameters are changed

in sign.

| t .
commutes with the diagonal k-dimensional block matrix D {ﬁ.), where
R': = D (/2) R.'it, R!It' being a product of plane n-dimensional rotation

matrices qu , the k angles (3 disappear from the product

| " | o L J ot
R, R (0(1, . k) R, and we may write R R! R (’:11, cevy "’"‘k.) RY™ &

Whem n = 2k is even, R} dimvolves 2k (k-1) parameters of which

2 (k-1) are longitude angles and 2 (k—-1)2 are latitude angles. The k

class parameters are tgt.i, ceey hl.k and k-1 of these vary over the

interval 0 £ < T , the remaining oune varying over the

interval -T <4 LT o+ When n = 2k+1 is odd, R% involves 2k2

parameters of which 2k-1 are longitude angles and 21{2-21:1-‘1 are latituds

gnglas. The k class paramé%ers are fi_’l, “evy c:Lk and each of these

varies over the interval 0 _{.ﬂl ‘;.L... T .
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Lecturg H

1. Representations of a matrix group.

If we have, associated with each element A of an n-dimensional
matrix group, a linear transformation <L , possessing a reciprocal,
of an m-~dimensional linear vector space,the association being such

that if A, — oL, , A, =)

5 A1 and A2 being any two slemesuts

2 ?
of the matrix group, then A2A1-—$;ngig1 » we term the collection of
liuggrlmperatnrs ch an m-dimensional representation of the matrix
group. To the identity element E]:1 of the matrix group corresponde
the identity transformation *= of the im-dimansinnal linear vector

» ) i ' 2 o - W ¥ ¥
gpace since, if Eﬁ — % , %" = %  which implies, since Z

T -

possesses a reqiprncal,_that - is the identity transformation. It
follows that, if A -2 oo , then A-i ~ } d5“1 . We shall, if Al
is the m-dimensional matrix which represents,,iu the basis defined

by any m—dimensiﬂnal matrix X whieh possesses a reciprocal, the
linear qggrgtor . o refer to the collection of matricg;_  &ﬂ as a
reﬁfesentatiﬁn A 5 A" of our n-dimensional matrix group although,
strictly speaking, this is a misnomer. The representation is the
collection of linear operators and the collection of m-diménsional
metrices Al is merely the presentation of this rEPresenfaﬁiuﬁ iﬁ-ﬁhef
basis defined by.the non-singular m-dimensional matrix X . Thus, in
our loose manner of speagipg; the colleetion of matrices A" = G£'0-1 y

where C is any m-dimensional matrix which possesses a reciprocal, is

thc same representation as the collection of matrices A' .
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Every matrix group possesses the following rePreseqtatiuns:
1) . The identity representation; m = 1 ; A' =1 .
2) The determinant representation; m = 1 % Al = det A .
3) The modulus of the determinant representation; m =1, Al = ldet Al
4) The self-representet ion; m =n , A' = A.
%) The conjugate representation; m =nu , AN = A .
If A—yA' is any 1-dimensional representation of awy matrix
group, (A‘)p y where p is any integer, belongs to the representation
since AP belongs to the group. Hence the representation is unbounded
unless | A [ = 1., If A—3A'" is any m-dimensional represental ion
of any matrix group, A -—jdet A' is a 1-dimeansional represeutation
Df;the group and so fdet A'l =1 if the collecticn of numbers det A’
is bounded. This will be the case if the n-dimensional matrix group
is an r-parameter group whose parametric space is bourded and closed
(in which case we shall refer to it as an n-dimensional cﬁmpact grnup)
provided the representation A —7 A" is cuntinupus; for, then, the
elements of A' are continuous functions of the points a of the
parametric space so that det A' ie bounded since the parametric space

is bnunded and closed.

2. Ihe adjoint rEpresentatiun of an r-parameter matrix group.
Let Y ©be a typical elemeunt of an r--arameter matrix grnup and
let y be the point of the parametric space to which Y corresponds.
We term the transformation Y—32Z2 = AY of the matrix group iuato
itself, where A is any fixed elemeut of the group, the left translation

of the group which is induced by A and we indicate the corresponding
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transformation of the parametric space of the group by writing =z ay i
Eimilarlj Y-——{Z' = fﬁ ia the right translation of tﬁe grﬁuﬁ which
ig induced by A , the énfrespén&iﬁg transformation of fﬂé'parametric
apace being indicated ﬁy writing z' =ya . We assume that z = ay
is a;cﬁntinudusly differentiable function of a and y and that y
is a continuous function of 'yr; then, since a = zj_i";' the
r-dimensional Jacubiaﬁ maffixf zy", which is a coutinuous function

of a and y , is a continuous function of y and 2 and we ‘denote

this continuous matrix function by J'(y, z)'. If we follow the

left translation Y—) 2 = AY by the left translation 'Z>—$;W = BZ
we obtain the left translation 'Y-ﬂ%rW' = (EA)Y and fhe”relétinn
W= wzﬁy tells us that J (y, w) = J (z, w) J (y, 2). The

three points j ; z and w may be'taken arbitrarily, a being 2z ¥

and b being w z ;3 regarding =z as fixed and 'y and w as
variable we see that J (y, w) is the product of an r-dimensional

matrix function of  y alone by an r-dimensional matrix function of w

.

alone. Whem b=4a  , W=y sothat J(y,w) = J (y,5) = B
and J (y, z) is the reciprucal'uf J (z, w) = J (z, yj . We dencte

J (y, z) simply by J (y) and have the relation J (y, w) = J_1(w) J(y).
Similarly, for the right translation Y —»2' = YA , we have, on |
denoting El‘:r vy J'(y, 2') , J'(y, w) = ‘-.J'(W)H&-‘1 J'(y) where
J'(y] is an abbreviation for J'(y, E') , 2z' being any fixed point

of the péramétric spacé. We refer to =z énd_ z! me our base pniﬁta,‘
fnr-left and right'translaﬁinne, reaﬁectively, and we snall usually

take for the base points z and 2! the point e of the parametric'
space which corresponds to the identity element E‘ of our n-dimen-

sional matrix group. Under a change of base point 2z -—3s8 , J (y) is

multiplied by J-1(s) = J (z, s) and, under a change of base point
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zh-—a-atﬁ J'(y) is mulﬁiplied by J'(z', 8') .

. The collection of matrices Y' = HIAf1 , whéere A is any fixed
element, and Y a variable element, of our n-dimensional matrix gToup,
ig a presentation of the self-representation of the group and the trans-
formation Y — Y' = AYﬁf1 gsends the identity element En' of the
group into itself, so that e is a fixed point of the corresponding

-1

transformation y-—Jy' = aya of the parametric space of the group.

We may regard this transformation as the result of first performing

the transformation y -y w = ay and then performing the transformation

Wy y' = wa " and, since W= J (y, w) = J”1(w) J (y) and,

-1 -1 : 7 -1 -1 |
L)1 o) 7w a) = 33T o (ay) 5T (ay) 3(y) end
npon evaluating this relation at y = e , we obtain (y}) =

. s

1&"(_&)7]-1 Jt(a) J"1(a) J(e) « Taking e as our base point, for

both left and right translations, so that J(e) and J'(e) are each

the r-dimensicnal identity matrix E_, this reduccs to (y:;r)}r_e =
J'(a) J_1(a) = A' , say, and it followe that the correspondence

A —3 A' furnishes an r-dimensional representation of our IIEE.tI‘iI

group; indeed, if we follow the trsnefornation ¥ -—2 Y' = A)EA-1

of the matrix group by the  ‘bremsicrpatism Y! -3 " = BY'B™' we

obtain the transforsnticn *fh.—-) YY" = (BA) ¥ (BA)_1 and the

relation (y") = (y",) (y") tells us that . (BA)! = B'A
Yy =e V' yr=¢ ¥ y=¢

This r-dimensional representation is knnwﬁ as the adjoint representation
of the r-parameter matrix group; if the group is compact ldet A'| = 1
go that | det J'(a)l = ldet J(a)l ] It is clear that the adjoint

representation is independent of the choice of parameters (only the pre-

gentation of this representation being affected by a differentiable



transformation of parameters vy )3 for Al—3R% ' = (ﬁi% 1“’3 =
= 'B-1ALB where B is the Jacobian matrix of y with respect to ¥
S ~
evaluated at y = e .
. o * ‘ I ~
Upon differentiating with respect to y the relation Y' = AYA

and evaluating the result at y = e we obtain

- -1 ‘ ’
{f - ('I ) A y j =1, sesy I
| _ }r:.i y—=g |

and we mey write this relation in the form

r _
| k -1 S
S A = AM, A =1y seey T
| . Mk ( ),j N j 7 j ? ]
k=1 | o .
where Mk = (Y k) y k=1, asey v« We term the matrices

y=cC
M1 y oney Mf' the characteristic matrices of our n-dimensional matrix
group with respecﬁ to the parameters vy and wc see that, if the

charactefiatic matricea are linearly indépemdeﬁt in the real field, the

adjnlni rEprE entetion may be determined by finding what linear com-

binations of M1 g sesy Mr arc A M1 Af1,...., A Mr Af1 . If we set
r |
Mﬁ? _ "‘>"'“ _Hp{c)§ , Wwhere the r-dimensional complex maﬁrix C .iE
_Pj_
non-singular, we have e
rr bk |
v Sl (g - ..i- w (c;g’ eer B
p=1 k=1 p=1
Drypquivaiently,
- '{"'! 'E""m t =T3P .. . -1 4
IZEQLTHP(CAG )q = AN A, a=T, ey T

Thus we may use any set of r 1linear combinations of the characteristic
matrices which possesses a non-singular matrix instead of these matrices

themselves, obtaining in this way merely another presentation A —> CA'C™
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.of the adjoint represeuntation.

If U 4is any element of the n-dimensional unitary group we have

¥

Ul = Eﬂ and, upon differentiating this relation with respect to

the ﬁ? x 1 parameter matrix and evaluating the result at the identity
point e of the parametric space, we obtain 'M; + Mj = 0, J =1y eey D o
Thus each of the n2 characteristic matricee is the product of an n-

dimensional Hermitisn matrix H , i.e. a matrix waich is such that

¥

H* =H , by 1 @
2

M =iH' =1 asey I
j j!‘ j H )

The derivative of det U with respect to yj is the product of

Z' \D (.4 _ L
(U*)q (up) 3 by det U so that (log det U)yi Trwfuvi)

where by TrA , where A is any square matrix, we mean the trace, i.04,
the sum of the disgonal elements, of A . Upon evaluating this rela-

tion at the. identity point & of the parametric space we see that
, 2

ﬁ j =1g ey n .
y=6 |

Thus the characteristic matrices of the n-dimensional unimodular

Tr Mj_i

L 11

T (1og det U)
| v3

unitary group, which is an n2-1 parameter group, are:éf the form 1 H
where H 1is rt n-dimensional Hermitian matrix whose trace is zero.
Similarly, the characteristic matrices of the orthogonal group, or of
the rotation group, are alternating n-dimensional real matrices, i.€.,
real matrices A such that ﬁt + A = 0 (the trace of any such matrix
being necessarily zero) and the characteristic matrices of the 2k-
dimensional symplectic group are complex <2k-dimensional matrices M
such that HFI = - IM or, equivalently, since It = = I , such thatl

IM is a symmetric 2k-dimensional matrix. Thus, if we write M in
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the form (tN QH>., where N , P, Q and R are k-dimensional matrices

P R
=P -R .
go that IM = :( N Q y, we sce that P and Q are symmetric
and R = - Ht go that the trace of M 1s zero. For the U-gsymplectic

group we have, in addition, the fact that iM is Hermitian so that

T T i

N ==N, R¥=-R, P¥=-Q . Thus the chargacteristic matrices

;
of the U-symplectic group are of _‘the f_arm (g - %*) where: N¥ = - N
and P is symmetric.

We observe, in conclusion, thatr;nithe adjoint representation A —) A!
of an n-dimensional r-parameter matrix group of which - En; is an
element, the same matrix A’ .cnrrcspnnds to the two elemeats + A of
the grﬁup. In par{icular, Er corresponds we each of the two elements
31-Eﬂ ..0of the matrix group and, if Er does not correspond to any other
element of the group, the only two elements of the group which corre&spond
to A' are + A (for if A' corresponds to A and to B, I

-7 -
corresponds to AB so that AB 1 = + Eﬁ er, cquivalently, B = + A).

r

When this is the case we say that the maitrix gruup-? A.j , Or any re-
presentation of it, is a two-valued, or spin, representation of the

matrix group a;ﬁti .
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Lecture 6

1« Spin representations of the 3-dimeunsional rotation group.

The typical element of the 2-dimensional unimodular unitary group

1 o " ; F —
is of the form a,7 4 + 854, * 83045 ¢+ a4§;4 where %, E2 ’

0 -1 < 0 -1 (1 o
£, = (1 o)’ €3 = k-i 0)’ 2, = (O—i>

and 8y » 8y y Bz 4 8, are any four real numbers the sum of whose

; 1 2 I}
gquares is 1 . We take 8, =Y a3 =y 34 = ¥~ as our
three parameters and observe that to each point y of the parametric
space there correspond two elements of the group with equal and

nppnsita values of a (both E®, and - E2 y for example, corresponding

1 2

to ¥ =_D). The derivetive of a with respect to y is the zero 1 x 3

1

matrix at y =0 and so the 3 characteristic matrices are M1 = 52 ’

— " - d - .
M, = 7;:.3 ’ M3 = E4 . Since ¢ E){ O | ¢ 8) -
g e, 31 0 -8 ¢
0 -1 ‘¢ -8 ( 0 -1\ §{ ¢ s ) )

8 c
'c - 8 fi 0 | cC E\) > where ¢ = cos @
8 cj\0o -1 -8 cJ “3 =4 ! ’

8 = s8in® , C = cos ® , S5 = sin @, the matrix which correspends,

]
!
o2
+
Q
",

in the adjoint representation of the 2-dimensional unimodular unitary

group, to R (8) = (: - E) is the 3-dimensional rotation matrix

1. 0 0
REB(BS)' =. | 0 ¢ -8 . Similarly, the matrix which corresponds
0 8 ¢

’



| exp g i 0
— ' =] ‘ :-t*
to D (ﬁ) 0 eXp - ﬂ i is the 3-dimensional rotation
C =-S5 0
matrix R12(2ﬁ<)=(5 c O ,G:CDEEﬁ,S=Ein25.
0 0 1/
Now, any <Z-dimensional unimodular unitary matrix may be written in the
form D (k) U (8,07) where U (8,57) = c - sexp -1\ _
s exp(§ 1 c
= U (-6,40'), 5" = g -1, Oé@éﬂ/E? -’ LI £ O

D(@'/2)R(~-8)D (~-g'/2) , it follows

1l

and, since U ( -€ , o)
that every 2-dimensional unimodular unitary matrix may be written in
the form U = D(@/2) R(-8/2) D(4/2) where 0 £ ¢ f4v, 046 L 7,

0o £ ¢ —;:' 2T , the matr'ix which corresponds to U in the adjoint re-

—
Y

presentation béin_g the 3-dimensional rotation matrix 312(9’)'-R23('-@') R12.(q_j)
A slight mndificatinﬁ of the argument given for the Euler factc:-risatiun-

of aﬁy three dimensional rotation matrix shows that Euefy .3~dimensiﬂnﬂl |
rotation matrix is of the form 312(;5) Ré?}(—- Q) Rjg(a) , 0 L g Loem

0 /8 4, nm, 0/ £ 2t and so the adjoint rePresentatiau:nf the

—
ey [e—

2-dimensional unimodular unitary group is the 3-dimensional rotation

T 0Up. The 3-dimensional rotation group is covered twice in this re-

presentation, an _increaae of 9’ by 2T changing U dinto -~ U but

not affecting the 3-dimcnsional rotation matrix which corresponds to

U . We term any representation of the 2-dirﬁensinnal unimndﬁlar

unitary group a spin representation of the B—dimer_tfsinnal rotation group.
- The typical element U of the 2-dimensional unitary group is of

unitary |
the form (exp'{fi) V where V is aunim{}dularh 2-dimensional matrix.

, 2
Taking as our parameters the three parameters -y1 s ¥ y3 of the
2-dimensional unimodular unitary group and 7 y 80 that the origin of

the parametric space furnishes the two elements + E2 of the group, we

see that the four characteristic matrices of the group are M1 = 52 ’
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x M3=5';'3, M4=€1=E2. Since U MU*¥ = VM V¥,

where M is any 2-dimeunsional mairix, each matrix of the adjoint re-

M, = €

o 1

- where A% is an arbitrary 3-dimensional rotation matrix. We express

thisresult by the statement that the adjoint representation of the 2o

At
presentation of the o.dimensional unitary group is of the fnrm-_(h 3 0;) y

dimenéinnal unitary group is reducible, being the sum of the 3-dimen-
sional rotation group (which is a representation of the 2-dimensional
unitary gruup) and the identity representation of the 2-dimensional

rotation group.

2. The.element of vnlumelnf an Tr-parameter £roup.

Under the left translation Y 3 W = AY of an n-dimensional
matrix group the parametric space undergoes the transformation y - W = &y
and the r-dimensional Jacobian matrix w, = J (y, w) 1is of the form
J"1(w) J(y) where J(y) = 'J(y, z) , z being aw fixed point of the
parametric space. We obtain, as A varies over the matrix group, from
any continuous functiqn ﬂ(y) a whole class of continuous functions
_ﬂﬁ:(:,r)_ defined by the relation ﬁA(y) = @lay) = @#(w) and it is easy

to see that the integral j ﬁﬂ(F)IJ(NJ { d(y) is ind5penﬂeut of the

 element A of the matrix group; indeed 3 ﬁ(w)i Jy)l aly) =

{ dw)| s 1y, \alw) and |y

-

Iy
E

]
I

|57 | a(w) | so that

J 4,(v) e ay) = s d(w) | () d(ﬁ) ?j gyl s\ aly)-

We term ‘J(y) ’ d(}’)l a volume element of the r-parameter group and
we denote this volume element by d?§ ; the integral J ﬁﬁ?)l J(Y)l i(y)
= j #(y) dVy is termed the integral of the continuous fuaction #(y)

over the group and we sce that each member of the class of continuous
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functions ﬁ;ﬁy)h (each of which is derivable from any other by means

of a left translation of the group, the left translatiun which is induced
by BA71 sending ﬁﬁ(y) into E%(y) ) has the same integral over the
ETOUp We may repeat the argument for right translations of the group,
obtaining an element of volume d”."x_ = fJ'(y)| d(y) but, if the
r-parameter matrix group 1is compact, I J'(y)! is the product of

| 3(y)! by the positive constant | rt(e)| | F-1(e)[ so that d'ﬂ&

is the product of dV& by a positive constant. Under a chauge of

base point Z - E;, J(y) is multiplied by the constant matrix

J (z, z2) so that d?& is indeterminate to the extent of a multipli-
cative pﬂsitive constant; +thus the two elements of volume dvy and

d'U? are, for a compact r-parameter group, esseatially the same and,
when the base points 2z and g' rre eochosen that d'?& = dVy » 2ach
member of the whole class of continuous functions ﬁ“(y) = ﬂ'(ya) has
the same intégral over the group as does each member of the whole class
of continuous functions ﬁ;(y) = ﬁ(ay) . We 'shall, generally, nnr;'
malise d?y by dividing it by the integral of the constant function

@(y) =1 over this group and, when this is done, we term J #(y) av

Y
the average of the continuous function ﬂ(y) over the group. Thus

the whole class of continuous functions ﬂ;(y) = Ql(ay) and the
whole class of continuous functions ﬁl(y)- = ﬂ(ya) have the same aver-
ages over the compact r-parameter matrix group.

Upon taking the differential of the relation W = AY we obtain

AW = AdY = W Y“1 ¢ and this relation may be writtén in the form

SW = &Y , where &Y = ™l 4y anda M = wo'aw , Evaluating this

] . N
relation at w =2z , where = 1s our base point for left translations,

anﬁ dénnting the value of ﬁ_1w p'1at w =2 by Nﬁ y P =Ty aeey T,
W

we obtain
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Hence we may obtain J(y) conveniently by expressing 5Y as a linear
énmﬁinatinn of H1 y sesy Hr s, the coefficients bemg r linear forms
in dy', ee., dy* and the matrix of these linear forms being J(y)
Thus for the 1-dimensional unitary group, whose typical elemeut is

exp yi , -n 4y 4 ™ , we have only oune matrix N ‘which is i and,

gince &Y

idy , J(y) =1 and dvy = dy , the normalised element
of volume being 21—,¢ dy . Similarly, for the 2-dimensional rotation

group, whose typical element is R(y) = (; - Z\ y C =C08Y ,

s =giny , -7T L y L. %, we have only one matrix N which is

(0 - 1) and, since &Y = (G o 1>dy , J(y) =1 and ﬁ"!y = 4y,
1

1 0
the-nnrmﬁliaed element of volume heiﬁé 2 - dy . The r matrices
H1, . .Hr may be replaced, if convenient, by any set of r linearly
independent linear combinations of them, with constant coefficients, the
effect of this being merely to replace J(y) by the product of it by
a cnﬁstant non-singular Fmatrix. : | | | | |
Example.' The ele-mérrt.. of volume of the 3-dimensional rotation group.

The typical element of the 3-dimensional rotation grbup is of tha |
form R = RTE(ﬁ) H31(E}) R12(¢) , Where 9’ and ¢ are lﬂngituﬂe angles,
@ is a letitude angle and H31 @) = R,]:,)(-B) . Taking ﬁ' = y1_ , B - 32,

as parameters, | - . .
b = y?'/‘ the J.dentlt},r pnlnt e nf the parametric gpace is a singular

pnlnt nf the cnnrdlnata syetem y (11:1 much the same way as the origin is

a singular point of a system of polar coordinates) since it is furnished

o, 3r1 + :,r3 = O (mod 2t) and not by three

N

by the two relations }*2
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independent relations. For this reason we take 51 =0, 32 =7/2 ’
33 = 0 as our base point and our first step is to calculate
-1 -1 -1
N, = (R Ry) , N, = (R ) , M, = (RTR,) . We
! g y=2 2 R® y=2 3 ¥ Y=z

have, since, at =2 ,

0 0 1
_ 0 1 O
Rip(f) = E5, Byu®) = {_ 3 o5 o /5 Rypd) B3 aud
i 0 -1 0\ - 0 o\
- .. RPN S
5__.312(9/) JQ’ = ( 1 0 0 ;- M12 , 84Y, ] H31(@)j@ - 0 0 01},
' .0 0 0 0 0 -1/
00-1\/0_10/001“) 0O 0 0
_ . , ) _
N, = {10 1 Oj;f\1 0 0 { 0 1 D; 0 0 My
1 0 0 0 0 0 J - 0 0 - 0
- a ' I g SHY ,
"0 0 - 1 -1 0 0 0 0 1
Ny = (U 1 0 0 | = 00 0 ) = M,
\1 © , 0 -1 -1 0 0
N, o= M,

and we have merely to express R_1dR as a linear combination of the three

matrices M23 y M31 . M12 . Since R12('ﬂv‘iﬁ12(ﬁ)}g’ - M12 g

R'31(-E}) %qu(@) f@ - M?’;’i , We have

R"1Rﬁf ~ H12(—¢) 331(_@)) M1ER31(®) R12(rb) = = gin @ cos ¢ M23 r
+ 8in © sin ¢ M31.

R"1H@ = Ry,(0) Mgy R,(4) = sind My, + cos ¢ b,

R"1R¢ = M, 5

(-Isin@ cos ¢ dF + sin ¢ d@) M23 +

+ (9in©® sin ¢ df + cos ¢ 40) M31 + M1éd¢ and

eo that R~ 'dR

n

(‘TVI = sin @ q {ﬁ, 8, &) . The normalised element of volume is the

quotient of this by 8 11:2 .
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Exercise 1+« Show that an element of volume of the 2-dimensional unimodular

unitary group, whose typical element is of the form U =

= D(F2)R(©/2)DW/AR), O0LfLam, 0LOL T, O0LbLZw,
is sin © & (ﬁ, e, ¢) and that the normalised element of volume is the
quotient of this by 16 *11:2 . Hint. Take d.= 0, @=m, =0

as the base point and express U dU ar a linear combination of the

- 1 0
three matrices (D 1 ) (1 0 ) . IE3 = (0 _ 1) .
-+

Exercise 2. Show that } det A’ | (a;,..., aﬁ) is an element of
volume of the n-dimensional real linear group, i.e., the nz-parameter
group which consists of all real wn-dimensional matrices A which nossegy

reciprocals.

noo.m -
a4, b ) is an
n.

Exercise 3. Show that fdet A!—En d (a}, b;l, cee 5 B

element of volume of the wun-dimensional complex linear group, i.e., the

. , - -
2n. -parameter group which consists of all non-singular complex matrices A ,

with elements ai + B‘]li » Where ai ’ hi y 3 =1, eeey n, k = 1,' veey Ny

are real.
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Lecture 7

17« The unitary nature of continuous representations of a compact

r-parasmester matrix group.

If v is the n-dimensional vactarkwhuée coordinates, with respect
to the basis which is defined by an grbitrary n-dimensional matrix X
which possesses a recipraﬁal;.are furnished by the elEments.nf an arbit-
rary n x 1 matri# .c ; the first scalar product, with ra3zpect to thé
basis which-ia defined by X and relative to an arbitrary nfdimansinnal
matrix M , of v by itself is the complex aumber c*Mc .‘ Since the
conjugate cuﬁﬁle% gfltﬁia Eamplex nmumber is its star c*M¥c the first
scalﬁr.prﬁduct of v by itself, with respect to the basis defined by X
and relative to M , will be real, no matter what is the n-dimensional

vector v , if, and only if, c*M¥c = c*lc , no matter what is the n x 1

matrix c . Taking ¢ = Ej , we sz2e that mg = mg sy =1, ¢4y n. and,
: | . ~1g -j k
= R o N o=
taking c EJ. €, » W& see chat mj + ;. mﬂ + mj y 50 that

ﬁ? = mi sy =1y eesym, k=1, ..., n.. Thus the first scalar product
of v by itself, with respect to the basis defined by X and relative to
M, will be real, no matter what is the n-dimeusional vector v , if, and
only if, M¥ =M , i.e,, if, and only if, M 4is Hermitian. If this

scalar product is not only real but positive, save when v is the zZero
n-dimensional vector, we say that the n-dimensional matrix M is positively
definite. It is clear that the n-dimensional identity matrix is positive-

ly definite and this implies that the Hermitian matrix N*N , where N is

any n-dimensional matrix which possesses a reciprocal, is positively
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defiﬂite; for c¥N¥Hc = d*d , where d = Nc and d is the zero
‘mx 1 matrix only when ¢ = N4 4is the zero nx 1 matrix . Conversely,
ahj pugitively definite matrix ¥ is of the form N*N ; indeed, there
existsia unitary matrix U such that U¥PU , which is Hermitian since P
is Hermitian, is triangular with zeros below the diagonal. - Being Her-
mitian, U¥PU is diagonel and, being positively definite, its diagomal
elements are positive real numbers. Hence U¥PU is of the form D¥D
where D is a diagonal matrix (whnse diagonal elements are indeterminate
to the extent of multiplying cumplex.numbers of unit modulus) and P =
= UD¥DU* = N*N where N = UDU* .

Let, now, Y — Y' be any continuous m-dimensional representation
of a compact n-dimensional r-parameter matrix group so that the elements
nf. Y' are continuous functions of the r x 1 paraméter matrix y . If
¢ is an arbitrary m x 1 matrix, other thanrfhé zero m X ° matrix,
cxY'*¥(y)Y'(y)e is positive for every point y of the parametric space
and so the average of c¥Y'#(y)Y'(y)c over the given compact n-dimen-
sional r-parameter matrix group is positive; this average is c¥Pc ’
where the m-dimeﬁsinnal Hermitian matrix P is the average of ¥ *(y)Y'(y)
over fhe grﬁup and so we:kﬁnw that P is pnsitively definite and, hence,
of the form N¥N whore  H ié an m-dimensional matrix which ﬁbséesaes
alféﬁiprﬁcal. If Y-—W ; YA is any right translﬁtinn gf our matrix
group the average of Y‘*(ya)Y'(yﬁ) = Waxy) w(y) = A'* f'*(y) Y‘ty) A
‘over the group is the same as that of Y'*(y) Y'(y) and so A'*WNA' =
= N*H:; no matter ~hat is the matrix A' of our ﬁ-diménsimnal repre-
sentation. Hence NAFH_1 is a uuitary m-dimensional matrix and we
ﬁavé the-féiISWing impnftant result: |

-

If A— A' is any continuous m-dimensional representation M o
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a compact r-parameter mairix group there exists a basis for the m-=dimen-
gional linear vector space in which the linear transformations which con-

1 *
stitute [h operate or, as we shall say, for the carrier space of rﬂ.,
with respect to which the m-dimensional matrices which present lﬂq are
all unitary. . We express this result by the statement that all continuous -

representations of a compact r-parameter matrix group are unitary.

2. Reducible rEpresentatinns pf a compact r-parameter matrix group.

Let {;ﬁ?&' be any cﬂliectimn of linear transfﬂrmatiaﬁs ﬁf an  me
dimensional linear vector space ar;d let }A} _be "I;he collection of m x r
matricea which present these linear transformations with fespect to the
basis defined by anj__m X m matfix X which pusséssés a8 reciprocal.

Furthermore, let v, , +.4y v? be p < m Ilinearly indepeundent vectors

1
of the carrier space S of the linear transformations im} and let

Cy 9 ooy cp be the m x 1 matrices which furnish the coordinates of

V, 9 esaey ?ﬁ y respectively, with respect to the basis defined by the

1
. m-dimensional matrix X . Denoting by C any m-dimensional matrix,
possessing a reciprocal, whose first p column m x 1 matrices are

Cy 9 oevy ﬂp s The coﬂrdinates'uf v «esy V. with respect to the

17 P
basis defined by X' = XC are furnished, since 101 = X‘E1 y soay
qu = Iﬁepl, by the matrices e, , «.cy Ep « If each linear trans-

formation of the set of linear transformations ? dl} sends each of the

p vectors v1 y eeay vp into a linear cumbinatinn_uf v1 y eseay vﬁ ’

of 5 which is spanned by

we say that the p-dimensional subspace 51

the p 1linearly independent m-dimensional- vectors Ve o

~which congdsts-of all lineor cowbiuntions of these vectors, is inverisnt

coay vﬁ y 184,
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under the collection of linear tranﬁfurmatinﬁs ‘3 ‘i} . When this is the

case the matrices of the collection of matrices { A‘}[ s which present the

cnllectibu of linear transformations {“L} with respect to the basis de-

171

1 1

fined by X' , are all of the form [ ~ 1 © 2 \5 whare A'] is a p-
| 0 A'gl;’

dimensional matrix, O is the zero (m-p) x p wmatrix, A 12 is a p x (m-p)
matrix and A'g is a (m-p)-dimensional matrix. We say that the collection
of linear transformations {;:L} is rﬁduciblé and we term thc prasentatimn
{A‘} of this collection a presentation in reduced form of the collection.

| Let us now suppose that the collection of linear transformations {3‘1?{
cnuatitutga a continmuous m-dimensional representation l"" of a nnmﬁact
n-dimensional r-parameter matrix group. When the %:arrier space S of

P possesses an invariant subspace of dimension p & m we soy that [

ig reducible and we term a presentation of r’ which is of the form A' =
A'1 A'1 | -

= ( ! g ) a presentation in reduced form (A' being the m-
0 A,

dimensional matrix of |  which corresponds to an arbitrary matrix A of

our u—dimenaioﬁal matrix group). Since f_' ig vnitary there exists an

. R
m-dimensional matrix B , possessing a reciprocal, such that BA'B is

unitary, for every A' , and we see, on writing B = UT that this implies
the existence of a triangular matrix T , possessing a reciprocal, such

1 1
that Tiﬂ'fl:"'d1 is unitary for every A' . T is of the form (T‘i TE)

>
1 0 To/

.1
0 A"

AH AI'I

as is also

7 (A“:)* 0 \

jts reciprocal. On the other haud, the star of TA'T is 1 2 s
(ar5)% (A"
2 2’ )

as is also m and so TA' T"‘I is of the form

NN Do -

\

where O is the zero p x (m-p) matrix. and it follows that A“; = 0 ,
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A'1 0
1 1
Hence f1 may be presented in the form A" = (. 5 where A'1

is a p-dimensional matrix which possesses a reciprocal and A‘2 is a

(m-p)ndimeuainnal matrix which possesses a reciprocal. The -correspon-
A _-ﬁ.}#ﬂ' e i~ - . .
deuﬂes#\ﬁ.—a-ﬁiz are representations f 1 and | 5 of dimensions p

and m~-p , respectively,'mf our n-dimensional matrix group and we say

2
| Al
that Fﬁ ig the sum r*; +'|?;' of F“1 and {—; . Since 2 0
y
_ 0 A

0 A*2

is the transform of (
2

\) by an m-dimensional permutation

matrix, addition of representations of a compact r-paramcter matrix
i—-> —t . w—
group is commutative, 5 + | 4 being the same as f“1 + | o When
rﬁz = fw; = r"*, say, we write Qf*‘ instead of I+ f".
If either F'; or rﬂz is reducible we reduce it in the same way
and continue, if necessary, this prccess until all the representations we
encounter are irreducible (every 1-dimensional representation being irve-

ducible) and so we sce that every m-dimensional rePTEEentatinn;'rﬁ of a

compact r-parameter matrix group is of the form m1lw1 + mélhé + ..ermk}*k,

—

where My 5 eeey M, are positive integers and |

ducible representations of the group. We term m1fﬂ1 T oeee * mkfjk

an analysis of (mﬁ into its irreducible components. It is convenient to

permit the numerical coefficients to assume the valut 0, it being under-
| B4 LS
gtood that when * t for example, is O +the irreducible represeuntation
F I

r}i does not appear in the analysis of rﬁ . We shall see in the next

lecture that the analysis of i " into irreducible components is unique.

3. The irreducibility criterion.

a— .
If a continuous representation | y 0f dimension m , of a given
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matrix group 1is reducible there exist matrices, other than scalar
matrices, i.e., multiples of the identity m x m matrix, which commute
with each of the matrices which present [* in any basis. Indeed, if

the basis is so chosen that the matrices A' of { ' appear in the re-

! ' . 2
duced form A 1 0 &= A'1 + A’2 , the non-scalar matrix
2 |
t
0 A 5
m1§p + mEEE-p y where my and m, 8are any two unequal complex num-

bers eand p is the dimension of A'} , commutes with each of the mat-

rices A' and the commutability of two matrices and the scalar quality

of a matrix are independent of the tasis adopted; for 3013"1_. 3025"1 =

-1 -1 -1
BCQB . BU1B if 0102 = C201 and EEEE = E& , B being any

n-dimensional matrix which possesses a reciprocal and 01 and Cz being

any two m-dimeusional matrices. On the other hand, if fﬂi is irreduc-

ible the only matrices which commute with all the matrices A' of any

presentation of it are scalar matrices. Irdeed the relation A'B = BA
gays that A'bj s 3 =1, ¢eey, m 4, is the linear combination a';b1 + oo
+ E'?bm- of the column m x 1 matrices b1 gy seey bm1 of B and hence,

since fd1 is irreducible, B 1s either the zéro m X W matrix or else
possesses a reciprocal. If B possesses & reciprocal there exists at
least one complex number 3 such that B' =B ~ A E docs not possess
a reciprocal and A'B' = B'A'" .  Hence B! is the zero m x m matrix
or, in other words, B 1is a scalar matrix. Thus we have the following
useful result:

A continuous representation (—tof a compact r-parameter matrix group
je irreducible if, and only if, the only matrices which commute with all
the matrices of any presentation of ¥ are scalar matrices. It follows

that all continuous irreducible represeuntations of awy commutative compact
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r-parameter matrix group are 1-dimensional. For, if B' is any matrix
of any preseuntation of any continuous irreducible_- rel:pre_sn_anjsatilnu l"' of
such a group,. B' is scalar since it commutes with all the matricea_. Al
of this presentation of rTI s hence all the matrices of this preseuntation
are scalar and this implies, since [7 is ,irraducible.;thﬁt [T is 1-

dimensional. For example, the plane rotation group, whose typical

cC -8
element is R(®) =-(a c) , c=co8® ,8=8in0® , W LO L T,
possesses only 1-dimensional contiruous irreducible representations.
" Thus the self-represcntation of the plaﬂé rotation group is reducible

go that there must exist a constant o~dimensional matrix B such that

1 exp €1 0 - | .

B R®)B = 0 oxp - 04 , exp®i and exp - @‘i being the
$ 1 = i}

characteristic mumbers of R (@) . B = =172 g . 1 ie such
V7« /

a constant matrix.
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ﬁecture 8

1. The Kronecker product of two remreseutaginné of a matrix group.

If ai is the element in the jth row and kB golumn.of a p X T

. | | |
matrix A and bﬁ is the element in the hth-rnw_ird ith golumn of a
2

g x 8 matrix B, ai b? ié”thé element in the 3FK-row and Kki-column.
of a pq x rs matrix which-we‘term the Kronecker product of B by A
and denote by A x B , it being understudd that the fnwa of AX B are
arranged in the order 11, 12, .. 19y, 21, «sey pq and the cﬁlumné in

the order 11, 12y eeey 18, 21, <cee, T8 & It i clear that A x B 1s
o linear function of its two factor matrices A and B, i.e., that
oAx P = o ( AxB), AxaoB = m(AxB), (A1+A2)x]3=

= (A1xB)+(A?xE) . 'Ax(B1+BE) = (AxB1j+(AxBE) ,'

m being any complex number. Furthermore, Kronecker multiplication of
matriezs is'asanciative,' Ax (B x C) being the samc as (A.x B)Ix C 3
jndeed, if C is any t xu matrixjeach of the matrices A x (B x C)

and (A x B) x C is the pgt x rsu matrix of which the element in

L 2N
. C

i Sp The pg X r8 mebrixX

the jhl-row aand kim-column 18 ai b

AxB méy be written as the p x r block matriX

1 1 15
513‘ EQB cas arﬁiﬂ

]
L ]
-

whose elements are gq x s matrices

R m ke L

\e?B . . . a'B’
1 r
and it follows that, :f C and D are any two matrices which are such
that the prhduﬂta AC and BB. may be formed, then (A x B) (C x D) =
-~ (AC x BD) . In particuler, if A' and B' are square matrices of

dimension p and A" and B" are square matrices of dimension q then
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U x A" B! B" = A' B! A"B" ) . FE x E i B nd it
(A x ) ( X ) ( X ) b q S - a

follows that, if A' and A" possess reciprocals, then A' x A"

1 1

possesses the reciprocal A'" x A" . It is clear that (A x B)* =

= A¥ x B¥ so that, it U' and U" are any two unitary matrices, of
dimensions ©p aﬁd q réépectively, fﬁen U' x U" is a pq-dimeﬁsimn&l
unitary matrix. | “

If _A and B are square matrice~. nf'dimansinns p and q
respectively, Ehe relations c¢' = Ac , d' = Bd , wﬁere c and d. are
| arbitrary p i 17 and q x 1 matrices, respectively, imply the relation
c' x d' = (AxB) (¢ x d) . If ¢ furnishes the ﬂonrdiﬂates, with
respect to the basis defined by any p-dimensional matrix X , which
possesses a reciprocal, of a p-dimensional vector v and d furnishes
the canrdinﬁtea, with respect to the basis defined by any qfdimeﬁsinnal

of a Q- dimensional weclor w,

mﬂFrix X, whiph possesses a reciprncal,fy? denote by v x w_ the pag-
dimensional vector whose coordinates, with respect to the basis defined
by the pg-dimensional matrix X xJI' , Which possesses the reciprocal

&
3_1 X I'"1 y are furnished by c x d and we term V X W the Kronecker

product of w by Vv . If A an}ﬂ‘ is the presentation, with respect to
the basis defined Uy X , ofva p-dimensional representation {_; of an
n-dimensional matrix group and A-—) A" is the presentation, with re-
gpect to the basis defined by X' , of a q—dimenéinnal,reﬁraaeniatiﬂn

fjé of the same matrix group, then A — A" x Aﬁ. is the presentation,
with réspect to the basis defined by X x X' , of a pq—dimensimnﬁl re-
presentation of the n-dimensional matrix group. We term this fepresenﬁ—

ation of the matrix group the Kronecker product of !FE by fﬁq and we

denote it by the symbol !"1 f-,:, $ When f"é = (—i = I'“, say, we write

!"""T

o
L
+

rjE instead of ff‘and we term (-12 the Kronecker square (or, simply,
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the square) of [ so that the dimension of r“2 is the square of the

dimension of F“ .

Let, now, ¢ be any pq X 1 matrix whose elements cj s J =1y eeey

: _ . - 12 1 21
p, k=1, ¢esy @ are arranged in the order 011, C g easy C q’ C g seey

| cpq and denote by 4 the pg x 1 matrix whose elements dkj are defined

kj  Jk

C y fhese elements being arranged in the order

H

by the relations d
d11, ﬂ12, ens d?p! 21 43P

d”"y eeey . Then 4 =Pc , where P 1is a pQ-

dimensional permutation matriX. The relation c¢' = (A.I'B) c o yields

4 =pe' = P (AxB)c = P (AxB) P 'd snd, since a'’d = otI¥ =

- ' J Lk LX) _ =t _ K Mt —_— ‘
_ % ﬂd\bﬂﬂ = Z =b33n£..d-' y d = (Bxk)d.h Since @&
o
P

is an arbitrary pg x 1 matrix,

.possessing a reciprocal, it follows
that Bx A = P (AxB) p~' g0 that Kronecker multiplication of re-

presentations of a matrix group is cnmgutative, r12rj1 being the same

as [, [,

2. The orthogonality relations.

The relation c¢' = (AxB) ¢, where A and B are any p-
dimensional-end q-dimensional matrices, respectively, and c¢ 1is any

pq'x 1 matrix,is equivalent to the pgq relations

k S | |
G'j = Ljﬂib‘ﬁm ’ j = 1, ssss P % k = 1, seey J o

* .8
If, then, we denote by C and C' the p X aq matrices of which the
elements in the jtB row and Xxth column are K and ot3¥ y Tres-

pectively, we have

0

ot AC B

If ¢' = ¢ , in which case we say that c is an invariant pa x 1 metrix
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of the pg-dimensional matrix Ax B , we have C = AC Et . Similarly,
if ¢ is an invariant pq x 1 matrix of the pg-dimensional matrix A x B
we hgve C: = .A C B*¥ and this relation may be writtgn, if B is unitary,
iu.the~fprm AC ='CB P & i A._-}Af is the preﬁentatiuﬁ, with respect to
the basis defined by any p-dimensional matrix X which possesses a re-

l"'l

ciprocal, of a p-dimenusional irreducible continuous representat ion 1

of a compact n-dimensional r-parameter group and A - A" is-a unitary
presentation, with respect to the basis defined by a q-dimensional matrix

X' which possesses a reciproecal, of a g-dimensional irreducible con-

T

tinuous repreaentatiﬂn' !‘2 of the same matrix group, then the corres-
pnndencE' A —+A' x A" presénts, with respect to the basis defined by

the pq-dimensional matrix X x X' , which possesses the reciprocal
-1 -1 " e o
X~ x X'" , the continuous representation | 1 l , Of the matrix group

(where f1E 1ls the r9preséntatinn which is preseunted, with respect to

the basis defined by X , by the correspondence A —y A" ). A vector v

T

af the carrier space of ! Hlﬂg will be an invariant vector of r11fﬁé
if, and only if, ¢ = (A" x in).c ) where ¢ is the pq x 1 matrix
which furnishes thc coordinates of v° with respect to the basis defined
by X x X' , this relation being valid for all matrices A of our n-

dimensional matrix group. Since the presentation A—3 A" of fﬂz"ia,

by hypothesis, unitary we sce that v is an invariant vector of fﬂ1|“;
if, and only if, A' C = C A" for every element A of our matrix group.

If ¢ ¢ooy cq are tte q@ p x 1 c¢olumn matrices of C +the relation

1?
A' C = C A" says that A' ¢

]
!

J
t--'r

J

] =1y ¢evey @, and this implies, since

ie the linear combination :E:-c a"
k. I'?L'

of Cqp soey cq,

ducible, that either C 1is the zero p x q matrix or else q v, p and

p of the @ p x 1 matrices Cqy soey Gq are linearly independeut.
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Furthermore, the relation A'C = CA" is equivalent %o the relation A"*CH =
CxA'* and the collection of matrices %_A"* i is irreducible, rﬂz being
irreducible. Indeed, if there existed a q-dimensional matrix B , possess-

. 1 1
ing a reciprocal, such that ]3"‘| A"¥E = (M‘! MZ ) , we would have
| | 5

M1¥' o \ O M .
1 | :
B*AFB_1* = Ml MF#-:J from which it would follow that, & being the
2 2 ¢ , |
dimension of M: , A" vy , where Vi = B-1*ak , k =38+, «.sy q, i8 B
linear combinetion of Vo 1 0t vq and this cannot happen since rﬁé
i q X p

is irreducible. Hence, either C¥* 1is the zer?hmatrix or p 2 ay 4 of
the p column q x 1 matrices of C¥ being linearly independent. Thus

either C =0 or q=p s the p dimensional matrix C possessing a re-

ciprocal so that A" = G-1A’C . In other words, C is the zero p X q

= -~
= | ]

matrix unless | 5 = I_j, saY e In this latter case we may set

t oM - . T _ T : 5
_A - A" and it follows from the relation A"C = CA" , since is

irreducibles that C is a scalar matrix so that the corresponding p2 x 1

matrix ¢ has all its elements cjk y J =1y eseyp,y k= Ty eosy Py

zero save those for which k = j and these are all equal. It is clear

- —

that, if d is any pq x 1 wmatrix, the average of (y' x.Y") d over our

group furnishes the coordinates, with respect to the basis defined by

R i
- -l-ﬂ

X x X' , of an invariaat vector of 1'1[ 5 ;. indeed (A' x-;h) (Y x'?h) d =
= (2" x 5“) d , where Z = AY so that 2' = A'Y' , z" = A"MY" ,

and the average of (Z' X E“) d over our ﬁatrix gfoﬁp ig the same as the
avercge of (Y' x %ﬁ) d .nver this group. | Takiﬁg for 4 , in furn,'the

pq pq x 1 _matricea 911., 612 g sevey Epﬁ we see that, if F; is.
different from [ ’ the average of Y' x.;; over the group is zero.

1

On the other hand, if |-% = rT = [, say, the average of I(I')i (Y')

h
i

over the gruup, where Y—3*Y'! is any unitary presentation of the
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continuous p-dimensional irreducible representation [ of nur'cnmpacﬁ r-
parametér gruup, is zero unless J = L y 1n which case it is a cnmﬁlex
nuﬁber which is inﬂependenf of h . Thus the aﬁerage of '(Y')i'(Y')E =

- RV EPZTTIUR Y SRR S, | A _ ; +th |

= (Y )k (Y *}h = mk 5h where 6h is the clementnln the J row and

h*" column of the p-dimensional identity matrix. On setting j = h and

summing with respect to h we see, since Y' is unitary, that mi
1

-1 i Cw . . , J . | i , | ~ 1 j hi
=3 6k . Hence the average of (Y )k (Y *)h over the group = > éh Gk .

This and the fact that the average c:-f (Y" )]j{ (‘E”)E = (Y )lj{ (Y“*)i‘l. over
the group is zero counstitute what are known aé tﬁe nrtﬁagunﬁlit# rclations
connecting irreducible continuauslrepresentatinns of a compact f—parameter
matrix group. On setting k=3 , h = 1 ‘and.sgmming with respect to J
and 1 we see tha£ the average of -‘Tr Yt | : over the group is 1. and

that the average of Tr ¥* Tr Y' over the group is zecro. It follows that,

", is different from [ y Tr Y" cannot be the same as Tr Y' for

if 1

2

every element Y of our compact r-parameter matrix group. Thus the
collection of numbers Tr ¥Y' characterises any irreducible continuous

representation [ﬁu of the group and we term this collection of numbers the
|

- . | ‘
character of | ‘ Denoting this character of P by ch we express

the fact that the average of l Tr Y'l 2 cver the group is 1 by saying

w—

that the squared magnitude of chi 1is 1 and we express the fact that

the average of (Tr Y') (Tr Y") over the group is zero by saying that the

e

scalar product of chl 1 by ch F; is zero. It follows at once that

-

the analysis " = 011 H + e0e *+ cml o of any reducible continuous re-

presemtation of a compact r-parameter matrix group into i%s irreducible

.

= ¢, Ch_r? + <e. +c chi’ 80

components is unique. Indeed chl . o

that Ej = the scalar product of ch{ by ch.rs s J =1, sy m,y iec.,



55—

A ————

s

the average of ch f"j ch! over the group.

For 1-dimensional representations the ch.racter of a representation
48 the collection of numbers which constitute the representation. For
the 1-dimensional unitary group, or the . 2-dimensional rotation group,
all irreducible continuous representations are 1-dimensional (since the
groups are cmmutative} and the typical element of any irreducible con-
timous representation is of thc form expm® i , -7 £ 0 LT,
where m is an integer, since exp m® i is periodic with period 2T .

For these groups the orthogonality relations state that
e J'rt 2
—L g 'exp m® i} @

}

it
1, —2-1;5( [ex;:(m-n)i@lcﬁ = 0,

L= J
m#n i

2T

these are the basic relations which underlie the theory of Fourier

EETi 28 .



r

 -56-

Tecture 9

The class factor of the element of volume of the n-dimoasiopal unitary

ZrOoUpe.

Any n-dimensional unitary matrix U may be written in the form
Uu . = D'Un 1 ...-U1_ ‘where D is a diagonal unitary matrix (g0 that its
diagonal elemcunts are complex nuubers of unit modulus) and Uy 9 oees U+

are products of plane n-dimcasional unimodular unitary matrices of the

typc
c -8 exp -1
| 0
th(@,ﬁ') = 8 expgi C , ¢ =cos b, 8= gin 6,
o - - E of 9 {;Eén/z, L TTLT,
U, being Uw,n(gn-ﬂ"uﬂ) UE,n(@n-E’ G‘;l_z) Un—1,n(@‘1’"’1) y Uy
. a
belng U1,n~1(®2nr2’ j2n~2) U2,n—1032n*5?135ﬁyﬁ} v UnﬁE,n—1(®nfﬁT;) and
- 1
. . o l o - _ . ;g
so onto U which is U1,2(@N* N) y N=7n (n-1) Writing
s cosG"=x, 8sin@ =y , so that ¢ = (1-12—3'2)1/2, U, 2(@,‘3‘-)
y

becomes a function of x, y which reduces to En at x =0,y =0, its

derivatives with respect to x ard ¥y reducing to (? -{1} 0 ) and

0 i 0 -0 0
i O , respectively, at x =0 and y =0 . If we take as our
0 O

n2 parametere the n arguments of the disgonal clements of D, the N
x's and the N y's which are furnished by the formulas xi = Ej cnaifi =
- E.it'.l @ . COB i._r-.- H . = 3,. Sin N = Eiﬂ E} . Ein '..,“-x.. - | = 1 sesw I"T

Ji J:F_' ’ yj F ¥ J JJ-. J Y ? ’
the origin is the identity point of thc parametric space and the n?
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characteristic matrices M1, +eey M 5, are as follows:
n

"] = 1, ssay [y where H is the Il

y’ J

"dimensional diagonal matrix all of whose diagonal elements are zerc save

1) n of the type iH

the jth which is 1 j these correspond to the n parameters which
are the arguments of the diagonal elements of D .

2) N of the type p £ @ =2y eeey n, where U q is the

! P»

M
P:Q
n-dimensional matrix all of whose elements are zZero save those in the
pth  column and q'R row, and in the qth  column and ptR row, which

are 1 and - 1 , respectively; these correspond to the N x's .

3 N of the type 1 H Q= 2, «asy where H is
) yp 0,a y P L q ' ' y D,q
the n-dimensional matrix all of whose elements are zero save those in

the pth column and qth row, and in the qﬁh column and pth r'OW,

which are both 1 ; these correspond to the N y's .

If, then, we deunote by Ei y =1, vy m, k=1, avey n 4, the
n-dimensional matrix all of whose elements are zero save the element in
the jth column and Kbh row, which is. 1 , each of the n2 matrices
Eﬁ_ is a linear combination of the n2 characteristic matrices M1 gy secey
Mn2 , the n2 X n? matrix of the n2 linear combinations so obtained
possessing a reciprocal. Hence, in order to obtain the element of
volume of the n-dimensional unitary group, we have merely to express

& = -U*AU as a lincar combination of the ﬂ2 matrices Ei. and to
determine the modulus of the determinant of the ﬁz X n? matrix of the
n? coefficients of this linear combination (those cuefficienté'being
linear combinations of the differentials of the n? parameters).

Since each of thc coefficients in question is an element of the nx n
matrix & our procedure is as follows: We determine the modulus of the

determinant of the 1:12 X n2 matrix of the n.-.2 elements of & , each
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element of &U béing a linear combination of the differentials of the n?

parameters.

:The group functions we shail have to integrate over the group will all
be.class functions, i.é;, fuﬂétiﬂns ﬂ (E) defined over the parametric
gpace which are such that ﬁ {aza*T) = Jﬂ (z) , where a is an arbitrary
fixed point of the paramefrié épaceﬂand :z ‘varies over the parametric
space. For this reason it is convenient to use the class and in-class
parameters which are defined as follows. If 2 is ﬂﬂ; n-dimensional
unitary matrix there exists an n-dimensional ﬁniféfy’mﬁtfix A éuch that
A¥ZA 1is = diagnnall n-dimensional unitarj matrii D fz) y whose diagonal
element s Zq 9 eeey Z - ATE complex numbers of unit modulus which are the
characteristic ﬁumbera of Z , and we say thaﬁ D (z) is a disgonal re-
presentative cf the class of the unitary group to whiéﬁ Z belongs.
Wriﬁing A¥ in the form D Uﬁ;i coe U1 = ﬁV* , say, we have Z =
= AD(z) A = VD (z) V¥, the diagonal factor -D of A% disappearing
gince D¥ D (z) D = D.(z) sWing to the ﬁummutativity of diagonal mabtrices.
The n class parameters are the n argumenfs nf. Zy 9 eeey B and the
28 = nf{n~1) in-class parameters are the H. x's and. N y's which

appear in the N plane unitary n-dimensional matrices whose product

U , ..U, 48 V¥ . Since ZV = VD (z), wehave (d5) V + Zav =

= (aV) D (z) + VaD (z) so that (az) v = (av) D (z) +'v.:m(z)'~ Z ev
and (53) Vv o= v (&) v* (av) D (z}: + VD ' (z) dD (z) - av =

= ﬁD'1(z) 5V D (z) + V8D (2) - av so that V¥ 82 V = 0 (z) & D(z) +
+ 50 (z) - & or, equivalently, & - vio ' (z) &V D (2) + s0(z) - 5V v,

Since the n-dimensional unitary group is compact the determinant of the
2

n X n2 matrix C which is defined by the relations
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— >
v I'IF v* — _>____|_,M (ET* 5 j = 1, “e oy Yl
j.l o 4 :11 ’
‘where the Mj s J =1y eeey nE , are the characteristic mat rices of the

grﬁup, hag -cfulus unity (the correspondence V-3 C being the adjoint re-

5~(z) svD(z) + &(s) - &

preéentatinn of the group). V¥8Z2 V

, 7 e 2 2
is of the form iMﬁFﬁ', where the Fj , J =1 «esyn ,are n

£
1inear combinations of the differentials of the parameters; hence,

' o=
8% E MQK(C)Q F©  and the modulus of the determinant of the mal-
* a
2

' < e 2
rix of the n  linear combinations Aih(c)fji””', =1, eeeyn , of

A &

the differentials of the parameters is the same as the modulus of the de-
terminant of the matrix of the n? linear cnﬁbinatinna Fy y J =1y eeey
.32 , of these differentials siuée it is the product of this latter modu~-
lus by | det C1 =1 . Thus all we have to do, in order to determine
the element of volume of the n-dimensional unitary group, is to calculate
the modulus of the determinant of the nz X n? natrix of the elements of
V*&Z V = ﬁ*1(z) &V D{z) + &{(z) -~ &V , each element of V%82 V
being a ;inear-cGMEinatinn of the differentials of the ng parameters.
Since the dimgonal élemeats.of B#T(z) &V D(z) are the same as the
corresponding diagonal élemewta of &Y the liuéﬁf form furnished by the
pth diagonal element of V#42 V is 1 @ap where 2z = exp*@pi y

p=1, «s.y, n, and so we have only to determine the modulus of the de-
terminent of the (n? .- n)-dimensional matrix of the n? - n linear
combinations of the differenmtials of the parameters which are furnished
by tﬁe non-diagonal elements of V¥*&Z V . The element in the first
column and secound row, for eﬁampla,of V*pZ V 'ig ((51/ﬁ2)~ j) (6?); and,
since the coefficients of the linear combination (SY); of the differ-

entials of the parameters are functions of the in-class parameters, we

gee that the element of volume d?z of the n-dimensional unitary group
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may be written as the product of '.;qu((zp/hq)- 1)((zqfﬁp)- 1)' dﬂﬁ1,..., Hm)

by a factor which does not involve the class_parametgrs_ﬁ1 y seny @ri'

In the process of averaging a class function over the .group this_secpnd
factor concels cut and we term the first factor (which is merely the class
factor of the element of volume) the element of volume of the group. Since

l zpl =1, p=1, eeoy n, this class factor is

s 8) .

, ! |EP -~ Eq‘ ad (H"f "

| pL 4
The product .TT (zp - zq) may be written as the Vandermonde determinant
p< 4

of Ty g ey En;’ .6+, the determinant of the un-dimensional matrix

| , ) .
whose pth row matrix is (z? P, veey 2 1:') y P=14, «eey 4y and se

| D D :
it is ZE: 1;511 veo znn where Py 9 soey Py is a permutation of the n

numbers n=-1 , +.. 4 1, 0, the + sign being used when the permutation

-

is even and the - sign when it is odd. Since [
In

T
z2 @, = 0 unless

J

p =0 , in which case it is 2T , only those n! of the (n!)® terms
- . :1

. P P - -
which occur in the product 5 =+ 51.1 zﬂn) (2 * 211 ves znﬂ) for

which q1 =Dy 9 eeey qn*z pﬂ* contribute anything to the integral of

]1“-] Ep - Eq\ “ over “he class parameter space and each of these terms
p<q

contributes (2n)® . Thus the normalised element of volume or, more pre-
cisely, the normalised class factor of the element of volume of the n-
dimensional unitary group is

H) ﬂ lE - 7 d(1 ) -.-,@ﬂl)
- nl | P 4

PpLa |
~If m is any non-negative integer we say that () . = (}ﬁ1,)52, seay

’hn) is a partition nf. m , containing not more than n parts, if A TIREEY

Jan:-are non-negative iantegers, arrangcd in order of non-ascending magnitude,
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whose sum is--m- and we term the number of non-zero N '_5. Tjjhe number of
| y ?
pEII"l':E i'l'l ' (A ) ‘. Sﬁttitlg K..I L=, ::1.1 + N = 1 s 212 = AE + n. = 2 y weey

zn, =--}\ﬁ ~the non-negative integers »{’:1, cooy fn are all different and

are arranged in decrcasing order of megnitude and we introduce the function
A(,[f) of the n variables 2, j5 «eey 2, which is defined as follows:

A(¢) is the determinant of the n-dimensional matrix whose pt?  row

. ¢

mﬂtri}: iﬂ _1 ] LI | Eﬂ ] p =_1,. -.t,Iﬂ_-_ ThUE, A(ﬂ"""1, LU | 1’ D)

ig the Vandermonde determinant of 2 ..y 2 and,like this Vandermonde

1? 4}

determinant, which we shall dcuote by AN A( *E) ig an alternating.
function of - -z; 3 eeey 2 o Thus the quotient of A( #£) by N is a
symmetric function of .z, -.---, 2 which we shall denote by the symbol
{_ }‘E’ . We write only the non-zero parts of (A ) 3 thus if A K > 0

while A, ..-=0 {(sothat A_=0 if J > k , we denote § A 4y enes

k+1 | J
1k" 0, “.0} by %;{1 y sy Rk}{‘ and when all the A's are 0 we
denote - iﬂ y O 4 o0sy Dt simply by i(}j . For example, f D} = 1

} 7
aﬂd -[11 = 2 + sees T 2 = S

1 - 4 1 SBY. . Tt is easy to see that the

average of the squared modulus of i& 3; over the n-dimensional unitary

group is 1 . Indeed, since the normalised element of volume 1s

. B T =
-:E- (2n)™ A A 4 (@1, ceny @11) , this averasge is ;—1—3- (on)™™ \ ] A(¥) A(’z)
n! ! Y L

| ,. p, Py,
6 (@45 «oes HEL) and A (X)) = Zﬁi Zy ees T, o WheTro (p1 y seny pm)

ims a permutation of the numbers .[/1 y seey {l’ﬂl s, 8o that

T J—
J [ AY) A(P) a (©45 =ony @n) is independent of (£ ), having the
1

game value nb (2Tl:)n as it had when (2) = (n—-1, csey 1y O) . Similar-

1y, if A') = (?\!1 ; ...,)\I'L) ig different from (A) = (31, veay

|

;‘n) , the average of E A l iﬁ} sver the group is zero; indeed (') = |
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il

P D P P
v - i . 1 u L ™ - 1 — n
no term in the product of E Fzy e Z, by E + z, ces B y

where p!l y seey péL is a permutation of the n numbers ffl g ceny fl'l y

reduces to unity.

Exercise 1. Show that, if A 1:1> o, i;\i is the product of
il "Anj )‘E-Hﬂ’ e e e ] hﬁ_1”hn,0k by‘(dE't Z)n-
Hi

1
Il

ot =

. det 2 = 2. eee Z o
1 YL

TInte. The result of this exercise shows us that, over the unimodular

subgroup of the n-~dimensional unitary group, ;-?\-1- y ssey ;{ n} ’

T A |
- Fxercise 2. Chow that {'z\i\ = (det 2) 1iA1 - hm, Ay - )‘n.-ﬂ veey
A, - A, , of |
Note. This exercise shows that if 5[;1‘& is real, . 531 y s }’ng =
= i;\1 - A]‘_I._ . AE - P}I'.L y Sesaey a'n_1 - Aﬂ, , U} - S?E_I - ‘hn.,

dimensional unitary group.

n-1 ? ***? Aq “;“é ’ 0} over the unimodular subgroup of the n-



~63

Lecture 10

The symmetrized and anti-symmetrized powers of a rengeééétation.

If A' is any d-dimensional matrix-the Kraﬁéckef product
A' X oo x A' , involving m factors each equai £$ rﬂf , is a
dm-dimensinnal matrix which is known as the Kronecker m°® power of

A' and we denote it by A}'m . If A-—A" ie a prreseutatinn a

"l-l-lp...!

of a given matrix group then A *ﬁ’ﬂj#m* is the representation
(" .. |7 (there being m factors each equal to ") which we

fﬁm . If the given matrix

term the mbh power of (" and denote by
group is the n-dimensional unitary group ﬁe may teke 2' to be upi-
.tﬁry for every éiémeut ? .Df the gynup and this implies that Z‘Lm]
is unitary for every Z _and,,_r if X 41s a d-dimensional matrix,
possessing a reciprocal, which defines a basis in which 2' is a
diegonal d-dimensional matrix, whose diagonal elements 51'., seey za
are the characteristic numbers of Z', then Z'[m] is a diagonal
dm-dimeusimnal unitary matrix whose (r1r2 ....rﬁg_th diagonal eleﬁent

~th
m)

is zé cos E; (for the elemeut in the (5152 ces S row and

m 5 s
(r1r2 coe rm)'th column of Z!Em] iz (Z!>r1.‘?‘ (Z')r$ ) » The

character of f“m is (ch?“}m = ST where 51 = z% + a0 t zé is

the sum of the characteristic numbers of Z' . In particular, when I

is the self-representatation 2 —)Z , so that d =n , the character

of r+m1 is E? whére 8, = zi + aue +.zﬁ£‘is the sum of the charac-

teristic numbers of Z The character of the self-representation rﬁ
' . . ' 5 2

it self is 8, = {1} and it follows, since the average of li 1 3\

over the group is 1 , that the self-representation B of the n-

dimensional unitary group is irreducible.  Indeed, if [ = m1{ﬂ1+ cospmy {7
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is an analysis of " into irreducible components, i‘li = ch [ =

« 2
= M, ch F‘I + eee T m, ch Fl{ so that the average of |-i_1_f| | over

- D - | | :
the group = my * oeee mi . Since this average is 1 and since the
coefficients My 9 sens mk are non-negative iniégers, all of them must

be € save one which is 1 ; in other words | is irreducible.
If X is any d-dimensional matrix which possesses a reciprocal,
X 7 defines a basis in the carrier space of V' ™ . Let c¢ be the

a™ x 1 matrix whose elements furnish, with respect to the basis defined

by X TR the coordinates of an arbitrary vector v of the carrier

space of (- a%d denoté by (p)c the &% x 1 matrix whose (rjlrz ‘e rm)_
_ o Pq 77 "Pp T Py »ee P
coordinate is ¢ . where (p) = ! (1 o is any per-

mutation of the m symbols 1, evey m , 1.€., any element of the sym-
metric group Sm on m symbols. If ¢' is the 4" x 1 matrix which
furnishes, with respect to the basis defined by X'imj , where X' is

any d-dimensional matrix which possesses a reciprocal, the coordinates of

v , we have ¢' = A‘fmii“ where A = X'7'X . The (r1r2 s rm)ath
- . ryede T | _ er}
ement of ¢ 1is ¢ and we denote this, for brevity, by c .
o oL r - .1 S
%I‘ _ . m A g r}
Then c! f ) - z . Bgq ees B0 so that ((p) ¢ ){ =
of grevernd -
r r oy B r 3 of
- \ P4 Py {7 . ? P4 Py { } ~
| By e aim c Levay ! eee By ((p) ¢) =
"(1_’”' y Ay | (4 ) P Py
= . 7 ar1 arm ((p) .-,33'#~ | Thus (p) ¢' = A = {((p)c) so that
() 1 ot " - | m] P

the a" x 1 matrix (p) ¢'" furnishes, with respect to the basis defined

by X'- y the coordinates of the vector of the carrier space of s

Lo

whose coordinates, with respect to the basis defined by X S_ml y Are
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furnished by (p) ¢ « We restrict ourselves to baaeé_afﬁthe carrier space
of '™ which are of the form X tﬁﬁ . and we denote by._(p) v the vecter
of this space whose coordinates, witﬂ respect to the hasisldefined by KLFJF
are furnished by the a®™ x 1 matrix (p) ¢ , where c is the. a" x L
matrix which furnishes, with respect to the basis defined by E”{mﬂ , Tthe
coordinates of an ﬂ:biirary vector v of the carrier space of r“m .

m

The collection of vectors v of the carrier space of '~ which are

“

such that (p) v = v , for every element (p) of the symmetric group S

om m symbols, constitutes, when m ~» 1 , a linear vector space S' of
. : : . . I

~dimension tihdm i.e., a proper subspacc of the carrier space of {7 .

S'  4is invariant under onch of the linear transformations which constituts

f—‘m'; indeed, if v«—f;?j under any of these linear transformations,

(o) ) 1TY = = @ (1) T8 o/
o CORE A
- T @) (6) o*
(Jﬁ) :JLP1 "’meﬂ - .
E?Ithat_ ;P) v! = ((?) v)' f iﬁ, then, (p) v = +V ; (P) v! =-i_vr :

the same sign being used in each of the two equations, which proves the
invariance under | M of the linear subspace S' of the carrier space 3

_—
of |~

and also the invariance under i'1m of the linear subspace S
of S which consists of the vectors v of .S which are suéh that (p) v =
=+ v , the + sign being used when the permutation (p) is even and the

- gign when it is odd. We term the representation.of the n-dimensional
unitary group which is induced in S' by [‘m the symmetrized mth power

of '...1 and we denote this symmetrized mth power of (" by P@{‘m% :

we term, similarly, the represeutation of the mn-dimensional unitary group



which is’ induced im S" vy [ " the anti-symmetrized mbh power of 1_1
‘% and we denote this anti-syrmetrized pth power by | &) % 1!113 y, Wwhere

(™) = (1, 1, «vs, 1) denotes the partition of m into m parts each

A——

E@ﬁi ‘f».;D 1+ VWhen |  is the self-representation we denote [ @ im,i

and - f"'@; {1@% simply by ‘Em_fg and %1“"} 4 Tespectively.

1

.‘1':- .
- d.ﬁ._.(P)V=w"!

| (p)
of v over the symmetric group Sm on m symbols is a vector of S' ;

"If v is any vector of S the average,

for (p') w , where p' is any elemeut of S_ = E% (Z.) (p'p) v=w,
. | »

and, on taking v ‘to be a vector of S' ,.so that (p) v = v for every

element (p) of S we see that every vector of S' is of the type

T . . _ . .; ' . - .
W = -;:- ,(___j (p) V . Similarly —rﬁ' Z + (p) v, the + or minus
" Co(p)

sign being used according as (p) is even or odd, respectively, is a
vector of S" and every vector of S" is of this type. On denoting by

" r sf Si-all of whose coordinates, with re-

vy - the vector v
{rs 1 M

spect to the basis defined by X , where X 18 any d-dimensional

| o]

matrix which pcssesses a reciprocal, are zero save the (r'_I e rnn)—'t‘.h,

which is 1, (p) v{r} = v v(p){rj and so the

-

I

p_?.'l-r

Pn

average w(p) {r‘} of v(D}iri Qv er Sm is the same as the average

W .‘ | - L . . -8 8

{rﬁ of v{_r} over Sm We agree, then, that r, £ T, $ _érm
and consider the vectors w 'i‘rij of S' , there being as many of these es
there are terms -in the expansion of (x1 + eee + xd)m' ; for example, when
‘m = 2 ‘there are d(gﬂl vectors w q-r&: and, generally, there are

L !

(a+p-1)! of the vectors w These vectors of S' are l.inearly

(d-1)! ml | Lry

T

independent since all of the coordinates of wirj ’ with respeét to the
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. pbasis defined by X (a] are zero save the (r p.1 Tp,**" npm)-'th co-

“ordinates, where (p) is any element of Sm , and these have the same

1,
non-zero value. Since every vector of S' is of the form ot Z (p) v,

which is n linear combination of the vectors w;r'; y T4 é T, é soe érﬂ,

 the: df:lr)nl' vectors W EI‘} constitute a basis for S' whose dimen-
sion D is (gf:[;flf- . T2 X 1is so chosen that .Z' is diagonal,
zr[_mj is diagonal, its (::'r1 rm)-th diagonal glgment b.eing ,.ﬂs:'[,1 cee z‘rm ,
,-E.nd; since zép;.. z;‘pm = 5;1 2X i-';,m y WI{I'EQ = .5;1 sosn El 1{3

r, £ T, £ ess £ T -« Thus, when we introduce a basis in S whose
first D vectors are the vectors W i -r} , the matrix formed by the first
D columnsz and first D rows of the presentatior of 7! in this bagis is

diagonal, its (rjrz...rm_)-'th diegonal elemeut, where r1 L vy L een L Ty

being z{_..1 «es 2. and the matrix formed by the first D columns and lasi
m - .

a™ _ D rows of this presentation of Z'EmJ_ is the zero (dm -D)xD

P _*1 . b
matrix. Thus the c’aracter of [ @ im‘g ig' the complete symmetric

1 = : I . t . . t
function hm ) Er1 Z r_ of degree m of the p characteristic
' ' ' ' 2 > gtg!
numbers Z, 4 ssey 2 of Z2' . For example, h, = L (z ) + Z:%) 9
1 D 2 Ik
J Jk
h% = Z (33)3 + Z z Z z:'] z{[ 7! and so on.
] j k jekei VY £
; 1 =
It is clear thaty if w_ = =¥ L+ (p) v, the + or - sign being

(p)

used according as (p) is even or odd, then W ir} = E—E- Z + (p v._r}
-1 ]

is the zero vector unless T,y Tyy see; T are all ﬂiffereﬂi. Since

w-(p)fr}. = W_ irl we take T, Vd r, £ eeoe érm and the argument



-

t
given above shows that the D = (i) = (a_i—i, o vectors Ww. «ir} ’

r, £ Iy £ ... -.r_"_;rm y constitute a basis in S" , and that the character

1

: T Ty : -
of the D -dimensional representation | (x4 i‘lm} of the n-dimensional

=

1 —

unitary group is the elementary symmetric function ¢~ = 2 z! ...
- - m 3
31‘:32‘(‘”-—«"‘;35—1. 1

. 33 of degree m of the p characteristic numbers z; ,....3'35 of Z' .
m -
The character of the representation i m ﬁ of the nr-dimensional

-

unitary group is the complete symmetric function hr-- ¢f the n character-

istic numbers Zyy seey 2 of a typical element Z_ of the_grcup and the
character of the representation :f 1mj of the n-dimensional unitary group

vesy Z2 .o . Then h(d‘) =

is the elementary symmetric function r:}'“{n of %4y n
o 9{2- “.n i
= 111 h2 oo hm s wWhere -.~;~(1, soey o ., are non-negative integers suoch that
=JK1 + 2:k2 + eee t nﬁ:’ln = m , 18 the charactcr of the representation

o |
. _:. - . M
{ "-.‘j ! 1 .'—2,:[' 2 “ee :fnf; " of the n-dimensional unitary group and, if

™

AN
P (o4 )
n = m is set of non-negative integers Z m h =
(k) PR NI A € R ()
= . A
= < i h 1... h 4 1s the character of a representation
ot RARE S -
171"
| S 't £,
of the n-dimensional unitary group; similarly, <__ ) T 1...1';5 L o4g

(&)

the character of a representation of this gEroup. If the coefficients m(g&)
are ailowed to assume negdative, as well as non-negative, integral values

we term the expression 2 _ m hl*dfj y or the expression 2 i :T_(QL):
| () T (o) %)

a generalised character, of degree n ,' of the n-dimensional unitary group.
On separating the negative coefficients ﬂ(-::() y if any such exist, from
the positive coefficients we see that any generalised character, of degrec

m , is the difference betweon two actual characters and, hence, is a linear
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combination, with integral coefficients, of characters of irreducible re-

prescntatlnns of the n—dlmen51onal unitary group. If the average of the

squared modulus of u;generallsed character of degree m } over the group,

is 1 all of the coefficients (of characters of irreducible representatiuna)

must be O save one, whlch is 1 or -1 & If the value of the general-

ised character at the 1dent1ty element of the group is positive this singls

*

non-zero coefficiant must be 1 (51nce the character of amy representation
gt the identity element of the grnup is positive, b31ng the dimeunsion ef
N

the rEpresﬂntatlan) and the generallsed character is the character of an

irreducible representation of the gruup;
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Lecture 11 _

FA
ey
[ 3 .

1« The irredycible continuous representations of the n-dimensional

unitary group.

The symmetric function ‘}_,—-\3 of the n characteristic numbers Byy eeey
zu of a typical element Z of the n-dimensional unitary group may be ex-
pressed in a form which makes it clear that E:A} is a generalised char-

acter of this group. To show this we consider the function f (1:) =

| N L n__.n _
= (1 - z.%) ... (1 - z t) = ORI (-1.) Gty where g7, =1,
G:I' = Z Ej y T, = z_ Ej’zk and so on and t 1is an indeterminatc.
| JQk
-1 2,2
Since (1 - z,t) = 1 +zt+ 2.7t +.00, |z, bl &1,
J J J J
[ 2
{f(t)s = hu + h1“d. + h2t + eee whera hu =1 , h‘l = % zj_ ’
h2 = Z'EJE + L Ej'zk and so on are the complete symmetric functiens
B] J Lk
0f 7y +esy 7+ On writing 07} = (-1)3?3} CF = 0 51y eeeyn,

oy
(j*:'j =0, J > n, we may write f(t) 4in the form Z:G":'ﬁ'tj and the

® o0) b
— {
fact that % E G‘étj% %'? hk'tk j‘ = 1 may be expressed by the statement
0 0

that, no matter what is the positive integer m , the following two m-

dimensional triangular matrices are reciprocals:

e | A -0 1 : s ae
/‘*J o 97 YV n-1 /hn B hm—1\

' —_1
0 Oy = Ugoo | 0 m—2

I
L
e
1l
L 2

m -. ' L .
\0 .- a 'D [jl / \,10 .0 0 h

B e L R
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If e is any nnn-negatlve 1u1:eger we denote b:v,r (hﬁ) the 1 x n matrix
is one of the n integers 0 4, 1 4 ooy D=1, (h ki) is a row matrix nf

H which implies -that (hg) T;:? ~ is a row matrix of the n-d-imenamnal
n |

jdent ity -matrix Eu'_. - Hence, if .K 15 one of the n integers O, 1, .._‘:.,'
n-1
Z

n-1, 2 / = (h f_'.r) Eu . no matter what is the complex number 2z .

This relation remains valid for any integer 2 >f n if z is one of the

-

n numbers Z,y eevy Zy o Indeed, m being any positive integer, if(-t)'k -1

is the sum of a polynomial hﬂ + h1'I: + ceey T 11}:1_1_'_,11:{]1"'1 , of degree £ m",

and tmihm +ho b e 1 and so f(t){hm +ho b+ ... [ i@

: -1 . L :
polynomial r + r1t + e T rn_1tn of degree £ n whose coefficients

vary with m . Since f(’ﬁ)ihn + h1t + ee0 T hm_,l'bm"ﬂ_g + tm(rﬂ + r1't + see

+rﬂ_1tn-1) = 1 aﬁd, since f(t) = 0 if t = 5;1., K = 1y esey Iy

we have zﬁ+ﬂF1 = rnzih1 t ees t roq° k =1y, seey njy m= 1: 2y see o
The relation T(t)§h +h ot F o= T AT L rﬂ_11:n'1

yields the reia'l:ipna hmg--:’j =T, 9 ]:1“1-;3""4I + hm+1ﬂj:: = 'r1 g ese g

hi'_rn_1 F oaee + hm+n—-1g; = r_ , O, equivalently, (h -Q)z L= (I:n-.-1) .

where Lrn_q) denotes the 1 x n matrix (rD, r1, coey rn_1) -and

En—d - E1::r.—‘t
. | k k

.e_ = m+n-1 . Hence zf = (rnq) ) = (h g) i : y

L L

1. - 1
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/ﬂ EH,':F nun_negat-ve :erl:eger. If, then, -4%,}1, vesy ,e,m is E.'ﬂ}i" set of

unequal nnn—negatlve 1r1te ers, arranged in descending order of magnitude,

5 fj)

the n—dimensmnal‘ matrix whose row matrices are (z..i , ey Z

] = 1, .oey r; may be written as the product of three n-dimensional
of- which the first is the n—d1m5n51nna matrix

matrlcesﬁwhc-se row matrices are (z cos _j) J = 1y ees 4y N,

the second is Z and the third is the n-dimensional matrix whose Trow
. _ Tl :

mat rices are (h e ), j =1y seey nn Since i)‘} ig the quotient of
j “

A (ﬂ) by AN = A(n-1, ceey 1, 0) and since 2 , being a triangular
n

netrix all of whose diagonal elements =1 , 18 unimodular it follows that

{7\3 ig the determinant of the n-dimensional matrl.{ whuse row matrices
matrix

are (h 2--), ooy (h_fif ) . _Theﬁc_:l?'.agnnal_ elements of this u—dimens:.unalh

i .
%11' vy 'h}‘n y Wherc ’Ij1 = >\1 tn-1 , €2 = }\2+n-2, seay flf >\nr

;=0 it JHk ,{AY s
+the determinant of the k-dimensional ma'trlx whose row matrices are (hﬁ ),

where f1 = }\1+k‘| ceuy fk-~.>h

_(h’ﬁz),‘ voes (h”ﬁk)f\ For exampleﬂ_ } = h  so that SQ_EE is the
character of the symmetrized mth  power of the self-representation of the

and so, if (A) has k parts, so that A

n-dimensional unitary 'gf{:}up.  Since the average of \ im} \ 2 over the
group is 1 it . follows thaj} the gymmetrized moh power of the self-
rcpresentation of the wn-dimensional unitary group is irreducible. We
denote this irreducible representation of the n-dimeunsional unitary group
o A :
either by l—l(m) or by the symbol 'Lm} for its character. When (}‘) =
m o . § 407 m
= (1™) is the partition of m into m parts, each =1, ) 178 is (=1)
times the cofactor of the element in the first column and last row of H

m+1"?

and hence, since Hm+‘1 is unimedular, 1_1‘“3 ~ {_q)m times the element

{]‘:_& in the Tirst row and last column of 2___1 . Thus {“Im} - G-m is
m-+
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the character of the anti-symmetrized meh power of the gself-representation
" ' : ' m
o e n-dimensional unitary group. nce e average o .
£ the n-dimensional unitsry group. Since th sz | Im3]
over the group is 1 it follows that the anti-symmetrized mth power of
the self-representation of the nadimensinnal unitary group is irreducible.

We denote this 1rreduc1ble representatmn of the n-dimensional unltary
(1™)

Since ‘3;\‘% is a polynomial function of degree m in

group ai'ther b:,r or by the symbol ?1 } for its charac*l:er.

. S ﬁn

end since it is the determinant of the n-dimensional matrix whose row

matrices are (hf Dy eea (he_- ) it is a linear combinatiou, with integral
, . |

i

. | - o
coefficients, of the products h(d‘) = h‘l 1... hﬂ1 ™ where the ok's

are non-negative integers which are connected by ‘the relation of,+2 &21-': cost
gl = W Hence{ A} is a generalized character of the "n-dimensional

unitary group and, since the average of H_A?” 2 over the group is 1 ,

it is either the character »f Man irreducible representation of the group or

e ] ™

the negaetive of such a character. To snttic this question we deterﬁ:tiue

-
—

'bhe value of {X} at the jdentity element of the group, i.€.; E:l; oy =

%0

= a0 =% =1 . Wra.ting 2 —1+E.1 y %o =1+£2 znﬂ‘l-kfn,

w 1

where "E’.1, --‘{:,2, .ncn s E’n are infinitesimals, the lowest nrder terms in

A( g ) are the product nf the determinant of the n-dimenslunal matrlx

; ¢ (e -1) 4y (1) ose £ -n+2)

whose pth row matrix is (1, ep ) 2, y o (ﬂ_” P - )
Py Py

by %_—t&ﬂ cos Eﬂ - where (p) = (P1’ coesy pn) ig a permutation ef

the m symbols 0, 1, «..y n=1, the + or 2 sign being used according

as (p) 1is even or odd, respectively. ~ Since the determinent of the n-

matrix | gp( gp-‘l_)

dimensional matrix whose p'th rnwﬁis (1, ) __2.1_...__. gy e

,fp(,ep-—‘l ) eee ( fp-—nh?)-

_ (a-1)%

) is the quotient of the difference product /A (.f) =
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- (f. ~..,€ ) (,{{ -,t/') ‘by 2' 3' (1:1-41); _it:fnliuws 'bhat the

: b oaeey ) |
1imit ef sﬂﬂ = 'f‘Lﬂ—)-'--— = (31 £y o = w0

/A  A(n-1, ..y 0) 1

ié the quﬁtiez&'l.:'..ﬁ;f; 'bh.e'differencc prndu_é’b &(f) uf the n integers
f’* ceey En by {ﬁe'.diff_'erence prnduc:?h. (n—‘})' (n—2) S uf the
n intégefa u—‘l," , 1_,' 0 and, hence, since i;ﬂ‘ is a continuous

ﬁlﬂc't‘iﬂ‘ﬂ ﬂf 2 14-," Eﬁ, " the VB.]_'LIE' Uf .:AET &ti 2 = 1, “owy A = 1 iE

1‘! 1 Il

the positive integer |
d(;ﬁ). = A(¥) -- (B=1)! (a=2)lues 1}
Thus 5}\% is the character of an irreducible cqn-binunus rapre'sentatiuu,
“nf dimension d( 3) nt trhe | n-dimensional unltﬁry group; we denote this
.irfreducihle mpresentatinn by r-'( A) nr by the symbr::l {3? for its
character. The variﬂus irreducible repreacntatinns uf the n—dimensmnﬁl
unit ary group Wthh we obtain in this way, by camaiduring all partitions,
_wrt;h not more than n ﬁar'ta, of all Dnnnegat1v¢ integers are all dis-
tinct. | | |
We nuﬁ ﬁrndeed I.tn show thath any EDﬂtit;uﬂus irreducible representafiuu

of the n—diniensimnal unitary gz;rjup is the pradué:t of one of the irfati_ucihle
reﬁréaeuta‘tinna i“"(ﬁ) by a power (pnssibly Zero) nf"'hhe' 1—dimensint;al
._'represeutatinn Z —3 det 5 = (det Z)_1_ ; We :fira'!: observe that {'.h'é |
mdiag'c:ihal elements of the un-dimensional unitary éroup constitute a com-
Jutative subgroup of the unitary group and. so, if r' is any continuous

- represeuntation of the unitary group, there e_;:;is_t;g a pasis for the darrier
space of r" with respect to which the matricee ;_Z' of I—" which correspond

to the diagonal él&ml_enjts Z  of the unitary group are all diagonal, siunce

all irreducible representatione of a commutativa group are 1-dimensional.
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We denote by _81, seey ’5:1 , where 4 is the dimgusiun of r' y the
argumenta of the diagonal 'a'lcmen'ts of 2Z' and by @1, p— @n the
arguments of the diagnnal elements of Z . Then each of the @'s

is a cun‘l:munua mnctinn of the n real variables @1, ceny @n_

El'n)- '|" 63‘ (@_‘1, enwy ®;1) =. ﬁj (@14’@1, “eny

--9 ') , j = 1,. eeey 4 . In particular,
Cfy @y e, 8) =g 0) B35 ) + .o +BY (6 ) ’
J =1, seey 4
“11‘9?9 6 17 (9) = 8 ¥ (@r 01. “ony ‘9)1 6§ @) = 6.‘) (0: B, 0!';':0)1
weny r?,j 8) = By (05 «eey 0, 8).

Each nf the cnntmuuus furctione @ y (@) sy J =1y evey d r1_ |

k=1, «¢sy n, of the single real varisble @ satisfies the

equation £ (8) + £ @') = £ (® -_1-8') and s0 ﬂ]‘; B) = m;: -
where m; is a constant which must be an integer since Gj (91, reny

8.) = 3 3 (@,) + ou + 5? (8,) increases by an integral mul-

e

tiple of 2T when any one of the n variables 91,- i GE in-

. creases by 27 . Thusf (@1, ..,,ﬁ‘) = 'T j k so that

_—— 35 = exXp (ﬁji) - zfq v e ﬁﬁm? . If nnné of | the integers m?
is.'negativa, TfZ' is a pﬁlynnmi&l function of .51, .r..,.mn. and, in
any event, the product of TrZ' by a suitable non-negative in'tegfé.l
pnwef of det 2 = Zy ees T, is a polynomial fune¢tion of Zyy weo Z
S_ime; every class of the_a unitary group nas a diaguqe.]l., representative
it follows that the product of c¢ch fﬂ by a suitable ‘nnn—_hegativa'
integral power of det Z is a polynomial :E‘L;nc:tinn of 2 47 .-..-.', En'

 Now, ch | ' is a symmetric function of Z,y eevy 7, and so (ch™) A
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1s an alternating function uf- Z49 ...,'E - as is also the product of

n
(ch F)a by any nnn-negatwe integral power of ‘det Z = Zy eee B oo
s o S

If G(E) Zy eee Ty ? is any term of this product so also is

. .8 s_ : - s ;

P Pn i Py ere Py}, |

= is a eleme vt

- C(E) 51 El:l ’ WhE:I'EI..(P) l (1 L. n ny .

of Sn , the + or - sign being used according as (p) is evon or
odd, feﬁectively.' | ‘Hence the produét of ch ™ ;b:,}-a'sl.iitahle ‘non-
negative integral pﬁwer‘ﬂf '&gt 7 4ig a linear combination of the fun-
gtions %,agu The cﬂef:ficié:nta of. this linear bnmbinatioﬁ must be
- non-negative mtegers since the cuefflclent nf l,;ii tells us hnw often
t& ) occurs in the anal:.rais of the product of B by a pnwer n:f"bhe
1-d1mensinr1a1 fepreaentatlmn Z-.-=ydet Z into its irreducible cumpunentn.
1t [ is irreducidle so also is the prc:-duct of f" by a p{:-wer of the 1~
diﬁensional repre-sei:;tation 2~ dé‘h Z and so all the cneffic'ien'ts must
.'ﬁé'zérn save one which is 1 . In other words, every irreducible con-
tinuuué fepreseﬁtétiﬁn of the n-dimensional unitary group is one of the
reprEéentati’nn’s‘ F(}\ ) or the producf of one of these by a power of the
1~-dimensional representation Z -~ det E'.= (dét+2)71 . For example,

the representation defined by the correspondeuce  Z —> % , whose charaat er

|

is ﬂ""n_ /iT'r; , is the product of { et h:,r_ the representation
Z =) det Z .

-

¥,  The irreducible continuous representations of the n-dimensional

unimodular unitary gfc}up "

w Bdch of the irreducible represantations | (X) of the n-dimensional

"uﬁitar:,r group furnishes a representation of the unimodular subgrnup"mf the
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unitary group. If thié r5presentﬁtinn were reducible certain homogeneous
pblynnmial fUHctiﬁns, of degree m , qf the characteristic numbers Zgy seey
Z, of a typical element Z of the ﬁpdimensinnal unitarﬁ group would
vanish if these characteristic numbers are subjected to the_cnnstraiut

By eee Zy = 1 (for each element of Z = v D(z) V¥ is a homogeneous

 + 9

linear function of the m varisbles 2z, j «-e) z ) . But this cannot

be since it would imply that these homogeneous polynomial functions of

Zay sey Zn would vanish identically so that the representation Tﬁ'(yh)

" of the n-dimensional unitary group would be reducible. Indeed, if
‘ n
N . .k
f(z,l, ceey zﬂ) ig one of these functioms, we would have 2:1 f " dz =0
= dzk k “ ’ |
provided that > —— =0, so that £, = N/z° where M -, which is
k=1 Z Z

independent of k , is an undetermined multiplier. ) must be zero since

n
n) = EF; Ek'f e - mf = 0 . Continuing this argument we see that all the
k= Z

derivatives of £ , of any ardar, with respect to the variables Zy crey T
are'ﬁaru so that f(zj, ;.;,.zn) vanishes ideutlcally The same argument
ag in the case of the unitary group shows that the 1rraducible represent-
ations [ ' ( ) of the unimndular aubgroup exhaust the continuous ir-
reducible rEpresentat1ona of thia éubﬂrnup (the reprenentatlnn Z —3det 2 ’

which we had to introduce in the case of the unitary group, being the

jdentity representation of the unimedular subgroup of the unitary group).

Exercise 1. Show that the adjoint representation of the n-dimensional

unitary group is (T where iﬂﬂ is the self-representation of the group.

Hint . If E? ig the n-dimensional matrix all of whose elements are

zers save the elemeut in the jth row and Kth column, which is 1 ,
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...TB_ ....'_L.- .
the element in the -jth row and k°B column of 'Z E?E*-' is
. *j ’ k i . ) . -_ ) - e : | | ; _ . : ' :
_{Z):j (Z*)k s hence the character of the adjoint representation is

’ch f“!z .

Exercise 2. Show that | ) = I oyt P o
S C R BN L S B S

Hint . Develop the determinant of the (m+1)-dimensianal matrix

/h1 “aw ' hm+_1 \
hD h1 "ee hm

* . in terms of the firE¢ columne.

Exercise 3. Show that the adjoint representation of the un-~dimensional
unitary group, nk;y 1T 4 i= reducible, being the sum of the identity
representat ion r—}ﬂ) and the irreducible representation which is the

product of rFE n 2) by the 1-dimensional representation 2 f—aiet.ﬁ'.
21_ ' . o ' . _ o

-

Exercise 4. - Show that the adjoint representation of the n-dimensional

unimodular unitary group, n‘>-1., is irraduciblé, heing'.rﬁ it
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Lecture 12
F

1. . The clags factor Qg_ﬁhe element of volume of thé Ek—dimégsigggl
rotation group. B . I o |

| In discussing the nwdimensi_ana; rotation gruup?we_muat treat

separately the cl'asa where' n is even and the case ﬁﬁere n is odd

and we. take up :f.'ira_t the case where n = 2k isﬁ even., Any 2k-dimen~-

sional ru'tatinn matrix R may be wri‘t‘te.n in the fnrm R= D Rk-‘l "o R.I

where D ia a k—dimenaiunal diagonal block matrix, whose diagnnal
or reflexion =
elements are 2-dimensional rnta’tiunﬁmatricas, and 31, eesy R, _, @re

products of plane ok-dimensional rotation matrices of the type

0
31’,2({3,) = ° € , c=cosfd, al=ain&

U E2k-2; T

)R ®

R, being Ry o ,(8, ¢) .- Ry 3,2k-1 8 ox.2) B 2k-2, ot (F2) Ry oy @y 5)ee

Rop.3,2181) Roxo, 2P )_ - Hp NS 31,21:-3(@81;-15)'

(® ) «ue R

Rox-5, 2k-3(@6k 10) Boy. -4 2k~ 5(2,) Ry ope 0@ 11 2k-5 , 21:-2(941{_5) x

Rzk-4 2];-2(;#3)_ and so on to -er_1 .which is 1 3(9 ) R, s(ﬁzk 2) p <

R, 4( )R (ﬂ'{gk ) where p = 2 (k-1 )2 The- p @'s are latitude
:

angles, varying over the interval _-m:/zz.. ® £ m/2 , the 2(1:-1) @'s are
longitude angles, varying over the interval -7 4 ﬂf €Ty epd k-1 of
"the ang’.lf-ag A , na;naly 132, sy o are latitude ar}gles., varying over
the interval -n/2 £ R £ T/2 while the remaining| one, _!31 , is &

lougitude engle, varying over the interval -T < ,6‘,1 £ T o Taking as

our N = -E-(-gi-)- =" k(2k-1) parameters for the 2k-dimensional rotation
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group the k B 's and 2k(k-1) angles ©® and Ef , the origin is the
identity point of the parametric space and the N characteristic matrices

, DL a=2, eeu, 2k, where M_' ° is the 2k-

f%het w
are o Ype D,q D,a

dimensional matrix all of whose elements are zef& save those in the pth
columa and qtP row, ﬁﬁd in the q'B column and'gpth row which are 1
and -- 1I;'respective1y4 In order to obtain the element of volume of
the .2k—dimeﬁsiunﬁl rotation group we have to éxpréss. R = thR as
ﬁ'liﬁaar cnmbiuatinn of the N characteristic matrices Mb?q' and to
&etérmiHE'thelmnduiua of the daferminant of the gﬂ'x N .matrix of the N
cﬁéffiﬁienfé .E;f "t;his linear combiﬁa'.tin.n (these' cc;efficicn'ta being lilnalar
cumbinaﬁinns nf‘ﬁhe differentials of the N pafﬁmetars). Since the
group functions we shall have to integfate over ﬁhe group will all be
él&és functiﬁna we intreduce the class and iu-cléss pafamﬂtern-which ars*
defined as follows. If Z is any 2k-dimensional rotation matrix there
axisté a Ek-;-dime.nsinnal fﬂtatiﬂu matrix -31 Emch that BtZB is a |
diagonal k-diménsional block matrix D (-_7{__1., ...‘:, of k) « ko)

p.

c - 8
whose diagonal elements are ( c, = cosat . = sin® .
® ©oNey e /7% T30 ¥

| = 1, ....', K, anc'ilwe term D(+£) a diagonal block repreaénts'.tiv'e of
the c.:léhss c:-f -the 2k-di‘meﬁsimnal rotation grmup' "hén which-. Z belongs. -
RERRE R_.I' = DStf, say, we have Z =
T = B D(%) B = S D() s , the diagonal factar ~D- of “B'r dle=

' +
Writing B° in the form DR

appearing. - The k class parameters are the angles UL-,I, iy ik = gnd
the 2k (k-1) in-class parameters are the-angles @ and ¢ ‘#hich
- pcecur in the 2k (k—1) plane Zk-dimensional rotation -matrices whese

product is S .  Since 25 =S D(ek) we find, as in the discussion of
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_ 4 |
the n-dimensional unitary group, that St $2S = D (o) 8 D(gh) +
SD( ol ) - 5S ‘and we are cenfronted with the problem of expressing

D (x) 83'D(at) -+ 8D(s) - & as a linear combination of the N

characteristjc matrices Mp q OF equivalently, of expressing
: .

U i (&) 85 D(cs) + 8S}U* as a linear combination of the N

matrices U M U , where U 1is any ok-dimensional unitary matrix.

Psd )
Taking U %o be the matrix which appears, when written as a k-

dimensional block matrix, as a diagonal matrix each of whose diagonal

: | 1 i
elements is 2'1/2< .

i \. we find that U D(z) Ux is the 2k~
dimensional diagonal matriﬁ whose diagonal elemeuts are

exp:;t_li = Z4 exp ---.i~1i = “I/z1 g seay expiki = Ek’

exp mfkki = 1/£k and that .U M#,E Uu* , for example, is the 2k-
dimensional diagonal matrix Hﬁ,? all of whnae diagénal elements are
ﬁeru save the first and second, which are 1 and -1, fespectivély.
U &5 U# ié a iinear_cnmbinatian of the N matrices U Mﬁrq”U* and
the disgonal elements of all these matrices are zero save when p 1is

one of the % numbers 1,'3, eeey 2k=1 ‘and q = ptl . Thus the

UDT(K ) U* .

)

diagonal elements of U D"1(:_~li) 5 D(oL) U*
U &5 Ux ﬁ'IK.A) U* are the same as the diagnnﬁi elements of  63 and ,

since U &D(ch) U* = 44, M + v + dot we see that

_ 1,2 x Yox-1,2k |
the coefficient nf U MEj 23 U% in 'U{D'1(d~) 5s D(k) + 8D(eh) =
1,2

j=1, n-*?kl When UM U*, UM U*,

s bux is dd 1,3 1,4

j b
U Mé 2 U¥ and U M1 4 U¥ are written 3 k-dimensiunai block matrices
’ b

‘11l of their elements are zero save those in the first row and second
column and in the second row and first column and a simple calculation

1 i o g
— M — o3 3
showg that 5 U 'i 1 ,3 4 I'Iug’ : i ME,B + 1 M1 : | Et U ig the k-
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" l‘ ’
dimensional block matrix 2ll of whose elements are zero save the element

‘-1 0 \\
in the first row and second columa, which is t and the element

o 0 /°?
O 0
in the second row and first column which is ( 0 1 . It follows thatj
; = M + M - i M + i M then
it Ny s 1,3 2,4 * 2,3 Sl DV
U (k) N, 5 D(A ) U* = U D (A )U* .U H1' 5 U¥ o U (R ) U* =
’ ' ?
= {2 N . oimil it ] N = M + M +
(;E/ﬁq ) 1,3 imilarly, on wri 1n§ 2.4 . 1,3 2,4
+ 1 ME?3 - iM o, 5 U D™ () Nz’d D(;Tu) Ux _.(_51/52 ) Np g 3
1t 3 - + M + M - ] il
on writing H1!4 M1,4 2.3 i 1,3 1 2,4
-1 | -1 N .
UD () H1,4 D("X ) U* = .(3132) H1’4 :and, on writing Hér3 -

0

“1, )
My g * My = 1M o+ 1M, UD (oA ) N, DK ) U* =

z N, U 88 U* 48 a linear combination of the N matrices N ‘

%192 2,3 ° | | psQq

4
P«£4dd, and it follows, as in the case of the unitary group, that the

element of volume of the 2k-dimensional rotation group may be written as
the prﬂﬁuct of two factors, one of which, the class factor, involves only

-

the class parameters ﬁi1, ...,=J~k and the other of which, the in-class

factor, involves enly the in-ciass parameciers © and ﬁr. Since the
only functions welshall have *to integratc over the group will be class
functions we shall be cnncerned_only~ﬁith_the class factor which we
shall term simply the element of volume of the Z2k-dimensional rota-

, . ‘ : .

tinn.érnup. This element of volume is i*r | (1 - 2 /E ) (1 - 2 /E') X
| ps q p a QT P

(1 - zpzq) (1 - 1/(zpﬂq))' ﬁ(a:v{,!, cees r;i.k) = V \ (z -2 ) x

(1 - Epzq)' 2 6(9(1 , ...,{i_k) . The expression



83—~

-[T ' (z_ - 2 ) (1 - 2 2 )I is the modulus of the difference product
pga - P . Pa oL | |

—

of the k numbers z_ + z_ since z_+12_ -2 -2, = \Z = Z ) (1 - 2
P P P ( a (

Z
P q q P q) ’

P

.'bhe z's being cnmp-lex numbers' of unit modulus. Since (zp‘ + Ep)j y

_J

where Jj 1is any positive integer, = Ei + Ep + a linear combination

of terms zg +Z ., a=0 1, v.s, j-1, it follows, on writing the
difference product of the k nﬁmb'ers zp + Ep as a Vandermonde determinant,

that -‘T I(z -2z ) (1 - 2 2 )] 2 is the square of the determinant
De Q p q P a -

C{k=1, eeey 1, 0) of the k-dimensional matrix whose jth row matrix is

(Gk-—j(gt”l) s vevy ck_j(fr:i-k)) where cp(r;i.) = 2 cos (pok) if p PO

while Gn(d) =1 . C (]:‘["'1’ ey 11 D) = 5* T c ({1) ses O

T~ P

_ 7 P "R p .
where (p) =T( 11 kk) igs an arbitrary element of Sk , the +

)
L y
Py k

or -~ sign ﬁeing'used'accarding as (p) is even or udd:and only those

Kt of the (kb)° terms (icp1(£§ﬂ1)'-.. cpkwk)) (“%(0{1)

Cq X)) which occur in ;0 (k=15 oees 1, 0)1&2 , for which (q) =
k

= (p) contribute anything to the integral of 1 over the group, each of

these terms contributing 2k_1ﬂ:k (since k-1 of the angles ri-i, eessy d-.k

are latitude engles while one is a longitude angle)., Thus the normalised

element of volume of the 2k-dimensional rotation group is .

1 k-1 >
dV{Q{) = (21{ 1 T kIl) 1 %‘.C (k-T, "eey 1', 0)} d(d,]’- "0y Eﬁk)

1 ()\) is any partition, imvolving not more than k parts, of any

Ce e ° . :
non-negative integer m , we set -21 = )&1 + k = 1y esey flc =;¥k and

c (£, woer £))

C (k=1, <sey 15 O)

introduce the class function [?\] = s where

C (fq, “ony é.k) ig the determinant of the k-dimensional matrix whose
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pth row matrix 1is (c’! (cx )y eoey _[ (,{ )) sy P=T1y seey ky and

- the same argument as in thﬁ case of the unitary group shows that, if
fp = 0, the average of L)\J over the group is 1 while, if ,(fp) o ,

this average is 2 since c, (A) =1 if f =0 while c, (o£) =

= 2 cos -éfpoi if ?’p}o . Similarly, if ()N) # (') , the average

of [}\ J[)’l ! ] over the:_grnup is zero.

5. The element of volume of the (2k+1)-dimensioual rotation group.
When n = 2k+1 is odd we have, in addition to the - k(2k—1)' charac-
teristic matrices of the 2k-dimensional rotation groupy <2k -charactcristic
i v 'R ' -T' * |
matrices M1,2k+1’ y Mzk,2k+1 he number -of class.parameters (all
cf which are latitude angles) is the same, namely k , as when n = 2k

there being 2k additional in-class parameters, but, now, all the class

parameters are latitude angles. WF take as our transforming unitary

matrix U +the (2k+1)—d1mens1on&l natrix obtained by adding as a

*
“2k+1

last row matrix tn the U we ueed when discussing the Z2k-dimensional
rotation group (the last column matrix of the new U _béing é2k+13' On

setting My oy F AWy o= Wy s Moy sy o

= . ~E % = .
N2 or+1 "€ see that U D (~L) N D(X) U 2 Nﬁ,2k+1 and

1l

1.7k+1

that U D (JL) D(A) U* = (1/&1) Né,2k+1 . Thus the class

2 2k+1

factér of the "element of volume of the (2k+1)-dimensional rotation group is

|(1 - 31) eee (1 - 2 ) -T_T* (z -3 ) (1 - z z )l 2 . .. ceny DK )

Since |1 - EP'I?' = 4 sin, (#LP/E) we see, on multiplying the pth

column matrix of the k—-dimensional matrix whose determinant is
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G (k=1; oee 5 1, 0) by 2 gin ok _/2 , that | (1-2,) oo (1-2) [
P .
p<£ g
" | Q.;z . 1 n.z Z 2 is the square nf.thé déterminant
P <4 ( P 'q) ( P-q) l ' |

2

5 -jé* ) of the k-dimensional matrix whose pth row

1
S (k‘§1 AN

aatrix ia (a1 (6lq) 5 v 2l ()

D = 1y eeey K, “where Er”f—:-; (K] = 21 8in ~('.€F+--AI§)E‘: , ¥V eny non-
nega:tive integer. The same argument as in the case _o;‘f the 2k-diﬁeﬁ-
sional rnta‘t.i-nn g.rnu.p‘ ‘sh;::w.s that ;che ';J"Dlum‘e of the (2k+1 )"—dimensicnai
rotation group is k¢ (Eﬂ)k , all the angles ,q{,l g soey o(k being
latitude angles. Thus the normalised elemeut of volume of the (2k+1 Yo
dimensional rotation group is

-1 . .
vy = e S gy s DT Ay ey

2 ., 2%
For the 3-dimensional rotation group this reduces to T Sin E-&d.. ;

If (A) is any partition, involving not more than k parts, of any
n~n-negative integer m , we sev, as before, },1 = )u,,_ +km".,...,ek = )l k

1 1
S (61 +E gy ecey é?k-i--é'_-)“

1 1
s(k...-é,,.. ’E)

and introduce the function L)j] = !

1 1 . |
-~ ., aea j ‘ek + 2) igs the determinant of the k-

where S (f_l +5

dimensional matrix whose pth row matrix is (s , 1 (0{ ) 4 eew
£yt

P

2
pr% (,j,k)) , P=1, +eey k « Then the average of [')\] over

the group is 1 and the averagc of [}\3 [). '] , where (") £(N),

over the group is zero. For the 3-dimensional rotation group (N)

- 1 L
has only one part, n , so *that L)\_J = gin (m + E)ci. / Ell‘l"é’ oL

the value of L?l] at the identity point ol = 0 of the parametric space
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being 2m + 1 . We shall see in the next lectﬁre that the functious
l}\-] are the characters of irreducible recpresentations rEA] nf. the
(2k + 1)=dimensional rotation group and that these representations [EE%]
exhaust the continuous irreducible representations of this group.

For example. the irreducible representations uféfhe J=-dimensional
rotation group are of dimensions 1 (the identity repraéentatinn),

3 (the self-representation), 5 , 7 , 2 , 11 , ees 8nd S0 ON.
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Lecture 13

1. The irreducible continuous reprosentations of the Zk-dimeunsional

rotation group.

The characteristie numbers of a typical element 2 of the 2k-

dimensional rotation group are z, = expok ,1 and Ej = exp -s;-Lji .

J
' J = 1y eeey, koo Hence the polynomial function £(t) = t_]‘; - 0‘1‘!: + coe

_ . |
+G"kt = {J

| 2k
1 {?" !

(1-43,) - ﬁ (5, %) (3,4) 5

f
Ly
of the indeterminate + 4s |1 (1 - t2,)
jﬂ1 : '

o 2k
since g o =1 Thus t f("l/'t) '= f(t} ap that (}-—ék + 0-’21{_1'!]

2K . : 1 - ' 2k ] i i
= . + 0-11; +  aes +G--2kt which. implies that

a-rzk_j =G..'j " j = 05 ‘1, “e ey k'—1 . sinCE} f(ﬁj) = 0 we have

2k
L IR 1 ! 1 5 > o
CTO 3“15_ + h R o b - O | if .E 18 oune of the_ numﬁcrs 249 y 2

and, on dividing this equation by zj , where j is one of the numbers

1y «evy k, we obtain 7! 2= + ... +gtt L7 +a"3 +(;r:_’]+1 Z +t  ees +

j=1

2k~

+ T oy 2 = 0 . .On replacing =z by 2z , subtracting and denoting

2 (sin pek) 1 by sp(gt.) , we find sthat V';-Ezk_;j (oA)  + a7y I (&) +

1 — 1 : - iy . ) C ) .
tees H @ 51(9() = T} 51(@») toees +J! sj(r.?ﬂ) , Oh being
any one of the k angles -,74_1 y eeey T K * If, then, we denote simply

by 8(cA) the 2k x 1 matrix whose elements are (EEk- (0%) §y eee 91(::i~.),

1

0) the jth and (2k-j)*P elements of the 2k x 1 matrix . s(o)
are the same, _sz being the Ek;dimeusiunal triangular matrix whose
th i i 1 5 ! "o -1 ] 1 ng d

P TOwW maﬁmx 18 ({T 1-p’ 7 o-p’ y (T Ek—p) y 1t PEM.JE.’.FH_ erstood
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that 0~ ' =0 if q is negative and that o~ is one of the k angles
q .
9:',1, soey kg o We have already seen that, if z 1is any one of the

characteristic.numbers of % and L -is any non-negative integer, then

2k-1
Z
f. ( ‘::h— .-"n-
K= (ny) 2
AR
| 1

L
¥

' ' - X * - Iii'l. h -
where “(hg) ig the 1 x 2k matrix (hgmerﬂ : hé’_-2k+2’ , JZ) ;

on replacing z by 2z and subtracting, we obtain =

() L, sll)

Since the 4P and (2k-3)PP slements of the 2k x'1 matrix Zak-a(at)

Eg'(f‘)’*)

- are the same and ainéé the Ekth. .element of this matrix ig zere this

=
' Lt

relation may be written more compactly as

I. Ef(a) = By hé’-k—i,%hé-k#ﬂ e Byl Yhg):

| “ak(o‘l)
'Q:" E f -
A
51(&*)

It ;e ig positive we may replace Jf’ in this relation by A+ and .1

and obtain, on subtraction, (.
o o)

-

8y(a) e ("";) _

“%-kﬂ’hl? k h'é"-k+2’ “the h_:é_zzwz ¥ htﬁ)z(\ :
| , 8, (el )

where c£ (L) = 2 cmﬂgoi , h' = h. - h P, and this relation re-

1l

Jd J

mains valid when f = 0 eince, then, the 1 x 2k matrix on the right is

(0, Oy ovey Oy, 1) and ::-;D(g{)'ﬂ"li.- I (A) = (?\1, ...,‘}'\k) is
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any partitiom, involwing. not more than .k non-zero parts, of any nou-

negative integer m , we set ‘61 = ?\1-1-1(—‘1 y seey fk = Ak , s0 that |

21 > €2 > ces > fk 2 0 , and we denn’lc'e by [?\] | fhe determingnt

of the k-dimensional matrix whose ﬁth" ruw*matfi:ic is (h"e “k+1?
P

ht + hl : “e e ht + hT ) P = 1 " k
-i ~k+2 ? ’ ~2k+2 ’ ’ ’ .1
B 'Kp - { p , ) a 5 -E’P . /ep
and it follows that C(£) , which is the determinant of the k-dimeusional

matrix whose pth row matrix is (cf (u(,l), ceny {:e (o(k)), ig the
| - o . > h

™

product of [A] by a number which is indcpendeut of (f) . When

(A) =(0), (#) = (x1, ..., 1, 0) and E_)\__\ = 1, since it is

the determinant of a triangular k-dimensional matrix all of whose diagonal

| [A] C (k-1, I'?*:r 0) . Now h,

being the chardcter of an irreducible represcntation’ of the 2k-dimensional .

“u

clements are 1 . Hence C(f)

Il

unitary group, is the chkaracter of a repres -tation, in geneéral reducible, of the

ok -_dimensiohal rotation group, the latter group being a subgroup of the
former, and so [?\_] is a generalised character of the 2k-dimensional
rotation groun. Slncc [)\__\ = 'C(.{f) / G (k-1l, «eey 0) , we know that
the average nf‘[ﬁ‘] ‘2 ovVer the.._’&k—d_imensic}nal. rﬁtatiﬂn group is 1
when' A'k: 0 and 2 whén hk 7 O-'and, hence, that [)\]  is, when
)ik = 0 , either 'I:Ihe charzcter of an irreducibl‘e réepresentation of this
group or the uegative of such a character. To settle this point we
evaluete [}\] at the identity element of the group, l.€., at 'z;i'=' zZ, =
= ene = Zy =1, -Since, when A 1is infinitesimal, Cf (d) = '2 - 5{2 y
if !) 0 , while 'cn(g(} = 1, "the samc argument as in the cazéh:ﬁ the
unitary group shows that the limit as ol 1 . .:.., o . tend separat ely

tﬁdﬁern, remaining different in the process, 0f C (E) / C (k=1, eeny 0)
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ig, when )\k: 0, the quotient of the difference product of the k.
integers g1 seey B 0O by the difference product

_ _ . : . . W 2 ) , |
2 (k ?} (2k72)l (2x-4)% ... 2. of the k integers (k—i): g eeey 1, 0
and that wh&n ,}\k > 0, it is twice the quotient of the difference

' Tt . * . ’ f - ‘ . — i .
product of the k integers }/f g, bas g Ei by 2 (k'-j)”(Ek-Q)'. see 2}

Thus C (£) /C (k-1, ..ey 0) is, when A, =0 , the character of an
irré&ucible continuous representation, which we denote either by r[;]
or by the symbol [)1] for its character, of the Zk-dimensional rota-
tion group, and the various :i.:reducirb.le‘ .c:ac::ntlinur.:-ua rnpresentla't ions of this
group, which wc ubtaiﬁ in __this way,. b;,r considering all parti'tinp_a having
not more than k-1 1nqn—zera:par'ta, of al_l nurg;—nega't ive _integera o,
ﬁre all different. On ‘tk}ﬁe _ﬂfhur ‘hand 1_)\]15 not, when }\k = "Ek
~ie positive, the character of an irreducible rapreaantatiun of the'_gk_
dimensional rotation group but rather the sum or difference of two such
charac'béra. It is not hard to see that it is. the sum of _thra characters
i: A :]4; = °oh 'E;\]-p and f;‘-j_ = ch | F‘_h of two irreducible
representations [E'\ + and rr;:] _of the same rifimensiun, the common
. dimension being, as we have ccon above, 2571 A (%) / (2k-2)t ... 2L .
Indeed, the character ch T" of any representatiﬂn FT of thg 2k=-
dimensional rotation group is a symmetric function of the k angles GL 17
._...,_.:,(k which is an even function of k-_1 of these angies, sg:{_o_( Dy seey
f_ﬁ_k . Hence the product of ch a by C (k—‘], .oy 0_) ‘is an al’f:'e?nating
. function of th.e k a_n,gles cﬂﬂ g ensy c,( - which is an_ev;n. funqﬁi-::r_t_l_{:rf

-

\?(2, seny. ?z‘k » C (f’) is the sum of 2k k' terms of the type
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is any element of Sk and the sign ia frout of theléxpnnential i R .

| k |
accnrding as (p) is even or ndd. | If any one of these 2 ki terme occurs

D:} ¥

nh'taiueci fl‘ﬂlm 1% by lettitg (p) run over S, and madintaining the sign

~ in the prnduct nf ch by C (k-‘i, cens 0) B11 the 25" T ¥t terms
of the cueffinient n:E' d 1 tlhe-_:e'.ig';ﬁa of the caaffiEiEnts uf‘oig y eeey d’k
bei'ﬂg. freely varied,; will also occur in this _prndu{':'h.i. Hnnﬁ} of the re-
maining Ek'1 kL terms of C (f ) | will appear in the prndulc‘ls of &h IT}] %
by C (k-T,-...i.O) for, if one nf theaé did, all of.them would appear

in this prnduct which would, then, contain C f) and this cannot Dbe
 gince. f—[:-_\.] + ia”irr.edﬁciblm. Thus C (f) is the sum of two sets

of 21{ o .k} terws, a typical term of 'the firet set “baing 3 exp (EF p{ +

+ ons EP ok, ) and & typical term of the secound set being + cxp —fp ol
k o 1

- exp ( = fp1°{.1 W e f A ) hava the aame qalua, tlE.mEl;V 1 4. when
Py -

u'-i1' = 'bl-z = ... =0l o 0 it fc:-lluws that L}x] 48, when)\k> 0,

the sum of the characters of two irreducible representations FLA] q and

'1 '—;:XJ _of the Z2k-dimensional rotation group. Tﬁl& ~product of. Ck] +

- ol by C (k=1, eeey 1, 0) is the sum q;f the Ek'1 ki terms

~ f oL ) and the 1:.r'-.::u:.u.1..'10'E;1 of I,—}\:] =="L ch

-+
[En]
b
Lo
_ —
oS
I+
-
i
[ ]

b;f o (k=15 veo, 1-, 0) is the sum of the E‘k1 ki 'terma + exp (-—Epg{,,l +

_-_+,€p .) . Since the product (exp,[po(1 1 + exp -fp 091' 1) e

(ezpf oﬂk i 4 exp e v(k 1) differs from the product (expj c;{_li -~
- exp_- -e ol_‘ i.) ‘o (Emfp;’tki - e::p - 'ﬁp]:tk i) only in the signs
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prefixed to thnse terms in the pmduct for which the number of - aignﬂ

prefixed to the f's is add we have
- | r ; e

where S (f) iz bhe determinant of the k-dimensional matrix whose pth

TowW ma'trixlis (E (.-,-,E ) cany mf (Ulk)) sy D =1, ...? ky Ej("{) -

= (2 sin j L) t .and, since

IOTRELAIS TS

)
o
j_r‘.

Il

Jéic (P) + 0 (é) }/C (.1[".1: ;“r 110)

il

C e = e - s (@)F /et ey 10

These arc the generalisatioms, for k » 1 , of the formulas

]

exp moli = cosmal + {sinme) i ; oxp - mld cos mol =

.- (Ei‘rl.md-) i +to which they reduce wﬁen k =1 .*

- The -characters L)\—J y where )‘k = 0, are even functions of all the k

ap.g;l.es d..}, ovey ol.k wﬁi_le the characfarn [)\j +“a_nd_ N e }'\k> o,

are even f*mctiuns of only k-1 of these angles, a change of sigm_n of OL,I

int-'e':rchanging D&_[ + and {;}f_{_ « The irredu;:i_ble representatione

[EX 5 , @end 51“ which we obtain, ‘I::-:l,ar gnneideriug allﬂpartiti;:-ns

with k non-zero parts of all positive integera m , are all different

and they =all differ from the ;rredacible 1 *“’JI‘EEEI’I"JEL‘E].DIIE [}‘.] P 1 O .
' The same argumenu as in the case of the n-dlmensinnal unitary group

‘shows that, if | is ‘any comtinuous representation of the 2k-limensional

rotation group, then ch__l——'_ is a linear combination, with positive integral
o, m |
1 LI Ek

coefficients, of terms 2 where the mn's are integers. c¢h r-1

 is a symmetric function of ﬁ‘i y seey zk’ ‘and it is elso an eveun function
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of Zoy S0y Ek and, hence, by the same argurﬁ'e:rt as in the case of the
..-uﬂi'tafy group, the product of ehl™ by G (k=ly eony I Q) .is a linear
combinatson of the characters [ .33 18 [)\] T [;\] » the latter characters

'nut appearing if chr' ig an even function of 01.1 « Thus the repreaen't-

19

a'tinns F’ - exhaus't 'bhe cuntinunuﬂ irreﬂucible re-
f T h\:a]+ ’ DJ - | “
presentations of the Ek—dimenamnal rotation group.

2, The irreducible contirucus re e_s'eutat'uns 0 _2k+‘| ~dimensi

rotation group.

The characteristlc numbers uf a typical elemerrt 7 of the (2k+1)-

Idimenainnal rotation group are Ej = exp_d.j,_i N zj "=exp -,J.jri y j_ = 1y aeey

k, and 1. We dcnote by h y D, .. ‘the'.camplet'e_synmetri{: functions

1

of these 2k+1 characteristic tmmbers and by h * ,ih,}-‘# y s«s tThe 'cumplete

'aymmetric functions of the first Ek of ‘bhn;-m. Wri*b:.n.,,, as in the dis-

cussion of the 2k-dimensional rctation group, h, - h = h! we t&ave

5 |
(1-1:.) “(1_1.{} + hﬁ + )_ .= (1+'§) (1},3-* + 1;1*:b + ane)

h! o+ bt o+ .
so that hi = B };:35 y F=0y1,2, ees It follows, then, from
the relation |

2p(#) = Byl Bl TR 0 0 R hg.ﬂ_,% e

that

2 EﬂEO‘/E)E'e-I%{d.} = E‘t(‘?(-) o E'.e_ﬂ(‘?‘\) = (?h?é'..!;&‘l’ -.-g_,-"'_htﬂe;_gkd_z +
+ h'_g) Z. s(@X)

k
and from this we deduces that [-_)\] , which is *e determinant of the k-
th matrix : :
i !
Qimenaiunal matrix whoee p rnwﬁis (h -@P'k 41 2 ceer B ép""’k o2 T h ’e) ’
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is the quotient of S (;€+ 1/2) = s(f% T e QP +.1/2) wy s
S (k = 1/2, «eey'1/2)- - where 8 (£.+ 1/2) 1is the determinsnt of the k-

dimensional matrix whose p*" Trow matrix is (EEP"J‘( ;;C.}) s eeey E,f -I-jz-(dk))’

E (&) being (2 sin gﬁ.) i From this it f:::-llnws, as in the discusaian
Df the 2k-dimeneional ~otation group, that L)\-J is the charac'ter of an
irreducible I“EpI‘ESEH‘tE ,ion ! [}J of the (2k+1)-~dimensional rotation
group and, since the character of any representation of this group is an
even symmetric functioa of the k ang.léa SPEREEEY "f‘k , the re-
presentations |

LAT

presentations of the (2k+1 )-dimeﬁsimnal rotation group. oince Ep(uk) =

, which are all differeumt, exhaust the coutinuous re-

= 2pAi (1 =~ pzc,(z / 3+ e ) the dimension of the irreducible

representation FEA] of the (£k+1 )-dlmens:mnal rotation group is the

quotient of I(l£1_+ 1,?2) cue (E + 1/2) _r i(f "'1/2) - (£q+1/2_32

D £ 4

oy (k - 1/2) «v. 1/2 T i(k-.p# 1/2)% - '(k-q+1/2)2}.

P <£.4
Since 'IT Sk-p-1/2)7 - (kuq-1/2)2¥ 5 tizes, =

= (2k - 2p)' it follows that the dimension of I[’)‘] is the qun'lslent of

(28, +1) oo (28, +1) D) ] (L + & +1) vy

P <A
(2k-1)% (2k=3)% eoe 1% For exampié,the dimension of the irreducible

representation [)\_1 y kg ] of the 5-dimensional rotation group is

ex, +3) @A, + 1) (A =2 + 1) (A +X, +2) .
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-LEEture'14

1. The irreducible continuous represeutations of tho n-dimensional

orthogonal group.

We term an n-dimensionﬁl orthogonal matrix whose determinant is -1
an n-dimensiunal reflexion matrix and observe that every n—dlmenalnnal
reflexion matrix is of the form A Z where A is a fixed n-dlmenslnual
reflexion matrix ond 2 1is a varisble n~dimensional rotation mgtrlx. We
term the collection of matrices A 72 the rellexion part of the n-dimen-
ainnal_arthugnual.grnup (the collection of matrices 2 Dbeing the rotation
part of.this.graup). Any element A 2 nf the reflexion part may be
jdentified byltha parameters which identify the element 27 of the futa—
tion part and we define the element of volume of the n—dimensiﬁnal ortho-
- gonal group at az by equating it to the element of volume nf'the nﬁ
dimesnional rotation group at z (the element of volume of the n-
dimensional nrthagnnal group at 2z being the same as the_elemEHﬁ of volume
" of the n-dimensional rotation group at z) This definitién assures us
that the element of volume of the nfdimensianal orthogonal g?mup is in-
-veariant under all left translations of the group, ipcluding the left
translatinna which are iﬁduced by reflexion matrices as well as those
whiﬁﬁ are ihduced by rotation matrices. Tt follows that the volume of
the reflexion part of the n-dimensional orthogonal group is the éame_aa
the volume of the rotation part and sm.we refe% to these two parts as
halves of the group. The determinant represéﬁtaﬁinn of the n-dimensional
orthogonal grnﬁp aasigné to Z +the number 1 and to A Z the mumber - 1

—

and we denote this representation by f_é y ch IE " being & where



s(z) =1, Z2(AZ) = -1, If is any representation of the n-

"1

_ - 2 |
dimensional orthogonal group eo also 1s f—é \ and, since ("2_ is the

identity representation, !#1 bears to f; [ the same relation that i_é [
bears to f” s we say that the two representations ™ and f";_f"‘ are .

'assmciated, cach being the associate of the other, A continuous re-
presentation [ of the n-din@gnainnai orthogonal group is self-associated
when, and only when, ch ' is zero over the reflexiaﬁ half of the group.

The same argument as in the case of the n-dimensional rotation group
shows that E)\] is the character r::r.f a c'untinuuus representation rE):]
of 'Fhe n-dimensional orthogonal group. The character of 'L’\J + fg 'E;]
is zero over the reflexion half of the group and is 2 [;\j over the

:Eutatinn half of the group and so the integral of the squared modulus of

the character over the group is four times the integral of lL)\:” 2 over

the rotation half of the group. If n = 2k+1 is odd, or if n = 2k is

- even and >‘k =0 , this is four times the volume of fhe rotation half of
the group, i.e., twice the volume of the group while, if n = 2k and

}gk > 0 , it is four times the volume of the group. If, them n = 2k+1

or n = 2k and >\k = 0 ., l*}-ﬁ---\ +f_;- l_E contains precisely two ir-

N |
a7 80l s I_C:-J , of the
| -

group so thaty [ AT is irreducible and not self-associated. On th> other

hand, if u = 2k andAx > 0 , a7 1s self-associated. Indeed,
every reflexion matrix A 2 has the Characteristic numbers + 1 , since

(31 ELI

reducible representations, which must be |

= " = gin ¢, , has th
e ),01 »:::n:ssu,ai1 y 8, Eu)(,l , has the

the 2 x 2 matrix (
ot 1

characteristic numbers + 1 and a diagonal k-dimensional block represen-
tative of any class of reflexions of the Z2k-dimensional orthogonal group

C 7
has ( 31 01) ags its first disgonal element. On denoting by
1T T
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(T % gy eeey LT”EE_E the elementary symmetric functions of the remaining

2k -2 _charﬁqt_eristi; mzmbers :::f A.E and writing O~ 3* = (- ‘I)j J‘j* y
3 =0, eeey we have. _(ije‘l‘:* + g;*t + eee T f?ﬁ..z t2k_2)4 =
(1-1:2) (hﬂ + Bt e ) = nl+ hlit__% ... , wWhere hé = b, - hj_E .
chcﬂ'r*'¥-h3 +.€r;¥;hj—1 + e +“j'ék-2 5-2k+2 = , 3 =1, 2y seny
and this yields, since {,"‘I‘)* = '21“{—2—1} , bl _1l:r'{:,] + (h:'i,-k +
_1{+2){Tk-2 Poeee ¥ (hﬁ.“:::rg_:-rz * h;}){j:}% = 0, 3 =152 «o o Om
agsigning to J in turnm the values f‘i’ «vey "?k , where ,é?1}1’:,'2 T een

> €k > 0 , we obtain k homogencous relations connecting the k quantities

‘oo 'y and it follows, since ¢~ '* # 0 , that the k }E k mat
q i U y SIEEE U o A0 x ]%rlx
Gf these I‘Gl&‘tlﬂl’ls does not possess a reciprocal. The determinan'b of thla‘,\.

L)ij is zero over the reflexion half of the 2k-dimensional rotation

group. Hence rg ‘I"I\.": |?,.)‘-.jED that ‘ [A) IE lf:\ ‘?}\1 and it
: A}

fnllnws that ifjﬂ is 1rreduc1ble, indeed the average of the squared
modulus nf the character of if)x'] + ':.-. N QvVer 'I;he gr:::un is 4 so that
the average of the squared modulus of the character of I r 8T over the group
is 1 Thus, whether n is even or odd and whether :\k is  positive

Or ZETr0, \ ‘:\-‘ lE an 1rrer:1uc1ble representation af the n-dimensional

orthog Dﬂﬂl ZET0UDe

Let, now, r-’ be any contlnuous irreducible representation of the
n-dimensional orthogonal group. If \_’ is not self—assuclated the 1r1'begral

2
of | ch l"l «ver the rotation half of the group, being less than the

-

vnlume nf the nrttagmnal grnup,must be the volume of the rotation half of

the group (smce ch | is, over this rotation half, the character of a

representation of the n-dimensional rotation group). Hence the repre-
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sentation of the n-dimensional rotation group which is induced by [’
is irreducible and, if n = 2k 1is even, this irreducible representation
must be a EE.A'I for which )‘k =0 (for chl 4is an even functic:{l of

all the k angles ol  , 2.i;'db, ). It follows that [ is either the
) 1 |
irreducible representation | f_\j of the n-dimensional orthogonal group

or is the product | ("~ of F}\] by the daterminant re?resc—m*batinn

| Al L
of the group; for, if nf::-t, the infegral of {f?‘\j‘z over the roe

F"
-
b

tation half of the group + +the integral of ch ' LN over the re-

flexion half of the group would both be zero and this cannot be since the

f"‘l

integral of ! [, }"_}l < over the rotation half of the group is 1 . If
i_s self-associated the representation of the n-dimensiongl rotation group
which 1s induced by !'—w is the sum of two irreducible representations of

this rotation group (since the integral of lchiﬂ‘lz over tha rotation

half, being the same as the integral of | ch I'T'lz over the entire group,

is twice the volume of the rotation gzroup) and, since ch{ is an even
function of the k angles gf.1 y ...., -.7!._k y n =2k must be @ven and the
two irreducible representations of the 2k—dimeﬁsinnal rotation group are
F[J\]-i- and |I;3_ y _?\k:\ o . Thus ::.h I—T = [>\] over the rota-
tion half of the group which implies, sirce L\_] is zero over the re-
flexion half of the group, that | " is the irreducible represlemtatinn [:;\]
of the 2k-dimensional orthogonal group. Hence the revnresentations r:m
exhaust the contluuous irreducible representations of the n:-.dimensinnal— ”

orthogonal group; when n = 2k+1 dis odd therec are no continuous self-

agssociated representations of the group and, when n = 2k is even,the

}

-
LT

re_p_resenta'l:iuns for which .J\];_} (U are gelf-associated.
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2 The analysis of the representations of the n-dimensional orthogonal

and rotation groups which are induced by irreducible represeutations of

the wn-dimensional unitary group.

nal w—

The character |m| of ii; is n' = h -h

' b
mj o o 12 and this may be

written in the form (1 - %F) h_ where 5, is an operator which reduces

H

I

the subscript of h_ by 2 . Since h, =0 if | is negative it

u J
follows that (1 + 2 vty + "Ej) h! = h  if 2j+2p m We
. OWS a o\ 5 T 4:*1- 3 - — . J .
write this result in the form in_ = (1 +'§2 + ves ) R = h' + h' + eoe
m - m m m-2
or, equivalently, i}n; = {ﬁj T [ﬁ—zj ERE Thus thc symmetrized

mth power of the gelf-representation of the n-dimensional unitary group
induces, since the character of shis syrmetrized mth power 1s -{m& y 8

represeatetion of the n-dimensional orthogonal group which is the sum of
I"'""l-
[o]

game result holds. for the n-dimensional rotation group. The re-

- the representations y [_E#JEI" «.» of this group and the

Y
| of the n-dimensional orthogonal

[fﬂ—*E] ) oo

i -
o 3 o T fa 1 . - . l “an
group are all s producible and the representations f'tmj : [F'él y

'L
prescntations. lﬂﬁ] ;

of the mn-dimensional rotation group are algo irreducible save when n = 2

in which caae-[_;-jT , whose dimension 18 2 if 373y 0, breaks up, if

-

j;>-0 . into the sum of TwO 1-dimensional representations.

The character { )}1 ; )(2% of r(T}\P 12) ~may be written in ﬁhe

5,
form -.-;,1 1’ hﬁ h Y where f1 and 32 sre operators which reduce
22 1 72

by .1 the subscripts of the first and second factors, respectively, of the
Wil
product h h, 3 similarly the character of - may be

written in the form - 21 n, h', =
S 1t 5 0, £,




5
| 2 5 2 % 1 h
- _(1 —31 ) (“T = 20 ) (1_ e EE) 3:2 1 hei _é’z

e [ﬂ;"}ﬁéﬁ = _(1._. _,_312) [:1 . %22) (1 _ ?;1 32) g:)‘l 17 A 2% which

implies that

< ] — o -
R S A D R (R SRR U 5 A

In developing the prbdﬁct (1-+‘g12 + vee ) (1 +i§22 +oeee ) (1 +;§1 %2 + eee)

it

WE'HEEd.kEEp oﬁly terms of degree < m
{12§ = (1+5° +'§22_+§1E2')[:12] = (1% + =1, 1] + [1, ]
~+ I:D]

Any disordered parentheasbs I...H‘ s 1.€+, one in which the terms are not in

r—

non-increasing order, may be rearranged gccording to the prescription

e

[+.;. ab ...‘] = - L:.;-ba1.9+1-..:]- , this prescription being con-
tinued until the parenthesis is no longer disordered. For example
[:-1, {3 = - E}}J . Furthermorey any parenthesis r...'] y disordered

or not, which ends with a negative term is to b2 discarded since the last

——

row of the matrix whose determinant is 1| ... | consists, then, of zeros.

-—

Thus 5112,} = [;12'} , which tells us that the irreducible representation
» '
(12) 7

duces, when n.> 3

0f dimension n(u—1)/§ y 0f the n-dimensional unitary group in-

an irreduclble representation of the n-dimensional

orthogounal group and a representation of the n-dimensional rotation group
which is irreducible when n :; 4 but which reduces when n = 4 , in
which case it is of dimension 6 s, to the sum of twm'irreducible'rcﬁfesen—

| ™ - . . - .

tations l s and (ﬂt R cach of dimension 3 . When n = 3,
R E (237 -

. oy P T-E .

the character . Jp of 17 J is %he product of

m , the character of
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S — | - Z ) . -

() » by det 2 so that r“(12) (det )'T“(1) Over the 3
dinensional orthogonal group [,y = [ (4) » so that r1(12-)' = rf: FU) ;
over the B-Qimensiunal rotation group j'"_’(12) = (_'(1)

Fxercise 1.  Show that the ad] oint re;aresentat.inn of the n-dimensional
nrthogc:‘nal gToup, .ﬂr of the n-dimensional rotation group, :'I.E- the re-
presentation of the group in queéﬁiun which is induced by' the representation
l_E‘la)‘ of the n-dimensional unitary group so that this adjoint representation

is irreducible save when n = 4 and the group in question -is the rotation

group.

Hint._ If Mp,q is any one of the n(n——‘#)/E | -chaméteristic -ma"t:l:_-ice-a of
the n-dimensional rotation group and 2 is any n-dimensional orthogonal
matrix the coefficient of M = in 7 Mp,q_zt is (z)i (z):_ - (z)ﬁ.(z);

and so the character of the adjoint representation is the sum of the 2-

rowed principal minors of 2 , 1.e., ’«TE = ‘{‘12}'.
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Lecture 15 "

1. The parametrisation of the 2k-dimensional 'U-axmglectic ZI0UpD

The tynical element 2 of the 2k-dimensional U-symplectic group

is of the form (;A - i,}
w D

which are such that AﬁB is gymmetric and A¥A + B¥B = E% « Thus

where A and B arec k-dinm.nsional matrices

the 2k-dimensional U-symplectic matrices for which B = 0 are of the
A O
form o I where A 1is an arbitrary k-dimensional unitary matrix.

If A is a plane k-dimeiusional unitary matrix of the fomrm -UP qﬁ@,ﬂrj ’
?

p<q = 2y eeey k, whera, for example,

c -x + yi
0
u, 2(@,(}") = x + yi c ;3 c=cos®, x =8 cosd,
’ s =8in®, - y =8 ging",
0 B o 0 LB Ln/2, - LT LT

we denote the 2k-dimensional U-symplectic matrix

u (e,q) 0
Pyq B by S_ (x,y) and we denote the plane 2k-
p,q 7 N
dimeunsional U-sgymplectic matrix UJ k+J(@,ﬁr) y J =1y eaey k, by
H)
Sj(x: y) « TFinally, we denote by Sé q(x, V) y DL A = 2, «ee, ¥,
b

the 2k-dimensional U-symnlectic matrix for which A is the K-
dimensional diagonal matrix all of whose diagonal elements are 1 save
2 2)1/2

the pth and qth which have the common value ¢ = (1 -~-X -y

for which B is the k-dimensional matrix all of whose elements are zero

save those in the qth row and pth column and in the pth row and
qth column which have the common value x + yi .

ﬂny 2k-dimensional U-gymplectic matrix 2 may be factored as

follows: We first determine Xe9 Yqo sen s Xop_1? Jop.q SO that all
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the elcments in the last row-matrix of
= _ . L T

T
ET . = Z S —#,k(x'] ?}".1) .4 S#,l (xk'-*‘? !‘y] ) s (xk!yk) Sk—1 k(xk'**1 1‘3’1{4‘1) "'_"
- |
55 k( zk-1’32k-1)

are Eafa save the 1%§t g0 fhat the last row-matrix of 2' is of the form
(exp f,J 1) a;k , the last column-matrix of Z' Dbeing (exp £ 1)u2k .
Thla 1mplies tat the element in the kth row and kth calumn.nf zt

is cxp;jki 20 that the k°h .ruw-maurix end k' column-matrix of 2
are (axPégki) éﬁ gnd (expfgki) e ,.rESPEEtivaly. Thus, if we remove
thel ktﬁ and thh row-matrices and column-matrices from 2Z2' we obtain
a (2k-2)-diménéinnal U-symplectic matrix which we may factor in the
same wey, and so on. When we pass in this way from the 2k-dimensional
U-symplectic group fa the [2k—2);ﬂimensional symplectic group we lose

2 (Ek-fj +1 = 4k - 1 perameters and it follows, since 3 + 7T + «e. +
+ (4k-1) = ¥ (2k+1) . thet the 2k-dimeusional U-symplectic grnﬁﬁ.is

a compact k (2k+1)-parameter group, each element of the group ﬁeing of
the form D(ﬁ%) S where D({i) is the 2k-dimensional diagﬂnal'mafrix
whose diagonal elements are axpi%1i, .;., exp;yki, 8Xp “£31i;'...,

exp -7 ,1 aud S is a product of matrices of the types Sp’q(x,y)
Sj(x:F); S'p!q(x,y) _ Taking as auf'parametera the _éﬂ‘a and the x's
and y's, the origin of the parametric space is the idéntity point and

the k (2k+1) characteristic matrices are of the following types:

1.15 0 |
0 —-iH:j where Hj:, j.#‘i, "eay k,

il

1) k of the type M,

is the k-dimensional diagonal Hermitian matrix all of whose diagonal
elemente are zero save the jth which is 1 ; +these characteristic
matrices correspond to the parametcrs 8

i H o
PsqQ

Il

2) '% k (k—1) of the type (Mp,q) y Where

Psq
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Hﬁ o’ p<le=2, ..., k, 1is the .k-dimenéinﬂal Hermitian matrix all of
’
th

whose elemeunts are:fermwﬁave thosc in the p'P ‘column and q row and
in the pt® row and qPM column, which are - i and i, respectively,
L h i H 0 |
and —= k (k-1) of the type (M ) = pyq , where
2 . : p,q . | I- - :
2 0 - 1-H
Psa

L -

..Hé,é’ p {a= 2y «esy ky 18 the k-dimensional Herﬁitiam matrix all of
| ' th

whose elements are zero save those in the p column and q row and

th column which are both 1 . These correspond,

th

in the pth' row and q

respectively, to the parameteré X, ¥y which occur in SP q(x,y) . 1f
. _ . ' .
1
(M -
I U]

_i(M)?I=(H)

Piq 2 P!q 2

we ;n':_r'ite Jé‘i(M ) +.I'5(M ) 3’ =

N
Pyq’ 4 Psq’ o Dy q

all the elements of (N_ ) are zero, save those in the p2

PsQ 4 |
q#h column, and in the (k+q)-th row and (k+p)—th column, which are = 1

row and

and 1 , respectively, and all the elements of (Hﬁ q) are zere gave
: LA e -

those in the gq'B row and p*R column, and in the (k+p)-th row and

(k+g)-th column, which are 1 and - 1 , respectively.
0 -~ Hﬁ
3) k of the type M3 = ) and k of the type M! =
| o0 J

0 4 Hj
- i Hj 0o sy J =1y «.sy k, where H& is the k-dimensional

disgonal Hermitian matrix all of whose diagonal elements are zerp save

the j*h which is 1 . - These correspond, respectively, to the parameters

x and y which occur in Sj(x,j). If we write '% (M3 + 1 M;} = N,
-% (M3 - 1 Mg = Ng all the elements of HE are zero save the element

in the j°® row and (k+j)-~th column, which is - 1, and all the ele-

meuts of N" are zerc save the element in the (k+j)-th row and jth

J

column, which is 1 .

e e PR
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0 - |H!

1 ' ' | PsyQ o 1

4) 7k (k=1) of the type (M! . = \m " and 35 k (k-1)
| | — Pyq
0 i H!
() D,d . .H’ z )
of the type (M = [, s Where y PLQ = <y svvy
1 H 0 | q
. qu 2 1‘.1 qu PT

'k, 1is the k-dimeusional Hermitian matrix all of whose elemeuts are 2zero
save those in the pt! row and qtP column, and in the gt® row and pth
column |

which are both 1 . These correspond, respectively, to the parameters x

3 sy

. - 1§y | . ¢
' ] t e Lt i ! ll .
and y which occur in Sp,q(x,y). If we set > _(Mp,q)1 + i (Mpgq}g 3 B

13 1{ ey ' : 5
t — ] - t = (Nt 11 the elements of

(N'. ) are zero save those in the pth row and (k+q)-th column and

P,q 1
in the q'th row and (k+p)-th column, which are both - 1 , and all the

elements of (I\Tl'j q) are zero save those in the (k+q)-th row and q°R
i 2

column and in the (k+q)-th row and p'th column, which are both 1 .

2 The class and in-class parameters of the 2k-dimensional U-symplectic

group.

| If x and y are any two characteristic n x'1 matrices of an n-
dimensgional uanitary matrix - Z , corresponding to the characteristic numbers
A and AL , respectively, of Z , sothat Zx = Ax, 2y = My
we have Yy¥*Z¥ = '_;Ly* 80 that :,r**x = yxZ*¥Zx = | MAy*x . Thus y¥*x =0
unless ;MH =1 or, equivalently, since ;l}.a.n 1 , uniess ')H.-='--')\ .
We express this result by the ‘statement that any two characteristic n x 1
matrices of an n-dimensional unitary matrix which correspond to different
charactyéri’étic mumbers are *uni"barily -nrthugﬂna]i. oince any linear com-
binat inn_'mf ch_aractéria'tic n x1 matrices which correspond to the same
characteristic number is a characteristic n x 1 matrix corresponding to

this characteristic mumber, there corréspond to any characteristic number



- 10g--

of index q , i.e«.y which has corresponding to it q , and not more than q ,
linearly independent charac'héristic L e 'm&trices., q characteristic

n x 1 matrices which are unitarily orthogonal and of unit magnitude (an

==

Thus, since Z may be transformed to diagonal form, so that the character-

nx1 matrix x being said to be of unit 'métgnitudé when xX¥*x

istic n x 1 matrices of 7. contain amongst them n linearly independent
ones, every n-dimensional unitary matrix ‘2 possesses. n characteriétic
nx 1 meatrices which are the column matrices of an ‘n-dimensional unitary
mgtrix, v , say, _and this implies that 2 V = V D (5) ) whe;'e D (E)

is an wun-dimensional diagﬁual matrix ﬁﬁuse diagnnél éiements are the‘
characteristic numbers z1,'.‘.,'zn of Z . Thus V¥ZV = D (z) .o
that the unitﬁzﬁf ‘n-dimensional matrix 'V transforms 2 il’lt-ﬂ- diagorial .
form.

Lety, now, n =2k be even and let Z be any element of the 2k-
dimensional U-symplectic group. If x and y are any two characteristic
2k x 1 ‘matrices of 2 , corresponding to the characteristic numbers A
and f+ 5 respectively, of Z , s.r.:: that Zx=Ax, 2y =pmy , we have
ytzt ;;_,L.yt - 80 that ytI X = :,r-bEtIZx = La A .Yt'I:v.:s and ytI}: = 0 unless
A= 1/0 = A + We express this result by the statement that any twe
characteristic 2k x 1 matrices of a Z2k-dimensional U-symplectic matrix,
which correspond to characteristic numbers which are not conjugste complex
numbers, are symplectically orthogonal. If A is a non-real characteristic
number, of index q , of 2 , let Xyg soey xq be @ unitarily orthogonal.
characteristic 2k x 1 matrices, of unit magnitude, of Z which corres-
pond to )\ + Then 2 x5 =)&xj_. y Y =1y weey Qi 80 that Eij W Ej‘:
and, since ZtIZ = I, Z*IZ = I so that - 2T ‘= IE caud T LYIx, vl ST

- | matyix j 4
Thus Ix, 9 3 =1y «eey Qy is a characteristic wumbez of 2 correspcnding

to the characteristic number )\ of :Z and, since I 'is unitary, the ¢

U S — p— o s mmaE omE Rm s —




2k x 1 matrices Iij sy J =15 «esy qy are of unii: magnitude and unitarily
orthogonal. -ﬁence they are linearly .independent sé: that the iﬁdex of ;
is at least as great as that of A 3 since )\ 1is the conjugate ca.mpléi:
of ; , the index of A is at least as great as that c;f A and 1o

- the *I:waw characteristic rmumbers, A and A\ , of 2 have. the same index.

+ B o i .
& ! H . . El u = * - I E =
.Sinc*e I1 EEk , (Ixj) I xp xji xF . which is zero unless p = J ,

: ﬁ [ e |
in which case it is 1 ; +thus; if p ,J-;j , the characteristic 2k x 1

matrices :-:p and I xj cf Z are symplectically orthogonal.

If A\ is a real characteristic mumber of 2 , co that A is either i
or -1 , its index is even. Indeed, if X, is ary characteristic 2k = 1

matﬁx, of unit megnitude, of Z corresponding to }7. go also is 1 E‘l g

and ;1 ﬁnd Ii1 are uni*barilyvnﬁhaganﬁl and, hence, linearly independen't.
Indeéd;' '(I 51); X, = ux:t; I £, = ._D . .‘_ﬁm ;I ij)t I 4 =t x#‘.t_' w1 .
- If 'Il':ﬁefihd.ex of A “iE D 2, let X5 "b.e a .chazl‘al.a;*:the:?iatic 2k x 1 matrix,
of unit magtli‘tﬁde, of .Z cnrrenpr}ndir;g to ->x whicjh is nmitarily thhogﬂnal
to x{ ﬁnd 1 :'E,[ » Then I 5-'5:2 ie = characteristiqT 2« x 1 matrix, of
unit méﬁi‘tu&&, of Z carreapéndiug to “}; and I 552 ie unitarily ortho-
gonal t.n Xy 9 I E‘E and X, .- Also o is evmplectically orthogoral to

" x, and I X, since x; Tx, i the conjugate complex of xﬁ I E_] and

1 1 1
xz I1I EE1 ie the conjugate complex of -~ 45 £, and this implies that
I EQ is symplectically orthogonal to I ;‘:1 and 3, . Continuing in

this way we see that the index q =2p of A\ is cven and that 2 has,
corresponding to A , 2p uriterily orthogonal 2k x 1 characteristic

matrices x ey X Ix I ¥ of unit magnitude which are such
1? ’ D ’ B H n

that any one of them is symplectically orthogeral to all Hut one of them

(the only one to which x J =1, eeey Py 13 uot symplectically ortho-

j:?

gonal being I ij , which implies that the only one to which I E!'i'j is rot
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sympleqtically ntthugnnal is xj). Furthermuré _xg'I I Ej =. -1

J =1, cesy P o Thus we may arrange the 2k characteristic 2k x 1
matr;cga of .ﬁ in two seﬁs of k each where, if Xip oons Xy nreltha
maﬁricea of the first set, the matrices of the second set are I 51., saey
I x 3 dfurthermore each of thel 2k matrices X4 ooy X 1 51, sesy

k

I Ek is of unit megnitude and is unltarily nrthagunal to all the ﬁthar

k-1 matrimea of the set and earh is aymplcct*rally orthugnnal tu all
but onc of the set, xj y j = 1, cesy k, faillng tu hc symplactlcally

orthogonal to I X In other wurda the matrix whose calumn Zxxl

J

matrices are Xyy eeey X I Xy 3 esey I xk_ is a Ek-dimen31nnal U—

k!
gymplectic matrix S¥ and 2 ¢ = Sy (k) , whene D{G&) is the
ék-dimensional diagonal matrix'whnse dlagnnal_elemeutﬂ @xpgt1i, L;.,

exXp ﬂkj_" exXp -mf,l'i, ...,' exp —u‘-ki arc the 'charac;'tfrfis'l;ié mimberﬁ of Z .
Writing 81. in.the form D S% , wheré D ié a diaganal Ek-dimensiunal
U-symplectiﬁ matrix, we have Z S D¥ = S D¥* D(.A) au-thgt Z § =

= SD*D(A)D = S D(%) ani Z = 8§ D(ok) S . Teking as eur
-ﬁafﬁmeterﬂ.fhe kK o's and the 2k2 parameters- Xy ¥ s ﬁhich ﬁccur

in S y the Als 'arE'the class pﬁrameters and the 2k2 parameters X , ¥,

are the in-class parameters of the 2k-dimensional Unsympleﬁtic grnup.1



~109-

Lecture 16

1. The element of volume of the < 2k-dimensional U-sympl ectic group

We have seen that every element 2 nf'the 2k-dimensional U-
symplectic grﬁup may be written in the form S Dk ) S* ,-whére S5 ia
- a functinn.c-nf the in-class parameters x1 y Yy 9 meey X.Kz ’ :‘(kE .
From the relation 28 = S D(#A) we derive, as in the case of the n-
dimensional unitary group, the formula S5S¥* 32 5 = D"1 (g&) &5 D(f‘?’-.) +
+ EI‘(QL) - 09 . ESI ig a linear cambinatinn cf the 21{2 character-

igtic matrices (M M Mt o, MM ! M)
" S Prq)1 y { P!q)z ’ j’ J ( P!q)1 ’ _( Pyd »

eand., hence, of the matrices (N N ' K, X (w
Y ’ a ( P:q)1 3 ( p’q)Q y i s L. )

g d N1 . S D { N 5""\ o= H -
nd p!q)a ince (){) ( p;q)*LD( ) 2 ( P1Q)1 y

B3

(o) () D(ek) Dot) = =Lz,

-

-—E—’?-.(TT ), DT(ek)

PsQ 2 q P9z J %,

iy 2 , ~ 1 |
D (eh) W DR ) = 2,7 W, DT (oK) (m ) Dlot) = (me )

| J - J | PsQ 4 Epﬂq PsQ 4
— '
D (ol I ) D(gX =t N' i1t followe, as in the case of

(o) ( pP,q 2 (o) ‘_-‘-' ( P:q)ﬁ ’ (1/(3 7 )_ 1)
the unite~y croup, that we may take ' %I T— ( "; — 1) ( ’E'“ - 1) ( ﬂq—" )}

p<Lq D q /\ P

-

A1) (g 2 | .
iﬂ( 5-1) (5,° - 1)} | times a(olys -ees o)) ao the class
J Z
-
factor d‘I(LGL') of the element of volume of the 2k-dimensional U-

symplectic group. Since | z | = 1 we may write daV(eA) 4n the form

(oK) = I{T" (1_“)}5\ Ak sy weer o)) 5 A = T_(z-z.)

p<a
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Thus the element of volume of the 2k-dimensional U-symplectic group is

the product of the slopeut of volume of the 2k-dimensional rotation group

2
2 SR~ | .2 | k
by “p; (1 - Ep )| = 2 - gin d"% T “Lk; o. Since (21) Ein-ai.1-..

,ainqkk G(k_—-‘t,_ vees 0) 18 the determinant, S(ky ooy 1), of the k-di—-

mensional matrix whose ptlh_ rpw matrix 1is (Ek-p+1 (BL 1 )y o 53 Ek-—p*i*‘l (ﬂ-k))

-4t follows that

Q) = 7 8(ky veey 1] 7 Aoty eeey 9y ) s

Since the angles 11, ceey -:::-'Lk are longitude angles tne volume of the
group is, by the same argument as in the case of the n-dimensional

unitary group, ('22*'5)}i k' 80 that the normalised element of volume is

(ﬂ)_ké{ S(ky, eeey 1)}2 d(al1, ceey ok_k_) . W@ have already seen

that, if é’ ig any non-negative integer,

til bEiﬂg one of the k ﬂﬂglEE C){..}! ey f}(k . If (‘k) = (A‘l, essy
}\k) is any partition, Having not more them k parts, of any non-negative

integer m , we write g;) = fp_+1 = ),p+k-p+1, so that

1N ! | N ; '
N €1/ﬁ2> se s >-'€Pf O and we dengte by (}\> the determinant

of the k—dimensinna_iz matrix whose ¥th row ma'trix_ia

(h"I y swvey 1'1~ - + h. ) = (h | s B x g : | )-
-k < o B ~Jc+1 1 ! ~2k+2
Then ()\} is the quotient of S(#') = S(Q1+‘I, n— £p+1) , where

s(#') is the determinant of the k~dimensional matrix whose p®R row

matrix is (EE,(Q(1), cony Eﬂ,(c(.k}), by S(k, «sey 1) and it follows,
' =P ~p o
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‘a8 in the case of the 2k-dimensional rotation group, that < }\> is
gy

the character of an irreducible rePresentatinnﬂ" | CAS of the Z2k-
dimeénsional U-symplectic group. +The represeatations F“'{! > “are all
“different and eXhaust the continuous irredﬁcible rapresehtatibua'ﬂf this

roup. = The dimension d . of [ is
group -..A"* IQ)

: I. - F ! 2 12 N | : ~ X i
%’A> = €1 "'éf.; T (f ! ) =+ (2k-1)% (2k 3)_‘. 3%
\ AN : . 1')((1 . .

(f +1) «ee ({' +1)/_\,(!) 11 (Jg + +2) (2x=1)% ... 3L

P<L Q.

.

>, The 2k-dimensional O-symplectic group.

The 2k-dimensional O-symplectic group ﬁ.s the colleétin'n of all real
Ek;diﬁaéﬁéiﬁﬁal'U;s:;f&lﬁle;:'tic matrices, o that any element Z of the

group is at once a 2k+dimensibnﬁ1 rﬁfatinﬁ métrix and a' 2k-dimensional
¢/ A r-B

gymplectic matriir.l. It consists uf"';.he mat rices LB A ) where A

snd B are resl k-dimensional matrices which are Euch that A.t'ﬂ is

symmetric and A'A + B'D = E_. It follows that A + 1B is a

]
-

unitary k—dimensinnal matrix, and conversely, if A + iB 1s a unitary
k—d:l.mensmnal matrix, A znd B being real, .thB- is symmetric and

+. - 'y | (A—-B
A A+B T = Ek s 80 that B A

) 45 a Zkedimensionsl O-symplectic
mafrii. .Sinca' ) | o
' E, iE]:B (A 3y - Ek. _'i_ElE_ A"+.i-E" 0
\ A

1B, Ek/" B, AL ~ 1B, B

e Dk-dimensional O-symplectic group may ‘be presented as the aulﬁgruup

o~ /2

0 A - 1B

of the 2k-dimensional U-symplectic group which consists of the 2k-

U G') s Where

" ‘dimensional U-aymplectic matrices of the form 2Z = (
o U
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U is en arbitrary k-dimensionel unitery metrix, If Z—*2' is any

representation of this sub-group of the _2kadimeﬁsinna1 U-gsymplectic

group, U —Z2' 18 a representation of the k-dimensional unitary

- group, and, couversely, if ‘U= Z2' ia ony representation of the k-

dimensional unitary group, them 2 =Z' is a repfesentatinn of the
2k-dimensional O-symplectic group. - Thus, the <2k-dimeunsional O-

symplectic group is a compact kg-parameter,grﬁup whose irreducible

continuous representations are those of the k-dimensional unitary group,

the characters of these irre&ucible representations being the functions
5.)“5 of the characteristic numbers Zgr eeey %y of U= A+ 1B
divided by non-negative integral powere of det U = det (A + iB)e On
denoting by HE? H1, .;. 'the'cnmplete Eymmetric;funntinnﬂ of -51; csay
Zyes the complete Eymmetric functinna.af .51, <rey Zy 9 E1, ceoy Ek being
plenu‘teﬂ, ag bef.nre., by hm_,_ h‘l’ ses 5 WE have | .l
h-ﬂ+h-f+.“ = (HD+H :

1
an that

1't + eee ) (ﬁg + E.]'t 1 -t-' )

BT A T A A A T A AR A

L N

Thus the aelf—rePresentgtiun of tne 2k—dimensluﬁal uuitaiy'grnup induces

reyreaentatinn of the Ek—dlmenslnnal Owﬂymplactic group which is the
sum of the irreducible representation IHE1) of this group and ita_
conjugate. Since H1ET ie the character of the adjoint reﬁreaentatinn
of the k-dimensional unitaiy group Fh& since this adjoint representation
is the sum of two irreducible representations, one of which is the l

identity representation, the symmetrized square of the 2k-dimensional

~unitary group induces a representation of the 2k-dimensional O-symplec-

tic group which is the sum of four irreducible representations of thise

group, three of these being I'_{; (1 e identity representation), f_('z) andr('z)

SR PR Sl L L U T Sl SRR e e L S et el it il

R = e
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Léétu:e 17

The analysis of the product of irreducible countinuous represeatations

of the n-dimensional unitary group.

e e

ey

The character of the symmetrized mth power f (m) of the self-
renresen'ta'bidn of the n-dimensional unitary group is E_m% - .hm..
and so the character of 1-(m) rkm,) is hm hm' y Where we may

- suppose, without lack of generality, since multiplication of represent-
. 5 _

ations is commutative, that m . m' .  Now 1 m, m‘_} =

a—

h , , where

Tq 07 '?;2) hm+1 0 and 32 are operators which de-

l-"
*

crease m and m' , respectively, by 1 . If 4§, 4is an operator

.

which increases m by 1 , we may write this result in the form

})Im, m'} = (1 - 51 ;"2) h b, and this implies, since ;—:,}.12 3{_tn:, m'}

=0 if 3> m' , that

.hm hm' = %Im,m‘} + 'imH, m'-1?[.+ — %Fm +m'ﬁi(
so that

n

(m)l (m') = l(m,_m_!) T !(m+’1:-m'--1) T 7 }(m+m')

This result furnishcs the analysis of the product of any two irreducible

continuous representations of the 2-dimensional unitary group; indeed,
. o \\2 oy .
-H h" — N . = —

=
*

P E I ALE 5 e g T AL A Y
If()\) atgd ( N') are partitions, iavolving not more than

n unon-zero parta, of any two positive integers m and m' , re-

pgctively, we consider the expressiuna{)\' }{’S) i;ﬂf and*

?.)\'f((&) i)‘} where E*:ﬁ and ‘53'- vy J =1, «.ey m, are operators
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which decrease and increase, respectively, ) by 1 . Since

J
R(E')(‘B)/.fi(:) and ‘\5' ﬁ(s) ha{i-l "o hp 9

-n

™
Y
g
™~
L™
o —
Il

INE(5)50 = MenD (Wng .,_._hzu._ ML) (§) 1e the

determinant of the n-dimensional matrix whose pth row-matrix, p = 1,

. ¢! | o .
essy N, 1is (i1 1, coey %fn) and so %-;5’?5 ('{,)13\}, which we shall

denote by ? (») / (A')% , is the determinant of the n-dimensional

matrix whose pth row-matrix is  (h eees h

r ! T ? !

Since i A is the determinant of the n-dimensional matrix whose pth

row-matrix is (h'? et ! hé e 7 e h{, ) , the matrix whose

P p

determinant is i(;\) J (AT) ‘[ is obtained from the matrix whose
determinant is 1‘,,‘\ '-'i by roducing the subscripts of the elements in the
312 column matrix of the latter by Ay s 3 =1y ooy me. It follows
that Sl (N) /(}.f)} ie zero if ‘}\."I > }.1 s+ it is also zero if
>\,'|£ )\1 and Aé} Ao .s.j:nce, then, the first and.Jsecnnd column~
matrices of the matrix whose determinant is T(?i) / (75.' )} ar2 both
mﬁltiples of e, I; it is zero if )\ _. )\‘ £ )\ and )\%} ),3
for, then, the first, second and third column-matrices of the matrix
whose determinant is i(}\) / (N! ) ¥ ave all linear combinations of
6, and B
is 42ro unless__ ‘1 ,-\ y eevy }\;L ‘/:1)\1 « Thus ?(h) / ( N’)}

Continuing in this way, we see that q': }\) / ( A )}'

ir zero if m'> m and, if m'4£ m , it is zero if the mumber of non-
zaro parts of ()\') i8 greatsr than the number ef non-zero parte of

()\) . If m' =m , i(,}t) / ()\')-1} is EEI‘{). unless (}\r) — (7\) ,
in which case it is '{07( =1 . When () imvolves k< n -nr:m-.zem

parte wa may writs ((A) / (X! ]) y When it is not zsro, as the de’eor-
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_minant of a k-dimensional, rather than an n-dimensional matriX.

3213 (8) is the quotient of the determinant of the n-dimensional
| .E;i

6p ,. oo g 65'!') by the determinant

matrix whose pth eramatrixliE (
) : e e e . . +h . . ' n-1
of the n-diméndional matrix whose p row-matrix is (1, 5P, sss 9 ép )

" and 3 2% is the result of operating ‘on h. h. oo b with
the determinant of ‘this latter matrix., Hence, t)\' i (8) 1] S is

the result of operating upon h)« see N by the determinant of

1 e
?t : Q'I
the n-dimensional matrix whose pth row-matrix is (ESP . g eee 9 E’p 1) .

1
Since § = ‘é =1 this determinant is (8, eee & )r" times the
P P 1 n

determinant of the n-dimensional matrix whose 'pth row-mat rix 1is

g i

.}p ? e .,)P

( , 1) and so 3 A } (6)112‘( is the result

E}f DPEI‘E'tiﬂg on h 1 TR h 1 - h‘ tl R h 1 |
At Ao+ £ Nyt &y SRS

with A (é”.'] ol ANERETTRE vl =-d5 1) (5) . Hence,
INT (IAT = LA A 5 eee s AN/ (N=7E e N-AD) S

In order 1:'5- analyse rﬂ(m,) r&?\) where (A) = ..(.?;1,. ”"Ak}

is a partition, involving k non-zero parts, of m , we observe that

| — p | . ) ) . .

t - (= _ LI < _ (1_% . _ 7 |
where & 1is an operator which increases m' by 1 and :j sy J = 1seeeyk,

is an operator which decreases ,.-’\j by 1 . Hence, since ?m'} = hm' g

fn} $ai= [ ;lh1(3) 5+ hy(%) 52_ b n () &), (M)
= S,lm', (,}\)E + ?_m'ﬂ, i(h) /(1>}} t o F -;;im'+m,
' f) /@i
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Here §(2) / (M} = n(5)127 = A1 Ay oo JALE

?(A)/ (2)?‘5' = _hz(% ’,\i = '?_f\.l—-?,;\g, cen o )\k'f + eee

and SO On. For example, in order to analyse i"‘m l_‘(m) we first

det ermine

-

SN/NT = 37 +« 4%, § /2§ -
Lan/(0)Y = 111§
Jan/@yg

i
li

oty

2f1% = 3 v 4oy

1l

41¢ ; then {3}‘{413 - ‘3’42_5. + §431% + 3 53% +
+ §521% + f62y + §61°F +

71} ,

o

B 5

{ 341& being zero,

If (A') ie a 2-part partition of ﬁl' , Wwe see, in the same way,
that 1)\'-} ?)\?( is the result of operating upon -{(J\f), () 3 with
the product (1 + h1( z) By enn ) (1 +h1(f’-j,) 5y +* aee )  where. 5
and :%2 are operators which increase }1% .au-:i )\‘2 , respectively, by 1.

The terms of degree j in &1 and 52 in this product are

a 2

: _ A g N _ 5 ' '
and,. since h;]-ih‘F_ = "’tj} + :Lj-‘i, 1} y hj-ZhE = -{j_7§+ 1ﬂ_j—1,13« +§j-2,2}
and so on, the cneﬁicient of T j}(g) in this expressiqn is {;j}( 5) .
The coefficieut of b j=-1 1% (%) .is 63#1:5 T . + & 53_1 =

L » TENT 1 72 "t 172

= 51 62{j—~2}(6) =”)':'j-1, 1}(6) and SO oOn. IThus we obtain {}.'}%_)\}

by operating upon § (A '), (A\)f Cwith == %;;,'}(5)'{;;3(%) , the

(pat)
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summation being over all vartitions (/u.) 'y involving not more than
two non-zero parts; and whose first .part is < P 4 of all non-negative
integers & m . . Thus a typical term of J; A '%— 5 ;a'{r ig found by pre-

pixicg (g AN sy #AD) /(pag —ip) B0 LA) /(T

For example, .

12133211 = G121} + 731427, 24127+ Lare32, 1§ + {32, 1) + 423

= .3_42?3- + 3[4123 + .}32} L 253217 4 5}3135 + §+23_}+{22125
This result resolves the problem of analysing the product of all ir-
reducible continuous represeuntations of the 3-dimensional unitary group
gince, when n = 3, *} )1.1, Ao f‘\E} = (det Z)A3{_ ,h1- >~3, )\2— )\3}.

We may proceed, in the same way, with the general problem of
analysing E)\' :j{ § )\Ej’ , for the wn-dimensional unitary group, when the
number k' of non-zero parts in (N\') is greater than 2 , it being
assumed, without loss of generality, that k' £ k , the number of non-zero

parts in (A ) . We obtain ?4,\'7; }.)\} by operating upon ?‘; (A ),(h)%

with (7._—) r';}*}j( R) ,11-( %) the summation being over all partitions ()-i),
pte

involving not more than k' non-zero parts, and whose first part L }\1 ,
of all non-negative integers o m . We may obtain a master formula by
first applying this method to 3§ Oy eeey O ¥ 5~ % and we then obtain

fi_z\'}%}} adding X}y +++5 N to the first Kk parts of each term

i

in the master formula. For example, since, when kt =2, i;, ‘l’f_( (8)

{ 'T 2 2 £ 2 -
5, By (2( (8) = 8+ 88+ 5, 11 18 = 85,
F213 (5) = A8,517%(8) = &5 + 55, the master formula for

SAL ALE2,1% i8 {0,031 = T0021% + {102} + 1012 % 4
¢ 3012Y + 201°F + 2201y + 29175 + Jo2h + 4% + {12%

go that
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SIS LK SRR PIPR PR R IR PYR TP YUE S R PR SRLS
S o N LAY, 2] 4 A B 12 % +§AL+2, AL, T
¥ 2L+, ALH, 1F + § A Ly NLH2, T+
+ JA2, AL 4 NI, AL T
For example, .
fustiar) = foomr} + Isoe} + §o312] + §4%% + T2y + (an »
+ 29541 + {64 ] 4 ‘1'.52}., ~the term 3451} venishing.
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Lecture 18

1 The ..ma:_[ya::.a uf the nrndur::'t. nf 1rreduc1ble cuutimuua gepreagntatiana
of the orthogonal : and and _sympiectic grnug A

The character [h { of the continuous irreducible representation

cf the n-dimensional orthogonal group is

rlh]
k.

k :
o T 2y o= T - % ' vos
D_\] ‘LTT (1-5,5,) 12] P%_q (1-T, 5) & (%) h£1 %,

()\) = ().1, cee )\ ) he:mg =1 pEI"l'l ion, invnlvlng nl::rt more than k
non-zero parts, of any nou-negative integer m , where n = 2k if it
even and = 2k+1 4if it ie odd, and £ .5 +ee) @k being defined by the
formulas E1=)\1 + k -1, ""ER’ EAL" If (A) involves
more than k , but not more than <2k, non-zero parte we introduce the

1 1]

function | | |
2 2k o
where f = )\ + 2k - 1, oy fzk = xzk’ and nbsarve that al—

thuugh E)\] is nr.::‘b now 'bhe character of an irreduclbla repreaentatinn

uf the n-dimensional nrthugﬂnal group j.”s is a generallaed character of
’F'I

| this graup. The charac'tﬂr ‘j>\‘_| L”\ ] ot Lo PrDJHCt iDCl L)\ :l

nf the 'twc:- cuntinunus irreducible I‘Epl eaentatmrlﬁ PEP\I and r1 D\ 3

of the n-dimensional DI"thogﬂﬂB-l EI'DUP is fﬂu“d by operating ﬂni)} i’)‘ }

k 2k
with (~ 7T (1= ) ( ¥ (- ' ))
D 2 q gp gf—l PT}E.} EP 3‘1

1
and this is the same as operating on [i}\_‘{ {,\'} j with

T A #‘gp_gp' mere; i 3§ 3N } - & °X) i@(}’

1€p &k (A ).

1HI-1 ip'f_ 2k
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(QL) being a partition of m+m', we und erstand by l 5\} ; A ‘?5] 'bhé

e

| empresston § o [4] .+ dor (125870 %y e (-G
S: P-(‘é),u.f g , the sum being over all partltmns (/,A.} ,

i
a

involving not more than k non-zeéro parts, of all non-negative integers

and so

(AT - [% RESIATRE I wd]

For example, the product of the two irreducible representations \—' m‘:]
and (_‘ ,] nf the 3-dimensional orthogonal group is furnished by the
formula o | | I b
(1] = [fa3{e} + fatffora} oo o'} ]
o . . - S
Here L?m}{m’%:' = [:ﬁ+m'] + [m-f-m'-?,‘!_] o+ ....,. + ["m,}m':] Iinvnlvaa
terms L)J where () has more than k=1 part and it is neééssﬁw.tn
- determine the curraspnnding generalised character of the group. The
rule which enablea.us to determine these is known as the modification

rule for the 3-d¢mer151nnal nrthagcmal gr-:}up. This rule is that ..*\\1,}’\2-]

is zero unless )\2 1 in which case it is & L}\ ] where & is 1
over tﬁe rotation half, and .- 1 over the reflaxmn half, of the group.
Tﬁu'a' | Lm][m'] = [-n'1+m'] + E__‘:mﬂ-m'.—nj + [ m+m‘-21 + ...
This is kaown as the Clebsch-Gordan formula for the product of irreducibla
rePreéentatiuns of the 3-dimensional orthngﬁnal gfcup.

The argument which furnished [x( [.\'] is applicable to the

2k-dimensional Uuaymplectlc group; thus

AN T 42 RES /(M.c Uw/c;ui >

In particular, <oy ') = (th:} o'y o+ §" m-1%{m'-1} + oov Hmen'dy,

m;}’m'
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The modification rule for the 2-dimensional U-symp}]_.actio group, ise.,
the unimodular 2-dimensional unitary group, is different from that for
the 3-dimensional orthogenal groupj it is that all < A 19 A 2>

for which A\ 5 ‘) 0 are zero. Thus the Clebsch-Gorden formula for

the unimodular 2-dimensiocnal unitary group is

(n;){m'> n<m+mf-} +<‘:m+m‘-2> + aee +<m-m'> y m? m' .

9, The modification rule for the 2k-dimensional rotation group.

£ (2) = (295 «vey %, ) @are the characteristic mumbers of a

typical element Z of the 2k-dimensional rotatiom group and (%) =

tyy seey Ty is any set of 2k indeterminates wo denote (1 - s1tj) oo
(1 - zgttj), i =21, ceey 2k, by z(tj_) so that f(tj,;) = 1+ s
) k k-1 K -1
tT Lty = (1*"33 ). +07) (ti + by )+ ees + 0 by end (f(tj_)) =
- - o B - o
- 1ty e o Men ]G = %\I}p}(guf{;}(t) -

the summation being over sll partitions (A) , involving not more than

2k non-zZero p_arb sy, of all nmi-'—negative integers. On writing the product

2k J J -
” (f('t;'j.r))-'-'1 in the form Z N, ees h, 't:1.1_ ‘aae tzk_gk we see that
3=1 | | (3) J1 J 2k | | |
- | z 4 e ok |
the result of avplying the operator g eee Sop to this product is
1 2k 1 . 2k A -
.t1 - a8 8 ‘bzk (-ﬁzr) hj% " Ew hjl’_jk t1 ..I--lr t_zk ’ Whr.I‘E JP h ." j‘P"" qp ,

Cpreety ey 2K < This the effect of operating on Z\)i)& (=) {Ai-(‘t)
/

Q q B | | od
1 2k ¥ ) li" - A 2 :
with 31 "o o 18 to multiply it by 1,11 voe 'tgkk . Since. r_)\j (z)

v 21{ P
is the result of operating on -% ,\% (z) with the operator [ l (1- '5 3 )
p<a P =1
T ]
it follows that



e e i /e em-an 8 mememgn = e e e = e g

~123.

‘%E?\](z)ih’;(t) = ﬁ' (1= %) Z 1)«}( M

DL Q
2k o Bz . 2k 1
= [T Q= %) JT (=t t ) 11 (2(t,))
p=t P semq PY s J
1 |
If we set t, ., =% ., = .o =%, =0 in this relation { ,‘&}('t) is

zero if () contains more than L non-zero parts and we obtain

z LA (=) LA ) 1_(1-'{:' ) 'T (1 t't') T"(f(t —
()\') | .. p=1 1

where '(t') = (t1, “oey tk)' is any set of  k , rather than 2k, in-
determinates and ( \') 4is any partition, involving not ‘more than k ,

" rather than 2k, non-zero parts, of any non-negative integer. .. Now the
2k
 product of T1 (1—tﬁtq) by A(t) is the AuthrainERs o the 2k-

P{T’,q |
2k-1 2k—2+t2k
*p P

+t;k'2) sy P =1y eesy 2k, and we may change the:last"k columns of thie

2k-dimensional matrix, withuut“affécting its determinant, as follows.

th

dimensional matrix whose p°? row-matrix is (t i

Since f(tp) = (1+t2k) + ¢ (t ) t el F T ti' we may replace
foq g2 f('t ) (145°572) g 4t wy e(s) (t .Ek 2 s.nd 80
P p p D P
1 ' —
on to ti'* + t3k" which,may be replaced by fitp) t; 1 « - We expand

the determinent of the resulting =2k-dimensional matrix as a sum uf_
pfﬂducts of k-rowed detefmiﬁﬁnta’fbrﬁed from ita firat- k columns and

ite last k columas. I£ ((7), (7)) = (Fyy coes Tyr The vees T
ie an even permutatégp of (t) = _(t1,_..., tzk)' one such product is
f(?:%). coe f('t-;:) D(T1: seny Tk) D'(?-'I: vaey T{E) where .D('E,‘, “'?Tk)
'ig the determinant of the 'k-dimeﬁsional matrix whose pth row-matrix

16 w“" 'z:’;k"zn:ik, ...,z- 7_--”k °) ama D'(T, v, TL) is




i B 00 TN

the determinant of the 'k-dimeusinnall mﬁtr_i::: whose poR row-mat rix is

)21{-2) .

'((-rf)“, (;rf)k'g + (f;-f)k, o 7o+ (T Dhus

{}‘; I-)‘]( ) Hr‘! ('t) n(t) 18 (1 /kL)2 the sum over ail such even
permutatinﬁs ((“"‘) (') of (‘b) | {}f.
k ' k ' e
'1!41 (1—LP)E (£(T )7 D(Tys wees Ty) IE (141'.;)2-) D (P TL) -
.
The factor (T (1-T )) DTy, wearTy) jli1 (2( 7 ))-1 -
. {{,%J AT @INTD ] (7yeee £ A(7) =

""T" ' | L | |

= ()\t L)._](z) ML,y veny £) (T) where ,E'_l = AL42k=1, weny ¥ L =AL+k
X

and the factor T('l—{' )Dr(ﬁﬂ ooy f:]’"s) = {i ‘ET (1 T' "”)f ALY
P=4q

:
- [_1 ~f2i (2 + (123@A%0) (2) - I AT - 12, then,

c“--l Tf 18 anf}r term of { 2 ﬂ @ ?1"” , for which- the partitiun ().J)
Df 2m dues nat invnlve more than k nnn—zerc:- partﬂ, the nrnduc‘t

ﬂ_ (1 -’:' ) D'(F f| ' ---__[']’E) is the sum over all non-negative integers m
p=1 |
and all such partitions (;4_) of 2m , of (-1 )mfu{ (TY)A(CT') =

= (_1) * A(é 1{;"1‘1, E RN ?’2}[) (Z‘i ) Whﬂl*e ,‘ek_l__l ’:M P k — 1’ “awy fzknﬁ"ék!
- On ..su’_mming .-:nrer all even permutations ((ﬁ" ), _(-'L’.' f )) ~of t the product

' . 2
A( €1, e g k) ( Z) A( p_'_.i y seey sz) (C! ) and diﬂdiﬂg br (ki) we

Dh’taill A(p1 9 waay éiQ]{) (t) and 80 - .

SAT@IN®AG) = 2= (AP AT T () AL yeee By) ()

e fmi(fq )1({-‘)

or, equivalently,
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2 DI @) = 2 @i, mie) .
0 [ % }t 2, ('Y, () LA } ,\ W}

-r | -
Since the functions ,\g (t) are 1inearl,1.r indepéendent it fullnwa that

LX}(E) is zero unless (\) is of the form ((\'), (p) ) where (A\!')

involves not more than k non-zero par-t;s and ‘Jp.} is a term of

Yo @ 1", n=0, 1,2, «.. emdtmat [(A'), (M) (2 =
(-1 )’“[x] (:) « This is the modificetion rule for the 2k-dimensional

rotation group. For example, for the 4-dimensional rotation Zroup,
f 23] = - [22 lﬁh 31 2] = - EEOEJ [37 and so on. It is easy
to see that [A1, “uaey A2k11 Ol] EA']"& \21{1? iuigk "AE! 0]

for the 2k-dimensional rotation group. Indeed { )\1, —— ok 1,0};&(5)

is the determinant of the Zk~dimensional matrix whose pth row-matrix is

Yy '- -k
(51 y see g zép) and, since ZyZpersloy = 1 4 the determinant of

B,

'bhis matrix is unaffected if we nul‘tlply its ;}th column matrix by a.

<, 4

and its (k+j )th column metrix by (z y Ji= 1y sesy ke The

k+j)
daterminant remains unaffaeted 1T we then invert the order of the TOWS

of the matrix (which would multinly it by (=1 )k(ek‘“” ) end interchange

the j¥h and (k+j)PR columms, F =1, ..., k, (whi;ch, would multiply it
(-1)k ). The resulting metrixz is the -Ek—dimahsinnal matrix whose

determinent is A (K .7~ &, .. ...l ~¥,; 0) , proving that

‘(i ’\_1’ e A 2x17 0% =‘?_}i":‘ R CISEERREEE )_‘1'}2’ 0-3- . Since L)

2k
i3 the result of applying the operator T 1 .. :,p% ) %o 2)\} it

P 4G

. | | 1
follows that g')\ ‘as }\2]4: ,1, JJ '=L A A,\l AE]{ 1, “sny }\ xz, ﬂ.

If ,)\ is not zero we use the ralatmni_)\ ro el 21{‘;

)
= (dﬁt Z) Ekid\ >\2k’ e "’\21{—-‘1 Olc? 0'} LA ")\2151 sesy

’\21{-1“)‘21;’ OI’ to show thab L)\T’ cer )\Ekjﬁ
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) E’H" )_‘zk? veer AgeqT Mok F}J - T-A‘i"}"zk’ SRR VREILEE f3:1‘>\21:_1’

o1 -

3 The modification rule for the 2k-dimensional U=symplectic gIOUD.

- The only change in the argumerit which furnished the modification
rule' for the 2k-dimensional rotation group vhich is necessexry when we

pass to the ok-dimensional U-symplectic group is that we must roplace the

k
' . 7

cxpression “ (1 -7y = 1~ "{.21]('1[':!) + ('{2} @f{ﬂ }) (g') -

. p-a *

P <4

1 k

evs by the expression II (1 TYFY) o= 1 - {12}('{:')*‘
- . P-4
p<a
1

+ ({12}@ [1,2,}) (F') - ... . Thus the modification rule for the 2k-
dimensional U-symplectic group 1is as fallnws:(}\‘} is8 zero unless ()t)
is of the form ({;\'),kaﬁg) whére ()\‘). invaiwcé not more than % non-
zero parts aﬁd %}A% ia é terw -nf %12}‘ C_:E)I();:ImL ?5 , W = O?j '1., 2, eaeey end,
when this is the case, <Z(X'), (M) = (~1)"¢N$ +  For cxamplo,
when k=1‘-‘<>\1’>\2> -0 if Ny D 0 - | |

4, 'The modification rulc Tor the (2:c+1 )-""mensionel rotation grouv.

In discussing the (2k+1 )-dimensional rovation group we separate

t+he characteristic numbcr - 1 from the remaining 2k character-

0k +]
istic numbers (z) = (51, coay 521{) of = typical element Z of the groude.
The argument proceeds as in the cesc of the 2k-dimeneional rotation group,

the only difference being that £(t) = {1-z,%) ... (1.4:"?1;@) (1-t) is
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_r:placed hy :f_‘ t) / (1-—'1:) 3 this ‘nas the cnnsequence that the prnduct

W (‘l Z" 7_") is replaced by T(‘HI’,) TT ('1-(' ') .

p<£ 9 j=1 p?q
1

e 13 () A3 e B PR ¢ (U @UTHED-
3

i

1l

_1+i1'ﬁ(;)_({1.{1 } E1 j)(t')+(iﬁ } }14{1 3*

- s (11711 G-
= 1 +31 5 z')-§21§(z*)-{2}(7_')+{31 (1) +3321}3 (Z7') -
i5%2 (z') -3 (@W)+

The parentheses %_fu,‘jin this oxpression are those for which (}J-) .~ is

g gelf-associated partition and the sign pI‘CfiIE.ﬂ. to each such } p;} is

a +sae A

a
1 2 - .
determined by writing (p.) in the form ( - ) which 18
- 5-1 -5;2 L I F_FI, - ,

0]
described at the ‘r;-gginning of the next lectures for cxampla (1) = {{}) ;

(21) = (:) ; (2% m(l 2) ; (31%) = (z) ,  (321) = (2 ;) ,

(322) EE‘(E : ) ’ (33} _= (g ?! g ) aud gp on. Theln 't;_he sj.gn pre-

a,+e.etay

1 Thus the modification rule

£ixed tai}x},(cf) 1g  (-1)

for the (2k+1)-dimensional rotation group ig as follows: [X} is

zero unless (XN ) is of the form l (,\');, ( 1 ) ‘ , where (')

involves not more than Xk non-zero parts. and . ( >,\' ), o )] =
E. tessta ' o :

= ( 1) S L‘\‘] . For cxamplc, for the 3-dimensional rotation

- group. [)\1, ,:\2"] =0 if A, 1 while [,\ltj = [}']
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5. The modifiogtion yrule for the 2k-dimensional orthogonal group.

In order to determine the value of E/\_] , where (.'«-\) involves
nore than k non-zero parto, over the reflexion half of the 2k-dimen-

sional orthogonal group we first observe that, since every 2-dimensional

c

: : 8 \ . C o .
reflexion matrixX ( 5 ) has the characteristic numbers 1 aad - 1

every 2k-dimensional reflexion matrix 7 has the characteristic numbers
=1 — - ~ 3 1 14

Zoe 1 1, Zoy 1 . Separating these out from the remaining

2k—-2 characteristic numbers (z) = (51, ces g Ezk_E). of 242 we

proceed as in *t;h_e case of the ?k—-dimensional rotatinu_ £ToUup, :f(“h) =

4

(1 = 2, H) eas (1 =2 t) (1 —=#%) (1 +%) bveing replaced by

1 2k-2
(1 - 51_1;') .o (1 - Zpy. o) = £(¢) / (1 - £2) . - This has the consequence
| Iq k .1 T | 1_<;+1' | -
that the product - pgqﬁ -7 'C ) is re.plaoed by th-;_r_qu - chq) =
1 S

= 1 -{1':‘}({'} + {12}-@ {12} ) (¢') - «.. and we expand the
determinant of the Ek—dlmenhmnal matrix which we encuunter as a sum

L)

of prnduc‘hs nf (k—‘i)~row=~d determ n:anta farmeu from its fqut k-1

%

colurng by (k+1)-rowed determinants formed from 1its last k+1 columns.
It follows that E )-1, cee 3 A Ekj ig zero over the reflexion-halif of

the 2k-dimensional orthogonal group unless () ie of tha form

(A%r e -sa\ ;_{__1! (H))where i}.l.} 12 3 '1'~EI"II ~f {1 }O{1m}

We shall see in the next lecture that every term uf E 2}@{1 } im

of the form{-( ;HH con a+’1) { a+1 cer aﬂ

o a,+ 3 - ' -
.- (—-1)550, (aT S jlr . Tor exaﬁlple{(;)} - {212}
and ( 12) = (31) a0 that {O, )} '{031 i?f‘



51"'1 ces B4
{(a a )} is a term of i?}@{ 111'1 anu an[)\-] i8 zZero
i R -

poctl I35

i - e

m—— I [t v RPN R R B il B S s BS R © § n

over the reflexlrm-half nf the 2k—d1mmsmnal fntatmn group unless T)‘}

can be written in the form i.‘h‘ ces g }"k a7 0, (,u-)} where -E),;,} is

a term of {2}@{1 ,T ami when 'thlE! is ‘the case, s0 that ()LA.) =

1

a +‘1 .ew E. +1
L m+5 - _
- ( 2 ) [ A 3= "1 [}\1 ) wee 1{_13 « ~ On combining

this result with that already mhtained for the rotation-half of the group

we obtain the fullﬂwing mndificétiﬁn rule for the 2k-dimensional ortho-

gonal group:

"1f (AN) contains more than k non-zero varts, |2} is zero
over the group save when (XN\) is of the form ( I%, s A ]'{__1, D, (}.l..))
| - | m L . -
wnere §puYte a tern of $23 @), w =1, 2, .4 and, waen this

is the case [}\] = (1) EE[)\'%’ msey )g]'{_'1] y :wheref is 1 over

the rotation-~half, and - 1 over the reflexion-half, of the group.

6. The mn&ificafioﬁ rule for the (2k+1 )—dimensional orthogonal group.

a The only difference between the discussién of ths reflexion-half

of 'thé (2k+1 )-dimensic}né;l orthogonal group and that of ‘tﬁe rotation-half

is that the charab‘teristic number which we separate from the remaining

2k characteristic mumbers (z) = .(qu,, el EE‘E:)I is -t rather than 1.

| -Thiﬂ haé the cnnaeéuencé that instead of dealing with 1 +§_1} (') +

| f_ 2} (_!) + ..... times —%_1E§(Z' ) o+ (2_1'2} .{‘12}) (T*) +ese
we have to. deal with i‘l -% }('{:') +i1 f (Z ) — oo }5,-_ 1 —i1 }(I' )+
(1'12}@ ?.1 ) /(T') - .. f 1 =518 () + 2 S ACAD

This furnishes the foliowing modification.rule for the (2k+1)-dimensional

-1l

orthogonal group: If ()\) involves more than k non-zero parte, E'\j
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. B, :s:0:8
1 8
is zero over the group unless (}\) is Eﬁ the form (()\' ), (a 9 )),
£ £ 1'.‘ E

k
where (}\‘) involves not more than,non-zero parts and

A
DEWRE (..E.‘i-.*.‘f_'._'_%.. T BTy g i
[U\;'): By vee 8 )J = (1) & [)\—] .thére .E i_ﬂ; T over

the rotation-half, and - .1 over the reflexion-half, of the group.
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Lectur=2 1§

1. Associated irreducible ‘representations of the 'n-dimensional’

unitary group.

We may associate with any partition (A) = ()\1; ceey A k)
of any positive integer m a dot disgram which has ,\1 dote in tha
first row, A , dots in the second row and so on to the kth row
.Whif:h has ,\ i dota. We denote by ()\ *) the partition of m whose
dot disgram is obtained by interchanging the rows and columne of the

dot disgram of (J\) and we term ( )\) and (A *) associated par-

titions of n . It is clear that )«.T‘ = k and

i %
that = k% , The irreducible representations and \

A P (N) (X*)
of the n-dimensional unitary group are said to be associated and if
(}\*) = ()\) s in which case the partition (}\) of m is termed
self-associated, the irreducible representation rE/\) is said to

be self-associated. The asscociate (m*) of (m) is (‘Em) and we

have seen that the fact that the (m+1)-dimensional matrix whose pth

row-matrix is (h,!_p, h is the reciprocal of the

e-p? "7 hm+1—p)

(m+1)-dimensional matrix whose pth row-mat rix is QQ'%_ps seey G—T;i+1—p)

agsures us that i m} ~ %‘!m} (g) = {m*}(ﬂ"), where by {1“}(0")
we mean the result of applying the operator /A (g) to G’mﬂ"m 1...(!:

rather than to hurhm—1' ..h.[ . Yhe same argument shows that {}\} ’

which i8 the result of applying the operator A ': g )= (31-3‘2)“*%{_;51[)

to h sesh , where £, =)\ th=T, aae e = w, 5y 18 equal to
z1 ¢, 1 1 s k

iA*Ts[g“) y which 1s the result of applying the operator &*(g) -
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C (5 -80) e (S ~Sy) B0 Tpyeen Ty o vHORS

¥
k*
QT = AT*‘R?"—‘}’J‘-_,_F;#:xE*--

| The elementary éymmetric functions L Cj‘é, sesy (:,"'Il of the n

characteristic mumbers (z) = (z.l', seny 'zm) of a typical element 2

of the n-dimensional unitary grﬂﬁ'p may be expréssﬂi in terms of the

power sums (E) - (31; veey sﬂ) , where By = zg + ees + zi ,

5 =1, «vey n, of these characteristic numbers as follews. Since

: n n
1 - gyt + e = ﬁ1(1 . zjx) , log (1 -@at + eee ) = Ej-;log (1-zjt)

8 o

2

1 ?1*) X

wlir

."E- ' .
exp ( "Eg ‘t2 ) «vs which implies that (~1 )j u"_’f:j_ =

< e e > SR Y2 4 Ay v, o By oh By
> ()T e e (B P ey ()

! t

I

where the summation on the right is over all sets (.,Q) (‘*1: ---P‘j)

of J non-negative integers which are such that 511 + 2’){2+ ess T jcaf.f =

= 3j . Thus

- G-.J (L) ) chqt ° 5ot (3 I UL T
' ~1
1 1 By o , , )° % ‘)"“
= —— 8 - Y I
Z} 'af,]J 1 qLZL 2 -~ # n
n
-1

Siﬂﬂﬁ 1 + h_1-['r T aes = ;’]; (1 - Ejt) y lﬂg (1 + h‘tt + aas ) =
= t + _E_Z_ -!;2 + d

= E,1 2 . LI ] El-.l’l

h =Z L ET1—'}_(

. (o) ;f“ﬁ !5:(25. d'rl" ‘

h:llmm
s
3 PN
o
a! lﬁm
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. n-1
From this it follows, on denoting (51, = 85y eee (=1) En

t hat h_(a) - .',,'_.-*j(‘s-ﬁ) and this implies that %)\}(E)

) by 8%,

_ - Y,
= AT (ex)’

where H ) .:{,E) = \A }(z) and - 'g !}\*“} (%) is the result of replacing

(s) by (a*)_ in E;-f"\*'}"(a) .

shows that IL(.-'\) / (H)J( ).

More generally, the same argument

i(}\*) / p.,*)js,a ¥). so that the

partitions wh:q.ch appear in the dpvelmpment of L( A¥) / (Hw* 1" are

the assmcia'hes of those which appﬂar in the dwelﬂpment of %- )\)/(y.)}

ol ot
The function ;Aj(s) is nf the form Z cw_) 1... a;l
, o (q{) L
the summation is over all sets (;-,L) = (ai” ‘e ’m{un)

wherae
m nchil-
= m ’

negative integers which are such that r;;L' + 2.;‘;L2 + eee + ml.‘!':-l

(;’\) being a partition nf - m, and we denute this function by

The result of replacing (s) by (E*) in -;)\71( ) ? iw-p {f\} (g%) ?

dimensional unitary group, where j 1§ any positive integer, are

obtained by replacing S, by 5:} 9 '92 by 52:]

denote these functions by S and (S*)j y regpectively, so that

J

) Ay Kp o | tﬂz“".?ll*!'- ..
2 e e RE (e, = 2 (1)
% ) %3ttt Py J (A)

The function %%}(q) @i}\‘}(s) is, by definition, E (.@) ...S
. - (B)
' - q_ {3‘] Fmr
{A 4 being Z.. c'( L) B v S where the summation is
4 (s) (%) (> |
over all sets (B) = ({31 ceey [ #!) of @' non-negative integers
whizh are such that B + 2“2 + sae * m'@m{ =m', (‘)\') "being a
___4?‘-2+¢'2+...
partition of m'. If J 1is odd, (S¥), = ;(-1) Cen) X
_ | j =
lf"i EOLu _
j LI I mj_— -

S

"%‘I E3[:1'

1

o Fothitees < g
- is (-13‘%‘2 “ . .:-(a‘_) _511._.. . ,émm and we denote this function
() . | B
by ST « The values of 15_1 and .Sﬁr at the element Z'j of the n-

, and so on, and we

?
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- v d tyua
= (s,)* wnile, if Jj is even, (S,)% = 2 (1) T
) : (k)

ek | o
aan ] = +2-' T aee this 18
c(d) E‘_j . Emj and, since m 0"*1 jﬁ | ’

< F K A , * |
(-1)m Z (-—1) 274 c(_i) E;... a;;.‘“ = (=1 )Lﬂ(Séﬂ)j . If, then, m

_is even, (5*) (S )-‘h‘- for all values of ;j S0 tha‘t: %Z\TI(E*) @

1}: ﬁ'fa) is obtained from /\\_}( )(35)\ lr( ) by replacing (s)
b?,r (a*) ;_.'inhnther words, {A g_i_;:-t,\f 2] 1is thg associate of
{A‘% (9 {)ﬂl " Ou the other hand, if m 1is odd, (s*)j_ = (Sj)*

if j 1is odd, while {b*) = - (8 )* 4f 3§ is even. Thus

¢ B+... .
‘{A*%@{N} = %(-1) 2T "3(@ ((s, )* e (8 ) 36

. . -, 'l! -
which is the associate of ‘3: )\j @i;\'*}- . We have, then,the
following rTule: If m is even, 5\.)\*} @FN } is the associate

cfi}\%O{A§ and, if m is odd, «},\*3@ AB is the
agsociate of 2_}\11 @.}))\' v }. For example, {2} Cﬂ b) m j- is the

associate of L _I x) {m‘} while {34%0 X Ol } is the associate
of L 32‘(1} i‘l n'e .

2. The anal*fbls of the resresentations 31 .,i 15;5 1 i and

.2 . -
11 ng- of the n-dimensional unltar.‘f ZToUp.

The ch:a-ractaristic" .mmbers of a typical element zZ' of the
™ | .
anti-symmetrized square { (12) of the self-representation of the

n-dirensional unitary group are z122, souy zu 1En’ where 2 casy Z

1? n

are the characteristic numbers of a typical element 2 of this group,

and the elementary symmetric functions of thase characteristic numbers
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are the characters of the various representations 5_1,2 %@E‘Im} ’

m=20,1, 2, «.., of the n-dimensional unitary group. On séparat ing

L=

z, from the remaiﬁiﬁg' n-1 characteristic numbers “zé;'.;;, z of Z

1 n

we see that 1-%2" + ({12; ® ;;jz?)t'z - ... is the
11j+1$12} 22_... and 1 - $1°F14 4

+(11%F® 91710147 - ..., where the prine attached t6 sny ] ...}

product of 1 -~ 71 ¢ ¢z

indicates that it is a function of (2z') = (25, +..: 2z_) rather than
of (2) = (z4, 25y <oy 2 ) + Thus 11°F = 3&_1}1‘51- + 31%%
LI @) = 1P ed s DB U e (0P @ 123
and so on: Hence the first term of 31°% G)31°%. is § 21°F and,
generally, the first term of 1° % @i}m} is {m1"}. Since
1(212) / (1)% = $1331°% there are no other terns in {12}@ $12%
which is, therefore, -?_212'} . - Since 3.(31%) / (2y } =313 8°) =
= ?_ 212} + {1“5 and eince {123 x) {133 = 113"3‘3?
s 12T iﬁz' -'gf 31y (5,?12;3' @%2})'51 + (&1%@&1?} )1
3{13}'5.? + '("%;22} f-+-§‘21‘2j 't E,_.‘1'5?'3'), 312 ¥ (5)_3125 ' +i-221'§' +
) ) ¢ (@D wenae PRG®YCE -

= 317§ + {23’; Similarly 112}@%143 - )7,_414'_; - ‘;_-5221} ,
{1 §E@ 8 = $5°% « {42%? +33%2°% . The partitions

which appear in :{121"0 %n ?r may be cnmeniantly described as

¥

follows. In the dnt dlagrem Df any partltlnn let s be the number

of rows for wh::.ch }\ > J and write a, = /\j-j,j —:.1, “-::.r 8,

J
80 F.ha-t 2, > 2} R ) :“)} 0 . The m{tmber s ft‘JI‘ ( ,\-F) ia the
same as the number s for (,\) and we write )\* - j,

J =1, veey B then (1\) is characterised by the 2s num‘bers-
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P b

E [ 'E- )
a,, b, and we write (N) = ( b1 | ,: ) . This being understood
j j | 1 -ll-i- g -
the par'tltmns of 2m Whll'.':h appear in \;1 ES @ H“Emj‘* are those for
whlch b. =a, +1, 3 =1, esey S Slnc 2rn == (a#+b,+1} =
8 .8 1 < 67
. __QZ(EJH), S A ; = m-s. For example, 21 g & g =
3=1 :J=1
2 1 0 ST Y ¥ enqD b
() )+ i (5'21)“1.61;5”‘”1521'}*;_3{%*
Since %_2_, ] 31 E iz thz assnciate of 1; 12:’: : %_1“ " end  since

' (b1tns T : 5.1 T e ow EE
(AN*) = 8y e aﬂ;;, if (\) = b'l hs) the partitions
'

~ - g f ' b,‘. ssr D
which appear in j 25* @ ‘}__1“1} are of the form \Ei E’\ y Wwhere

by=8,+ 1,3 =1, -y 8 For cranple, }2’_"; '::'l ] ji (f) -

ey @ - (2) < (3 0) -1t < Y

{2}@31‘@:( ) + kE o) :1513} ¢3‘J. o

22% @1{15} (4) + _(3 :;, . +( 3 2) ‘6147 + 54321} +-§422}
~In the same way we see that 1 + “1‘124?“ + ﬁ1 jo 3123)*{:

is the product of 1 * )L j‘z t o+ 2‘2‘,—*'*21:2 + eea ard

ev. S0 that 112' Gyi2%, tor

+ ($1°% () 325 )+ Hence

§ 2‘* O 2‘-’— starte off with }2 r and, eince ,(9 ) /(1S =

11"12—}1 =.}‘21 . the re-aining tern of 4 3@{2* ig 3141

aﬁ that S L 1° %ULEZ( = '?EE'ZI i Slmllarly, %125 @1‘3}

- %__323 + -;}2123 + 7 ?, : % EO% t = EL,:L §+ %}212} +

+ “1245- + {_2214} + 3,’16} . Tn general, the partitions of 2m

. N Y . 7 : '
which appear in 11*_1 %GE} im i- are obltained by taking all the

I
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partitions of m and r8péaiing'éach,part of each such partitiﬂp.

~ For example, since the partitions of 5 are (5), (41), (32), (312),
(2%1), (217), (17), *1”@353 : 2% R EE

+ {3214_(( " -,2412? + 2% 6} ;{110} .' It follows that tho
par'titinns ﬂf' Em " which appear in g2}@) %m} are nbtaineq by
taking all the partitions of m and doubling each part of eaﬁhlsuch

partition. For example,

125 ® {2 = beg + AP A2g@ DT - W5 e L+ 12
Y@l = el ¢ e ¢ 1477 ¢ 5e2PY e 52
j23® 5T = 110% + 382 + (64} + $62°] + 1%2] + §42°F »

and so on.

3 The relation between the characters <A > of irreducible re-

uresentatiuﬁs of the Z2k-dimensional U-symplectic group and the

characters flkfj nf irreducible representations of the 2k-dimensional

orthogonal group.

The characters < A\™y and L__ A _l of irreducible representations
of the '2k—ﬂimensiaﬂal symplectic and orthogonal groups, respectively,

are furnished by the formuias

k
< ™ - Ty —-T":., T":' ;‘H L . =
1 1
(AT . T G-25)A(Dn. ., - ”TL? (1-%%, )37}
| ngaq op 2q A A Y 5p:=q
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X

and, since || (1 _E‘piq}= 1 - 1121[ (E) %2_75@%;12} ) (%)-
P<d.

Il

1 - }_12} (%) + imz }(E) -
T (3 -8 = - T (IO UTDE -

A
" = 12 52%(%) + $1F(%) - .
we have < A\ > = YA -i(/\)/(1)}+ 1,{,..\. 212)}_ -
| LAT = AL -5 /7@ + 5 /6D T -
Thus < \)*, the associate of{ ), = &,\* %(,\ / (2)-} +
LA/ (31)§ -
which is L A* ) .  In other words,\ X\ | is the associate of & 2*>

and <>\} is the associate of (/\*j where, by the associate E“f(_?\*7

we mean Z ﬂ(}*)%p*} if <}‘*>ﬂ = Z\-_ C ,f,x:f;{ and by the

({J-) (;u.) o~
e g _*' - e’ meat c ﬁ.t.. ¥ - ol o : o, '
associate of [:)\ ]. e g) .J.""'_'i;:} *“.,T if L}\ ] : (ZH)GWSL}-L}

The relations | | |
k |
<A YV.= n-u -5 50 12 LAl N NG -5.5) 1T
p <4
1 1

yield | | | . | 1 | ._ |
- 1T (@53 (9 - TN
ERCOEECEONACRE S IENPA [ESNACORNCIN $
{qul(gn(f«*zf@ﬁzj) e FIA]
- AT « L3077 @8] + _[a /(4)'+(22>Q

+ L

i

I
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where by \- 3]_(/\) / (1 "i J , for example, we undersfand the re_aul‘t

of raplaclng each of the parentheses %_ ‘} which occur in

-r ——

'{_()\)./ } by the corresponding parenth951s L_..._j . Theseo

relations furnish the analyses of the representations of the 2k-

dimensional U-symplectic and orthogonal groups, respectively, which

——

are induced by the irreducible representations l (A) of the Z2k-
’

‘dimensional unitary group, where (};) is a partition, involving not

more than k non-zero parts, of any non-negative integer m . The
second of the two formulas also furnishes the' analysis of the re-
prEEéﬂtatiuu of the (2k+1)-dimensinnal orthogonal group which is in-
duced by the irreducible representation lﬂj(‘h) .of the ;(2k+1)- ‘.
dimensional unitary group. |

4. The analysis of the representations -{.m?[ 9 ‘5.21_ and 3jm Si,‘l

of the n-dimensional unitary group.

If we change the sign of t 1in the relation

5 - R 7 =1 $ a7 c e D |

i(1 - 51t) eon (1= Eﬁf)j' = 1+ j_13:t _+ 125t + e

we obtain

T ? —1 o= 'S - 2

‘}‘(1 + E;,it) “se {'1 + gr't)j = 1 - ,,:“1 fs.-t + 3 2_&1.‘ = ese

so that |

3 o2 2] | .

?_(1 - Ef'tg) eee (1 = z )3 = 1 + (2 ?g} - 21-1 }2) ‘b2 +

and this implies that the value of iﬁn%‘ﬂt Z is

2 ?{21]11 - 2 %2[11*1 % 113 + a“na (—l)m-1 P im+1 t r [IJ.—'1 + (""1 )[mg m?!‘
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If we denote Em}' by 31 the value of ii_m?] at ZE is SE and ,

since {{_mj @ 524} = 12* (812 + Sg) wé hav e Zm} @ izﬂ =

{2::;3 - S{_2::'.11—1} {1? + «ve y the last term being ‘;}_m_ﬂ} {_m-ﬂ} oy 1f
m is odd, and E{*m}g if m is even. Since {_2!11—-2} {2} --

- %_211_1_—-1% bR 1 = {2m—2, 2% and so on, we have

Smi &) %2% = 2oy + Jom-2, 2% + ...

the last term being im+l, m-1{ , if m is odd, and J m, m}y , if

m 1s even.

(5,2-5,) = -{z} + {21, 1% - ..

i

Similarly’ fil L }? {i\ ":L1 2-‘}‘ .j2- 1
. = igﬁl*_—1? 1_; + {2!'&—3, 3} * e
the last tern being {m, m{ , if m is odd, and § m+!, 0-17 if m

ig sven.
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Lecture ?O

1. HEI‘[TIl'bE Law of Hecmrﬂcltg

If Z2-3%' 'is the irreducible representation , (-m). of the
2-dimensional unimocdular unitary group the characteristic numbers of

Z' are 24 3 2 Z5s e zg‘u' where '2.*1 and &, = 1/51 are the

characteristic numbers of 7z .- Sinca*'hm = z1m + zghm;1 the

~1 cq
product of i(‘i -z, ) oo (1 - Z, 1;)5 = 1 + iu}t +
+ (3 m:U{_EE)t + vee by 1_5‘“‘0 s 1+ -1y zgb +

+ (-1 (x) %E})zg'ﬂz + e, 80 that

(fn-17 x §35) 2,0 = (17 @0Y) - (124 ® U-J,) 7"
F=1, 2, iee
Upon interchanging z, and z,, subtracting, md dividing by z,-z,
we obtain '
SERKIOREE: }5}.3..1} = $ol@3i-15)5015%
Setting j=m, we obtain ju-13(I{e§ = nl @Y u-1{. Settirg
J =n¥1 we obtein (Ju-1% @){mﬂ} ) imy = (G {m} ) § m-1% =
= (Aot Y @ {o-15) 0] oo that § n1f @ (a1} = {erti@je1T

1

Continuing in this way we see that, if m and m' are any two positive

- - -
integers, imi (x) %Fm'j = 3o ¥ @%Lm?- . This is known as Hermite's

¥

b T

Law of Reciprocity for the 2-dimensional unimodular unitary group.

Since, for the n-dimensionsl unitary group,

and since, for the 2-dimensional unimodular unitary group,
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i)‘i”’ ,\23[ = ,5[_},‘1 ._.12% ‘ve have, forthis latter group,
, {mi "52} _ {2:11.{( +.--i2m=-4§ + cee = i gi@im}
SL‘"E@%F}“ yen-2} + %__Em-f:} toaes

2._._ The _anal;,rsis _-:;f im",( {x) %}\25 for the Z—dimensinnai unimodular
unitary group.
The function %m}@ i_‘lmg . 3 =1, «¢ey m+l, are the

elementary symmebric functions Z1 s soasy ’{-—-m+‘i

of 'ﬁhe | m+1
",
m="1

characteristic aumbers zim, Z oy ees zpm of a typical matrix

7' of the representation (m) of the 2-dimensional unimodular

- - m+1
unitary group and, since the reciprocal of each of thesejcharacteristic
numbers is cne of the set of m+1 characteristic

numbers, Zﬂ- =IZm+1-.J sy J= 1y eeey m¥l . The fupctian
im?f i/\*} is the determinant of the k-dimensional matrix whose

pth row-matrix is (7 0 —k+1? ...,Zﬁ ) , k being the number of
P P

non-zero par'l:é in (A) and ,ﬁp being }\pﬂc—p s P =”1, vevy Ko

On denoting by A' the complement m+1-}\p' of )\p in m+l ,

k_p+1
the k-dimensional mstrix obtained by inverting the order of the rows

and columns of the matrix whose determinant is im% (g.c___} {',\*} "h-aa

T, -7

1 s Ao\ ="/ 4, and so on, as-its diagonal
k A 1 A1

ARSI
A2
elements and its determinan® is im% @?_)\'*} . For example, when

A = 0D, (N = @ () = (), (N = 5 ena

we have the result

103 @Y - 103 ® U3

When m = 2 , wg may take k Z-2 since, for the m+l = 3-dimensional
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unitary-group, %)\1, }.'2,;)\';; = {)&1 -)\3, }\2 -—7\3-}' . Uriting
(A*) = (pya) we have (x) = (2MP™%), (A') = (2P"%49) ,
(N'"*) = (p, p~qa) ®o0 that

127 @ {rsay = 125® {p) v~
Similarly {37 @) i & r§ = 35E) {9 p-ry P2 §

id—fﬁ"SP, qQ, T, 53' i‘ij.ipr p-8, p-T, P“Q}

and , generally,
{3@1),1, Y 7; {;.M,M S I &

It is easy to de?e}pp recurrence formulas which enable us to

-analyse ng@%pi . EEpa:ratj.ng 51[&. from +the remaining m

characteristic numbers z1m-1 Doy ey zzm of a. typical matrix 2! of
’()'we see that 1+§m1?*t+({m-1jf“=%2} + eee 18
© the product of 1 + {mft + (Im¢ @S 2})4:. + eu.” ond

1 - z1mt ‘and so

.(?,m-*?f}'?@{pi)zgp - 32 1@ o} - (1ot ® 150z, p=1,2,...

~ or, equivalently,

i@ e} - Gm-”C p})zp + ({mi(@{pnj )z .

Upon interchanging %, and 2, anG decreasing p by 1 we obtain

158 @ L% = ek @ 0130577 ¢ (a3 @520 s,

D= 2,3, .
80 that | | i
@U@ TP ¢ (- @y e
+ {rrz . 11:»-2}

sincs 248, = 1« Upon 1nternhanglng Z

)

’ and’ '2 y and m and p,

in this equahmn we obtain, mal'ing use of He rm:d:e's Law of Reciprocity,
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the relation

{'m'*’_{" @ {P} = ( im“% @ g‘p—‘l} )31'“1 4 ('ﬁ_m..q} @{P*"} )z2m+1}—1 +

which yields

| "'i-m-—‘i ¥ pf, }z = (:;-Lm.-f”.; (x) ip—‘l} )zzmﬂ)”_‘l + Im25Q 'ﬁ-pfr .
Hence

WI@ 15, - o @ 1525 + (a1l @ ie1y) (7 + 2%
' + (EI.#m_Qj-w 'ﬁ_p})

m+p-1

o m+p-1 7
Zy + z1zz~tm+p—3_x_[ +_52

Il

and, since 3m+p-1}

m+p-1 - [E+p_‘1
g {m+p-3} + oz, ,

we ﬂ'l:rtai‘n the recurrence relation
02 (D ip§ = for@ 2% + ({17 @ {p-1F) (§ap-1§ -
- (w+p-3)) + ({e-2%® 3p})

—— A

For example
@Y= 25+ (63 - 10p) (15 - 3]
= 19% + Wy ¢ {3}
© §4%{53 , for examle, being §97 + 181F + {72} + 163y +3543
=398 + 373 + 5% + 3% + 1% sothat $43(55% - 13%) =
2 $9% . Similarly, | -
37 @ 4% = 2%+ dsk ¢ Q6F + ReX + J03
T4t x 4§ = %16 + S12) + 510% + 25ef + 503,
Tn order to obtain a formula for 'ﬁm«’-‘- (x) Slp--'I‘, 1% we proceed

as follows. Upon multiplying the relatlon

L@y = (1n17@ B3)af + (Sad ®5P-13r)ﬂ

......
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by 2, We obtain, sincce 2,2, = 1,
(P @ Spr)z, = (im-t Ja@in®)z,”™ + (L uk (@ Tp-13 )z

Upon iunterchanging 2, and Z5 9 subtracting and dividing by Zy=%5
we find that

tnt® et = G @ ip1i)mi - (in1] @407) (p-2}

.{1

Now the relation le-1? j‘1} = ipp + ~3p—1, 1% tells us, since

-y .-. ~ e W

Gof @ p1i) ey = ok Gapl) + et @p-1,17

and so

*;Hi*(@ﬁPJHf = (3n% @ip-17) 4uh - (:m%@%p})
= (e & ypd) 3 o2}

For example, i2{§ X *i21§ = 93, 1% = 247 +'%.2E~ .

Since 1 - 3 mit + (3 mé (% 3125 )t2 ~ ees' 1is.the
product of 1 -~ %m-f}z t + .(-f—f__m—J ﬂ@g)i‘!zz 5:,..2'&-2 ~ eeas DYy

1 - z1mt we have

' 4 4 P7 e T A PT P _ 3 7 o s up=17 m=-p+1
i @217 = (o1 &E 7 )ey v (e ) 7 5 )T
so that

(Jut @1 )s = O @R ets @Y

‘Upon interchanging Z, and Zy subtracting and dividing by 2z, -2

we obtain
o (@317 = (e & P13 )< m-p+ I -
. _ { ﬂ’i""j? kx‘]r'f }) 11}-2‘-{- -

This relation enables us 1o prove, by induction, that

?m@)%pi =_im—p+1ﬁ(§§+plﬁ y D= 1_,'2, ‘es
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Indeed, this relation is true for every positive .integer ©p if m = 1

5oL, 2 ‘

since-1 1+ = 70 f..and since both sides of the relation are zero i1f
Py 2 . . Assuming that the relation is true, for every positive
integer .p , for any given positive integer m-1 Wwe show, as follows,

that it is true for m . We have tm#({x) 1° % =

gl

('} m-p+1 ﬂ'{_}é! ; p-_‘!'_.i« ) m-p+1 fr -~ (4 m-p 1 {x,; ip:‘i ) {p-E?-! =

('i' e~

Ln-pr 355 3 ) ¢+ (Queptt) B R,

Il

~ (fap) @ p})ip2d . Onroplecing @ by wprl in
w15 = (Lety @ (1) 1p-2) e oot
that Jm-p+1 : h 9 {p—-‘l, 17 = (iim-p ??kfc; Epi ) ?Lp—E'j so that

:}.- IIl_‘.E - L1Pi" _ im-pﬂ E(y ﬁ‘p} .

‘Thus, in particular, ymi () 11"§ = e}y, ef @3 = L5,

and ’im (x ‘)1P'E( 0 if py m+l .
- Since (3 m }C} 311}‘%)’-‘111{ (t:‘ﬂﬂs {JE__I §_21p-1§-) +
E1P+1E‘ ) we have

+ (w117 ] L

4 e ipet L .

el @ e - (e @555) 18 - (k@ {pn3)

and, in particular,

¢ s Coame1] 5 27 _ % :

_Emi-@)-j?l { = ? f:’,“?i - :}Oj = izﬂl?_} + %2[1’1-—23’ F ane +§2§
When m = 2 we may suppose, in evaluating 2‘«‘6 J* 7\? that

(>\) = (,..-"\1 ,)\ ) does not involve more than two non-zero parts.

Since }2_}:@}‘_)\11 }\2_,& = }2—%@‘5;\ )\ -—}\21- we may limit

our attention to the cases where 2}2:}\1 . VWe readily derive

the following formulas

32%0 2pt1, 29 = (J4p-20+2 § + %4;,_2{1_2} boee 4 2q+2% )32a%
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5-2}@%21?"”! 2q+1 q = (R 4p-2a+1§ + 34p-2q-3 % +

125 ® Topy 2] = (Sapact ]+ Sap2asd ¢ s
+ 4 29+3%) i2q+1%

?2‘1 @; {2&&1} = (4 4p—2q? + i 41}«2'51"4‘( + eee t iZq? )E}q} -

- -14*:1—-2 o {4q—6$ - {Et}

Fnr example- %2‘;(’) 5:21— (?BT + 1_4 ) %'_10‘% i83+
| | | " R 2‘}{-' {41. + 52&

(.99 + ;__5} + 1Y) g 0%-
0% + i+ 957 + e} +% 2%
i2h 635 = (19% + $5%)§3¢ = 12} + {10% 4

r2387 '+2'{_I6“'r + 347 + 327

('%_10% + fa’*"- + ?23)‘{2} - 12} =
312 + Y10 + 2}8& + 367+ (4% +
| ) 50&

P
2]{:

514

i

123 {62

il

il
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