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The Petrov classification of gravitational fields

J. L. SYRGE

1« Introduction.

The Petrov classification of gravitational fields is rightly regarded
as of great interest in modern relativity theory, particuitarly in connection
with gravitational radiation, and the relevant literature is extensive. TFor
a comprehensive survey, see PFirani (1962) [the references are at the end of
this paper], snd for a recent statement by the originator, see Petrov (1962).

There are several ways of approaching the problem of classificatiom.  They
may be divided broadly into algebraic and geometric, and of the latter one method
is due to Geheniau (1957) and another to Debever (1964). Of these the method of
Geheéniau appeals to me most, and I thought it might be of interest to go through
the whole business in some detail without any claim to originality. Physicists
may be expected to have some geometrical appreciation of Minkowskian space—time,
but it is unlikely that they are familiar with complex Buclidean 3-space. Since
this is central in the method of Geheniau, I have gone into this geometry rather
fully. |

For many valuable discussions I am much indebted to Drs. F. aktem.and H. Yeh,
Scholars at the Dublin Institute for Advanced Studies.

2. Notation and preliminaties.
In general the notation is that of my books (Synge, 1956, 1960). The

ranges for literal indices are as follows:
small Latin: 1, 2, 3, &
small Greek: 1, 2, 3
capital Latin: 1, 2, 3, 4, 5, 6

The summgtion convention is used, except where the contrary is indicated.  The
signature of space-time is 2 for real coordinates. At the beginning of the
paper the formulse are valid for real coordinates or for coordingtes of which
the fourth is pure imaginary, but later, as an essential simplifying device,

imaginary time will be used,



As minor varistions in notastion exist in the literature, it is
necessary for clarity to write out certain well known formulae as follows.

For metric tensor 8qp » The Riemann tensor is

.L Alinln —
Raped = 2 (End,bc ¥ Epo,ed ~ Bac,ba ghdiu:) *

+ &"" ([ad,n] [be,n] - {ac,m] [bd,n]) . (2.1)

The Ricci tensor and the scalar curvature are

ad be .
Rbn = 8 Rﬂbcﬂi’ B = g B'bi: ’ (2-2)

and the Einstein tensor is

1 .
G&c = Etn':: - 2 &, * (2.3)

The Weyl tensor is

. - %+ - , o
Wobca = Hapea Z (854 Bpe * 8, Bog Bae Rpa = Epa Rgo)

1
v 78,38, — 85, 83) E - (2.4)

We note the symmetries

wﬂbc&. = _wbacﬁ = wi:ﬂnb ’ wubr:& + W + ¥ = 0.

Thg Weyl tensor satisfieca the ten identitiesa

e Wys = 0. (2.6)

These identities play an essential role in the classification problem.

In fact, for the classification of W all essentiel information is

abcd
contained in (2.5) and (2.6); +the structure displayed in (2.4) is not

needed.

The Riemann tensor R salso haz the symmetries shown in (2.5),

abed.
but it does not in general satisfy (2.6). We make no attempt to classify
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Eﬁbn&, in general, but only in vacuo where we have Rﬁc = 0 and consequently
equations of the form (2.6) with “ﬁbcﬂ_ replaced by Bhbc&.' The two problems,

(1) classification of W.y.q 10 general, and (ii) classification of abod

in vacuo, are mathematically the same. TWe shall carry out the classification

of “Lhcd

meke & classification throughout a whole universe, even inside metter (or in

in general. It is perhaps important to emphasise that we thus

an electromagnetic field) with energy tensor given by

- K lﬂtﬂ.ﬁ] = Rﬂb - 1E gﬂb R 3 (Eﬁ Em) » (2#?)

and not merely in vacuop, where of course “hb:&. = E&bc&.'

3« What does classification mean?

The general theory of relativity is unique among physical theories in
respect to the arbitrariness of coordinate systems. & single universe
may be described by a metric tensor field g, (x) for one coordinate
system and by E;ﬂ(i) for another coordinate system, the first ten functions

being quite different from the second ten functions, but related to them by

By (® = g (0T X, (3.1)

the X's indicating partial derivatives.
But suppose we have what appear to be two different universes, U

and T , and the question arises whether they are im fact the same universe.

This will be the case if there exists a transformation xF'*rEn between

the coordinates of U and those of U such that the relation (3.1) comnects

the metric Eap of U and the metric of T . It becomes then a

Bab

question of the integrability of the ten non-linear first-order partial
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differential equations (5.1).
We shall not attempt to discuss this very difficult question., Instead,
we ask a less general questions Could an event E of U be the same
event as an event E of T 7 Again the answer turns on (3.1), but this
is no longer a set of partial differential equations but a set of algebraic
equations, the X's being constants. The question is then whether the
sixteen X's c¢an be chosen so that (5.1) is satisfied, Eﬁ& and 8.q
being given numbers (not fields). The answer is well known: it is
possible to do this provided ths signatures of E;ﬁ and B.g ore the same

(for signature # 2 , each can be reduced te diag (1, 1, 1, — 1)} We

may sum up by saying that al. events ar%midentiqgét(this is sometimag £X-
pressed by saying thast space-time is elementarily flat).

But this identity of events is lost when we examine their neighbour-
hoeds, meaning thereby not merely the metric tensor but alsc its partial
derivatives. If we incliude orly first-—order derivatives, the identity
of events remains {we can mele oll the first darivotives vanish)e If we

ge to second-order derivatives, the identity of events no longer holds.

In fact, it is possible to classify events in terms of the Weyl tensor in
the following sense,
Suppose we are given a Weyl tensor thc& at an event E and a

Weyl tensor 'ﬁ; at an event E . If we are dealing with two different

bed

coordinate systems in a single universe, then

Vovea = Togrs %o %o x_’_; xfi . (3.2)
- L] - | ] . '
We ask: given wﬁbcd‘ and ﬂﬁqrs y can we find sixteen numbers, the X's ,

so that (3.2) holds? The answer is that we cannot do this in general.
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We can do it only if wﬁbb& and qurs are of the same class. That is

in fact what class means in this connection.

L. The eigenvalue problem.

Define
Bobea = — %aa Bbe ¥ Bac Gpg (41}

These quantities have the symmetries shown in (2.5) = replace W by g .
Let Fub be any skew-symmetric contravariant tensor (Eﬁﬂ = -'Fﬂb) .

Consider the equations

cd

W 7 e | (1.2)

abed = A Sabed
where A is a scalar. There are six equations here, and the con=-
sistency condition is the satisfaction of a 6 x 6 determinantal equation,
yielding six eigenvaluea M , independent of the coordinates used. TWe
shall be much concerned with these eigenvalues.  They need not all be
distinct. If complex, they occur in conjugate pairs.

It is easy to see that these eigenvalues remain unchanged if we
replace the quantities in (4.2) by their transforms under a transformation

with Jacobian matrix IE,. Thus in order that two Weyl tensorsa should be
a

of the same class, it is necessary thet the eigenvalues of thcﬁ relative

abcd
this condition is by no means gufficlents if it were, the prehlem of

to Babed should be the same as those of relative to E;bc& « But
classification would be rether trivial.

At this point we introduce the Petrov notation, correlating number-
pairs in the range 1, 2, 3, 4 %o single numbers in the range 1, 2, 3,

L, 5, & according to the following schemes



(23) e 1, (3)=>2, (12)e3, ()L, (@&)=5, (34) 6.

(4.3)
Thus we write WE =W W =WIE’ coe W =W >

323 11? 2331 34354 56
In fact, with capital Latin suffixes in the range 1, ..., 6, the
whole set of components .wﬁbcd. may be exhibited, except for re-

versals of sign, as W,. , where

AB
oy = Wonoo (4.15)
We have in feect & symmetric 6 x 6 matrix, with 21 elements.
But these are reduced to 20 by the last of (2.5), which gives
W, « W_ + W =0, (Le5)

In this notation, the six components Fﬂb of a skew-symmatric

tensor may be written FA , and the six equations (4.2) may be
written

WAH,FB' = A gm

the characteristic equation reads

det (Wp =2 g,,) = 0. (4e7)

The contents of the present section are true without recourse to
(2.6); what has been seid here would be true if W were replaced

by R throughout.

Be Restriction to imeginary time,

For notational reasons we shall now use coordinates x, for
which x,  is a pure imeginary (xa = it). Further, at the event

we are concerned with, we use coordinates for which Eap = &:ﬁ N



the Kronecker delta. This leaves the coordinates free only to w:i.th.:!_n 8

Lorentz transformation

Xg = Lﬁb Xp -I’ac- I?lc - -64::#.- = Ilr.:.*:: ch : (5.1}

Simplifications result. First, (4.1) becomes, in the Petrov

notatiom,
gy = diesg (1, 1,1, 1,1, 1) (5.2}
Secondly, (2.6) reads W ,.q = O s and hence, in the Petrov notation,
Wz + Wy + W o =05
‘l” + w: : ¥ Iss = 0,
W“ + ﬁ;z + '[EE a Q,
W4 o + 7"55 o+ WEE = 0,
12 = Va5 o s = W Woo = W o (5.3)
15 -~ 24 * wﬁ*s = Vg 7 e = wts ©

We had 20 components HAE without the sbove relations; they reduce

the number to 10 , and it is easy to see that the 6 x 6 matrix W

mey he exhibited in the form

| N

¥ = (5114-) .
N M

where M and N are symmetriec 3 x 3 matrices with zero traces:

PRELIPELF 3 w#d wdls Wee Vo M5 Woo
M = 'za wzz wzs = wsdl ws_s wss y R = '.H '25 __ wza ’
W W W v W W v [ §
31 32 33 64. 65 &8 %4 35 36

(5.5)



Denoting the transpose by a tilde, and trace by tr, we have

H=N, N=FN, tr =0, trN=0. (5.6)
For tr N'= 0 , we invoke (4.5); +tr ¥ =0 follows from the first |
four of {5.3).

Putting F for the column matrix (¥, , P,,F ,F ,F , Eﬂ) -
since g, =:5Eb there is no difference between contravariant and
covariant -.the equations (4.6) now read

WP = AP, (5.7)
and the characteristic equation (4.7) reads
det (W=-21I) = 0, (5.8)

where I 4is the unit 6 x 6 matri=

mplex B, .

When X, is a pure imsginary, and we se assume henceforth,
there is a parity rule to the effect that a tensor component is
real if it contains an even number of L's and imaginsry if it
contains an odd number of 4's , Thus an { = Er) is real, and
F}d:( = F;) a pure imaginary. This parity rule, be it noted, is
for indices in the range 1, 2, 3, L, and not for those in the range
15, eeey 6. But it can be modified so as to apply to the latter, in
this form: & quantity is real if it contains 4, 5, 6 evenly and

imaginary if it contains them oddly. Thus M is real and N imag~

inary.

Let us write the column matrices



T = col (Fr’ F,F), E = col (F‘, F_, FE) . (6.1)

2? 73
so that G is real and H imaginary. By virtue of (5.4), we can

write (5.7) in the form

M N G &
N M i § i3 3
This is equivalent to
MG +« NH = A &, NG « MH = ANH. (6.3)
Define
K = M+ N, T = G+ H, (6.4)

so that X is a symmetric complex 3 x 5 wmatrix with zero trace,

end J =& complex 3 x 1 matrix, Addition of the two equations

(6.3) gives

KI = A J. (6.5)
Thus for M we have the cubic equation

det (K - AL} = 0, (6.6)
where I is now the unit 3 x 3 matrix.

Since a study of the eigen problem (5.7) is essential in the

problem of classification, it will be realised that what has here
been achieved is a major step. From an equation of degree 6 in (5.8),
we have passed to one of degree 3 in (6.6)e But what has become of
three of the roots of (5.8)? 'The answer is that they are the complex
conjugates of the three roots of (6.6), as may be seen by subtracting
(6.4) instead of adding. Note that since K is complex, the cubic
(6.6) does not necessarily possess a real root nor a complex conjugate

peir of rcots,
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The 3=vector J is interesting; its components are, in space-time

notation,

J = F _+F J = P &+F J =F,_«F . (6.7)

! 25 14 2 31 24 ] 12 X4
We can give the argument & physical complexion by introducing "electro-

magnetie vectors® E and H by

B, = Fuo £ =¥, By = Fips
(6.8)
B, = 1 Fiq y H, = 1 F s Eﬁ = 1 Eﬁd °
Then we have
I =8 -1E = ~1i(E + iH), (6.9)

& complex vector familiar in elesctromagnetic theory. {Note: in this
work we indicate 3-~vectors by an underline, corresponding to the printed
heavy type.)

As we have now reached a critical point in the problem of classific-
atinn of' the Weyl tensor, let us sum up what haz been done:

As & preliminary to c¢lassification, we have reduced the 6-dimen-
sional problem for elgenvalues and eigen 6~vectors exhibited in (4.2)
or (L.6) to a 3-dimensional problem exhibited in (6.5). We have passed
from L-dimensional space-time to 3-dimensional complex space,

As far as guidance from intuition is concerned, we might think that
we had made a great simplification. We no longer have inhibitions
arising from f-dimensionality and indefinite metric. The reduction to

3—dimensions is good. But we have to pay a price. It is a complex

3—space, and many familiar intuitions may not be used. But some can,
and that is a great help.
No reasom has sp far been given for considering this 3-space to be

Buclidean. This will be discussed in the next section.
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Gnmplex.Euclidean A~space Es is a natursl formal 5enaralisatiﬂnl
of the real Buclidean 3-space with which we are all familiar. A vector
now has three complex components instead of three real ones. This means
that the complex E3 is actually a space of 6 dimensions, since there
are 6 real numbers needed to define a vector (or, equivalently, a point).
In view of this doubling of dimensionality, it is remarkable that we find
so many of the familiar facts of real geometry in three dimensions re-
produced in the complex E3 »

But we must of course be careful not to allow ocurselves to cargy
over elements of real geometry without careful scrutiny. Everything
must be radefined,'anﬂ, if some of these redefinitions are understood
below, it is because the reader mey be assumed to fill in the geps: for
himself,

A word of warning to the reader accustomed to linear vector spaces

with a scalar product of the Hilbert type. The complex E, 1is something

quite different in that the conjugate complgx plays no part et sll in it,

In Hilbert space & vector has a positive norm, the square root of the
scalar preduct of the vector by itself. 1In cumplex.'Es there is indeed

a scalar product (defined belﬂw), but no norm; the scalar product is com-
plex, and to take its square root would be foolish., There is no "distance
between points® in complex E .

ypes of vectors.

Scalar products. and 4

A vector in E& 18 an ordered triad of complex numbers. We shall
use several different notations for vectors to suit various occasions:
(1) ‘The vector is represented explicitly by its components f?j, ?}, v;)

or briefly by VD_ where o = 1, 2, 3 .
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(11) 'The vector is represented by the symbol v (the underline in
typescript corresponds fto the heavy type used in printing),

(1iii) The vector is represented by the symbol V +o indicate a column
matrix with elements (V V, sV ) , or by its transpose V (a row
matrix with the same elements).

The sum of two vectors is given by addinz the components in the
usual way.

The scalar product of two vectors is defined to be the complex
nwiber V. VI o+ V, VI 4 v, ?; ¢ it may be written in any one of
the following forms:

LY o= VWV =Y.7 =¥ .Y = VV. (7.1)

g —_ " -

Two vectors are orthogonal if their secalar product venishes.

Putting V' = V , we get the self scalar product:
V.V, = ¥.¥ = VV, (7.2)
We now define three types of vectors:
(a) Zero vector 0 or Q for which all the components vanish
(1: - 0) [

(b) Unit vector for which the self scalar product is unity (VV = 4

o

equivalently V.V, = 1, or ¥ . ¥ = 1).
(¢) MNull (or isotropic) vector for which the self scalar product is
zero, but which is not the zero vector (V V=0 ; equivalently
Vﬂ.vﬂ.=0 , or V.Y =0).
For example, {1, 0, 0) is a unit vector; {1, 0, i) is a null
vector,
Yector product and orthonormal triad.

The vector product of two vectors A anmd B is defined in the

usual way:



AxB = (4B -AB, , AB -AB , AF, -4B) = -Bx4. (7.3)

It is immediately seen thet A x B is orthogonal to A and to ®B.
An ordered set of three unit vectors, matually orthogonsl, is called
an orthonormal triad., If 4, B, C are the thres vectors, the defining

conditions are

&t£.=§.E=ElE=1’ Ei_q:Et&:&nE_:O, (?I-Ll-)
or equivalently in matrix notation
AA=BB=CGC=1, BC=CA=AB=0. (7.5)

For an orthonormal triad, consider the determinant

A, A, A

D =B, B, B . (7.6)
cC ¢ ¢
¥ 2 3

Squaring it, we find p* =1 yand so D=e=+1. If D=1, we
say thet the triad is proper; if D =-1 , improper. It is then
eaay to show that
A = eBxC, E = thLxa, C = eAx3B, (7.7)

where, € = +1 or -1 according as the triad is proper or improper.

Collinearity and coplanarity.

Two vectors A and B are said to be collinear if there exist
complex numberss a and b (not both zero) such that

aA # b3 0. (7.8)

it

If not c¢ollinear, the vectors are said to be linearly independent.

Three vectors, A , B , G, are said to be coplanar if there exist

complex numbers.*% s b , & (not all zero) such that

.....



aA + 5B « ¢C = 0., (7.9)
If not coplansr, the three vectorsa are said to be linearly independent.
If A is a given vector and & a&an arbitrary complex number, then
the set of vectors {or points) a A may be called a line of 4 . But

it must be realised that, since a is complex, this is not a one-dimen-

sional continuum like an ordinary line. Likewise, for given A , B

and arbitrary & , b , the expression & &+ b B defines the plane con~

taining A and E .

Two theorems sbout null vectors.,

All that has been said above is somewhat dull, for it is glmost
entirely the transcription into complex Ea of known properties of real

5-space. Novelty appears when we consider null vectors, and we shall

now prove two thecrems:

Theorem I:  Two non-gollinear (or linearly independent) null vectors

cannot be orthogonal; equivalently, if two null vectors are orthogonal,

they are collinear.

Theorem IX: An crthogonal {iriad of non-zero vectors cannot contain s null

vector as a member,

To prove Theorem I, we assume that A and B are orthogonal null

vectors, so that

A.A =B.B = A.B = 0. (7.10)

From the last of these, we have

(4, B, + 4 B) = a°35°, (7.14)

7 H

and hence by the other two of (7.10)

i

(A, B

2 2 2 2 2
, B, + A, B) = (&  +47) (8, +B,7),



which may be written

(4, B, - & BY = 0. (7.12)

There are two variations on this argument, and we get
AEB‘S - AJBE = A‘!Bi - Aiﬂs == AIE.? - LEE’ = 0,
(7.13)
But these imply the collinearity of the pair of orthogonal null vectbrs,

and so Theorem I is proved.

To prove Theorem II, we assume thet A , B , L is an orthogonal

triad, A being null, Thus

A.A = O, A.B = 0, B.C = 0, C.A=0.
(7.14)
From the second and fourth of these equatiens, we obtain
A = 6B3xC, (7.15)

where © is some number, not zero. Hence, by the first of (7.14),
BxgC).(EBxL = 0. (7.16)
Put identicaelly for any two vectors
Bxg .z = G.BE.9 - @.9°, (7.17)
and so this last expression vanishese But B . £ =0, and therefore

either B or C is null. But this is impossible by Theorem I, and

50 Theorem II is proved.

Orthogonal matrices and orthogonal transformations.

A 3x3 matrix T with complax elements is said to be orthogonal

if its transpose is its inverse:

wagy -

T = T or -'ffl!*=1, (7.18)

iy,

where I is the unit 3 x 3 matrix; we have also T T T .

If such & matrix is applied to transform the vectors of E5 ’
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vectors A , B +{ransform into A' , B' according to the rile

A' = T4, B* = T3B. (7.19)
Then the scalar product transforms according to

A'B = AETTB = AB; (7.20)
in fact, the scalar precduct is conserved under the transformation.
Hence it follows that an crthonormal trisd transforms into an ortho=-
normal triad, and a null vectnr transforms into a null vector. We
call the transformation orthogonal (and this is also the reason for so
naming the matrix) because it conserves orthogonality, but of course it
does more then that,

The orthogonal +transformation is proper or improper according as
T is proper or iLmproper.

The whole set of orthogonal transformations form a group, and so
does the set of proper orthogonal transformations, but the set of
improper orthogonal transformations does not form a group since the
result of applying two improper transformations is a proper trans-

formation,

I% has been remsrked above that when an orthonormsl triad is
submitted to an orthogonal transformation it changes into an ortho-~
normal triad. But (and this is a possible source of confusion) an
orthogonal matrix is itself an orthonormal triad, or mey he so regard-

ed: TFor any mairix cen be written in the {form

A, A K

T = B, B, B, (7.21)
C G C
' 2 3

or, if we regard the elements in each row as the components of a vector,



A
T = B | . (7.22)
G
Multiplication of this by its transpose gives
A.4& A.B A.C
T = B.4 B.B B.GC (7.23)
-4 L£L-B L.08

So far ali is general. But now 3suppose that T 1is an orthogonal
matri%. This means that the matrix (7.23) is the unit matrix, and
so the three wvectors A ; B , € form an orthonormal triad. Uon-
versely, if the three vectors form an orthonormal triad, then T‘g
as in (7,21), is sn orthogonal matrix. In fact, all orthogonal
matrices may be exhibited as in (7321) or (7.22Y in terms of an ortho-
normal triad.

We follow convention in speaking of orthogonal matrices and
orthogonal trensformations; but it would be better in each case to

use the word orthonormal.

Transformation of an eigenvalue problem.

Consider an equation as in (6¢5),
KT = AJ. (7.24)

Let T be any orthogonal matrix. ‘Then (7.24) implies

TKT® TJ = ATJ, (7.25)
and if we define

J o= 77, K' = TKT (7.26)
we get

KV 3' = A J% . (7.27)
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This, then, is how we transform an eigenvalue problem. The eigenvectors
J transform according to (7.26) and the eigenvalues A remain un-
changed. We note that the matrix K transforms as in (7.26) and not
according to K' = TK !

The purpose of such an orthogonal transformation is to simplify the
problem, turning K into a simpler matrix K' . If the orthogonal
matrix T is eXpressed as in (7.21) in terms of an orthonormal triad

A, B, C, then, as is easily verified,

AK A AK B AKC
K'Y = TEKT = BX A BKB BK G . (7.28)
TKA CKEB CKC

This formula will be essential later. Note that, if K is a symmetric
matrix so that K = K (as will be the case later), then K' is also
symmetric, And it is easy to see that, if tr K =0, then tr K' =0 .

Canonical form of an orthonormal triad.

In the totality of orthonormal trieds, there are some of outstanding
simplicity, namely those for which the three vectors are real. Among
these is the orthonormal +riad (1, 0, 0) , (0,1, 0), (0, 0, 1),
but that is not particularly interesting for our purposes. because it 1is
tied to the axes. The whole c¢lass of real orthonormal triads may be

written I , J , K where these are real orthogonal unit vectors, so that

1* = 3 =K =1, J.K =K,I =1I.J = 0,
(7.29)
Here and henceforth we adopt the notation E? = A.A 83 a convenience,

but we shall not speak of the square woots of & . We have
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I =+¢JxK, J=c¢ExI, K=-¢IxJ, (7.3
where &€ =+ 1 according as the triad is proper or improper.

Any complex vector A may be resolved along the above real triad
by a formula

A =pl + gd + rk, (7-31)

and indeed a complex orthonormal triad may be so resolved, the ex-
pressions involving 9 complex coefficients are connected by 6 con-
ditions of orthonormality, so that 3 are free. Our purpose now 1s
to use these three complex degrees of freedom to simplify the 9 co-
officients. Or we may say that, given an orthonormal triad T_. (the
subseript here being a distinguishing label and not a component index),
we seek & real orthonormal triad (I , J , K) so that the expressions
of the type (7.31) are as simple as possible,

Query: Why not choose (I , J , K) collinear with the vectors
of the given complex triad? Answer: There exists: in general no
real vector collinear with e given complex vector.

Consider then a triad of vectors T o satisfying the orthonor-

mality conditions

L, L = S o (7.32)

From their unit character, none of these vectors can be purely imag-
inary. If they are all resl, we have no problem. Assume then that
T is complex, so that we can write i%

2, = 2 * 1 Q ’ (?-53)
where P and § are real vectors, with Q not the zero vector.
Let P and Q be the magnitude of these real vectors. From T ° = 1

we obtain
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P - ¢ =1, P.Q = 0. (7.34)
Obviously P # O, and we have assumed Q@ £0 . We can therefore
divide by P or Q , and so we can define & pair of orthogonal real
unit vectors

I =p/P, J=28/4¢, (7.35)

and write

T = PI # 1QJ. (7.36)

Now define & complex vector

2 = ~1QL + PJ. (7.37)
We find

<

§_ = 1, E-?_’ =-0, (?138)

so that S 1is a unit vector orthogonal to T, .

|

Having defined I and J as asbove, we complete a real ortho-

normal triad by taking

K = _I_xi- (?-39)

It is clear that T , 3,

|

1

form a complex orthonormal triad, and
any vector can be resolved along them. Thus Iz and 23 s beling
orthogonal to T , may be written

I = aS+bkK, T =c¢c8 + dK. (7.40)

The orthonormality conditions (7.32) impose on these coefficients the
conditions

a° « b’ = 9 y o° # @& = 1 2 ac + bd = 0, (7.41)

and so there exist complex numbers © , O' such that
g = cos O , b = gin 6 ,
cos 6! , (7.42)

¢ = sin OV d

sin (6' +0) = 0.
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The triad T_. may be proper or improper, and we include them both by

~
writing
T = agéx_tg‘a, E=+1, (7.43)
Accordingly from (7.40)
T, = ¢(ad -bc)8xK
= €{ad =be) (-1 QL #« PI x(IxJ
= c{ad -be) (1 QJ + PI), (7+24)
and so, by (7.36),
cos (B' #6) = ad ~be = & . (7.45)
Thus
for =1, 0 = ~ 0 3 for €=-~1, 6'=m =0, (7.46)
and 50
a = cos 0, b = sin 0 ,

(7.47)

¢c==-88in6, d=+¢€cos6b.,
Accordingly the most general complex orthonormal triad may be expressed

in the canonical form

T = Pl+iQJd, T

T z coa ©§ # sin O K,

(7.48)

T, = ~€esinf 3 + g cos O K,

where I , J are two unit orthogonal real vectors, P , § any two
real positive numbers satiafying P° - tf = 1, 8 = «1Ql + PJ,

K = IxdJd, the factor & being 1 or -1 according as the

trisd _Tﬂ_ is proper or improper.

Further formulse for an orthonormal tried in E_ .

If we express the Tts in terms of real vectors, writing

= P i *
%’ _P-l+ 13?’ (7.49)

{we recall that the suffixes are not componenmts~indices but labels
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distinguishing the several vectors, and there is at present no summation
convention), in the set _EP ’ % there are 6 real vectors with 18
components. In {7.32) we have 12 real relations which read
%._f’u,-gp._%.=ﬁpa,, EP.QU+QP._P;G.=0, (7.50)
so that there are 6 degrees of freedom in the orthonormal +riad, the same
number as in the Lorentz transformation.

The implications of (?.50) are interesting. To explore them, we
shall use (7.48), writing

cos ® = a + i , sin® = y +196 , (7.51)

tnese four real nunbers satisfying

«“w B wy® 8% = 1, aP 4+ vy5 = 0. (7.52)

We have then

E,=P£: Q,=Q1T_:
P = QI + aPJ + vk, 8 = -2QI +8PJ +08K,
eP = -8QI - yPJ +aK, £ =+¥QL - 8PJ + BK.

(7.53)

These formulae give the totality of orthonormal triads, with € = + 1
(the orientation index), P and ¢ arbitrary real positive nurbers
sub ject to

F - ¢ = 1, (7.55)
and @ , B, ¥ , 8 being four real numbers subject to (7.52).
We may think of the 6 degrees of freedom distributed as follows:
5 1in the real orthonormal pair I , J 4 and one each in P, ¥ and o ,

From (?.53) we have, with use of (?.54),

PIE - PE , PEE = (u.? - B-'-?) P?. - BE * TE .
PJE = (TE = 52) PE - -EIE - 62 , (?.55)
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Then, defining the 8's as follows, we have

5, = -1 -PI_E *P: -|+P: = P (@ 4B% uy® #8° ~1),
5, = -1 +P° -P: #P% = @ (& #B% -4° =8 = 1),
5, = -1 +P% wp°® -P: = Q7 (@ #p? -4% =87 w1).
(7.56)
Thus
s, 5, = =P ¢ [(& #B" =1) - ( 5%)%]
3, 8, = P Q7 [(¢® #8°) - (¢ #8 -1)7], (7.57)
5,8, = =-Q [(a P ay® 8% 1]
By (7.52)
v2-8% = 1 -a®4p®, 8 = -af, (7.58)
and so
(o> #52) = (1 -a® +B%Y + u5c®p® = (@® +B8%- 1) u8®,
(7.59)
and likewise
@ #p%) = (° «8° -1)° 4 8%, (7.60)

Further
({IE 'H‘BE -TE _ 52)2 - ({IE ‘ﬁﬂ ‘"‘TE _52)2
- 4 (ay + B85 )2, (7.61)

(EE *BE' -TE _52)2 __1

il

Hence by (7.57)

2 ]
s,sz=4p‘?q"'e.=1,(gi.gz)
D o R 2
S' S_‘= :‘+P2Q 6 = ,h.(_El .25) (7.62)
2 2
s, 8, = 4¢ (oy +88)° = 4 (B, . B) ,

and so, for p £o ,



S8 = b (E B . (7.63)
We note also that
P, .9 = -2 .§ = -aPQ,
&P, +Q = -€B .9 =yYPQ, (7.64)
eP, .9, = -€eP .9 = (By -ad) P ;

EIIQ‘ = PQXK,
E,%zQ, = (8 -By)PL ~ (or #B0) QI + (® +B°) PQEK, (7.65)

w2
E,xQ, = (a =By)PZI +» (oy +P8) QI # (* #8°)PQK;
ge.(gtxg) = &§PQ,

Q,, . (E,_? xQE} = = (&y «pB5) Q » . (7.66)
eg, - (B, =Q) = -BPQ,

;o By x9) = (ey #88) (7

- 5pg.

a!@
I
gt
£
|

Thus there are only three distinet values in these mixed triple products.

It is easy to see this otherwise. For we have

e (B, #1Q) = (B +#iQ)x (B, +iQ), (7.67)

and two similar equations (with the same £ in all) obtained by

cyclic permutation. Hence

e, = PE xQ + g xPB , (7.68)

and so
€9, -8 =9 -@®=x8) = -9 . x2). (7.69)
But by cyclic permutation of (7.68),

e, =L, x8 + Q =P , (7.70)
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and s¢
eQ, - ¢ = 8, +-(,=22) = g . @& xg,) - (7.71)

Hence
9, » (B, xQ) = -8 ., xq), (7.72)

and two similar equations obtained by ecyclic permutation.

8. The comnection between Lorentz transformations in spece-time and

gonal transformations in complex E_ .

Throughout this paper I use imaginary time (x., = it) except in
the first four sections, Some people f'ind imaginary time confusing,
but in the present instance its use leads to great notational sim-
plifications arising out of the fact that the metric tensor is simply
the unit matrix. It may be noted that truly complex quantities enter
naturally when we use imaginary time, and nowhere do we have occasion
to bring in complex c¢onjugates. Nevertheless certalin caytions should
be given.

F¥hen we use imaginary time, we are accustomed to check our work
by applying a parity rule with respect to the suffix 4 , already men-
tioned in Section 6 : a component is real or imaginary according as
the suffix 4 oceurs an even or odd number of times. Thus F23 is

real, F'4_ imaginary. When we define the dual by

1 1
F:s =z1 ®rsmn ¥on Frs = -zl ® e smn F:n s (841)

we insert the factor i in order that the parity rule may be observed

¥ . 4 : . , .
(F23 real, F:4 imaginary) ; Ersmn is the usual real h-=index
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permutation symbol. To avoid confusion in interpreting what followa,

it is essential fo realise that we are going to violate the parity rule

by introducing quantities which are complexX.
Let F}s be a skew—-symmetric tensor (Fﬁ’ real, F&d imaginary).
Define

A = F & %¢ Fo. (8.2)

rs rs rsmn = mn
Note that there is no factor i here as in (8.1) : Afs -isza complex
quantity with components
Rag Tl = g #F 0 Ay =h, =F, #F, s B,=4,=
=F,_ «F_ .
(8.3)

We have then

1

Bap = Z Sapeq Aea (8.4)

We might say that AFS is self-dual, but that would be confusing,
since there is a factor i 1in (8.1) but not in (8.4). This distine-
tiuﬁ is essential.

The permutation symbol €abed is a tensor with respect to proper

Lorentz transformations, otherwise it changes sign. Any homogeneous

Lorentz transformetion may be written:

_xé = Lﬂb xb » (8-5)

where the matrix I satisfies

LL = 1 = LL, LﬂcLbc'-:aﬂb:LcﬂLﬁ‘:ﬁ;

(8.6)

it is proper if det L 1 + We shall here take L to be proper.

I

Then Aks is a tensor, transforming according to
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ﬂrs N I?ﬂ Iﬁb Aap (8.7)

Thus, with Greek suffixes in the range 1 , 2 , 3, we have

L] — i —
Apd = LPE Lo &, * (LP_F L, I‘p.q: L‘W) A, - (8.8)
S0 T Sapy fya (8.9)
where Eﬂﬂ? iz the usual 3-index permutation symbol, and so
(8.8) gives
1 -
ﬁPd e Tb? A, s (8.10)
where
TM = I.FHI Lo €pp * LP? L, - I.P‘ L, - (8.11)
Thus when T is transformed by a proper Lorentz transformation L,

rs

A s is transformed by the linsar transformetion T , of which the
motrix is quadratic in L as in (8.11). Putting

vp = Apd (8.12)

we have o complex 3=vector which undergoes a linear transformation.

That this is an orthogonal transformation {conserving ﬂ% ?b Or more
generglly the scalar product Ub ?b ) is most easily seen by con-
sideration of the invariants ¥, , F,, and Fob sz « But it is an
interesting exercise (left to the reader) to prove from (8.11), using
(8.6), that
, = & .
Tu? Tﬂ'lr’ agp (8.13)

or in metrix language TT =1 .

We see then that a proper Lorentz trensformation L defines by
(8.11) a unique orthogonal transformation T in complex E; . We now

ask whether an orthogonal transformetion T defines a unique Lorentz



D f

transformetion. We seek then to solve (8.11) for L , satisfying at the
same time L L = 1 s 848 required for a Lorentz transformation. It is
obvious that if L 1is & aolution, soc also is - L . TWe shall see that
apart from this ambiguity in sign, L 1is uniguely determined.

The trick for solving {8.11) is to use the ordinary notation for
3—vectors. If we insert parentheses round the first subscripts in (8.11),

so that it reads

Tow = oY Bk v * Mo Heds T Tlode Koy » BT

we may regard the suffixes in parentheses as labels distinguishing vectors
or scalars and the other suffixes, if Greek, as indicating components.
Defining recal scalars EP and an imaginary scalar ad'by

i 3, = L.(P)d ’ ia, = L(4)4 . (8.15)

(the L's are to obey the parity rule and we want the a's also to obey

it), we write (8.14) in vector form:

= § ] - - i-1
) = Hp) FL(s) * L) T 1y ko) (8.16)
The vector 'Ii(P) is to be real and L(d) imaginary. The condition

L'L =1 is equivalent +o

Loy " o) = %0 * o Ly s Iy = 3 3,

Bla) * Ea) = 7 *342 ’ (8.17)

To simplify the notation, we shall now omit the parentheses, so
that the subscripts. are now labels distinguishing vectors. We sus-

pend the summation convention. Put

+* iQP R (8.18)

T P
® T
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where P and are real vectors satisfvin since T = 1

2 2

F - ' - 1 P * — 0 o 8-1
A q, ; E - & (8.19)
Separating the real and imaginary parts of {8.16), we get
ia‘gp-iapg_‘=gp, L.P_x&#nigp. (g.20)

Here we have 6 equations, and in (8.17) 10 equations more,
these 16 equations to be sclved for the 16 real numbers contasined
in E'P’ i!‘..,! a.P, i&#-

With the aid of (B.17), (8.20) gives

iap_;.p #* ia L = -—ifpxgp . (8.21)

Hence, using the first of (8.20),

L, = =41 P - P AL = -3 P —-aP
%% e T RH TR K4 "% % T e

(8.22)
where
2 2
A = B WBy o (8.23)
It remains then only to find the four numbers 8, » 8, - From
LL=1,4it follows that
2 2 2 2

We note that, since a

P
Teking the self scalar product of the first of (8.22), we get,

is real, 34140.

by (8.17) and (8.19) ,

AF_""'U + a.;) - aj’Pp"" *apzppiqu = aP:EPE: - APPPE . (8.25)

and =0

(mp -h.-P;) [ap_z (A.P - PFE} & Ab 1 0. (8.26)
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The scalar product of the two eguations in (8.22) gives

2 2 2 _ 2
Ap o 8 T T 8, 8, Pb_ * a8, PP Qb ’ (8.27)
or
2 4
- P s D - C)
& &, (Ap A ) (8.28)
Thus
= 0 A? = p*, 8.2
&P OF P p ( 9)

Let us follow the consequences. of &P =0 . By (8.23), AP £ 0.,

Hence {B.26) gives

2
P P ( )
Hence, whether B‘p = 0 or not, we have .A.P = € PPE ’ e= +1,

Now PP_ A0 , and so, if we take & =1 , (8.26) gives a false result.
Hence (8. 30) must hold in all cases.
We have now found AP y and 1t remains to find &P and a, o
By (8.24) we have
A° # 2% # A% - 227 = -1 (8.31)
and hence

& = '3-:-:('1 - P - P - P_EE) » (8.32)

2 negative value as reguired, since each P is greater than or

equal to unity. Thus

1 kel

e, = 1e' 22 (P #P” aP® 1), & za1. (8.33)

The ambiguity of sign cannot be avoided, since (8.14) is quadratic
in L.
We could now get ap from {8.23), but that would introduce three

more ambiguities in sign, and these do not in fact exist, as we shall



sea, using another method. For putti B = P @ and writin
’ g D ng = = QP ? &

down

by (A L) = & (4, L),

the second of (B8.22) gives
Ab(iapfp_*a4_3p) =-A‘i?(iaﬂ.fg,+a4§.g.). (8.34)
We wipe out the right hand side by taking the scalar product with

QU‘ , and obtain, since by (8.30) A £0,
8 = ia (ELP . )/ (E'P -2 . (8.35)

This solves our problem, ap having a common ambiguity of sign with
8, and this ambiguity of sign is carried into L'P and _I_:# by
(8.22),

To sum up, given any orthonormal complex triad 'T'P 3 EP + i %
(or equivalently an orthogonal 3 x 3 matrix T ) , there exista a
Lorentz transformation L , unique except for the factor €' = +1,

satisfying (8.11) (or equivaelently (8.15)); it is given dy (no

summation convention!)
2

P“L = ia P P

o B =tk * L F% (5..36)
E‘ -
Epl‘u=iﬂpgp*ﬂ4£pxgp’

with the a's asz in (8.53) andg (8.35).
Note that in (8.35) the fraction becomes 0/C if o = P .
We therefore understand that o £p . Thls leaves two choices of O

for given ¢ , and it is not clear at once that these give the same

value to ap . That they do in fact do =0 may be seen from (?.52)

and its cyeclie permutations.

As remarked after (8.33), we could get a.P from that eguation



and (8.30), but for ambiguity in signs. It is interesting to write

down such values. In the notation of (7.56), we have
8 = Z S » (BF57)

Also in terms of the parameters ¢« , £ , v, & of the

canonical form for the orthonormal triad T _ as in (7.51), we hawe

4
3,2 = P° (32 + '52) ’
a 2 = Qz (TE - BE) »
=
(8.38)
&32 = Qz (IIE — 52) ’
ﬂ42 = - PE (EE -I-'-TE) .

I{ is an interesting exercise to show that 'r'? - ﬁz and a° - &

are positive. We put 2 +1iB = r, exp (i @",) »

v +1 & r, eXp (1 ¢E) and use (7.52) and the triangle inequality

2

r, #1 > r,z in the ¢pmplex plahe.

Proper and improper transformations.

Let us go back to the formula (8.11) :

Toy = g Dyp Sppy * Dy Ly = Iy, I, (8.39)

This formula connects 8 3 x 3 matrix T withea 4 x4 matrix L .
If L satisfies L L = I, then T satisfies T = I, where I,
and I4 are the unit 3 x 3 and 4 x4 matrices. Also, as we
have seen, if T is given, satisfying T‘E‘ T = I’a s then there exist
two matrices L. , one the negative of the other, satisfying (8.39)
and LL=T, .

In the line following (B.6), we took I +to be proper (det L = 1)



in order that Ersmn should behave like & tensor under the transformation
L, Let us now take a wider view and inguire into the proper or improper

characters of T and L , related by (8.39) and satisfying

TT = I, LL = I . (8.40)

The squares of det T and det L are then unity, and so we mey write

det L = e, det T = &, (8.41)

where these &'s are + 1 .

If we change L and T continuously, these &'s cannot jump from
one discrete value to the other. Thus they may be investigated for all
ceses by considering the four special Lorentz transformations, represent-

ative of the types stated:
diag (1, 1, 1, 1) rdet L =1 .

a) proper, future-preserving:

diag (=1, =1, =1, =1) : det L = 1.

diag (-1, 1, 1, 1) : det L = - 1,

i

L
b) prorer, future-reversing: L
¢} improper, future-preserving: L

L

a) improper, future-reversing: = diag (1, 1, =1, 1) : det L = =1,

In cases (&) and (b), (8.39) gives T = diag (1, 1, 1) , so that

dget T =1 ., In cases (¢) and (d) we get T = diag (-1, 1, 1)} , so that
det T = -1 , Thus in all cases we have
ET = EL » (8")‘*'2)

and T and L are either both proper or both improper; in this

statement it is not necessary to mention whether L preserves or reverses
the future, i.e. transforms the two sheets of the null cone into them=-

selves, or interchanges them.



9. Two theorsmsg about eigenvecltors.

Going back to the eguation (6.5)
XJ = A 7T, (9.1)

and the associated characteristic equation

det (R=-A1I) = 0, (9.2)
we recall that K is a complex symmetric 3 x 3 matrix with zero
trace. The equation (9.2) has at least one root, which might be
zero, and not more than three roots altogether. If any root AN of
(9.2) is substituted in (9.1), there exists at least one eigenvector J
corresponding to this eigenvalue A . ‘The vector J might be null,
and there might be several vectors J corresponding to one eigenvalue
A o« The complication of the ensuing argument is due to this mul-
tiplicity of possibilities. We start by proving the following
theorems:
Theorem III: Let J' be any eigenvector corresponding to an eigen-
value A' and J" any eigenvector corresponding to an eigenvalue A"

where A' A" , Then J' and J" are orthogonal and linearly

independent.
We are given
KJ' = %kt J, KJ" = an g, At £ oar, (9.3)
and we have to prove that
T = 0. (9.4)

Fror {9.3)

g Wy

MEI -~ TTRI = AT I - A Jrogm (9.5)
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The left hand side vanishes since K is symmetric. The two scalar
products on the right are equal, and so the orthogonality of J' and
J* follows from the last of (9.3).

To prove the second part of the theorem, assume that J* = € J' ,
Then (9.3) give (At - A") J' = 0O, and this contradicts the last
of (9.5), it being understood throughout that when we speak of an
eigenvector the zero vector is excluded.
Theorem IV: If A' and A" are distinct eigenvalues, and J' and
J" eigenvectors corresponding to them respectively, then J' and J"

cannot both be mull.

This follows on combining Theorem I (Section 7) with Theorem III.

roots AY , A" , AM' ., 8ince tr K =0 , we have

A+ A" o+ MM = 0, (10.1)
et J' , J" , J"' be eigenvectors corresaponding to these three
eigenvalues respectively. By Theorem III we know that these three
vectors are orthogonsl and no two are collinear. They therefore form
an orthogonal triad, and so by Theorem II none of them is null. We
can then normalise them so that they form an orthonormai triad, say
A ,B , C, and then we have

KA = A A, KB = A3, KC = A" C,

e

A A EB=EC.=‘1, BC = CA = AB = 0.

[}
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On applying the orthogonal transformation T as in (7.28), K +ransforms

intoe K'Y :

ERA  AKB  AKC
Kt = TKT @ = BKA  BKB  BKC : (10.3)
CKA CKB  CRC
By (10.2) this becomes
At 0 0
XK' = 0 A0 . {10.4)

G 0 AN

We recall that K is the complex 3 x 3 matrix K = M+ N,
wheres M and N are matrices formed as in (5.5) from the elements
of the Weyl tensor. TWe have then the following result:

If the characteristic equation (9.2) has three distinet roots,
there exists & Lorentz transformation which transforms the matrix K

into the diagonal form (10.4), and the 6 x 6 Weyl matrix (5.4) into

al 0 O ipt O 0 '\
0 a* 0 0 ip® O

"ni (18
T = o 0 o« 0 0 i : (10.5)
ig! O 0 et Q 0

\\ 0 ip" O 0 a™ 0 j/
U 0 iﬁﬂl 0 0 u'll'l

where the a's and B's are resl and

at +a" $a"t = 0, Bt &+ B 4+ B"t = O, (10.6)
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11e  Glass: 2 : double-root case (A' #A" =2"'),

Suppose now that the characteristic equatian“ (9.2) has a double
root, so that the three roots are A' # A™ = A" | satisfying as in
{10.1) |

Ao+ 2A" = 0, (11.1)
Then there exists at least one eigenvector J' corresponding to A*'
and at least one eigenvector J" corresponding to A" , so that
KJ* = A Jv K-J* = amJu (11.2)
By Theorems II1 and IV we know that J' and J" are orthogonal and
cannot both be null, There are then tﬁree ceses to considers
2a: Neither J' nor J" null.

2b J* not null, J" mill, and no nop-null J* exists.

2ey  J' mull, J" not null.,

We recall that J" corresponds to the double root.

Class 28; NRormalise J' , J" dinte A , B , say, and complete an
orthonormal triad with € = A xB . We have then

KA::‘«'.&., KB = A" B,

AKA =\, AEKB = 0, AKEC = 0, (11.3)
BKB = A", CKB = 0.
Transforming by T as in (?.%8), we get
A 0 0
K*=l0 A" 0 . (11.4)

\o o &
But the trace of K , being invariant under the transformation, must

vanish; so, by (11.1), we see that EI{C = A" , and the reduced



matrix is

K' = 0 AT 0 . (11.5)

Note that this is the same as (10.4) with A"' = A",
Glass Zb: Now J' is not null and J" is mull, and so we cannot use
the latter as part of an orthonormal triad. Normalise J* to A , say;
take any unit vector B orthogonal to A , and complete an orthonormal
triel with G = A xB ., We know that J" is orthogonal to J' ;
therefore it lies in the plane of B and C , and so

J' = BB «~C, (11.6)
where ﬁz ﬁurz = 0 since J" is mull., Without loss of generality
we may then write

J* = B 4 i C (11.7)
for the null sigenvector corresponding to A" . Now

KJ" = A" J° (11.8)
and so

KA = A' 4, KB # 1 KC = A"B 4 1iAa"C; (11.9)

therefors

AKA = A, AKB = BKA =0, AKC = CKA=0,
BKE #41BEC = A, CKB # 1CKC = 1iAa",
(11.10)

Putting BKC=CKB =i a , we have then
BKB = A +a, TKGC = A =a. (11.11)

Transforming with T as in (7.28), we get
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AT 0 ¢\
' =| O A owoa ia . (11.12)
0 ia A -a /

A further reduction is possible. Consider the matrix

0 0 0
¥ =1{ 0 a ia (11.13)
O ia ~-f,
and the matrix
1 0 0
T = 0 cos ¢ sin ¢ (11.1%)
0 - sin ¢ cos ¢

¢ Dbeing any complex number. It is éasy to see that T is an
orthogonal matrix (T"E = 1) « Applying T %o transform ¥ , an

casy calculation gives

O 0 0
T M T_I =| O a.eew} ia&zw . (11.15)

Choose ¢ to satisfy

e e® = 1. © {11.16)
Then
o 0 0
TMT =|0 1 i : (11.17)

Further, for any ¢ ,

T aiag (N A" , A" T = diag (MY, A", A") . (11.18)



Now, by (11.11),
K' = diag (A" , A" ,A") + ¥, (11.19)

and so its transform under T , with ¢ sabisfying (11.16), is

A 0 0
K* = TK' T = 0 YIS i . (11.20)
0 i AT -

This is the reduced form of K for Glass 2b.

There is one point in the sbove argument requiring Jjustification.
We cannot solve (11.16) for ¢ if a = 0. But we can show that a £ 0 .
It will be recalled that part of the definition of Class 2b is that no
non~-null J" exists. This condition is required to separate Glass 2b
from Class 2a , for if a non-null J" existed, then we would be back in
Class 2a. Now if a = 0 , we get by (11.12) K' = diag (A' , A" , A"),
The components of any J" are then to satiafy

MM = AT, AT s AT, AN s A

'(11.21)

Thus, for example, (0, 1, 0) is an eigenvector, and it is not null,
contrary to hypothesis. Therefore in Glass 2b we have a £0 , and so
(11.16) can be solved.

Class 2¢ has been included for logical completeness. We shall
now see that it cannot exist. TFor, interchanging A' and A" , J¢

and J" , the argument can be carried on precisely as in Class Zb down

to {(11.12), which now reads



An 0 O
k' = 0 At 4 o2 ia . (11.22)
O ig A -8

The characteristic equation det (K' - A I) =0 is

(A" =) [(AF a2 =AY (A" —a-1) « a°] = o, (11.23)
and this reduces to
(A =AY (A -}u)_'? = 0 , (11.24)
But this is absurd, since it is A" , not A' , which is the double

root. Hence Class 2¢ cannot exist.

12, Glass 3 : triple-root case (AY = A" = A" = 0),

When the characteristic equation has a triple root, that root is
zero, since the sum of the roots is zere., Then det K =0 , and
there is at least one eigenvector J' satisfying

KJ' = 0. (12.1)
Three cases have to be discussed:

K £ 0, and there exists a non-null eigenvector J' .

3a
3b

There exists no non-null eigenvector; equivalently, any

vector J!' satisfying (12.1) is null.
361 K=0,
Class 3a: Normalise the existing J' to 4 , say. Complete an
orthonormal trxriad A, B, C.. Then we have
KA = 0, AKA = BXA = CKA = O. (12,2)

Transforming with T aa in (7.28), we get & matrix of the form
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O O O
K* = 0 =a if (12.3)
0 if -8
using the facts that K' is symmetric and of zero trace.
The characteristic equation now reads
»(0F - 2% o+ ) = o, (12.4)

and hence f

+ a since all roots are to be zero. The ambiguous

sign here is trivial, and we may write

0 0 O
Kt = 0 a ia . (12.5)
0 ig - g

Since K # O for Class 3a , we have a £ 0 and we can proceed as at

(11.14), solving (11.16) for ¢ . Thus we reduce the matrix K +o

0 0 O
" = o 1 i . (12.6)
0 i - 1
This is the same form as (11.19) with A' = A" = 0O .

We can now examine the eigenvectors a posteriori. An sigen-
vector J has fq satisfy K" J = 0., 1In terms of components, this
means

J, +1J =0, (12.7)

£
and nothing more. In fact, the totality of eigenvectors are of
the form
Jd = (11 2 |3 N iﬁ) (12.8)

where @ and B are any complex numbers. For o = 0 , we get a

null vector, unique to within & scalar factor; for « £ 0 we get
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an infinity of non-null eigenvectors, all orthogonal to the null eigen-
vector.

Glass >b: In this case we have a nul] eigenvector J . Take A a
unit vector orthogonal t¢ J and complete an orthonormal triad with B

and G . Then we have

I

KJ = 0, J = B # icC, KB + iK¢C o, (12.9)

and so

.t

2K + iAKC = O, BKB + iBKC = O, CKB + iCKC=0 .

(12.10)
Transforming with T as in (7.28), and putting
AXB = h, BKB = b, (12.11)
we get
O h ih
K' = h b: ib , (12.12)
ih ib - b
where we have put ‘EKA = 0 because the trace must wvanish.
The components of any eigenvector J must satisfy
h (7, +1 Js) = 0, hd + dp(J, +iJ) = 0. (12.13)

If h=0, there exista a non-null eigenwector J = (1, 0, O) ,
contrary to the specificetion of Class 3b . Hence h £ 0 .

Consider now the matrix

-Ebh? EFn(enarb®n™) Zm(1-bT -lp¥ )

L. L
T o= 1 T uh %bhﬂ
7%51{-’" %ﬁ(—*l#h"-f;h”h“’) z2h (1 +h° » %m’"&"")/

(12.14)



It is easy to verify that this is an orthogonal matrix for ail values of b

and h with h #0 . Further, by direct calculation we find

O 1 0O
K" = TK' T = 10 i (12.15)
C 1 O
As for eigenvectors, the components mast satisfy
J, = 0, J, % 1J = 0, (12.16)

which means that there is essentially only one eigenvector, the

null vector {1, 0, i) , and all vectors collinear with it.

Class 3¢:  Now the matrix X vanishes, and every vector is an eigenvector.
This rather trivisl case completes the classification, which 1s summarised

inn the next section.

15. Summary of classification of complex 5 x 5 matrices K = M+« N,

symmetric and of zero trace.

Class 13
eigenvalues: AY , A" , A"' Gistinct (A # A" # A" = 0);
eigenvectors: 3 mnop~null, mutually orthogonal, with lines uniquely
determined;

reduced matrix: K = diag (A" , A% [ ANt .
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diagram: :]—/

i
J

:rﬂ

Class 2as

elgenvalues: AY £ A" = A"t (A' w2 A" = Q) ;

elgenvectors: J' non-null with line uniquely determined, and all
vectors in plane orthogonal to J' ;

reduced matrix: K = diag (A!' , A" , A" ;

diagram:




Al G

Class Zb:
eigenvelues: A' £ A" = At (A' & 2A"™ = Q) ;
eigenvectors: J' non-null with line uniquely determined; J" null
with line uniquely determined, orthogonal to J' .

reduced matrix:

At 0 0
K = 0 A" 41 i
¢ i A - 1
diggrams J.f
iy
T (null)
Class 3a:
eigenvalues: A' = A" = A"Y = 0 ;

eigenvectorss one null vector N with line uniquely determined,
and all vectors orthogonal to N (forming a plane
through N ) ;

reduced metrix:



diagram:
Class 3b:
eigenvalues: A' = A¥ = A" - O,

eigenvectorsy null vector with line uniquely determined.

reguced matrix:

0 1 0
K = y| G i
O i O

GClass 5c¢: (K = 0)

eigenvalues: A' = A™ = AM'Y = O

eilgenvectors: all vectors.

The above disgrams are useful as an aid for remembering the several

classes. But since we are concerned with complex E, y While the
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diagrams cannot pretend to indicate more than real E; » they must de used
with considerable caution as & basis for reasoning.

The present classification differs in arrangement from that given by

Petrove. The connection is as follows:

Petrov's classification Present classification
I 1 and 2a
a O 0
reduced K = O B 0 (& +b #+ ¢ =0)
0 0 c
11 b and 3a
a O 0
reduced K = 0 b+t i (o #b ¥ ¢ =0)
O i c~=1
ITT S
o 1 0
reduced X = 1 o i




14. Procedure in classification.

In order to carry out the classification according to the present
method, we are to proceed as follows.
1) Suppose we start with real coordinates x and & given metric field

gnb(x) . We calculate the Riemann tensor Rubcd and the Weyl tensor

LAV, (ﬂ;bc& = R, o in vacuo, by viriue of the field equations),
2) Fix attention on some event B at which the classification is %o

be made. At B we have a rmatrix Bop * Find a matrix I; 50 that

£5 - o, (1)
or, equivalently, so that identically
8ys i ax’ = & o, & = X ax . (14.2)

This is best done by changing Bab dxF dxb step by step into a sum of
squares of linear differential forms, one a pure imaginary necessarily

onn account of the assumed signature # 2 of Bap We arrange to have
ax Imaginary, thus introducing imaginary time. The matrix IEr will
then obey the parity rule with respect to the index 4 3 this matrix

is of course not unique - we have the freedom of a Lorentz transformation.

3) Define the inverse matrix I; by

Y = 5%, (14.3)

b c c

and transform the Weyl tensor at E by

or - Q
‘Lbcd - “ﬁqrs IEIIF.IE_I;l. (1h'h?

5 ) Write ﬁ&ﬂl out in the Petrov notation in the form of & 6 x 6

matrix



M N

N ' §

Check that ¥ and N are symmetric, with ¥ real and KN imaginary,
both being 3 x 3 wmatrices with zero trace.

5) PForm the complex 3 x 3 matrix K = M + N, and write out the
cubic equation det (K -A I) = O,

6) Examine the roots of this equation. If they are distinct, we are
in Glass 1 , and the classification is completed.

7} If there is a double root, we are in Glass 2 , and it remains to
distinguish between 2a and 2b ., Tb do this, find the (unique)
eigenvector J' corresponding to the unrepeated root A' . Investigate
the eigenvectors for the repeataﬁ roct A" . If there are several, we
are in Class 2a ; if only one, we are in Class 2b (this unique eigen=-
vector mist be null).

8) If all the roots are zero, we are in Class 3. If there are several
elgenvectors, we are in Class 3a ; 1if' there. is only one, we are in
Class 3b (and this unique eigenvector must be null). Class 3¢ can be
recognised early in the work, because it corresponis to the vanishing of

the Weyl tensor in any coordinata system.
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