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Introduction.

Toe Sohwarssohild line—element [(1.1) below] is familiar to all relativists.
It represents the gravitational field outside a spherically symmetric distrib-
ution of matter at rest. The formula is simple and exact, and seems to offer
no possibility of confusion provided we refrain (as we do here) from attempting
to elucidate the so-called "singularity™ at r =2m . There are, howefer, two

possible sources of confusion, and it is the purpose of the present work to




clarify them by explicit and detailed discussion.

First, there is the question of the transformation of coordinates.
The only transformation of interest is that of the radial coordinate r .
This gives us an infinity of line-elements, including the well-known
"isotropic line-element™, in which the spatial part is conformally flat.
Each of these line-elements represents the same gravitational field as
does the original Schwarzschild line-element, and is, in fact, the
Schwarzschild line-element "in disguise™, We give in Sections 1 and 2
rules for detecting whether a given spherically symmetric line-element
is of this type.

Secondly, and this is a much more dangerous source of confusion
than the above, we have approximations based on the weakness of the field,
or, equivalently, on the smallness of the mass m of the central (spherical)
material system which causes: the field. Roughly speaking, terms of order m
give Newtonian gravitational effects (elliptic orbits), and terms of order m>
refinements on this (advance of perihelion), while the effects of terms
of order m® 1lie far beyond the limits of astronomical observation.
However, such a rough statement must be accepted with great caution, for
it has led one of us into an error [cf. J. L. Synge, Relativity: The
General Theory (North-Holland, Amsterdam, 1960), footnote to p. 296]. The
fact is that, if in the usual Schwarzschild line-element [(1.1) below] we
neglect terms in m® s obtaining the linearized form (4.31) below, we still
get the correct formula for the advance of perihelion. Thus it is unwise
to say that advance of perihelion is an m°-effect. The matter is discussed

fully in Section 4.




The maximum confusion arises when we combine the above two confusions,
applying an infinitesimal transformation to the radial coordinate and at
the same time approximating for small m . Consideration of this has been
forced upon us in developing a method of successive Ia.ppro:dmations to
calculate stationary weak gravitational fields in a paper by A. Das, P. S.
Florides and J. L. Synge entitled "Stationary weak gravitational fields to
any approximation™ (this paper, not yet published‘, will be referred to as
DFS). To test the method, we applied it to the case of spherical symmetry,
expecting to derive the Schwarzschild line-element without much difficulty.
However, the work proved formidable, and we had to be satisfied with verifying
that the method yields a disguised Schwarzschild line-element up to terms of
order m° inclusive. Details are given in Section 3 below. The paper ends

with an appendix in which certain integrals appearing in Section 3 are

evaluated.

15 Transformations in polar coordinates.

The most familiar form of the Schwarzschild exterior metric is

&=(1 -2 ar® » rfao” - (1 -3 at® (1.1)
where
dc”? = a6 + sin®0 ap® , (1.2)

end m is a constant (the mass of the central body). The four coordinates
(ry, 6, ¢, t) have geometrico-physicel interpretations. The 2-space with

equations r = constant, t = constant, is a sphere of constant Gaussian

*
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curvature 1/r2 , and (0, ¢) are polar angles (co-latitude and longitude on
the sphere); t is the measure of proper time by a clock at rest at infinity.

If we apply a transformation

=£(p) » (1.3)
we get

&=4dp° +Bp° a0® -Cat’, (1.4)

where A 4B, C are functions of p such that

map2=(1-%‘-)"’"ar", Bp’=1r" , a=1-%. (1.5)

The form (1.4) may be described as a Schwarzschild form disguised by the
transformation (1.3).

Suppose now that we are presented with a spherically symmetric statical
line-element, how are we to test whether it is, or is not, a disguised
Schwarzschild line-element? In other words, given the three functions &(p),
B(p), C(p), under what conditions on these functions does there exist a
transformation r = f£(p) which will turn the form (1.4) into the form (1.1)?
And how is the mass m expressed in terms of A, B, C, if the transformafion
is possible?

We proceed as follows. If (1.4) is a disguised Schwarzschild line-
element, then (1.5) are true for some transformation » = f(p). We have,

from the second of (1.5),

4

r=pB?-, (1.6)

and, from the last of (1.5),

pm%(1-c)=2m; (1.7)



hence

& B% 1-C}l=9 1.8

ap PE( )1 (1.8)
By (1.6) we have, denoting d&/dp by a prime,

rdr= (8 +%pB*)pdp , (1.9)
and so the first of (1.5) becomes, on multiplicatien by r° ,

ap®Bap? =¢"" (B+2pB)? p® ap° . (1.10)
Hence

ABC = (B+zpB*)? . (1.14)

Since the argument can be put into reverse, we have the following theorem:
Theorem I: In order that the form

3 = &(p) ap® » B(p) p® a0® - c(p) at® (1.12)

may be & Schwarzschild form im disguise, it is necessary and sufficient

that A, B, C be positive functions satisfying the two conditions

G leF (1 -0l=0, (1.13)
ABC = (B#2pB')? . (1.14)

When these conditions are satisfied, the central mass m is given by
: >
m=2pB (1 -C) . (1.15)
In all cases of physical interest, m/r is so small outside the

central body that the discussion of physical phenomena can be carried

out with sufficient accuracy if we retaim terms im n’ s but reject m



-6-

and higher powers. ' Accordingly we write the Schwarzschild line-element

(1.1) in the form

: 2
il -;i:-,"i‘-‘d%)jar**r"wz-u -%“-)dt"*o-s , (1.16)
"

the symbol Q; indicating terms involving o .
Consider any spherically symmetric statical space~time which is
neaerly flat, the deviation from flatness depending on a small parameter

in such a way that the line-element may be written in the form

®=4dp° +Bp® a0 -Cat’ , ]
A=1+4& +A +0_,
| 2 3
? (1.17)
B=1+B +B +0_,
1 2 3

C=1+C #«C_+ 0_, /
1 2 3

where A' » B,: s G,, are small of the first order, &2 " B2 ? Ga are small
of the second order, and l.':'3 indicates terms of the third order. What are
the conditions that (1.17) should be the line-element of a weak Schwarzschild
field in disguise? The answer is given by expanding (1.13) and (1.14).

The conditionss read

%F [p(c, «2BC *cC)l=0,, (1.18)

- = - : = R 1)2 B

L -B +C - pB} +BC +CA +4B (B, #2pB!)" +4 -8B, +C,
-pBl=0 . (1.19)

When these conditions are satisfied, with 03 unspecified except as to

magnitude, we may say that the metric (1.17) is a disguised Schwarzschild

metric correct to the second order. The central mass is




e

mx=-'ép(c1 -rj@?'c’ -uez) +0 . (1.20)

2e Transformations in Cartesian coordinates.

Greek suffixes take the values 1, 2, 3, and Latin suffixes the
values 1, 2, 3, 4, with summation for a repeated suffix in each case.

If we introduce Cartesian coordinates: X, by

x =rsimbcosd, x =rsinbsing, = =reso, {2.1)
we have
2 _ ;
r=x = , rdr=x d= , (2.2)
and, putting = = it , we may change the Schwarzschild line-element (1.1)
into

(Eggljdxﬁdxj’ (2.3)

where

o _m -1 _ a7
g -ﬁa"'[('] r) 1] >

ag e
834 =0, (.20#)
| 2m
a ™ {f = T ) .

We have to consider the disguises of the Schwarzschild line-element (2.3).

Any spherically symmetric statical line-element may be written in the form

where
EaE :
Y., =P(p) 8, +Qlp) —-—Ep;, ’ (2.5)
Yea = 0,

T, =R(p) , e




and the coordinate 54 is a pure imaginary. We seek the conditions: on P, Q, R
under which the metric (2.5) is a disguised Schwarzschild metric.

In view of the results already established in Section 1 , the best plan is
to go back to polar coordinates, instead of comparing (2.3) with (2.5).

Accordingly we write

E’ =p sim® com¢ , gzgp sin® sim¢ , Eszp- el , E =1t .

4
(2.6)
Then (2.5) becomes
& = P(ap® » p®ac®) + q ap® - R at®
= (P+Q) ap® + P p® a0” - R at? . (2.7)
This is: the same as (1.12) if we put
A=P+Q, B=P, C=R. (2.8)

Hence Theorem I gives the following:

Theorem II: In order that the form & =~(u d‘EL‘ dgj s With 54 a pure

imaginary and

S E
Y., = Fp) 8,5 * p) .

P (2.9)
"f‘“ =0, Tae™ R(P) P

may be a Schwarzschild form in disguise, it is necessary and sufficient

that P ,Q , R satisfy

P>0, P+Q@>0, R>0 , (2.10)
and

%E[ppﬁ Gl Ew 0y (2.11)

PR (P+@) = (P +2Z p P')* . (2.12)

When these conditions are satisfied, the central mass m is given by




:
m=%2pP*(1-R). (2.13)

In the case of a space-time which is spherically symmetric, statical, and

nearly flat, we may use in (2.9) the expansion

P

1+«+P «P +« 0_,
1 2 3

Q

1]

Q, +Q +0_, (2.14)
R=1+R +R +0 .
1 2 3

Then (2.11) and (2.12), on expansion, give the conditions that the line-
element (2.9) shall be a Schwarzschild line-element in disguise: these

conditions read

d 1
3 [p(R, + 2R P +n2)] =0, (2.15)
- St - ke 4
Q,-b R, - pP:' + PIQ, > Q'R' - ZB.'P' - pPlP: o p P: 4 Qa -l.»B.z pP; = 03 .

(2.16)

When these conditions are satisfied, the central mass m is given by

m=-2p (R +3RP +R) +0, . (2.17)

3. The Schwarzschild line-element obtained by successive approximations.

In this section we apply the method of successive approximations
developed in DFS to find the Schwarzschild field up to the second approximation.
We take the body to be at rest as in Schwarzschild case, but we shall not
assume for the moment that the body is spherical; it can be of any shape what-

ever. We shall denote the interior and exterior regions of the body by I
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and respectively, and its surface by B.

E
To start the process indicated in (4.1) of DFS we choose

=-P’ in i’

-nnhg

ﬂ=0’ 430' T44
1

(3.1)

L B

j=0 in s

where p is a time-independent va.riable"assigned in X4 Since we are

“

dealing with a stationary field the unit normal vector n, to the history
of B is of the form
o - (né: 0) . (5-2)

It follows then that T;; satisfies conditions (4.3) of DFS, namely,
1

T =0 im I and E,

'LJ,_4

T =0 in I and E 5
ttj,j 3 (3 5)
!‘E’” n‘;j_‘.=0 om B .

We note from (3.1) that the star conjugate of T;; , defined by
1

1
is given by
1 1 I
Toe*=2p8 s Typ*=0, T, *=-2p, in 1,
1 i 1 1 (3.5)

- inn B
?ﬁj =0 in E .
Indicating 3-vectors by underlined symbols, we now define g; J by
1

[ef. (4.4) of DFS]

d x
. 25 1 * 3 2
s =+ [ 7@ =T (3.6)
and so obtain

€ap = v 5“3 Eaa =0, Bogw.= 2v , (3.7)

* Not to be confused with the radial coordinate p of Section 2 .



.

where V 1is the usual Newtonian potential, given by

p(x) d.x

RN Ehe

with integration throughout I .

Next we evaluate the quantity M J(g) given by [cf. (3.7) of DFS]
2 1

1
M ==7Z > - - - - [rj,al [ir,al =+
oL §rs (§rs,f,j §:.j,_rs ;‘rj,r.s §f.s,rj) (r3, ,[ &l

1 . 1
+2 8, [kal [rk,a)] *8, €ab I;ab -z &y I,'z“ > (3.9)
where
[15,k] =% (fak,j - it ?U’k) : (3.10)
and
-
i o - 5 «1
I"'tj —en (fna’l._] *?tj‘aa i‘ia,cj ?ja,al.) (3.11)

Using (3.7) and (3.9) we get

f“‘ o (v,aa sl.u > v,?\y) » 2 V,_a v’,a slu & zw,l \t",u !
EM =0, (3.12)

E“ = 12\’?’“ * 3 V,a W,.a s
or equivalently

, =- CWY 6, ~2% ¥ b WV SaNE ]
M =0, (3.13)

M =2VV -2V V¥V .
,44 saa ol

Up to this point the formulae are completely general; they hold for
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a body (at rest) of any shape and for any time-independent p(_:_c.); From

now on we shall assume that the body is spherical (of radius a ) and that p
is. a function of r only, r being the "distance™ from the centre of the
body, given at the point y, by

4

r = (y, yc)ﬁ . (3.14)

By (3.8)

-

T=% in Ko m =[ pdx, (3.15)

m being the "mass™ of the body in a rough sense; by (3.7) we have, in B ,

2m 2m
==-I'_-6 ot (3.16)

%ap e * §a4 =0, ?44 »

It is easily seen that 85 satisfies the relations (2.15), (2.16) when m2
is neglected, and so (3.16) is a disguised Schwarzschild field to the first
order; by (2.17) the central mass is
m=m (3-17)

to the first order.

We proceed to find the field in the second approximation. For this
we need ELJ as given by (3.9), with substitution of 8.y 88 in (3.16).

1

Direct calculation yields

1, m? m?
lf’“z'i?ylyu*%rsw 2

(3.18)

=]

oy
Bh,=0, M, =::L-- P
2 2 r?

or equivalently®

* Throughout this work we use x, or y, indifferently as current co-

ordinates, with r? = X,x; in the former case, and r? = y,y, in the latter
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(3.19)

Having found M;j; in B , our next task is to find a time-independent
obd

tensor P;; satisfying the conditions (4.13), (4.14). (4.15) of DFS, viz.
2

P, =M, in E (3.20)
z” ztj' >
Pop,e =0 in : Pap Dy =Ygg B, OB B, (3.21)
1:“', =0 in I, E“ n, ""’1:43 n, on . (3.22)
P44 = 0 in T - (3‘23)
2
Now
¥
By it (3.2)
and so
—
¥, n, =-I—m—ya 3 (3.25)
a®
thus (3.21) reduce to
‘ { E‘:
Z“’pzo s T , Iz’“maa-La;—ya - (3.26)

We note that the only solution of (3.22) consistent with spherical symmetry is

P,,=0 in T, (3.27)

2

Tt is an essential feature of the DFS-method that, in the second and
higher orders, an indeterminacy enters, and can be resolved only by assigning

a structure (e.g. elastic or fluid) to the body producing the field. Now,
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although the usual complete Schwarzschild field is that of a fluid sphere of
constant density, the exterior form (1.1) in no way depends on this particular
hypothesis, and so, in applying the DFS-method we should avoid any structural
hypothesis. However, to simplify the work we shall not be so general, but

take, as solution of (3.26),

o SRy Tty (3.28)

which, since 1;’” is to be regarded as a stress, corresponds to the (unique)

hydrostatic pressure satisfying (3.26). Hence we have

2 2
i (3.29)
7 m?
Equivalently
2 m? 14 m?
Poe =My =735, "_lt_s-y:zya .
r r
(3.30)
! 2 m?
Sa4 =§:4 -5 44 ”fﬁ.g =""';_'2"
in E s and
m? 1 m?
Mo ad it o B e, M, =B (3.31)
2a¢r 2 o o . 2 2 o
in R,
In acecordance with (4.28) of DFS, we now define 8 bY
2
(:5)--4;:"[:’[(1) 4 Kk = 8n (3.32)
3t P head P> M ;

Using (3.30), (3.31), and the integrals (A.28) in the Appendix, we get

in E (r > a)



-] 5

g =3 [ 8, ( -2+ 2 B2y, (L ,8Bay7ds;
r r 5% r’

g =0, (3.33)
2

This may be checked by verifying that g';p ’
2 :

Writing Y, j for the complete metric tensor up to the second approximation

0.

(inclusive), we have

where g;; s gU are given by (3.16) and (3.33) respectively: thus in E
1

Yas [1*@*#(--2 i-_—):l _;Z; :;81-?) is’

Yhe =0 (3.35)
_1_@3. if.(é ..2.)

Yea © r g -» ' "

To sum up: Application of the DFS-method to the case of spherical symmetry,

combined with the special choice (3.28) of Pap_a gives, in the exterior region £ ,
the metric form vy;; dxydx; with vy; as inm (3.35). Here a is the radius of

the sphere (a®? ==x;%;) and m _is the integral (3.15).

At first sight we do not recognize the Schwarzschild metrie in (3.35).
But it is in fact a disguised Schwarzschild metric (to the second order), as
we shall now show by applying Theorem II. The notation must be changed, however,

reading r ,x, for p, E  in (2.9)e From (3.35) we have

a



om =2 2
P(r)=1-&-;-bm (-i*re-;—g-:;),
ae) =5 (-L B2y, (3.36)
re 5:.3
R(r)z'l-'z";l'*r(g‘*%):

or, by (2.14),

p=B, pom(-L42-La,
r ar r2 15 pS
¢, =0, o =(-L+B2)p, (3.37)
4 5 r®
m? 2
R,=-.;.21.!.9.’ Rza?(g*;)}.

It is easily proved that these values satisfy equations (2.15) and (2.16),
and this shows that (3.35) is, in the second order of approximation, a dis-

guised Schwarzschild field. By (2.17) the central mass is

mzﬁ-%{i . (3.38)

L. Advance of perihelion.
We shall start with the general spherically symmetric statical metric form

?=4dr® «+ Br? do? - C dt? , (4e1)

where A, B, C are any positive functions of r ; this may, but need not, be



the Schwarzschild metric, in its usual form or disguised.
To study the geodesics, without loss of generality we consider those

in the hyperplane © =%‘x « Then the usual geodesic equations give

B. r2¢' =a B (4.2)
ct=v(1 -y2), (4.3)
B et - -1, (4ol

where a , ¥ are constants of integration, and dots denote differentiation
with respect to proper time s .

Eliminating t from (4.2), (4.3), (4.4), and writing r =u ', we get

(§) =gt , (4.5)
where
flu) ==Cu?’ -Ba?y?’ +Ba®* (1 -0C) . (4.6)

It will be remembered, of course, that A, B, C are themselves functions of u.
From (4.5) we may obtain the orbit by a quadrature. The apsides of the

orbit are given by du/dp = O , and the reciprocals of the apsidal "distances™
are zeros of f(u) ; we recall that, by hypothesis, B > 0 , and so no zero
can come from that factor. If an orbit has two apsides, it oscillates
between two concentric circles; if wu' , u' ( u'> u') are the reciprocal

apsidal distances, the apsidal angle is

" & du
X ::/:' B _u ° (4-7)

Passing to the case of a weak field, we assume for A , B, C expansions
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A:_=1 *E’ '“'Az + cse 9

B=1#B #B, # ... , (4.8)

[l

C

1"" c.:.' *a‘?*oco »

the subscripts indicating orders of magnitude in terms of some small
parameter (e.g. the mass of the central body). Further, we consider only
orbits; with finite apsidal distances. By (4.6), the equation for the

reciprocal of the apsidal distances is
-f(u)=u? (1 +C, #C, + «oo ) +a2y2 (1 +B, +B, # .00 ) +
a2(1 + E' *B-‘z W osen ) (C, *C-a * oee ) =0 . (21-09)

If o and ¥ were both finite, this would give no real apse. To get
two finite real apsidal distances, we must choose a large, so that azc’
is finite, at the same time choosing % small, so that oy is finite. 1In

fact, if we define

B=ay, (4.10)
we must take
B finite, @ =041 . (4e11)

Rearranging (4.9) in orders of magnitude, we have
- £(u) = (u? » 2 +a%C,) + (v?C,+B°B, +a®C, + «°B,C,) + 0, , (4.12)

the first part being finite, and the second of the first order (0O 1) .
In (4.7), the terms on the right are functions of u and of a small
parameter. We can proceed no further without specifying the forms of

these functions; we shall take



] E\z ltaau s ese g
‘M K] % = abu 2 sese 3 (1&013)
=G, 8.2 == CUl 5 eee s

ficients are constants, small of the orders indicated by the
Note the minus signs in the last line, a notational convenience,
we shall see, ¢, is positive. Substitution from (4.13) in (4.12)

(Lbotls)
the 0, term. Then f(u) is a cubic. It has two

u' , u'" (u"™ > u') which are approximately the roots of

-cofu+p? =0, | (4.15)

1 side of which is the finite part of f(u) as given by (L4.14).

[e,a® + (c,%a* -4&2)‘15] +0, , (4.16)
=ca? 40, , u' u® =240, .

(u) has a third real zero, u™ , and we can write
(u=-u') (u=-u" (u=-um, (4.17)
with (4.14), we have

,u® #u") =1 = ¢;bja? - aza® # 0, ,

(4.18)

""aﬂa-ﬁ-Oa -



It is clear that u'"' is large of order 0. . W (4.16) we have
cu™=14+0 , (4.19)
or, more accurately, using (4.18) and (4.16) we get
c,u'' =1 -be,a? - c,a? = c,(ut +u'h 40,

=1-a?(be, 6, +¢,)+0,. (24.20)
Hence

. |
(cu*™™ =1 +% a2 (bc, #c, +c)+0 . (1.21)

By (4.7) the apsidal angle is

e du

X -f [1 #@(31""&)1'01)] ‘@;,u'“(u'Lu)(u_u‘)("]—{;ﬁ) -(4'22)

ul

1
Expanding (1 - u/u'')™ , we get, remembering (1.18),

3
X =(eu")® I +2(a, -b,) 7T, (4.23)

where

T = du
.!1., Y(u" - u)(u-u')
(4.2)

a"
J‘--..-../..'/ L —%x(u'-ru").
! (u

" -u)(u-u')

Substituting from (4.16) and (4.21), we have

L =% *%m‘?(b'c;,-hc,?*ca) + ;—;'xa""c,(a,—b,l) +0

2

=% 4 :—Fataz(a,m,-lﬁatc,ﬂC,zﬂcz) + 0,. (4.25)

Hence the advance of perihelion per revolution is



|5 = 2 - -W(qq +be #2,2 +2,) #0, . (4.26)

e constants a, , b, , ¢, 5 ¢, of the metric. We note that, in this
ation, &, and b, do not appear. By (4.16) we have the alter-

form in terms of apsidal distances:

___gﬁ-“i".c“' *I u")(a, #b, « 20, #2c,/6,) + 0; el Huaa7)

=

el B s
=

- Por the Schwarzschild metric (1.1), we have

=1, (4.28)

G, =2m , a, =L n? ,

B, =0, b, =0, ' (4.29)

: = 6xnfe® =3ux (v’ +u®) . (4. 30)
‘usual notation, a = 1/h ;3 we have here the well-known

for advance of perihelion. It is important to note that

erm in the expansion of A (viz. a,u2?) plays no part; we
 got the same advance (4.30) had we used the Schwarzschild

first approximation, viz.



DD

@.—.(1*—231)'5.1'24&:-2&2-(1--g-;i)dtz. (4.31)

The isotropic form of the Schwarzschild metric reads

1 o
=02 (o weraot) <[ 15BET 0, (u32)

so that
A=B=(1+2mu)* =1 +2m + «o. ,
(h.33)
c:('!-mu-bf:m?m?)(1-mu*%m?u"’-w...)z‘!--2nm+2m""u2+...,
Hence
Y o pegte (1338
ai—b‘f—zm’ G,’-zm, 02--2§!1¢ )'!'.335

Substituting in (4.26) and (4.27), we obtain for the advance of perihelion
the formulae(4.30), as of course we must. As remarked by Eddington [The
Mathematical Theory of Relativity (Cambridge University Press, 1924), p. 101,
the term @, is significant, and we would not get the correct advance if

we used the "linearized" isotropic: form
& = (1 *-2;,‘1) (ax® + dy” + dz®) - (1 - %_-f‘-) at? . (4. 34)

We shall now apply formula (4.26) to find the advance of perihelion
for the disguised Schwarzschild metric (3.35) obtained by the DFS method.
To do this we first express m in terms of the central mass m by using

(3.38). To the second approximation we get

m=m #-é% n® . (4.35)

Hence the field (3.35) becomes

_ o ¥
Yop = P(r) 8,, +Q(r) -“—rf ,

(4.36)
YM =0 b T44 =R(r) »




(r) = m? ( - zz--b"z'a;&) 3 (11-157)

put in the form
=Adr? # B r? o2 - C d¥? , (4.38)

aP-l- Q=1 +-2-33-4+m3 ( --2-7_-&56-—3'-)

R L
re1e B (228, (1.39)
=R =1 __21‘_9;*@;_2_.
re
re in this case we have
=2m, b,=2n, ¢, =2n, ¢ =-2n°, (4.40)

' ation (4,.26) gives & = 6mm2a® as in (4.30). |

mbering that «? is large of order O_, , and that uraa”™ are
R s Fron (4.26) and (4.27) that advance of perihelion is a

order effect". Nevertheless, m? is involved in the products of
a;¢, , and so we are inclined to say that it is, if exhibited in
(4.26), an "m*-effect". The key to this riddle is that o is
Largs quantity of order m~! , since otherwise we would not get
w:lth finite apsidal distances. One must beware, in this confusing

of making statements about orders of magnitude without careful

c Mr. A. Das for discussions.
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APPENDIX

Evaluation of certain integrals (Section 3).

Let x and y be any two points in Euclidean 3-space. We
write [EI =X, Ixj =y , and denote by I; -'xl the distance between
the two points. Let p =cos©® , where 6 is the angle between the
vectors X , y . Then

1 1

1
s (1 - 2p A i o
x * Coup

E..,.;I.’_)%

1
= (¥ =2
ry( "3 o

= 3 (P, (n) #BP, (1) + B%P, (k) + ... ) , (a-1)

where the P's are Legendre polynomials and
@ =X, B=y/e if y<x,

(A-2)
a=y, f=x/y if y>%x.

We have [cf. E. W. Hobson, Spherical and Ellipsoidal Harmonics (Gambridge

University Press, 1931), p. 37.)

1
me P,dp =0 for m#n,
= (a-3)

Also



=25~

Po=1 ’ .P, sl ] Pz “'ﬁ (3’»2 -1) ] (A—lp)
Py=t (m®-3), P =g(3Bu*-%0u223), ...,
~ and so

' d.

p=P , u’=%(1+‘2P2). u® =5 (3P, #2P)) ,
(a-5)
p‘:%(?%ZOPzdﬁBP‘) P

Let f(y) be any function of y (=|y|). Consider the integral

5 .d.:,y;
I(x) = [f(y) g g (A-6)

taken throughout the whole of space. Let dS, be an element of

the sphere y = constant. Then we have d,y =48, dy , and

o as o .
0= o[ | f(y),;,ﬂyir e @
y=o0 'Sg y=z : x i

- Now, vy (a-1)

1.
s, :
LFJ*W[E-LP"—’?' i
. 20 z )
I(x) =%[ y2 £(y) dy w kx| y2(y) dy , (a-9)
y=o y=z

- if f(y) is such that these integrals converge.
In particular, if

£(y) =0 for y<a, f(y)="= for y>a,
y (A-10)

xX>8,;

we have




[ 0
- (1 y

I(): -1— 2 —E c--l- e L _..1

- jymyA“-x o y=¢3‘zay yaﬁysay
=2d.l %f‘;z%(—‘l # 2 | (A-11)

Consider now the integral
' y
Ipo,(x) = [ £(y) Efd’y . (A-12)

From tensor form it is evident that

X
Too = $(x) 805 + ¥(x) —% : (a-13)

where ¢ and ¥ are functions of x ( =|x|) . Then

L =3 +V¥ ,
PP (A-14)
Loo%o%e = % (¢ +¥) ,

and so

1 o
d(x) =7 ( Ipp - Ipo.fE—

XZ

) »

R o B

} (a-15)
X Xo*o
¥ (x) =7 (3 IPG’ g ap

Now

5 f2f<) 4
Tl SR L T

ik } (A-16)
x—‘-.xo_ L &8 Y
Lo 2 ¥ = [ 720) s

and so




-—2‘7-

<0

IPP‘[ ff(y)dy‘£ %,
= : (a-17)
Too "& Yz £(y) ‘1.Y£ ]v—'qT
y=o
We have, as in (A-8),
ds
= by :
j‘s X=-Y a * (A-18)

nads 1
[Ig-xla% (1 *2P2) (1 *Bpg*ﬁ?Pz*oo&)dp

sg : H==i
=¥ (1 «5p%) . (4-19)
Thus =
o [ ¥ 2() dr sk | P 2l) ar, (a-20)
y=z
fﬂf@ 4 : . 1 212.) 4 i x
IPD. - =3x[ymy £(y) ( +-gx?:dy* 3/.”“:7 £(y) (1 *“;)dy
R g
3-3;;[ f(y)c‘-y-w£ ymy‘ f(y) dy +
g 10w By my 2(y) ay . (a-21)

Thus, by (A-15),




=28~

£ z 0.
b =-BL[ rew+B] re e rey
y=0 y=0 Y=z
o0

- 5’-’%- y £(y) ay , (a-22)

uy=x

¥(x) = 'if y‘f(y)ayfﬁg‘-ff y £(y) ay .
y=o

%>
=z

Provided these integrals converges, we have

3 x X :
o = [ £0) (5T 47 =40 b, # ¥ EE L (h23)

As a particular case, we take

f(y) =0 for y<a, f£f(y)=1/° for y>a&,

X >8 (8-24)
Then
- -
y°f(y)dy=[ dy =X - a ,
y=0 y:n
-
y* £(y) oy = [—dy=--gg,
s v=d’ (4-25)
[¢ o] o0
1 1
] y f(y) dy =y = -,
ox
y=z y=z ¥
[+4] [+ o]
1 1
[ yf(y)dy=[ e fyim e,
y=c y=zx 7 et

Thus, by (A-22),



e e X T Lx?
el 33 0i .80 =
15l x5 4 x2 Tex | _ (A 26)

(a-27)

For purpose of reference, let us repeat some results from (a=11)
and (A-23) : for x> a,

a
1 »  ox ox
—:‘]'——TE_X “:(-1*&)’

y>ay -
(A~-28)
1_T_£’_'y o % &  LE 5. a
f fﬁ"ﬂ.dsy=x2(-1*%x*3ﬂ)89°'+ P (1-%x).
y>a

As a check on these formulae, put @ = ¢ in the second.

Then it should agree with the first. From the second we get :

T A a X ~ka e [ X
le:S( 1*%’: +%-£)+1 5:1 x""’[ 2-&4&],

which agrees.



ERRATA

p. 9, equation (2.16): for - -2: p*PY read - i p"P;z .
p. 12, equations(3.18), first line: for 32&7\4 read Elu .

p. 19, equations (4.13): for a,u reed au? ,
bu read bu? ,

e
c,u read c,u” s



