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CEAPDITER 1

The Elementary Particles.

It may be claimed that the modern thecry of elementary particles was
initiated in Dublin in February 1881 when Johnstone Stoney presented to the
Royal Dublin Society a paper in which he put forward the idea that there
exists a unit of electrical charge, both positive and negative' ). The
unit of negative electrical charge was later named by Stoney the electron
and in 1897 it was detected experimentally by J. J. Thomson. It is custom-
ary nowadays to express mass in terms of energy employing Einstein's
relation that a particle of mass m has rest energy m c? , and the mass
of the electron is 0.51 MeV. The rays which come from the cathode of a
vacuun tube consist of electrons. The canal rays that go to the cathode
consist of positively charged particles;  those that come from hydrogen
are called protons. The mass of the proton is 938 MeV — about 1836
times that of the electron.

In 1900 Planck introduced the quantum theory that energy is increased
or diminished by units hy , where v is the frequency of the radiation,
and five years later Einstein proposed that electromagnetic radiation con-
sists of particles called photons which have energy hy and velocity v
equal to ¢ .« The rest mass of these particles must be zero in order
that we may have finite energy m o {1 - vz/czl)_% .

We now go on about twenty-five years. In the meantime quantum

mechanics had been created by Heisenberg and Schr8dinger, and Dirac had

(1) G. Johnstone Stoney, Sc. Proc. Roy. Dublin Soc. 3, 51 (1881).




succeeded in obtaining a relativistic equation for the electron. The
relativistic formula

B a s D B p2
gives positive and negative values of the energy, and Dirac intt_arpreted. the
negative energy states of the electron as referring to particles with posit-
ive charge.._ At first he thought that this must be the proton but in 1931
he confessed that it must be a particle with the mass of the electron but
with pgsitive electrical charge. This particle =— the positron - was
discovered in the following yesar by C. D. Anderson. This momentous dis-
covery started a new line in thinking. It gave us the idea of antimatter,
that to every charged particle there should exist an antiparticle with the
same mass but opposite charge. Also in 1932 the neutron was discovered
by Chadwick. This is an uncharged particle with mass slightly greater
than that of the proton. Protons and neutrons form the constituents of
the atomic nucleus.

The first example of a particle with mass intermediate between that of
the electron and the proton was discovered in 1934 by Kunze. This particle
is now called the muon. Its properties are very like those of the electron,
it can be positively or negatively charged, but its mass is 105.7 MeV =
more than two hundred times that of the electron — and it decays after
2.2 x 10°° sec.

More than ten years were to pass bef.ore the next elementary particle
was discovered. In 1946 Occhialini and Powell discovered the pion which
can be positively or negatively charged, or uncharged. The mass of the
charged pion is 139.6 MeV and its lifetime is 2.5 x 10% Se_c; the mass

of the neutral pion is somewhat less, viz. 135 MeV,and its lifetime is



1.8 x 107'® sec. The pion is very important. It is the quantum of the
forces between protons and neutrons in the nucleus.

The particle now known as the kaon was first discovered by Rochester and
Butler in 1948. Several years of patient work were required to systematize
the properties of kaons. Ignoring some very recent results on the decay

)

its antiparticle K~ with mass 493.8 MeV and lifetime 1.29 x 10 °sec, and

of kaons®’ we may present the picture as follows: there are the K* and
the K° and its distinct antiparticle RK° with mass 498 MeV. These
latter have no precise lifetimes but there are two mixed states of them =
-10

K° with lifetime 0.92 x 10

; and 1{2 with lifetime 5.62 x 10™° sec.

With the advent of the 1950's things happened in quick succession
and we shall not attempt to preserve chronological order. Already in the
1930's Pauli had suggested that in the decay of a neutron into a proton
and electron a neutral particle with spin % takes part.e This particle
was called the neutrino and it was discovered by Reines and Cowan in 1955. It
seems to have Zzero rest mass. Anticipa.i:ing further results we say that
there are two neutrinos: one Y. associated with the electron and the
other ”u associated with the muon, and that moreover the neutrino though
uncharged differs from the antineutrino.

About this time there were discovered particles called hyperons with
masses greater than that of the neutron. They are the A° with mass
1115 MeV and lifetime 2.6 x 10~ ° sec; the Z-particles, £* with mass
1189 MeV and lifetime 0.79 x 10™ © sec, the Z° with mass 1192 MeV and
lifetime less than 10~ * sec. and the I~ with mass 1197 MeV and

lifetime 1.6 x T sec; the cascade particles, 2° with mass 1314 MeV

(2) J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turley, Phys. Rev. Lett.

13, 138 (1964).
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and lifetime 3.06 x 10-'° secCe aﬁd 2 with mass 1321 MeV and lifetime
1.7% x 107'° sec.

There are broader classifications of elementary particles: the neutrinos,
electrons, and muons are celled leptons. The pions and kaons are called
mesons. The protomsand neutronsare called nucleons; the nucleons and hyperons
are called baryons. The kaons and hyperons are called strange particles.
Antiparticles of all these particles have been founde.

In recent years the high-energy accelerators have provided an abundance
of a new type of particle called a rescnance. These decay rapidly into the
elementary particles listed above; for example, the m with mass 549 MeV
may decay into 3 pions, the Ng with mass 1480 MeV decays into N and ® .

It would be nice at this stage to give a table of elementary particles.

To do this adequately we must distinguish the different types of interaction
that can occur between elementary particles: (a) strong interactiong,

(b) electromagnetic interactions, (¢) weak interactions, (d) gravitational
interactionse.

Strong interactions are those responsible for nuclear forces, the production

of pions, of strange particles and of resonances. The strongly interacting
olse colled hadrous, :
particles are nucleons, mesons, hyperons, and their antiparticles,
A

Electromagnetic interactions are responsible for processes like photoelectric

effect, Compton effect, and for mass differences within isotopic multiplets

of strongly intergcting particles. Exomples of isotopic multiplets are

N (i) s * (ES) e (g:) o (g?—> « If we have two members,

we say that the isospin is % and that the third component 13 takes the

values % s = % s ©e8o I3 = % for Pp and Ia = - % for n * if we



have three members, we say that the isospin is 1 , and that I3 assumes the

+

F‘l:heavag;l.t:u:ss 1904 ~1, 0.8 I3=1 for % ., .0 YTer x° and -1 for

'at'i » For an antiparticle the I?-eigenvalue is minus that of the particle,

Cele I3 =-% for P .
- Week interactions are those responsible for decay proéesses.

E" Gravitational interactions are very much weaker than any of the above, and

" we shall ignore them.
Let us say a little about guantities that are conserved in these inter-
actions. Of course, we have always conservation of energy, linear momentum,

- angular momentum and charge. Another guantity that is always conserved is

' baryon number.

Baryon number B is defined as the sum of 4+ 1 for each baryon and as - 1
,'_:tor ea.ch' .'a.ntiba.ryon. If @ is the charge of a strongly interacting particle,
its QYErcha;.rge Y is defined by the relation Q = Is * = Y. For a
Jpro‘l?on(néufron) Q is 1 (0) and I, is Z ( =2) , so for both of them
B 7, @ =I_ so Y=0, for 2¥ (&) Q f28 0 ( = 4)

a.nd I, is =) s0o Y is ~1 for B, Strangeness S is defined
by Y. =:- B+S. Itis non-vanishing only for strange par‘éicles. We

t'see'that $=1 for K (g:), S=-1 for K (15-;-), S=-1 for
. YK

e

B and L, Sl ==2 for 8 . Hypercharge and strangeness che;.nge sign for
an antipax_‘tj.cie. 13 and Y, or I, and S, a.ré conserved in strong and
electromagnetic interactions. In addition total isospin I is conserved

IF in strong interactions. |

i 4. . - : {
;__ There are conservation laws also for weak interactions. We have con-
l‘

 servation of lepton number and of muon number. The lepton number is + 1

| for the leptons e , B -, v, v, and -1 for the antileptons 0",



%

;e s ;u and in eny process the lepton number of the particles present must
be the same before and after. The muon number is + 1 for u  and ¥
and -1 for pf" and ¥ g & ROvO for the others,and we must have the same

muon number before and after an interaction.

We can now list some of the properties of elementary pa.rticles?’).
‘ Mass Muon Lifetime Anfi-—
Class Particle (MeV) Spin Number I, Y 8 (sec.) particle
photon Y 0 1 stable L 4
(g < ,0002 %= 0 stable v,
i -
v < 4 - 1 stable ¥
leptons “ ‘_‘ ; i
e «51 z 0 stable e
= 108.7. . % 1 2.2 x 10°° pt
F sl 139,6 O 1 0 0 2.6x10° x
x{xo 135 0 0 0 o 1.8x107°® x°
- : g L ]
e 3 139.6 0 -1 0 0 2.6 x10 3
g L8958 0 % 1 1 1.23x10° K
x] & : 0.92 x 10” ° . ot
498 Q -2z 1 1 :
Ky See 0™ L
S P 938 z z 1 0 stable P
e 1 1 +3 -
n 939.5 z -z 1 0 1.01 x 10 n
an 1115 z 0 0 “‘uq o kx0T B
baryons * : o T
) 1189 z 1 0 "ad 0,79 % 10 o+
o 1 -4 oo .
hyperons 2|2 1192 ) 0 0 -1 < 10 z
z” 1197 z o egelie T e gy BT
z° 131y = ¥ -t om B L hadgr s . | BY
8 - 1 1 =10 =y
L. e 1321 z -z =1 -2 4tk 210 2

(3) of. A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L. Bastien,
J. Kirz and M. Roos, Rev. Mod. Phys. 36,977(1964). |




We notice that the only particle with mechanical spin one is the photon,

that all the leptons have spin z , that of the strongly interacting particles

the mesons have spin O and the baryons spin % .

All the above particles

are sometimes called "stable particles", the criterion being that_ their life-

times are long compared with 10 -° sec.

Let us arrange the baryons according to
their (I5 , Y) values. We have eight positions
as shown, those of A° ana 2° being coincident.
The diagram includes the multiplets (p, n) ,
E*, 2°,27) , (8% 27) .and is called a

supermultiplet. It is in this case an octet.

It might be remarked that there seems to be a
similar octet picture for resonances with spin 5/2.
Next let us arrange the mesons. There are
seven of them but, if we want to have an isotopic
singlet like the A° s we can add the resonance
n° and obtain an octet. We notice that both
particles and antiparticles are on the diagrams.
This is not surprising because we have no law of
conservation of meson number, like that of baryon
number. Amedn There is seme—ewidenee—ef o similar
octet picture of resonances of spin 1 .

Finally let us construct a diagram for leptons.

from leptons, we just want to accommodate e B

b 4

- HO
= 2
Fig 1 The nucleon ockzt.
b 4
K° x*
Sl .
" ° x”
i { 6 L l I
-1 0 mn 1 3

Fig. 0. The meson ceket

Since antileptons differ

vu « These particles

have no (I:5 ’ Y) wvalues but we can define something analogous. The charge



D

of a lepton is 0 or -1 . We define charge charge displacement
displacement as a two-component quantity having v, . v
- E - 5 u
the values + 2 for charge zero and = %z for
charge =1 . The muon number is likewise # 1 %
- . et 1 i
for p and v, and zero for e and v . -5 0 muon dis-
s o placement
We define muon displacement as 2z for g and ¥
and =% for e and ¥ » We may then arrange . _.12_ " :
e y,-

the leptons in a quartet at the points (+ % , #7%)

i &
on a diagram. Fig. 3. The leplon qlu.t.\vh.
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The 8SU " Group.

In this chapter we recall some points from the Pauli theory of
spin, and we express the theory in the language of groups. To describe
the spin angular momentum m of an electron one writes

e -12-{2 ’

where g denotes the tried (o, T, Ga) of matrices, viz.

0 1) (o -i) (1 o)'
o = 0‘ = (o = .
' (1 0 /i 5 i L # 0 -1

We see that
e w o . ST, R
o B L U . o, e icrl s etc.,
where 4 is the unit matrix (; ?) « Any two-by-two matrix a has
four independent elements, so it may be expressed as a linear com-
bination of 4,0, , O, 50, « We write
a = aol'i * a, O" + a‘?cr2 +* aao'

=841 +a(@.e),

where ¢ is a unit vector in the directiom of (a, e, as) .

3

2 2 2 2
a.
- 8, * 82 +* a.3

and we shall be concerned only with the case where 8,9 8,5 8,5 8,

are all real. If A is any operator, we define eA by

A A A? A®
& = i £ 1—! -+ —é-!-' -+ -3_!' + oo

and we notice that eA'“B is equivalent to eA eB only when A

end B commute. This condition is satisfied by i a, 4 and ia (E . ,g) ’



0

50
oL e ewoi &La(o'.e) :
Now . = ; %
B‘%i =41 » iaoi + E::%)-i + (1—:?)—-:[ * esee = e.moi

@ . e)’

(o'te;' +0 e, *arses) (e 0 e, -no‘se.s)

" 2
St e

]
Q
)
+
q
@

*0-328332 o+ (0'20'3 *0730'2).: 32 62 * ooe P oo
3"
@.8) = (g.g) ete.

and we may write
iLa
a"a " e_l.a(g.,g)

ei'c(‘*"“e-') = {cosa+ i T .g)sine . (2.1)

Written out in full

COoS @ & 1 essin a i e, sin a -u»ez sin o
RLIC2Y

ie’sina-eesina cosm-iessinm

We see immediately that the determinant of ew ._g) is unity; that

is to say, ey (€.¢) is a unimodular matrix. It is also unitary

because according to (2.1) its hermitian conjugate is e-f.a(g,,g) which
is Jjust its inverse, since

i g-2) « g-e) (4 cosa - i(g.g) sina) (4 cose +i (g.¢) si-na)

=1
el.a(g.,g) e-l.a(_q.,g) e

3
If f denotes a two-component spinor (f,) » then e"“(Q'-@) £
2

may be interpreted.4) as the spinor rotated about g through an angle 2a .,

(4) ef. J. McConnell, Annali di Matematica 57, 203 (1962).
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It is clear that eta is unitary, but it is unimodular only when a,
vanishes.

A group may be defined as a set of operations with the following
properties:-
(a) there exists the identity,
(b) for every operatian.there exists an inverse operation,
(¢) the product of two operations is a member of the set.
The set of unimodular unitary operations given by the matrices‘,eLa@I”g)
constitutes a groups there exists the identity obtained by putting «
equal to zero, to each eLan”g) there exists the inverse e-taﬁg,g) .
Lastly the product of two unitary matrices is a unitary matrix and
the determinant of the product is the product of the determinants, so

the product of two unimodular unitary transformations is a unimodular

unitary transformation. The group is the unimodular unitary group

in two dimensions and it is denoted by SUé . Like all unitary
groups in two dimensions, denoted by Ué s it leaves invariant
f'* f' «-fz* :2 * In fact this sum is just et e and, if we put
= &La(‘q"g)f
so that
gl f#-e-la(h%g)

we obtain

pr¥per o o

A group is said to be Abelian, if the order in which we perform
two operations is immaterial. If we perform two SU2 operations: with

{cosa + i (g.e) sina , {cosa' + i (g.g') sina',
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the two operations do not commute because (.e) and nggﬂ do not
commute. Hence SU, is non-Abelian.

An infinitesimal transformation is obtained by neglecting terms

ta(g.e) |

proportional to a? ’ a® etc. in the expansion of e

Let us write
U =41 » ic (g.e)
{ #«1(a0 + a8 = aso's)

2
=i-|¥i£A07A,

where eA are infinitesimals and there is a summation from 1 to 3

over the repeated index A . If a labels a rowand b a column,
b b A b

where & cb is the Kronecker delta equal to unity for b =a and
equal to zero otherwise. To a first approximation the infinitesimal
transformations form an Abelian group because
(1 #ish,) 4 + iefo) = L+ (et + &M,
= (1 +iefo) (1 + 1eh) .
By iterating the infinitesimal transformation we can obtain a finite
transformation. To see this we take a finite angle ©. and a large

positive integer s and we write /s for a , so that

i.ﬁ@[ug)

U:i -~ = o
Then

A R eGE”QJ )s
and

limus = ele(a:.e)

s> 00

which is the finite transformation.
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@_ of the Pauli

~ We now define two linear combinations o ,

e =t « ic)

]
P S
o o
> R "
N

e - 0o 0
| ¢ = z(0 - i0,) =( ):a‘_ﬁ .

00 -0 -0)
_ybslatmag ey

we intérlplret cr+ as a raj.sigg operator, that raises a state with

>

{2.2)

o, = -%%F toa 'stgte with m, = TN , and We interpret O_
&8 a lowe operator. From the relations Obeyﬁ’d-.by o Gz. %

&a e deduce -
. b, 0] =t +w) @ -10,) - @, -15,) (@, +1,)]
= 0
‘ s

._'[‘I';,’o'*] - 2‘_"‘,’_ [0‘350'_] _=‘_2°'_°
~ Henceforth we shall often write the two-dimensional wave functions

(1) as |2}, 1> and (0) as |f2}, 2 . Then
= \0 _ | 1  ‘



o )

<1sizll = l'iﬁ23,1>* = @

<2,{3| = @

<, {32, = 1, sl = 0 (2.3)
<2, {3[{d, > =0, <2,{3d(3F,> = 1,

and equations (2.2) read
GJ!Z}: > = Iizls 1>, G'_'J{2}’1> = 0- (2.4)
cligd,> = o, olf{gd, » = [{3,>.

Where there is no danger of confusion we may find it convenient to
drop the {2} and write the wave functions as |1> and lb .
Let us examine the spin functions of a two-electron system.
These are products, or sums of products, of |f2}, 1> and
{2}, > . TWhen we write down |[{2}, &> |2, b> , we shall
understand that [{2}, a > refers to the first electron and
HZ] s b> to the second, and we note that [a>|'b> differs from
[b>|e> when b #a . There will be spin matrices
g (1) (@,(1), 0,(1), (1)) referring to the first electron and
g (2) (o.'-, (2), 0'2(2), 6'3(2.)) referring to the second. In the
case_ofr the product |a>lb> e g’(‘l ) acts on |a> but leaves
|b> unchanged; that is to say, it is just the unit matrix in
the spin space of the second electron. By g we shall understand
the sum of the two operators g(1) and g(2) , and
o = '&ﬁg = %f(ﬁ(") +g(2)).
Thus

0'3|:1>|'1> = (0,(1) %o (2)) [13]1> = ;:'3(1) [1> . |1> »

+ 1> . 0‘3(2) [1>

= [l e]]l1> =2 213115,



-1 5=

so that [1> |1> is an eigenstate of m, with eigenvalue K . 1In
the same way equations (2.4) yield

c‘r_]’,‘1>|'1> = || +['1>|2> s o (I2[1> «[p][2) = 0

c (21> #[15]2) = 2/>|> , m, |22 = -®wl23|2>

o¢|>|> =0, c_J'1>l‘1> 0%

So by applying raising and lowering operators we obtain a set of
three, and only three, normalized spin functions

{3, = i, 15|{, >

(3, > = Fdid, sli2, > « {2, > [{2, 1) (2.5)

(3,2 = [{3, > {3, >
with m eigenvalues - , 0 , =K , respectively. They are
orthogonal to one another, as we see by employing (2.3). However
there is another spin function 7:'5 ([1>] 2> 2|1>) orthogonal to
the functions in (2.5), having m, eigenvalue zero and being
annihilated by o‘* and O_ . It therefore represents a singlet
spin zero state, for which we write

1, > = 713, »ligd, > - 113, >, 1>,
while (2.5) are the members of a triplet spin 1 state.

The above procedure may be pictured geometrically by drawing
vectors representing the eigenvalm;s :i_ri' i
of 'b'a(ﬂ and '5073 {23 ¢ Compounding the iT
vectors with themselves and with one an- l vew.
other we obtain for % o 3 the eigenvalues .% &
1, 0, 0, =1 , from which we can pick out the Fig. . The connposdion

oF o spin % vectws
singlet and triplet states. We may express the reduction of the



product of the two doublet spin states symbolically as

2@V g®) _ g ) ssle)

In elementary particle theory the SU, group is usually
employed for isospin rather than for mechanical spin. The
nucleon N can be in the two isospin Z states p denoted
by |{2 1> or n denoted by {2}, 2> , so that the third
component of isospin IIZ5 has the value + % for a proton
and -% for a neutrom. From these one can construct two-
nucleon: product states of total isospihi O or 1 . The
mathematical discussion is Jjust the same as before but it is
customary to write the oO=-operators as v . Hence

L = '19-"'"4'. ’
where
Er:a.'l.‘.a] = 2iv,  ete.

kot ] = 2% Eov]l = -27%_, E,v]l=x.

(2.6)

*’

These commutation relations are true for a system of two or
more isofermions, i.e. isospin % particles, because, for
example,

e, (1) «7,(2), v ,(1) +< (2)]

e, (1), v, (1)] » [v,(2), v,(2)]
i, (1) «x,(2)).

Consider the infinitesimal transformation for a single

isofermion given by

m=i§i GATA.

The infinitesimals &' > & R e’ are independent of each other



S

d they can vary continuously. We say that the infinitesimal SU S
-‘" a continuous gc:u;g of order 3 . The infinitesimal transform of
isospiner £ is

_ £ =Uf = (1 »aefq)r

a0 that

8 = f'-f = iex, .

If we take two successive transformations with

A , A
e U T, » U =4 «ie”w,
a put
‘we have
A A A
83 = B' - 82 .
eSA'a are analytic functions of e: > c‘: > sf > c; P e:, c: 3

‘that is, the esx's are continuous functions of the six variasbles
their partial derivatives with respect to the six variables exist.
‘. We can now explain what is meant by a Lie group. Take a vector
::l_;pace of r dimensions with the coordinates (x,, X5 Xyy oee x.)
and consider a set of transformations

x' =¢, (%5 X,5 oee X 58,5 8,5 oo a) {2.7)
depending on the n independent, real and continuous parameters

8,5 8,5 eeey 8 o Let qbt be analytic functions of the a's and
:‘-lot zero values of the a's give the identity transformations

| x = ¢ (x,, X,5 eees X5 05 0y eeey 0) .

Moreover let us suppose that there exists a set of values of the

a's such that



x, = ¢ (x", X,'s eeey X '3 E', Ez’ Sy ;'n)’
that is to say, the inverse of the transformations (2.7) exists.
Furthermore consider the effect of successive transformations
" =9 (,x,‘ FEIAFPPRE RS ',_ae',...an')
= ¢£{"_qb’ (x, 2%, 500 0s% 38, ,...,an), ¢, (x, seeesX 8, ,...,a.n),...;
8,'s 2" e.e, an'}
and let us suppose that there exists a set of values of the a's
such that
" =¢, (x, , X,9 eees X5 8", 8", eu0, aﬂ") .
The set of transformations then constitutes a group = a finite and
continuous group. Clearly
S (a, , 8,5 eees 8.5 8" 8", . an')
and, if ‘I’s is an analytic function of the a's and the a"™s,
we have a Lie group of order n . The infinitesimal S‘J2 is an
elementary example of a Lie group of order 3 . By iterating we
deduce that the finite SU, is a Lie group of order 3 .

Let us make an infinitesimal transformation of a function f

of the x's in the neighbourhood of a =a, =..e=a =0, s0

2 n
that
i W of
= g—xL a——au aﬂ = a‘,‘ ray axL ’
which we write a’=a2=...=an=o
¢ = 1, 1,
where EA stands for Oa and &
S age .
A aa’ G = =44e=Q =0 xL
- n

It may then be shown('s) that these n LA's satisfy the commutation

A e s -

(5) M. Homermesh, Group Theory and Its Application to Physical Problems.

PPe 299 et seqq. (Addison Weslev. 1962).




relations

e ld = €." 5 | (2.8)
ed over D . We notice the resémblanca betwagﬁ thié,equatioh‘an&

-
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cRAPTER 1113

Lie Algebras

We turn our attention to the algebra of Lie groups. We define
the product of two operators O, and 0, as the commutator [0,,0,].
We then say that a. set of operators forms a Lie algebra, if every
linear combination of them belongs to the set and if the product of
any two of them belongs to the set. The order of the set is the
number of linearly independent operators. The algebra is Abelian, if

all the operators commute with each other.

Teke a set of independent LA'S that constitute a Lie algebra.

The two defining properties give

T W W (3.1)
which is just (2.8). It follows that
2 D
Cg = = G, » (3.2)
so that CABD venishes if LA and LB commute. Jacobi's identity
Z[LA, s %1} » 0
yields ABD
E. P
Z ‘- "z ' = Y
and so ABD

cAB’:: c:F.!DF - cBI.‘:E GEAF * CDAE CEBF = 0 (3.3)

because the LF's are independent.

It is usual to treat the Lie algebra by a matrix representation.

This signifies that we take square matrices obeying the same algebraic
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-.;mlail;i_ong_.:__a_.gg_:bhe_ L's « If the matrices have Z rows and /g columns gt

~ Wwe have an { -dj.mensiona.l representation. The integer ,6 can assume

an infinity of values. When we write LAst s Wwe shall mean the st~

element of L, s labelling the rows, t labelling the columns and

5 ?
--T'ﬁ denoting the matrix representative of the Ath operator. We may

show that (3.2) and (3.3) are sufficient to establish the existence of’
-Iwatrices satisfying (_3.1) ; in fact a possible choice of these matrices
1 is the set of struci;ure constazzt; éABD thae:ﬁsélves with a minus sign

- because

e il e C‘A)DF = GABE . ® %)DE

4 éADE Ga - G cAsF * Gy S

= G5 Cmp * Sp O * Gu Gm = O

-~ When B oo ave atnssn Ao Al way, we are said to have the
f;regul;g regfeaentation of the group. The dimension of the regular
‘_ ;npresentatibn; is the order of the gﬁgup, since the labels of the rows
and col‘umnrs are just the subscripts of the LA'S . .

' Next we introduce the notion of a subalgebra, by which is meant
~ a subset of the matrices of an algebra which is itself‘ an algebra.

A- In the case of a Lie algebra a subalgebra would be constituted by a
Bset of matrices obeying (3.1), the - L, Ly, Ly ell belonging to
~ the subset. An invariant subalgebra is a subalgebra such that the
product of A and B belongs to 1I:he subalgebra if A does, while
it is sufficient that B belong to the algebra only. Thus for an
i e subalgebra [A, Lyl Dbelong to the subalgebra if &

: does. A simple algebra is one that has no invariant subalgebra.



-22-

A semi-simple algebra is one that has no Abelian invariant subalgebra.
Cartan's criterion states that a necessary and sufficient condition for

a Lie algebra to be semi-simple is that the matrix &\p defined by

E D
&y = “w S
be non-singular; that is to say, the detérminant of the gAB's is

not zero. We may note that

g = @) (G = (6 &)y = tr ¢ G,
the trace of the product of GA and QE ¢ -

Let us prove that €\B is singular, if it has an Abelién
invariant subalgebra. If the order of the subset is r , let us
suppose that the matrices of the élgsbra are so arranged that the
elements of the subalgebra are independent linear combinations of
the first r matrices. We shall employ small letters to refer to
these matrices. La and Lb commute, $O Gﬁhn vanishes. Moreover,
since [L,, Lbl belongs to the subgroup, it follows that in the

summation GMB I'E we get no contribution whem B > r ; that is to

say ’
o 5
QAQ = 0 for Ber.

Hence

E D E a e a ‘
Gt el Gy ® S Sy T NN ¥

which shows that all the elements of the b} column venish so that
the matrix 8:B has vanishing determinant. We shall assume the con-
verse: if g, hes vanishing determinant, the algebra has an Abeliah

invariant sub-algebra. The proof of this requires a rather lengthy
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': study of the theory of continuous groups(‘), through which there is
-_:no legitimate short-cut.

] Suppose that we have a Lie algebra of order m ; that is, we
have n independent LA's . Of these m , say, will commute among
themselves. We call m the rank of the group. It is oustomary to
- denote the commuting L,'s by H (1 =1, 2, eees m) and the remain-
~ ing ones by E, (¢ = n=m, n-m#1, eee, n) « We may use another Latin
a; letter for i and another Greek letter for & . The rank of SU,

5 is one because no two of the T,,T,, T, commte. The groups in

i Ihioh we sha.ll be interested and to which we shall confine our calcul-
.. etions are all of renl: n e 'l’he E a.nd H are proporl:iona.l to

.. opera.tora; representing some physical qua.ntity like charge, hypercharge,
'.‘.-strangenesaz, the third component of 1sospin. Since H , Hz are
.;.obs‘erva.bles, their matrix representations are hermitian.‘

Our next objective is to ‘express the commutsation relations (3.1)
in & convenient form. To do this we turn our attention to the struct-
3 ure constants, since it; they that express the properties of the Lie
group. We work in the regular representation and identify C; AB
with - H AB TR 4 making a similarity transformation

g = 8 CDS',‘

- where S§ is independent of D , we construct a representation in which

(6) Gf; E. Cartan, Sur la Structure des Groupes de Transformations

* Pinis et Continus (Thdse, Paris, 1894) reprinted im E. Cartan, Oeuvres

' Compl¥tes, Partie I, Vol. I (Geuthier-Villars, Paris, 1952); - L. P.
Eisenhart, Continuous Groups of Transformations, Chap. I-IV (Princeton

i' Univ. Press, 1933); G. Racah, Group Theory and Spectroscopy, CERN Report
S . 186,



G' ! and Gé' are real and diagonal. Let us suppress the primes on
the understanding that we are working in this representation. Then
b R e R ok (8
. e e ° 8 clc: a g T ?

where we have written r, (¢) for GL : , not summed over @ . Since

[HL’ HJ]‘ vanishes, so does Cu“' « We may collect our results for
these structure constants by writing

il e el ' [

GLJ - O ] cta - 0 [] c'.¢ o E(m) &‘_ (3‘&')

and we réca.ll that i , j have the values 1 and 2 , & , 8 have
the values 3 to n , and A has the values 1 to n . We shall
denote the pair of numbers (r’ (@), rz(a.-))- by z(a) , and this we
call a root vector.

We study some properties of a semi-simple Lie algebra, that is,

one which has no Abelien invariant sub=-elgebra. Since

o ELEDL S R ] e g Ny

| e B i 7. &
D e 8 [HL" [Ec’ Eﬁ]] i (G“ cu i cal. cak 4 cla cum)
(3.4) gives
Y. B o e B :
0 = €. "G, -rl(B) C.p -u»rt(a) s
B IUTEECY
(rk(a:) + r‘(ﬂ))- Cp ® Cop \Gw .
We take successively B equal to k (1 or 2) and B equal to
&8 (»2).
, b e Witk
() am B e * ae Tet oo (3.5)

by (3.4),

(, (@) + 7, (8)) G,,° = B "o, S 3
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that is,_.
(v, (@) + 1, () -7, ¢,° = 0. (3.6)

To discuss (3.5) we assume that corresponding to every root g(a)
there exists another which is just its negative - r(a) . We
write - @ for the value of B that gives this root, so that y(-¢) is just
-x(a)’ .  For this value of B we write C“k as r'(e) and
for other values of B equation (3.5) shows that GG'k vanishes.
Thus we write
k

c,,,_,“ = ) ; c, =0 for B f-a. (3.7)

S
Similarly equation (3.6) shows that C,, vanishes unless
() = r(a) #+z(B) « VWhen this condition is satisfied, we .agree

] &
to write G,, as Nu and so

& sy
caﬁa"'ﬂ - N.a"_ = - K‘ﬁ H ca#: =0 fOI‘. 2(5) ﬁz(a) +£(B) 2
(3.8)

There is no summation over the repeated a indices in (3.7) or
(3.8). If we understend by B, the E with root r(x) and

by B, the E with root = r(a) , we deduce that

(B, E_aJ_ = ,c‘a,_-aD L, = c:%_ﬂ!t H, +ca’_a5 E = r* (2) H,

(3.9)
by (3.8), and that for B # - «
R 2] - cPL celnst R on w (3.10)
e® “pt T ap I"D," aaEL ap EB"‘ap aee 3

by (3.7) and (3.8).
" Let us check that in a semi-simple algebra to every root z(a)

there corresponds another = I_(“-) e« By definition



= : ‘ , (3.11)
= c“ ew + GG’_‘ Go_k{ -b'!:‘ c“ GO_'“'

by (3.4), (3.7) and (3.8). When o £ -a , each term on the right

hand side vanishes and so does Byy * This means that, if there is

no root - r(az) , the matrix g,y is singular. Then by Cartan's

criterion the algebra has an Abelian iInvariant subalgebra, which is

contrary to supposition.

The next problem is to find a convenient form for the matrix

Epm We first note that
‘ BB E,. L B P
By = & * %5 Sz =% S *% %a

¥y L ¥ »
= C“ Gk,z + Ca’ Gk,z = 0

by (3.4). We have to consider only By » 80d g, With d=-a.

Of course & cannot vanish for, if it did, Eel
> ,_

and the matrix g,; would be singular, Let us now multiply each

would vanish

E‘ by a real number '[i leaving Hl. unchanged. From the equation

[Hi_, lt] = rt(c.) B, we deduce that rL(a) s 1e0s G‘l: , is un-
changed. PFrom [E,, E,]l = rL'(:L) H we deduce that ¢

¢ iy () -é’f rt(a) = 1.@

a y-a - c,-c
and from [Bc, R'] - c“""’ E, “' we deduce that

c o 4 'ep c awe

ap ga--m ag

Now by (3.11)
Bt = 14 L : aw
. R By S BT R ‘.2‘ Caor O joue

(3.12)

[
-2, @



I, A

end we see that each term on the right hand side becomes multiplied by

e factor ﬁa ,Z_q . If we choose our £'s such that

/e / - ! ’

the H's and leaving the E's unaltered.
o make the transformation H = u, HJ and the relation [EL’ Ea]

e
= c“ Ea shows that
: a

Rl = 6,% = ulc,® = vl r).

; 2 L A
J_lgowe deduce from [E , E_ ] = ca’_a H = r(a) H that

) m Bt ® BT dpiCt Jiem 2 (SNIE )

Q,~a =

éiquation (3.12) gives

a

k. = 4 -a a g 8
-f‘l,-d cal. c—c,n o ca,-a c—cL "p';&x-a: c'ap c-c,a-u

not summed over the a's and so

P J a , =1y L = J s.=ty L - t
:8.’_¢ =% ccj (u )m c—a,« G ca,—a. (u )J c-ct, n- .7

A R
,&z cap c-a,a-u = gc,-c "

Besides

a’-a
gc P 4 0
obtain
o 1
‘ B ™ B ™ 1, e
o
the matrix Byp 1s as shovn with SLJ 5 t o
5 '
non-singular because g,p is non=-singular.
laestly we want to show that we may ex- 0
:@eas SU as 6L j by suitably transforming
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-

B m B u
ilm QJB’- QLu GJE

L o E rt(a) rj(cz) s, by (3.4)

= Q, ¢ = C

[}
2

l

s 3 s
- 0’ u ﬁrl'(a) rs(a) = uous g .

In the summation %_ we agree to sum over each @ but not over its

corresponding -a& . By suitably choosing the u's we can
transform & ; - BLJ . This also glves
E'rt(a) r}(aj = ﬁij >
We wish to relate rl(a) to rt(a) .
gLJ IJ(G) = cf.AE ‘::jB"A c&,-«j ” cLAE Ga,-aD c".DBA :
because cﬁ,-a with D =f gives no contribution. Employing
(3.3) we deduce
8Ly rl@) = - G_LAB (Cop G * O c'b,_-aﬂ)
= Gy cD,--aK G+ O G e
where A and B have been interchanged
: ciAB %’JA' Gsan 2 GDGB" (CB_’_‘A %D % c_“A GAED)

= -G €, ¢, were B and D had Veen inter-

changed in the first term. Then by (3.4)

gy ri@) = o c..cBB c&DE SRS U e R

so that with our gLJ
i

We conclude by re-writing the commutation relations
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[HL,- HJ] = 0, [Hl’Ea] = rL(a) Ea

(3.13)
s, ]l = Farg , ®,%] =x_%
where
@) = rt_(a} . ' E. rL(a) rj(a) = &U .

For the su; group the only diagonal matrix is Raracis We write

Ty . 2Hl’ 'r*-—-'\[ZEg, 5. ‘=u1[23_a

and the relations

kov,] = 2%,, koo%. ] = ~27_, kRovl ==
are just _
[Ei’E&] = B [H'L’ B—e] e

[Ec’ :E-a:l - HL

in agreement with (3.13),
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CHAPTER IV:

Root Diagrams

We employ equations (3.13) to study some general properties of the 1
I
root vectors. From the Jacobi identity ‘
(&, [B,, B 1]+ (B, [E,, 5] + [E,, [R,B]] =0

we deduce
¢ = r(f) (B, 8] » 8,  (B,5.]+x [, 5]

tia _
= - (B) n'_,(a) E + n._'_’a N"’c_' R =B n-.,..”Eu

= {-(x(e) .2(B)) - x N + & R ! E

a—p,p - ,a ag " -p.aae’ a *

so that

Ner Pppeee = Mg ™0 o * () . x(B)) .

In this equation we replace r(¢) by r(a) + s z(B) , where s is
an integer. Then @ is replaced by a + 8B in the suffixes and we
obtain ;

Nersep a,an(sar)e = Tor(s—1)o,p Mop,anes * (@) + 5 2(B) . 2(6))

We express this as ’

w, = u._, + (@) .z@) + s|z@)]* (4.1)

with
l.l-‘ = Ntt-l-s!,a H—p ,a+(3+a)p 55 (402)

Consider the sequences



EHE] = N, By (Brrgr Bl = Wopgsy Boyoy 5 oo-
["’!_'] = E’.’_‘ Eﬁ_’ 4 [Eﬁ-ﬁ" R_!]. = KQ_',_‘ng“ 3 ees o

j_ethare is a finite number of CL‘: 's , there is a finite number of
| Suppose that we can go up from x(a) to r(z) + k z(8)

dom from xp(e) to z(a) - k' r(B) » We call these a string of
B, = 0. In (k) we allow s to take

B o=n, o+ @@ . z6) + slz®)

By = B, * @) . 2(B)) +» (s - 1) |z(e)*

§—2

By = 0+ (2(@) . z(®) - k' |z@)* .
tion we find that
B o= (s+k®*1) &) . 28)) + & (s +k* +1) (s - k') | z(B)?

(4e3)
eput s =k, we deduce that

0 = (k#k*+1)[(g(e) . 2(B)) » % (x-x') [=(B)?] ,

shows that

2 (gla) . z(8))
l=(8)l*

integer. Moreover:

= k* -k , ‘ (4ols)

A y - 2 &) . z(@)) z(B) _ z(a) «(kx -x') z(B) (4.5)
lz(8)I*

/]
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is a root because it lies on the string from gr(z) - k' »(B) to
r(a) + k x(g) .
This last result admits of a simple geometrical interpretation. If ©

is the angle between r(a) and z(B) ,

' A@ (&)
(g(a) . z(8)) Y\ X
When p(a) is reflected in the line through the 1’1;. B¢ i panid
origin perpendicular to r(f) , we obtain igﬁzitig;eaﬁgfﬂm
o L B ey C L S SR,
I\ -z I\a cos s : = ria) - .
(=6 lz(8)]? ¢

which ia just the root in (L4.5).

So far the only symmetry property of N" that we have noted is
N, = -N, . Take three root vectors () , z(B) , zly) satisfying
@) # x(B) # r(y) = 0. Then x(a) + x(B) = -xly) is a root

N N

and so are r(B) + xlr) , x(y) + x(@) . Hence N e + B,

sy ?
exist. Now

o= [B, B8] « (B, 5,51l +» &, B, §ll

-8 (8,8, ]+ 8, [E,8, ] +N, [BY','n_v]

{'rl' (@) . * r ) N, * r () ltu} B

In @I -

= rt(a) H (R‘g

+ 5 (B) N

e

- [ » @)X 18

" m”): . rl(ﬂ)nl (N-c-t,c i3 Kua) :

A
Since the choice of r(a) and r(B) is at our disposal, the quantities

in the brackets must vanish separately and thus



Kia‘ = N;.,-a-s = K_a_"a . | (#-6)
exists, so does N_" . When putting the matrix 8An into

form we made the transformations Ea > ..»g Ea and these gave

-l '£“_£Lc st SR '..4_{13?
ap Laag. = "j“‘ ap *

L. 4ud j-ﬁ-r_‘_ ' 2 Lo 4y Aap Yop 2
’f Love Lo U K-c,-n £ Xg Aars H—c,-n
| 4
have already fixed "4 j_c but not z—- and this fraction we choose
4

n such a way that the last expression becomes -1 . Then

W ool s - (7)

We are now in a position to say something about the numerical

Jueof N, . From (4.2) and (4.3) we deduce that

ap
Mo Ny g = Ho = G #1) @@) e @) - Ext (et 4 1) Lz

| = -kx G+ 1) Lx@NF, by () .
gen (4.6) and (4.7) give

CdeG e ) 60T = -m, N, L, = -E, N, = (],
_-:I.s, :

N, = £V1zk x' +1% [z@)l. (4.8)
2 (z(@) . ()
The result in (4.l) that - , and similarly
lz@)l

G6) - 56))

, are integers allows only particular values for the angle ©

stveen p(2) eand r(B) « Writing the integers m and n we have



@) . x6) = Blz@l® -

PO

| o{a)l® =g—1f{¥mf) Ig(a)l . lz®)]

2 1
cos’ @ = =mn .

4

Hence we have the following allowed valuess

1 2 B L

mn 0
T x 2K % = T
e .é. 3)-5-' Zsb Z‘)% O,'J‘:
[ p(a)l /—‘ . 1 : 3 _
W)T v § T ar 25

Since for every root gr(a) there exists = p(a) , the supplementary
angles ® = © tell us nothing new. In writing zero for !i?:))T in the
case of mm =0 we have disregarded the trivial case where both g(a)

and r(B) vanish ., The casesof © =0 and © = 7-2'-:- give only roots
lying along one straight line and are therefore degenerate cases of Lie
groups of rank 2 that do not interest us here. When putting down
drugrams Tor the roots we must satisfy the normalization condition

:; r, (a) Ty () = 1, the summations being performed only over the z(e)'s

Ly
in a helf-plane. Teking successively © =x/3, =/4, =%/6 we draw the

root diagrams, They correspond, respectively, to the unimodular unitary
grour 1ln three dimensions 8U,_ , the five-dimensional orthogonal group _
B,y and the exceptional group @z s We notice how we can go from one

=

root to another by reflection.




X3) pg LY
ol N
. N3
R x(=3)
Fig. 6: The root diagram for sU, . Fig. 7: The root diagram for B, .

"i *zm

Xt = xi) |

Fig. 8: The root diagram for G-‘2 .

The root diagrams provide some information about N“ o ‘This

|
|

exists only when p(a) +r(B) is a root, so for the SU, group N,

does not exist but Nta does. In listing the N's we agree to go
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counter-clockwise so in the 333 case we shall not put down H'S' s which is

Just the negative of N, : " We therefore have the following:

SUTJ : W g » N, y—2 * N, =1 2 = e - =2 * . 3=3

Bz : N"’ 'Y H“‘ s m' y=2 2 m} 9 =3 ? mz,—l ’ N'Z,"G
E&,-r ’ m.s,-z o ms,—a e N?’,-3 . N"':-S . NT_"_‘

G, B.s B,s N_.o, N,’._z » m;,-s ’ Hl,-s g mz,c 4
N"2,—.5 " mz,-d . m.s,s = ,NS,-Z . N3"5 i
m:‘a,-e ' E‘;_;s ’ N#,-& # m-',"ﬂ ’ NS;-" 2 m-’s“’ ¢
NS’-G ’ N‘," ’ m‘," 5 m-n’-‘s 5 ﬁ-' P e N-' i d &
m—z,-o . N-\s,-e %

We saw that, when we have roots from r(a) - k' x(B) to

-E(a) * kz:(ﬁ) ’
N, = #Vizk (' 1)} |z@) .

With regard to the ambiguity of sign we note that the relations

N&' = n"_c_' = n_a_"a -nr_"_, (439)

do not link r(a) and r(B) with any r(y) in the same half-plane.
So we can choose the # and =~ signs independently for every pair of
roots in the half-plane whose sum is a root. For Sﬂs we have only
one choice because only r(1) + z(3) is acceptable. 'Having de-

termined Nts the others will come from (4.9) and let us remark that

in the subscripts 1 +3 =2 . Since neither z(1) = z(3) nor




e

. 23(3) is a root, k' =0 and k =1 and choosing the positive

:-:= the square root we have

N, = V@) lzOG)N = v(1/6) .

13
e L T N SR RS S R G e S 50T * = For the Ez-.
i_ve have two choices of sign and for @2 we have five choices. We

see that we can arrive at the following results:

E = . ’ 2
L et P i T it T g, & AN

J’% R R P RS T e s

"
=
i
=
(]
=
It
P
=
"
]
=
L
=

= N = - = - = =N = K =
2’-4 3,5 3,""2 -"-2 4,—&
= -N = N = =N = N N B =
"‘6 4’* 8,-f 5’-‘ . 6'-" ’ ‘,,-‘
= N -N = =N N :
w1, ’-3 w1 ’—6 "'2,""6 =3 ’Li

P :
J-'_G >R, = *Et,-s - -ms,-t sz m.s',-éa » H.s,-s st m—:,—s 2

3 values of N,, and values of (r,(a), r,(2)) shom im figures 6, 7, 8
specify the commutation relations
&, Eal = rf-._(“") E, » [Ea’ R l = rf.(&) B s 1=1,2)

(B, Eﬁ] = N B
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We notice that the order of a Lie group is the rank 2 plus the number of

roots: for example, in the SIIJ3 group the Lie operators are H" ’ H-z '

E , E , E’a: » B, 5 E_ B-s so that the order is 8 . Similarly

the order of 3’2 is 10 and the order of G, is 14 . To express this

differently: the regular representation of SU, is eight-dimensional, that

of B“-z is ten-dimensional, and that of G, is fourteen~dimensional.



CHAPTER YV

Weights.

In discussing Lie algebras it was mentioned that one often represents

the operators I'A by square matrices. In /(-dimensional representation

' and Ha will be matﬁces of £ rows and ,€ columnse. Since H'

2
mnents which is an eigenvector of both H, and H, . Hence

B commte, it will be possible to find & vector ¥ with £ com-

By = 2%, LR

we may regard (m' . mz) as a vector @ in two-dimensional space -
the same space as that of r(a) , £(B) 5 eee ¢ TWe call g the weight
y o A weight is simple, if it belongs to only one eigenvector.

It may be seen immediately that the weight of the vector H ¥ is B,
‘because

E (B ¥) = EH YV =m B ¥

B (R, ¥) = mzlﬂi* .

sover, since

&, 8]l = r,®) 5,

e have

CEEY = EEYV + @RV = (mer()E¥

LEV = (m «r,))E ¥,



so B ¥ is an eigenvector with weight @ + r(a) , unless E, ¥ vanishes,
Similarly E_ ¥ is an eigenvector with weight m -x(a) , unless I |
vanishes. The E&'s} are displacement operators in the sense that, when
they act on the Jf-dimensional eigenvectors of the Bi's s they produce
other eigenvectors with new weights. They are a generslization to two

dimensions of the raising and lowering operators T % SH; .

+* H
In a representation where both H and H , are diagonal their common
eigenvectors may be written as

1 0 0

0 1 0
0 0 1
¥, Wk Qo Jegis s 0 ;o oW 0 Viesk e

If E, carries v, into an eigenvector with the same weight eas v,
and perhaps makes other changes, we may represent it by the matrix

as shown with k, real and positive. Since E » carries A into

o 0 L] L L ] 0 1 Ld L ] -
E‘ = k' 1 0 . ® L B"‘ﬂ = ka 0 0 . . e

L]
-
L
L
.
L]
]
L]
-
.
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~ an eigenvector with the same weight as. v, , we can represent it as shown

with k, real and positive. We can teke the constant multiplier in each

| case to be V(k, lcz) . Each is then the transpose of the other and, since

|
. the elements are real ’

|
.- L
| B-‘ = Ea . (5.1)

We have seen that by operating with Ea we raise the weight of the
eigenvector by xr(a) « The operators H and H, being represented by
| j-dimensional matrices have f eigenvalues, so the number of possible
weights is finite. Thus a state Y(M) with weight M will be reached
such that E ¥(M) vanishes. We suppose VY(M) to be normalized and we
may put

B, v = ev( -x(e)),

yhere a is a real constant introduced in order to have Y(M - r(a))
normalized. Since

E,8,] = r,@)E = (g).H,
and since

(V@) [, B_1v() = ") E, B, vQ)) =

& (M - r(e)) y(i - z(a)) = &°,

= (') % B v())

W) @) B y@) = (@ - 1 v v = (&) . B,

we deduce that

a® = (gla) . X) . (5.2)

We investigate how the weight vectors @m may be systematically

related to the root vectors z(a) . We write
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Ey@ =noy@, E¥@ = @

By =0 ey, - E, t@ = & v(@-z0).

By raising and lowering the wieghts we arrive at integers j and j  ,

positive or zero, such that '
Ef@wiz@) =0, B _y@-ix0) =o0,

which yield

P S ey 0, ¢ L P g (5.3)
The relation o '
(8, B, -E_ E)y@ = (@) . D@ = o) .2k
gives

B, ay@-z) - B, o ¥@4x@) = () .8 i@

) ¥® = &) g VY@ = &) .0 i@,
dm_t(a) Oi ¥ a'acn-r.(a) ek (E(a) QE) o

We replace m successively by m + jr(@) , @+ (1) @) 4 «ce

B - j" x(@) and using (5.3) obtain

0 = G (@) heU- @) = ~ &®)w) - ilz@)®

()2 e @) =~ @@ = (-0lzE)

Sawic (@) %+( - X (@) Ge+(

L] *

%@_-—(J ""')C(“)(i!’."j 'L(“) - 0 = = (z@).g) » jf[-l‘(“)lz ’

so that on summing
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0 = = (J#i"+1) (@)ap) + Z(3+3"#1) (3°-3) lg@)?

2 (@) . .m) -
= J = J E (50‘I-)
lo(@)l*
an integer. Moreover
2 (z(@) . )
b ; RN (5.5)
l@)I® '

which is a weight since it lies on the sequence between g - j° p(a)
ad p+Jjp@) . The weights may be found by calculating the ﬁoasi‘ble
values of m that satisfy (5.4) for the different g(z) 's in the

root dicgram. Equation (5.5) shows that we may go from one weight to
another by reflecting g in a line perpendicular to any root g(e) ,
Just as was illustrated in Pigure 5 for the reflection of root vectors.

- Such reflections are called Weyl reflections and the weights so related

ere called equivalent weights.
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CSHAPTER ¥I:

Weight Diagrams

We apply the foregoing theorems to the construction of weight
diagrams, that is, diagrams on which points with coordinates (m,, m, )

are plotted. We examine in turn the SI]".3 % Bz ’ G-é groups.

S0, _Group.
Figure 6 shows that the roots are

)s

vl B

D = 5,0, 2 = (Fz.3), ) = (-5,
S0

20, foys o), =) . (003, 3) ; <R e («3.3) .

|z(1)I? |z(2)]® lz(3)I?
Thus the theorem that 2(2':5(“)) is an integer for la Ty 22 5
le(@)]? : g

gives 2V3 m = integer, V3 m, #3m, =integer, -V3im + 3m, = integer.
Since 23 m # ém, are even integers,
we may write

23 m = Aap ém, = A=p (A, p integers)

B=2G, ) eu®@, 1), (6)

For the purpose of obtaining equivalent weights:

we draw the lines perpendicular to the root Fig. 9. The lines perpen-

vectorse We then take different sets of dicular to the root vectors
of Sﬂfs -
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lues of the integers A and p in L
| A=0, p=0.

The weight m is zero and reflections give nothing else. There is

ly one weight and we say that we have the one-dimensional representation
;_)(o, 0). ‘

JA =1, p =0.

. One weight is ( 1/_'2 : %) and on reflection
obtain (-?,%) and (O, -%) « We see

at we can go from any weight to another by add- o

L

an z(d‘.). We have three wave functions,

genfunctions of H, and H, , related to the V3
ge weights. The matrices representing the

' lacement operators will therefore be three-

-1+
2
sional, as will be those representing Ht
' Fig. 10. Th i
d H . Hence we have a three-dimensional s e(:; s
. diagram for D‘°/(1,0)
presentation of the Lie operators which we de- of SU . ‘
: ' s |
te by D(s)(1, -3

1“'2..

,7‘)1-"0 ip =1, |
' » 3
~ This is the three-dimensional representation
':)(0, 1) whose weight diagram is obtained from

of D(3)(1, 0) by reflection in the m - ‘ %._m—‘
ds. The weights of n(’)(o, 1) have minus ek &

) =" ®
[
values for D(s)(1 « O

: Two representations are said to bé é uivalent, Fig. 11. The weight

v'the matrices representing the operators are re- diagram of D(s)(o,'l)

by a similarity transformation. Such a of Smls *
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transformation leaves eigenvalues unaltered, because if

Vv = ay
and
P s wLs ., S8 o« SE .
it follows that
LG y) = LSy = 87ay = a(87Y) .

Since the eigenvalues of H, and H, are different for D(s)(‘l, 0)
and D(s)(o, 1) , these representations are inequivalent. Another

way of stating this is that eigenfunctions in one representation
\If.:", \lfa' s ese cannot be expressed in terms of those in the other

¥, s ¥, 5 +oo by the linear relation

’

where b is a non=-singular matrix. Otherwise by taking

-t
S ab

ab

we are back to the case of equivalent representations.

M,
iv) A=2, p=0. : % .
We have a weight ( % " % ) , by reflection
1 1 A
- S 3 . A s A _.L
( 7503 ) and, since the adjacent weights can g
differ only by the vector g(1) i.e. (_713 - i | EpE
there must be a weight (O, '13') . From this we
1 1 ;
get ( #=— , = > ) by reflection and from .
" 203 ¥ 3t
( T . ) we get (0, - - ) by reflection. Pie. 12, The welgil
We have the slx-dimensional representation D(')(Z 0). diagram for D(‘)(z,o)

of SU, e
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V) l = O ] i-l- = 2 .
This is D(s)(0,2). The weight diagram is the reflection in the
m, -axis of the previous one, and the two representations are in-

equivalent.

Ti)l=1,p.=1.

We have a weight ( ,71- , 0) and on

- 1 5
reflecting we obtain ( + W3 t3 ) m,
and(-ng,o). There is also a é 1 s
weight at the origin. Actually we

S 4 bl 1 H b..._._
shall later obtain two independent wave = 2 By
functions in this representation with e g | ®
-
zero weight; zero weight is not simple.
8 A

Thus we have D( )(1 ,1). It is the Fig. 13. The WEight di&gram

8
only eight-dimensional representation, for D( )(1 »1) of U, .
so it is the regular representation

of the group.

Bi) A=3, p=0, m,
There is a weight (ﬂ,l) and
2 2 o © .;...'- e e

proceeding as before we obtain a total of
ten weights as shown in Figure 14, so the L t J_ _‘._ ,& m,

(10) gkl
representation is D {50)s oo

3

Fig. 14. The weight diagram
for D('o)(3,0) of SU: .



wHit) Xy, gal .
This is the representation D('O)(O, 3) inequivalent to the preceding

one. Phe weight diagram is the reflection in the m -axis of Figure 1L,

1

An exhaustive study of the properties of the weight diagrams for the
SH& group has been made by Gasiorowicz(’)o

Before finding weight diagrams for the other Lie groups of rank two
we shall indicate how some of the above weight diagrams may be used to
classify elementary particles and resonances. We recall the notion of
isospin doublet introduced by Heisenberg to describe charge exchange
forces between the protons and neutrons in a nucleus. The proton and
neutron are regarded as two different isospin states of the nucléon; in
other respects they are identical. They have the same mechanical spin,
the same parity and, if we neglect the weaker electromégnetic forcesa the
same mass. Similarly when we place particles in a supermultiplet we hmﬂyi
that they all have the same spin and parity, an& that they would have the "
same mass but for some symmetry-breaking interaction that upsets the in-
variance property of the group in a way analogous to the violation of the
charge independence of nuclear forces by the electromagnetic interaction.
Teking into account such a symmetry-breaking interaction Okubo(z) has
given for the SU& group the fermion mass formula

E wa+dy +c{';_:f STRE YT (6.2)

1« 8. Gasiorowicz, A Simple Method in the Analysis of SU, (Argonne

Naetional Laboratory - 6729, June 1963),

2. 8. Okubo, Prog. Theor. Phys. 27, 949 (1962).
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where M is the mass, Y the hypercharge, I +the isospinand a ,b , ¢
are independent of Y and I but depend on the representation.

The D(s)('l, 0) weight diagram

E 3

suggests the Sakata model("), in which ; L
® -~ .P

the fundamental constituents are p , n ,
L and their antiparticles p , n 4 A &
The other elementary particles are ex-

pressed as bound states of these as

-3
follows: "

* - = - 0 L N R ey
T =pn, ® =pn, =X =7§(PP nn), Fig. 15. The (I,,Y) diagram
M .-.;!2- (pp#n), for sakatons.

g,

K-*"P{.: Ko=1u-’ K-"'*l-is K =£ﬁ-9

1" =p, =7 =pm, Z° =;32-(Lp§-nﬁ)t\,
| E’O = EM., 2 =I;\A.
The sekatons p 4, n , A have the same spin 2 and positive parity.
e may identify their (Is, Y) velues with the weights of D(a)(‘I , 0)
by writing
n =j3r;, " iow --;-4»%1. (6.3)

| 2

' Since the antiparticles have the opposite I, and Y eigenvalues,

W may place them on the weight diagram of D(’)(o,1) .
l.

3. S. Sakata, Prog, Theor, Phys. 16, 686 (1956); for an exposition of
later developments vide Suppl. Prog. Theor. Phys. 19 (1961).
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The DY “(1, 1) weight diagram n(ke) | b (KT)
accommnodates the baryon octet and the
V. [
meson octet, if we put o, "1}: .m'\)_‘{' L

L £ T
m = ‘713 IS » mz = % Y (6.)4-) 2[“", Z(‘ﬂ"’) f‘"frri)

e

We combine Figures 1 and 2 placing the =A(x) ‘5_0(‘,23)

in brackets. Th ;
mesons in brackets e baryons have Fig. 16. The baryon (meson)

all spin Z and positive parity, which octet.
we denote. by zZ e s and the mesons have
spin and parity assignment O - . There

is also an incomplete baryon resonance g + octet and a well-established vector

meson resonance 1 - nonet as shown in Figure 17 with the relations (6.4)

(‘Ra‘% K. . y ! k**- .

obeyed. It is thought that the nonet 2qi (E

is a combination of the SU, singlet and TR . o K

o —T

octet, the ®° with mass 783 MeV and ———— e e
o ; 291 2 -t ¢ [o% 0
the ¢  with mass 1020 MeV belonging | = | K*°

to both representations. s ;
Fig. 17. The 1-meson reson-

In the D(’o)(3:0) weight diagram ance nonet.

we substitute from (6.4) and find a % ® - e : N
rieV) :
decuplet picture as shown in Figure 18. A- V4 At ATt
1238 » ks |+ ¢ -
A set of nine resonances, the &4 , Y* , & - »¥° e+ -
138 A AR i .
2% with charge and mass as indicated . e SR o SRBaE Bt T
was known, so one suspected the exist- g3 e - S0
ence of an isospin singlet with hyper- 16775 -+

- d therefore strangeness - 3.
charge and therefore s ge 3 Fig. 18. The g--»decuplet.

Moreover the coefficients a, b, ¢ in (6.2)



could be determined from the masses of the resonances, and one could deduce
the mass of the missing particle. A particle answering to its description

(+)

called 1 was found by Barnes and his collaborators in the process

gl R UL SR GV i P

The roots: shown in Figure 7 are

) = Gz,0, (2= Gz.yp, =0 = (077,

) = (-77.7¢)

2 (@ . x@))
and the theorem that ; T is an integer gives
[ 2(e)]
2 V6 m, = integer, V6 m + V6 m, = dinteger,
2 V6 m, = integer, - '\fém' + V6 m, = integer.

These are satisfied, if

2V6m = ocwd, 2v6m, = ¢c-4d
iwith ¢ , d integers. Hence '
2vém = (c-a) (1, 1) + 2a(1, 0)

B =3z 0,1 + 0,0,

b V. E. Barnes et al., Phys. Rev. Lett. 12, 204 (1964).




where A and u are integers.

just the root vectors themselves.

i) 1-=0,l.l=0.

- 52-.

The lines through which we reflect are

This is the one-dimensional repres-

entation D(’)(0,0) with zero weight.

ii) A=l ,p=0,

One weight is (E'!-g o 513) and by

reflection we obtain altogether

( 3-"-31"6' 2 ;"-?1."3 ) , so we have D(4)(1,0).

i41) X =20 ,p =1 ,

One weight is ( ?16 » 0) and on

reflecting we get (O, ;;l-g e ;r% 50)

(Os --?_% )-

If we displace ( -7_% s 0) by

r(1) we arrive at the origin, so we have

a five-dimensional representation D(s)(0,1).

iV) 152"130.

One weight is (7% ’ -713) and by

reflection wel obtain ( = 713- ’

1 %1 - 4
=ges~32)s Cops-
the weights can differ from each other only

by a root vector, we must have in addition

weignts at (0, 72) , (- ¢ ,0) , (0, - 7).

1
U3

1
V6

) .

X5

Since

( ;13 » 0) 5, (0, 0) ¢« The weight at the

Fig. 19.

ml.
¢ | - @
g
I i
- -'-' m‘
e
e + 0

The weight diagram

for D(‘)(1,o) of B, .

-2
Lo
Y&
& e s
£
% 5
4

Figo 20.

The weight diagram

for n(s)(o,1) of B, «

(LD
? L &
Y6
ele
3 .I' ™,
Yb
e ® o

Fig. 2%,

The weight diagram

for n('°)(2,o) of B, .
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origin is double, since we shall later obtain two independent wave
functions with zero weight. We thus have a ten-dimensional represent-
ation D(' °_)(2,PO)._ | It is the regular representation of the group.
The D(‘ ).('1, 0) weight diagram may be employed to depict the
'1apt'on§.' _I_iheée.'}::artic'les have spin %z and their parilty.does not
inte;'t;est-'us s Since interactions in which leptons alone take part are
meak and therefore parity is not conserved. We put muon displacement
=v6 m, , charge dispiacement =v6 m, , where muon and charge displace-

ment have been defined in Chapter I, and o'b'_bain Figure 3 for the leptons.

A group intimately related to B, is the symplectic group C, .
The root and weight diagrams are the same as those of 32 but turned

through an angle =/k .

l
Ea Group.
The weight in this case is
vy 1
= Maz,0en(Z, D, w
drew the weight diagrams for D(7)(1 ,0)

and n("’)(o,1). The latter is the

regular representation.

Fig. 22. The weight diagram for
D(")(1,o) of G, .
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The seven—-dimensional representation
can describe the seven baryons
(p, %, 2% 2%, z7, 2% 287) with
; M 1
m’ = Tj I3 ? m2 = Ll. Y .

The A particle is assigned to the one-

dimensional representation D(' )('O, o) .

The seven mesons (K', K°, =%, x°, =™, k%, KX)
are likewise referred to D(7)(1 B) » " The

scheme would allow opposite parities for I

Fig. 23. The weight
sl & . diagram for D(”)(O,‘l)

of @2 "
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CEAPTER VII:

Product: Representations

When dealing with the 3132 group we saw that the decomposition of the
- product of two doublet spin states

g ) | )l
may be represented geometrically as im Figure 4. We shall explaim now how
weight diagrams may be used to give the decomposition of the product of two
representations, at least in some simpler but important casese.

Let |la> , |b"> be normalised ket vectors for two representations of
the same Lie group.l The two representations may be the same or different.
The product: |Ea.>l‘b' > is treated mathematically like the product of the spin
wave functions of ﬁwo electrons. Thus |:b'>] a> 1is not the same as
a3 b®> unless the two representations are the same and b’ =& . More-
over {:he effect of applying an operator O is as follows: |

ga> |[b’> = 0la>.b’> #]a>.0p"> .

In pa.r'l:iculax" : '
H"_I'a>|b'> = mi(a).|a>]b'> -ﬁ--laan ®)v’>
= (m(a) #m (")) lesr’> ,
that is to say, the weight of | a>|b’> is the vectorial sum of the
Seights of |a> and 8> . '

As an illustration we' examine the product of the representations

D(’)('l, 0) and n(’)(o, 1) of SU, + The weight diagrams are shown in

Figures 10 and 11. If we displace the weight diagram of _D(")(’I, 0) by
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the weight (0, 1) we obtain the weights

(?s%): ('?:%)s (030)\-

On displacing successively by the three

weights: of D(3)CO, 1) we obtain the

nine weights shown in Figure 24. On

referring to Figure 13 we see that we have

 all the weights of n(")(1, 1) plus one

more at the origin. This is just the
Fige 24. The we1?ht diagram

weight of D(’)(O, 0) , so we have the ) (3),.,
. for the product D‘"/(1,0)ed'’ (0,

decomposition of
(3)(1, 0) & n(’)(o 1) = p{t )(o 0) & D(;)(1, 1 L)
The weight diagram for D( )(1, 1) cannot itself be decomposed into
diagrams of lower dimensionality. We say that D(a)(1, 1) is an
irreducibile representation of SB; and (7.1) gives the decomposition
of the product of D )(1, 0) and 300 Y A Cieenthie
representations. The method can readily be extended to the product
of three representations and one may, for example, obtain the decom-
position
28)(1,00@ ¢ )(1,0) ®2¢(1,0) =
nf')(o,o)e;r}(")(1,1):e D(B)(‘l,‘l) epn("°)(5,o) e LLe)"
As a second illustration we consider the product of the BL
representation D(f)(1, 0) by itself. Displacing the weight diagram
of Figure 19 with respect to its own four weights we obtain the sixteen

weights shown in Figure 25. Ten of these are accounted for in Figure 21,
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",

° Aol ’
five more in Figure 20 and the remaining \

» o [
‘zero weight belongs to D(")(O, 0). - - : gD

A\

In this way we have decomposed the

@ ele L
product into the sum of irreducible

representations as followss -
‘ Fig. 25. The weight diagram for

the product D*)(1,0)00™) of B,.
a“')u,o):- @n(‘)(1,o) = p{*)0,0) ® D(s)(on)en(”)(z,o) s {1.8)

The simplest product representation in the Gz group is

'(’_)(1, 0) ® D(")(‘I, 0) and, since this contains forty-nine weights,
the geometrical method is not very helpful., Tsbles showing the

educible representation arising from product representations for the
lie groups of rank 2 are to be found in the review article of Behrends,
reitlein, Fronsdal and Le»e(f ).

The decomposition of product representations of SUJ raises the
s__tiqn of what is the f‘un;ltiamenta.l representation for strongly inter-
acting particles, on which all the representations classifying the par-
ticles are based. We have seen that the boson meson multiplets are the |
? glet and the octet, and that the fermion baryon multiplets are the
otet and the decuplet, In addition there is a singlet = - A-resonance
of mass 1@5 MeV denoted by Yo"l e According to (7.1) the boson mul-

iplets come from the product D(")(1, 0) ® n(’)(o,n, and according to

R. E. Behrends, J. Dreitlein, C. Fronsdal and W. Lee, Rev. Mod.Phys.
3y 1 (1962).
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(7.2) the baryon multiplets come from the product of three D(s)(1, 0).
Thus we are led to regard D(s)(‘l, 0) and D(")(o, 1) as the fundamental
representations for hadrons.

A second question now arises of how to interpret physically the par-
ticles in the fundamental representations. We have seen that for all meson
and baryon supermultiplets we must express (I.3 s Y) in terms of (m' v mz)
by

I =Yim,, Y = 2m .
By referring to (6.3) we see that the second relation is not obeyed by
sakatons, so that the particles are not just p , n, A . Let us denote
by q the particles of the D(a)(‘!, 0) representation, so that the anti-
particles q having opposite values of I, and Y are related to D(")(O,ﬂ.
Clearly these must have spim: z s since a combination of two of them gives
a boson of spint O or 1 and a combination of three of them gives a baryon
with spin Z or % . The mesons are formed from qg and the baryons

from qqg , so g must have baryon number 1/3 . The above relations and

3
give for the q 's in the weight diagram

position I‘3 b4 Q

(% s %) 1/2 1/% 2/%
(-2.) Y /3 - 1/5
(0, - %) 0 - 2/3 -1/5 .

These hypothetical particles with fractional charge and fractional
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baryon number are called gga.rks(z) or a.ces('s). Experiments at M‘(4) and

at Brookhaven(i) have failed to reveal their existence. If we wish to

safeguard integral charge, we can alter (7.4) to

on 1
Q = I, +%7Y +3C,

where C dis called the triality or supercharge and has the values 1 or -2 .

It is zero for physical particles.

24

ke

M. Gell-Mann, Physics Letters 8, 214 (1964).

G. Zweig, PapewRow. “ERN Repork 81 €2| Hhyoiy eyiaf
ok Ll (tqen).

D. R. 0. Morrison, Physics Letters 9, 199 (1964); H. Bingham, M.

Dickenson, R. Diebold, W, Koch, D. W. G. Leith, M. Nikolic, B. Ronne,
R. Huson, P. Musset and J. J. Veillet, ibid. 9, 201 (196%4.).

L. B. Leipuner, W. T. Chu, R. C. Lars&n and R. K. Adair, Phys. Rev. Lett.
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CHAPTER ) & 4y & O

Explicit Representation of the SU& Group

Three-Dimensional Representation

We wish to set up explicit re-

m
presentations of the operators and wave 2
functions that occur in the algebra of

(3) ”3&)1> 14 li.s.i")
the SU, group. We start with D'°/(1,0) e
assigning to the weights i — '
36

i ¥ 1
(_2"3) s ("g:g) ’ (0: "3) the
normalized and mutually orthogonal ket
vectors _5‘ 1333, 3>
[0, 1>, {3}, > , |{3, 3,

respectively. These we may also write

¥, Wz ’ *3 Fige 26. The ket vectors
for the D(a)(1,0) repres-

or
entation of SU; "
1 0 0
0 $ 1 s 0
0 0 1 .

They are the wave functions of quarks.

Since H , H2 give the first, second components of the weights

1 o B 10" "0
v 1
B = 2|0 -1 o , B o=zl 0 9 0 ;
5 o8 a 0 0. -2
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The Er-operator acting on a ket of weight p gives a state of weight

n+x(1),ie. o+ C%; , 0) if it exists; otherwise it gives zero.

Hence

E |{#, =0, E |{3,2 =const. {3, 1, Bl ,>»=0,

E_|{3, 1> = const. |{3}, 2>, E_l|{3,2»=0, E_|I{3},>»=0.

Let us write
B, {3, > = cli3, 2>

and, since E {3}, 1> vanishes, equation (5.2) gives
2 {}j%? S
c = 3 = g °

Since by (5.1) B = E

0 0 0 - 4. -9
E, = 2¥(1/6)| 1 o0 o - E, = +Y(1/6) 6 9 0

LR Gl 900
and similarly

6.0 b o SR
E, = 3..{(1/6) 0.0 0 5 E, = +vV(1/6) /0¥ 0

0 0 ' AR O ¢

B0 .0 0O 0 O©
E, = * Y(1/6)] o 0 0O - E, = & v(1/6) B8 Bak

R S e 407 .

The ambiguity in sign may be cleared up by employing the relation

{E',E’] = N, E = + ¥Y(1/6) E,

according to (4.10)s This is satisfied by taking the plus sign in every
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case. One may verify that the commutation relations (3. 13) are obeyed.

In the D(’)(O, 1) representation
M 2

we assign to the weights (- ?? ’ -'1r s O ; : &4 ksgﬂ 3>
] 'y 1 | | e 0 :
{3 g 1w (0> :l{j 922 .(1) ’ ' : :
. 0 e 0 7‘3/‘ e m,
13 :
317 ,3>= 0) sy respectively. To . ot "o
: ., (1 133343y t : 1t 2

avoid confusion we put two primes on the :
Fig. 27. The ket vectors

kets and Lie operators, and by our previcus for the D(s)(0,1) repres-

method obtain . entation Of SUE! .
1 0 0 : 1 0 0
e '( s 1
' % e .g'a R T R\ im 01,0
‘ 0 =9 g . F moy

[}
o
OOCOo

g /000 ooo) ;{0 ©
E""=- 1 00 E”,-_--\Fooo_ =-J'oo
g J%ooo’ . 81 0 0) & \o

\Fo1o s o oA : (0 0 0
E == 000}, B "= 0 09 E‘a—_\[OO*&.
e 8\o 0 o = 8lo 0 o ol ST

We notice that each matrix is minus the transpose of that representing tha.
corresponding unprimed operator, and that every matrix ia traceless.

The matrix representatives of the E-operatofs.are clearly"nbt.hérmit-
ian but we can easily construct linear combinations of them that are

hermitian and traceless, viz,
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2y L

E + E 3

3 mo -1(8 “= B
We shall henceforth understand by L, the hermitian representatives of

the 6pe£atofs of the“ SUJ: group. We shall still sometimes find it con-
(3)(0

venient to use primes for the operators of the D ’ 1) representation,
and we see that LA" is minus‘the transpose of LA .

For the SU; gfoup the infinitesimal transformation of an isospinor
was

£ w1 w Late

or more explicitly

p b A b
where 'rA is hermitian and traceless and eA is real. We now consider
the transformation
v b A b
¥, = 16, « & L Clues (8.1)

where e* isréal, @ = 1,2, 5 ond A russfeom'd %0 '8 . If we

transform *a' , We get

. b TESNES
et (6, =1e 1) ¥t

b | | (8.2)
A a
where we use the hermiticity of LA . We had that
+sb a
Lo il T B

so the previous equetion may be expressed as

b K Beub
! "
*a' =(5¢ *ieLM)'I"b*’
which is just (8.1) with L, replaced by L“A . Thus, when the Lie
operators of 'D(J)(1, 0) give the infinitesimal transformation of ¥,



Bl

the Lie operators of D(’)(o, 1) give the infinitesimal transformation of
the conjugate complex ¥,* . For this reason we shall replace ‘
[{3°°, a> vy “5}*, a>, Tcafirst order in the €'s ecquations (8.1)
and (8.2) give :

¢ s b A a c B ¢
Yol ¥, mG A N ) (B e L€ LY EEY

A AR S L R MR T A

¥* Y,

a

e

in other words, ¥, *V¥, + ¥, *¥_  « V,* V., is invariant under the
inTinitesimal transformations. Accordingly we have an infinitesimal
unitary group in three dimensions. The deteruinant of the infinitesimal

troansformation matrix is

1+ 16 Ly ! T o Wb 3 o gt
ieh LA:' tha gk LA; 1 &P LM”'
i et LA_'S' i tsA LA; 1 w4 LA;
= 1 w g2 w1t 00 %S
A1 A2 A

= 1 + i eA tr LA + eo e 1

to a first approximation, and the infinitesimal group is unimodular. By
iteration we find that the finite transformations

- eLe.ALA* s .. ¥ - e'-wALA v
constitute a unimoduler unitary group in three dimensions, which for this
reason is called SU_._, . .

These consideretions may serve as a preparation for the introduction

of a tensor algebra for the three-dimensional representation of the group.
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We define a covariant vector as a triad (¢‘, ¢2, ¢3) that transforms

like (¥,, ¥, wa) ; that is to say, the infinitesimal transformation is

. b Ao =
¢, = (5, « 1€ B 109

We say that (x', 12, xs) is a contravariant vector, if xa ¢, 1is in-
variant. Then the infinitesimal transformation of x‘ must be

v A b
X = (8% - 1 LMa)x :

For the three-dimensional representation of SU; the conjugate complex
of a covariant vector is a contravariant vector but this is not generally
true for other Lie groups or for other representations of SU; « Ve
shall often write rfﬁl* g &> as ¢a .

When drawing weight diagrams we proved that D(s)(1, 0) and D(s)(0,1)
are inequivalent representations. Thus it is not possible to express ¥
as a linear combination of the ¢,'s and vice versa; there exists no
metrical tensor hab that would enable us to raise and lower indices
through a relation like ¢, = h , xb o While we have no metrical ten-

sor, we do have invariants e.g. xa ¢h « Having defined covariant and

Cese

contravariant veotors we can define a tensor tab as a set of numbers

that transform like Wc ib *c cee wd.*e voe o

For future reference we write down the effect of operating with the
H's and the E's on {3} , a> and |{3}%, a> . We shall not use
the two primes for H and E because there is no longer danger of ambigu=-

ity. On employing the explicit representations for the operators and the

kets we see that the only non-vanishing results are
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B3, = 21,5, & 131, = - %2 |13,

B3, = g3, 5li3,>=21{3,>, Bl{3,5=--1

]

1
ol b
=
-
v

Bliz,2 =gdisl,, B3, =3, 5li3,» =M.
B_113, =32, E_l13,5 = #di3,5, B l13,> =43,
Bl = -Risan, m5ligae - - TE LS

H|{3}%,1> = -%I'!si*,_», Bl{*2 = - iz, B33 =Y,
- 713>, BB = - Hi3%5, B (R0 =313

[13%2> ==, B [{3%3 =-Fl{3%,15, 5_|Bl*,3 =-Fl(3
(8.4)

E [{3}*:1>

1l

Eight-Dimensional Representation

Equation (7.1) shows that the product wave functions I{}}*,w]{ 3 } s>

belong to D(')(O, 0) or to D(e)(1, 1) « We shall now face the problem

of constructing the wave functions for the Al *
; 2>
eight~ and one-dimensional cases. We 922 1{93,
% L Eq
assign the ket vectors r[B}, & to the i§¥hu> IRe3,| J35,8> 1563, 1>
O L i k
: (a) ; T e L "
weights of DV /(1, 1) as shown in a2 A
Fig. 28. Now Figs. 26 and 27 show a + P
1583, &> 1{2%, 6>
that the weight of |{8},1> is the _
vectorial sum of the weights of ]i32,1> Fig. 28. The ket vectors

for the D(s)(‘l +1) represent-
ation of SUs .

and |{3}*,2> , so we put
1{8t,1> = |3 }%,>]{31,1> . From
these we construct the other |{8} ,A> 's by successive applications of the

displacement operators. If we operate with E.s on |[8} s1> , we obtain



oo

a wave function with weight ( % » 0) # x(3) ; that is to say, we have
a multiple of |{8,> .

Bl{8,1> = B|{3*2|{3,1>

Bl{F02.(3 0 « 13,2513,

= -7 135,33, |
by (8.4) « 1In'order to have |{8 ,2> normalized to unity we write
{8 ,> = [{3*>[{3,»> ,
so that
Bl{8,> = -z lig, > .
To obtain |{8 ,3 we operate withi E_ on |{8),> , which gives
B l{8,> = fl8},> mw {8, = [{3%5]i3,2 .
Proceeding in this way we obtain
(8,5 = -72li@ e wmin (8,4 ={F50l(3,>
E {800 = -7{8,5 with |{8,5 =[{3%5]{3,>
Eli8,> = -7 18,6 wmn (8,6 =]{3%2](3,> .
We see that any two kets are orthogonal, e.g.
< { 8 {8, = <2,{3}<1,{3}*E3)*,>]( 3,5
= <2,{3|{3,»> = 0.
This is as it should be, since they are members of a basic set of eigen-
vectors.e We must next find the kets of zero weight,
18,00 = -7di3s2li3,> s i3 neli3d,e
Bl{8,> = -7i3»l(3,> + i35,
lig,6 = -gdid%>(3.,3 +» Hi352(3,> .

We have two, and ‘only two,-linearly independent ke.‘bs. We write _
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l{8,» = 75 ({3*,051{3, - l3+2](3,2),
the factor é%- being inserted for normalization, and
(8,8 = p (l{3*2]{3,> =|{3*3]|{3},3) +
»q (|{3,3[(3,» - [{3*415]{3,5) .
The condition that this be orthogonal to |{8],7» gives q = =p and
the normalized ket is thus
(8], = Fz (lid*,0l{3, +|{342(3,> - 21(343](3,>).
We may establish an eight-dimensional representation of the Lie

operators. We write

’ ; /o)

0
0 0 0
TR oy o s Sl SRRl i) g B
0 0 0
0 0 0
0 0 o}
0// 0 1

The H , Ha diagonal elements are the m , m, values as shown on
Figure 28 and can be written down immediately. To find the matrix re-
presentative of E’ we see that it produces zero except in the following
cases: .

5 l{8,> = pig,>, Elig,e = FHig,»
Bl(8,> = -7di8,6, Elig,» = -pid,n.

Thus the only non-vanishing elements of E, are

(8.5)

(2)° = <z, ) =F, B)=-F, ) =-F.



In this manner we obtain, with dots

G
"

Eﬂ.s

[

2

L
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ks

standing f'or zeros,

L -
L] L
L L]
- L
- L
- L
L -

L] L]
. L]
- L]
L L]
. -

> o . o
$ it e e
R R,
B e

o e TR
oo e
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We observe that all the matrices are traceless. We may easily verify that
the above matrices satisfy the commutation relations (3.13).

TheE,,E

_; operators effect displacements between kets with

the same mz-eigenva.lues. Equations (8.5) show that the states |[8} ' 3>
and |{8 ,> constitute an m -doublet, that {8,050, |{8,»

and |{8 ,1> form a triplet, that |{8},% and |{8 ,6 form a doublet,
and that |{8 ,8 is an m -singlet. To put this differently : H ,

E' » E_' are the operators of an STI2 group which is a subgroup of SIJ"3 .

They are not, however, elements of an invariant subalgebra because, for
example, [E , Ea] is not a linear combination of H , E , B_ .

We write ¢ A for II 8} ,A > and define a covariant vector in eight

dimensions as a set of eight numbers that transform like ¢ g We have

by b .a
¢y = Dy H{3%e|{3b> = D, "y, , (8.7)
where
oI B 0 00 0 0 0 o 1 @0
b b b b
D, =(1oo » By ={0 0 01,0 =00 k. 0 0 &
0 0 0 T 69 010 0 60
o 0 1 0 00 1 -0 0
=3 b b 1
e =<ooo . B V=lo 0 1], D, =731 0 -1 0 .
00 o oG9
¢ &, . 0
b 1
bswi 01 0
0 0 -2

according to the explicit expressions for qu e Making infinitesimal

transformations of 1’0 and ¥, in (8.7) we obtain



e b a e a o . 20 dy . c
4’.4_ B, O =T (B, FrE Loy ) ¥ ¥y

F d b a d
$rie i fae o~ I TN

Since the ¢ A's form a complete set of eigenvectors, they transform among

themselves and it is therefore possible to express the last equation as
Sl B F B
where € is real and FA is eight~dimensional. This relation

gives the infinitesimal transformation of a covariant vector. We define

: . s i A 3
. a contravaiiont eight-vector ¥~ as a set of eight numbers such that

| xg_ ¢ A is invariant under the group transformations.
Let the infinitesimal transformation of 'XA be
A A W g s
X = (65" » ie fFB)x . (8.9)
Then

i A ey c Pt B
xA¢lA=(SB\+ie¢£FB)(5A + ie GA)X Xe

A e SET Cy B
= b % ¥ L)Y X

and for x-’A o) n to be invariant we must have

i”FBC S Al ‘fFBC :
so that (8.9) is expréé.sible as
x'% = (6AB - i eF..fFBA) xB .

Having defined covariant and contravariant vectors by their infinitesimal
transformations we can, as in the three-~dimensional case, define a tensor,

Bouation (8.7) shows that DAab is eight-dimensional covariant with
respect to A , three-dimensional covariant with respect to & o and
three-dimensional contravariant with respect to b . Hence

=D§Da=trDD.'

CIN: Aa “Bb A "B



is a covariant tensor of the second rank in eight dimensions, which we
may call the metrical tensor. It is symmetric and the explicit expressions
for the D's show that its non-vanishing elements are
E1q4 ? .528 s By 9 B4 0 B, 9 Bgg s By 9 By
and that they are all equal to unity. It is not difficult to verify that

E D
& = ®w %xr
where the C's are the structure constants corresponding to the Lie
onerators D . The determinant of &R is equal to unity and one finds

that the elements of the associated tensor gAB defined by

AB gl
&ty =5y

heve thé same ﬁumerical values as €,p » 50 that 1
Bl o PN e, T St
PR N Y S
& ol AL R e S

: AB BA T ia e S e e

G Vil ST R TSR G '

With every covariont §, We can associate e contravariant xA
through the relation
g _
X' = & Xp (8.10)




e

In particular the ¢* 's are situated on

: m?.
the weight diagram as shown in Figure 29; ¢‘ : ?).5‘
i - <
the weight of qSA is the negative of the
weight of qu and, if ¢A is the ket = ¢1 ,{!59‘ *q}“
vector of a particle state, ¢° is the ket g = £ .
3
vector of the antiparticle state. On
. sccount of (8.10) the representations with & 6
¢ ¢
basis vectors gbA and qS-A' are equivalent.
llorcover the weight diagram of one is ob- Fie. 29,  The poubraxarisns

tained from that of the other by reflection ket vector for the D°(1,1)
representation of SUjz .

through the origin. We denote this reflection by R . It is not an
operation of the group because it is not expressible as a linear combination
of the Ea s

We can also associate eight-dimensional operators 0 65 ot through

the relation
A AB
0" = ¢ OB .
The Op may be the D 's and in the equation

B

D'A' = gAB DB

we understand that we take the same a , b indices for DA and DB ’

so thot

1 b b 2 b b 3 b b 4 b b

¥ . P wlg =D.sa v By =Dsa o R il

s b 5 6b .. b 7 b t P Ty
Da aDza ’ Da =D3a . Da =Dya ’ Da "Daa .

If g'f is a contravariant three-vector and M, 1s any covariant

three~vector, then (& DA'n) defined by
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(D,m) = LZE D, m,

is a covariant eight-vector. Hence for any contravariant eight-vector V'A

(E DA 'n) VA = invariant
under the SU3 group. Since (g DA'c) is a contravariant eight-vector,

(& DA'n) tz DAft) = invariant. (8.11)

One-Dimensional Representation

We lastly turn to the one-dimensional representation of the group.
It is contained in the product D(J)(O, 1) D(s)(1, 0) , so the singlet
ket vector is the sum of products of |{3}*,a> and |{3},b> . In order

to have zero weight it must be of the form

o {3 %, 15[ {3} 1> # c I3} *,2]( 3,2 « o |{3*,5]{3,5 . (8.12)

Since it is the only member of the set, the displacement operators must

amihilate it and this gives ¢ e The normalized ket is then

1113, = g5 A135,0l(3,5 «113%52]{3,> +|{3+,5](3,5) .

This we knew already. If (8.12) is annihilated by the displacement

operators Ea and the weight operators Hl. s the LA in the infinites=-
A

imal operation 1 #+ i € LA is identically zero. It follows that the

the infinitesimal transformation is the identity transformation so that

(8.12) is invariant under SU, . It is therefore a constant times e Ve

or HB}*,&)“}} s8> « A one-dimensional invarianit equation similar
a=1
to (8.11) is

(Ea Bab‘nb) g cd'rd) = invariant.

R e T



Ket Vectors for Mesons and Baryons

The ¢A are sums of products of wave functions *a representing
quarks and W‘ with opposite weights representing antiquarks. They may
therefore be interpreted as the ket vectors of the octets of the O0- or
the 1= bosons. Moreover we saw that c#e is a singlet, ¢3 and t‘,’?z ’ ¢5

and ¢é are doublets, and 4’-4 KA ¢, is a triplet. We may therefore

7
identify Dmb' *a 1Irb with A=1, 2, «esy 8, respectively, with the wave

functions of the pseudoscalar mesons

“+:K+’.Kot“axv..x-°s“:n

and with the wave functions of the vector mesons

P+ : K+ , K*° ey, g ; K*° , Po g (mo,,, ¢o) ’
where (0° , ¢°) stends for the combination of w°® and ¢° that belongs
to the octet. The singlet member of the nonet will have the wave function
|{1} ,4> , that is, %w“ ¥y -

The baryon wave functions are sums of products of three quark wave
functions that constitute an eight-vector. By drawing weight diagrams we
can easily see that

281, 0y@0() (1, 0) = 22, 0)@ P )(o, 1) .

The D(")(o, 1) ket vectors are readily found to be

.

wm (¥, - ¥, 8, veEgs (¥, -V, ¥,), wEgs G, ¥, -V, )

On applying E‘ ’ Ez ’ E‘s we obtain the only non-vanishing results

E'u=-J—%v, E2u=-\/—§w, E3v=-J—%w.

Thus (u, v, w) have the same weights and obey the same equations as

(‘#' ? 1}‘2 ’ 1#3) « We may therefore identify the two triads. Employing

the totally antisymmetric Levi Civita symbol eabc which has the value



unity for a=1 ,b=2,¢=25 we write

I A (R AR 2 )
= 715 Babc l{lb ‘#c

While there is no linear relation between \Fa and the ib's s there is
such a relation between wa and the products of *b and *c « The eight-
dimensional vector may be written as

L DAad iy o= \'!1"2 Dma o Vp Vo ¥g °

This is the sum of products of three quark wave functions and for A

running from 1 to 8 we may identify ¢ A expressed in this form with

the ket vectors of the baryons

- - P o] o] o]
3,p,m,3,a,3,2,ﬂ..



CHAPTER IX

The B_, Group

Representations of the B, Group. Ma
We base the investigation of the B, 'i“}’2> L+ Rikst>
2%
group on the four-dimensional represent-
ation, associating the fundamental co-
¢  —
™
variant four-vectors i‘h .
1 0
0 1 N <
oelidasel o, v =k = | 1w Hud, 2>
0 0
0 0 Fig. 30. The ket vectors
for the D(4)(1 ,O) repres—
0 0 e PN
?a'lﬁl-;5> 2 ¢‘a I{h-})-l->" entation of B2 .
1 0
0 1

with the weights

(o) (~smes)s (sho-zR)s (-mgs-sk),

respectively. Thus we represent H and H A as

1 0 0 0 S
D =10 b 8.1 50 %0
Hiag'lg . H2=W1z :
- P SR, R 0 0 «.1.0
0.0 =0 wd G:0: 0 =1

On referring to Figure 7 we see that E'l{lp} 91> vanishes and, if we write

E_,“ll'!sh' - 1‘:“4},2) ’



we deduce from (5.2) that

S = @) .m(1) = .
We teke k = -*ﬁf and, since E_  chifts not only Iﬁlp} s1> 40
[{u},2> but also |fa},3> to [|fud,u> , we write

090 0 0 6 10 0
o ol B G S 0 00 0
2 g‘g'oooo.‘._ : ' = TG\ gryigy
001 0 © 00 0
Similarly 7e have
E_ {8, = x’[{u} e,
where
k'* = (2(2) . @(1)) = 1/6.
We take k’ ‘equal to + 1A6 and write
| 0000 o0 0 1
o 000 0 S - 0 ao o
=3 " S 0 0 00 : =l oa00 :
1-90 0 0 60 0 0

From now cn we must be careful sbout phase factors. Tb calculate E, v
employ” the relation
[Bz, E‘_'] = N 1

where the value = J% of Na b is taken fiom (4.10), ard find

o g =¥ D 6 "0'0 D
. 0 0. Dt Q- 0+08

B, =33 |

* 0.0 0 0. % Pus P8l 4,000 ¢

0 0 0

g D C 1t O




Finally we deduce from the relati

B,2,1 = e -
that
0 0 00
. 001 1B
B, = 77 4
p 0O 0 0 O
0.:0- 0 0

From products of two four-dimensi
end one~dimensional representatio
We assign the kets for the
regular representation D(n)(E,O)
a8 shown in Figure 31. In the
product representation the point
with weight ( &g » 7% ) belongs
only to the ten-dimensional re-
presentation and its ket vector
mst be {4} ,1>|{4} ,1> in order

to have the correct weight. By

on
1
e
0.0 0 0
2 J. 0 68 0
E=Tg
i 8. 160 :
00 C 0

onal kets we can set up the ten=, five=
e

o”;o'_\',g). %@ l Ii!o&,l) 'h‘lbb \2

NS e

[{iehs > 159> | Moy, 10> \§ 10}, 2>
. L 18 ele 2
L i
Ve

&

Iiio}, e ‘t'03,6> g7 >

Figs 31« The ket vectors for the
D(io)(Z,O) representation of B, .

applying the displacement operators

we find the orthonormal set of kets as follows:

[{10} ;1> = [{ud ,15]§ad ,1> ,
{10, = [{d,>]{4,> ,
{10, = [{4 o|{nd o

{10}, = 11,3 {8, ,
{10, = F (114 ,2>1{8,% «
I{‘lO} 210> =

1100, = F5 (1 ,00l{ud 02 » 13,2002 ,1>)
1§10 00 = 75 (111}, 2o » [{2] olisd,> )
1110 ,6 =75 (118,318} 2o # |{4} 2ol{8d ,3)

1§10} ,8 = = 75 (11 15118 ;3 « [{ad, 31120 ,9)
11 o183 2 >+ {23 ,05| () o se [T 2P0 1)

18,21, « 11,3108, - 114,518 2 - {8 Jol{ad, 1) .

(9¢1)
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The |{10f s> and |{ 10} ,10» &re linearly independent mutually orthogonal
and of weight zeroe The first is obtained by displacing ]f’lO] o> along
the m -axis and the second by displacing {10} ,6> along the m_—axis.
If we had displaced [{10},% to the origin, we would have obtained

,7-15 (1110} ;9 = |{10} ,40>) and, if we had displaced |{10},7> , we would

have ottained {;-2- (1§10} ,% + {10} ,10») « Thus we have only $wo independent

Ma
kets at the origine | l 145%. 25
"V"-Z b
The five~dimensional ket vectors

plaged on the welght diagram ag showm in 13s% 3> (155> 1ish1>

: — >
Figure 32 are T o
165,15 = g5 (113,351 {8 1> = |{2] ,95] 823 ,3)
13,2 = 75 (114 2118 ,1> = |14 ,1]100 ,2) e

13,3 = 25 (14,2018 b = 1124 o] {4 ,2>) '
115 > = 75 (118,310 2> = 112 2ol (],3>) (92) gig. 52, me ke&)
115,55 =5 (14,3108, = [{8,2]{4,5 » e e
representation of B_
w [ el {3l t> = 110 415 ] (2] J00) & :
The expression for |{ 5 ,1> can contain only the products {23,151 ,%
end |{} ,3|{4} ,1> in order to have the correct weighte We write
|{3} ,1> as above in order to have it orthogonal to |{10},8>. The
other kets result from displacings BEvery ket is clearly orthogonal to
every ten-dimensional ket.
The one-dimensional ket veotor has zero weight and it must yanish when
the displacement operators are appliede This gives
13,0 = 1 di,2108,% - 18,3]01,2 « |18 gel{ad 1> - {8 5]( ),
(943)

which means that the sum of products
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RN TRy, U XY, YR, (9.4)

is invariant under Bb o Now any skew symmetric form

4
2[: sk X Vi (o =-8y) (9.5)
-L,kut

can be reduced by a linear transformation to (9.&)&') The group that
leaves (9.5) invariant is called the two-dimensional symplectic group

and is denoted by Sp, or C, + VWhat we have shomn is that B, is

isomozfphic to Gz e This term requires an explanation. Take two
groups A , B with elements

A a a a ess

a, and b‘b being the identity elements. Suppose that we have a
mapping of A onto B , that is,

Then B is homomorphic to A . If the mapping is a one~to-one

correspondence, B is isomorphic to A .

Iensor Algebra for B, .

A tensor algebra may be set up for D(4)(1 ,0) as was done in the
case of the SU, group, We define a covariant four-vector as a set
of four numbers (£, , NP f4) that trensform like (¥, , ¥, 2 ¥, t4).
From the E~-operators and H , H, we form ten independent, hermitian

and traceless Lmb and make the infinitesimal transformation

b : b
f" - (BG + i eA LM ) fb:- ’ (9'6)

A

where € isreal, A = 1 , 2 , ¢ee, 10 3 a gb=1,2, 3, 4o Then a

(1) H. Weyl, The Theory of Groups and Quantum Mechanics, p. 397 (Dover, 1930).
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contravariant vector ga is defined by the property that ga fa is in-
variant, and its infinitesimal transformation is therefore.

2 = 0, st (9.7)
We deduce from (9.6) and (9.7) that the diagonal weight operators for
*a_ are the negatives of those for *@ s 50 that the weight of #“ is
minus the weight of wa e We see that fa* transforms like gm and
S0 fa* f, is invariant, but we are not working in the Sq; group « In
fact for this group we would have to make use of all the unimodular four-

by=four unitary matrices. There are h? -1 = 15 of these and only

ten of them belong to B2 o However, B2 %s a subgroup of SU; .
Accarding to (9.3) we have sn invarisnt
S RS o5 TS . PR ARS8 3 B .
This leads us to associate with *a a contravariant W“ = th tb s Where
0 0 0 1
0 0 =9 0
0 1 0 0

-1 0 0 0

is an antisymmetric contravariant tensor of the second rank. We can

define an associated covariant tensor of the second rank hub by the

relation
ke c Bah R ed
h h = &
a9 - 0 550 2o ¥ o0
and it will be seen immediately that h,p = B ek B 0

Moreover
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and we may regard hub as a metrical tensor. On transforming under the
group wn Wa becomes W‘a ¢'a 3 that is to say,
ab
e W MR N e el T
«ab -, : . . + ab
where h is a tensor identical with h . A tensor whose elements have

the same numerical values in the two systems is said to be form invariant.

Thus h?b and consequently hab are form invariant.
To investigate the tensor properties of the five-dimensional re=-

presentation we write

e ab
13,05 = 0,7 ¥, ¥,
and the elements of the five four-by-four matrices Glab may be read off

from (9.2). We can form the mixed tensor Olah s wWhere aq labels

rows and B columns, from

b cb b
0o = b, 9 = (ho-z,)a

with the values

NC60 -0 0 G0 .5 0
1500 & 10 B aw E
= e R R s b I k000
e V2 2a V2 ’
0 0 -1 0 0 -1 0 0
048 0 b6 1 0
c,.b',_10000 ok 0:0;:0 ™
Ty Y N ?
W U o e Ay @« "2 4 000
R S @D a0
-4 9 00
8 1 0 0
O'Sab-'-";" # (908)
RRE e R



il

We define a covariant five-vector as a set of five numbers that transform

like
id.>,  Ha.», Jg.>. U,  His.
These we write ¢, » ¢2 ’ qb‘s ’ “6;4 ’ cp‘)s_ s and we see that
b = V¥, = hg b ¥, 0% ¥,

d

= =¥o Y, = -Go v,

say. It is clear that the vector property holds for (E o, ¥ ) , where E
is a contravariant four-vector not associated with ¥ 5 1.0, F;d £ hd‘ *c .
As in the case of SII‘s we can construct matrices f“j which give an

infinitesimal transformation

ﬁ,' = (,5,," + 1 SAIMJ) ¢ (Bm1,2, coo W3 3, §=1,2.5 8

Then a contravariant vector A" is one such that A" ¢£ is invariant.
Its infinitesimal transformation is
t. L o Ly, J
A. = (8, - 1c¢ im)gb :
A metrical tensor in five dimensions 8 j may be defined by
b a

BT, - trcrtcrj .

and an associated contravariant g“ by

£ =R
. atkss S

Bquations (9.6) show that
e /0 1 O o
D« @ B =908

= oy

gLJ?'SJ.L'-E‘ _g" = 1 e« SRR T .

o810 D 9
0 0 0 ©O 1



We can then associate wvectors and cperators as follows:

¢ =¢,, ¢°=-0,, ¢ =¢, ¢°'=-¢, =9,
(9.9)
¢ A . a0 Owa, - S NN
3 & 1 £ 5

the a , b indices being put in the same positions for the O -matrices.
Since (g o‘t 1]() transforms like q’:i s the expression (& O’t ¥) .&t is
invariant for any contravariant five-vector A.t « We may, for example,
puh at equal to (m u“ Z) and obtain
(zo, ¥) o' 2) = inveriant . (9.10)
In cen dimensions cne worss in a siailar manner.s We writa the
fundamental covariant vector

- b
R T e e S

Xa ‘
St D et (Y. e oviaate B0 Woh T %  £ingin
L1 A f 4 {‘_) 24 1 e ! = evVEalllad s Aa 3 ae A, - g
da0 O 0 6 &8 o
i O B = G0 ; O 20=0:0
T e F‘f
0O 0 G O WL TR
t 0500 0 1:04D
8 0 .00 0 i Bl
= o 0 0 0 b 60 4 0
= P . : ’
8 0 =10 % sa =2 b ey T o
9 Yo &t G, 0
600 s ok » i e o 1
e 0 0 O bt 1909 o
. 3 g e @ Y2l 45 95 o o
0.0 O R R



~86-

o 9 0 0 O 0 @ o
+ S I, A -1 0 0 0
Lo b 1
T = e iy =
3 0 0 00 sa = V2 o 8 6 @
0 6 9 B o SR - S (R
w1 0 0 0 1 0 0 0
0 1 0 0 o S 0 0
T b=% s ’.E!oabz'ﬁ .
oG 0 9 =1 0 B O =% @
3 T 0 1 0 O 0 -1

We can construct a metrical tensor ¥ AR from

This gives associated covariant and contravariant ten-vectors

1 2 : 3 4 5
xE2=ia . n"r s X T, b X WPl 2 2nE

G 7 &8 9 10
el T N T i - a0 e

with similar relations between covariant TA and contravariant TA "

Finally (& T‘Alb‘) = Ea' TAab *b' is a covariant vector and

€T, ¥) O g ST SEEESS (9.11)

Application to Leptonic Processes

We shall now show how conservation laws for leptonic processes are

related to invariances of the interaction Legrangian density under the

B, group 'bransfomationas('). According to Figure 3 we associate the

four-dimensional kets ¥, 5 ¥, s ¥, , ¥, with v _, v, s g 3

i
respectively. For their weak interaction we adopt the V-A theory of

(1)  J. McCGonnell, Canadian Journal of Physics 43, Jos (1965)y Feofcess
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Feynman and Gell-Mann(I) modified by the presence of distinct electron and

muon neutrinos. The interaction Lagrangian density is

LT = 3 @7, , (9.12)

where
To@® = 1 0@ r,(14x) e) » 16 Gy, (1 +x,) u) .
(9.13)

In (9.13) a(x) denotes an operator that annihilates the particle a

or creates its antiparticle a , a (x) the hermitian conjugate of a(x)
is an operator that amnihilates a or creates a , and a(x) = a+(x)'r4 2
The #'s are Dirac matrices and we work in units such that i=a=1.
The reactions given by (9.12) clearly satisfy conservation of the lepton

number, muon number and charge. The part of ;{(x) for any of the

processes
I T T AL . af > 2 2l i
9.1%4
f #f = £ +f , £f + £ #f #f , etc.
3 B 1 2 S <
is
G' e —
2 1 3 =

We have to introduce elements from the Bz group. We recall that
wa* transforms like the contravariant ¢a and the same is obviously true
for ﬁ?; o The wave functions in (9.15) now contain the specifications of
the positions of the particles in the D(“)(1,o) weight diagram and on

omitting space and spin dependences (S.15) has the general form

(1) R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
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f : 4
(VZ2ave) W>BY¥,), (9.16)
1 4

where A and B are group operators. According to (9.10) and (9.11)

there are two invariants

Z W oty Wty , z CE MR RECE LAY
a b, ,d,t a,b,c,d,l

s : G 3 .
On account of the invariance of *a we have another invariant

a b ™ - d
08, ) 608 vy .
a,b,c,d
If we want a four fermion interaction Lagrangian density that is invariant

under the group transformations, it must assume the form

a, W°8.2 ¥ W82y » 5, (%04 6 Ty »
e 00 ) P ), (9417)

summed over the repeated indices. The 8,5 8 4 @ contain the space

10
and spin dependent parts but they are independent of each other. Each
product of two brackets is an invariant function and so is annihilated by
2 hermitian Lie operator L . Since two of these operators are H}
and H2 s each product has zero weight. We therefore have conservation
of charge and of muon number.

To see this more clearly we take the five-dimensional representation.

According to (9.9)

1 b b b PR 3 b b
‘.'J"‘x —Usa s O'za =—04a s O'Q ---»CJ'j‘x
4 b b b b

and according to (9.8) the only non-vanishing matrix elements of OEG& are
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P
Q
g
—
i

@) =gz, (o), = ()7 =-7

- i - |
3" == &)L c e PRV Y S
(0.5)1l e -(65)22 = '-(9-5).33 2 (f"-s)‘c“l -5 -J?:"°

Hence
a b e . Ld
2 1 1 2 2 i 3 4
= W, V)W o) » e ¥) WP ) .
4 3 1 2 4 3 3 4
+ o, l¥)0 o ) » 0o Y)W o ) + .
To be more precise we take ¥, to be 1§13 ,a > with weight B, »
so that the weight of tlra is =m . Then the weight of the product
o 2 1 3 4 e N < : =
of two brackets, (¥ 0 1#1) (¥ Gss 1{;4) say, is B, *+B, ~B, * I,
and Figure 30 shows that this is zero. In this way we see that any non-
vanishing term (9.16) leads %o a leptonic process (9.14) with
*. X .
o S

that is, with charge and muon number conserved.

‘@f * ‘@fd. s -@f

1 2

Combining (9.12), &13) and (9.17) we have that the Lagrangian
density for a weak interaction process involving four particles, all
of which are leptons or antileptons, is

Ta b T8 _ d
o A % (1ax 38 B0 % Ure s )
. s=a b =n a
oo Py, 1ey)o"v,) (Fy, (14y)d %)
= g To d
+ o, Gy, Oaer)rl¥) Gy, Gay) ™%y .
The normalized ¢ and VY involve space, spin and group specifications,
and ¢, s ¢ 5 0, are independent constants. The possibility of
occurrence of o process follows from the matrix elements of & , 0 and T,

As an example take an initial state with p~ and o* . In the
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product -;a *b'ic *& we take wb as annihilation of pu~ and #a as
annihilation of e™ , so that

a=h, b=2.
Since 542 vanishes, there is no contribution from the one-dimensional
representation. In the five-dimensional representation 6i42 vanishes
except for i =2 when its value is -j%-. The only non=-vanishing

elements of o~ g 1.6 =~ G, are
3 1 . o 1
), = -5 (@®),° = -7=.
The product of the four fermion wave functions thus has one of the forms

@ o, 2v) G )

"

Nf= N}

2 t

@, v, ) =
= .

The *3 gives emission of ¥ » L and Wz W4 gives emission of

(- e so the only processes allowed in this representation are

® e
IJ.- W e"' - “- 2 e.iq., (9.18)

and these occur with equal probabilities for weak interactions, if we

assume the masses of the leptons to be equal. The assumption that the
masses would be equal but for some symmetry-breaking interaction is im-
plicit in the placing of the four leptons on a weight diagram. One

should think of the scheme.as having some validity in a high-energy region
where rest masses are relatively unimportant. That the probabilities
for the two processes in (9.18) are equal may be deduced also in the ten-

dimensional representation from the non~vanishing



-1 =

=

Frie)@ 7)) = -

]
o] B

~4 2 ® 4
e v T 1)
The one-dimensional representation comes into effect only for an
initial state with zero weight, that is, for an initial particle-antiparticle

state. For an initisl electron-positron state we find that the one-, five-,

and ten-dimensional representations give final states

e +He - + 2
¥ B e L Pl Yu Vu

with equal probabilities.
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CEAPTER X

Experimental Consequences of SII3 Theory

The Supermultiplets
The most striking result of the application of the SUE group to

strongly interacting particles is the existence of supermultiplets with
the same spin and parity. They should also have equal masses and the
sctual differences of mass indicate the presence of interactions that do
not preserve SUS inveriance. We mentioned earlier that within an
isotopic multiplet, e.g. % , % , % , the mass differences are
ascribed to electromagnetic interactions. If these are neglected the
interactions between the particles are strong, and the Lagrangian de-
seribing such interaction is invariant under the iscspin SU, group.
This invariance is Jjust charge independence. To put it in a different
way: strong interactions conserve the three components I  , Iz ’ IJ
of isospin and consequently the total isospin. . They also conserve the
hypercharge ,Y « The electromagnetic interactions conserve 13 and Y
but not total isospin.

We have to distinguish two types of strong interactions. Very
strong interactions are strong interactions that are invariant under
the SUS group. They therefore give equal masses for all particles
in a supermultiplet. Medium strong interactions are strong interactions
that are not invariant under Sﬂs « To them are ascribed the mass
differences between isospin multiplets in a supermultiplet, e.g. between
x and K, between N and I . The medjum strong interactions break

the 303 symmetry in a manner analogous to that in which the electro-
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magnetic interactionsbreak the SU2 symnetry. The medium strong inter-
actions are supposed tc be about ten times weaker than the very strong
interactions and about ten times stronger than electromagnetic interactions.
The mass formula and other matters related to hadrons can be con-
veniently investigated by introducing the notion of U-spin. Having done
this we shall consider separately the implications of group invariances

for very strong, medium strong, electromognetic and weak interactions.

U in.

Let us rotate the m, ,m, axes of the weight diagrams through an

angle -235- in the counter-clockwise direction obtaining the primed

coordinates
m® = m cos-zst- + o, sin-zst- = -%m' * fézmz
mz' = -m sin-%;— $ B cos-%-;t- = - %mt - %mz.
Then :
2m’ = =V3m -m = ~I =27 = -Q
f}mi' = - izzm' - %mz = —12'1:3 - EY =0,

where U‘z is the eigenvalue of the third component of what we eall U-spin.
We shall also use Uz to denote the third component itself, the suffix z
rather than 3 being employed to avoid confusion with the notation for the
unitary group in three dimensions. We go from one position to another on
the Uz-ax:l.s by operating with ]?-_'_3 . Now all particles on the Uz-a.xis
have the same charge so, if %

Ql &> = 7| a> 3
it will follow that

QE:S la> = aszalm = Eis'h a> = Eﬁsqla)



e

and therefore Q commutes with E+“s. It commutes also with U#
because I3 and Y commute with ;;ch other.

In the case of the octet one has to be careful about the two kets
with zero weight. According to (8.6)

Blig],6> = -5z lig),» » li8].8

B 8.6 =-3]{8],5 .

In terms of the ket vectors for the barvons, as we have related them at

the end of Chapter VIII, the last equations may be written

Q

_ = oty
E3 = ;73
5 2 .0

3

1

(-%z° + ‘%JP)

=]

I

i

We therefore assign

(8" = %—}.‘..c’-'-{zzﬁc’ yin)
to the U =1 triplets The singlet U =0 member of zero weight will
then be 1-,-2220: + T A° s Which is orthogonal to Tl —%Ao and is
annihilated by E+I3. By meking the usual replacement of symbols we
can write down th;'singlet and triplet states of weight zero for the
pseudoscelar and vector mesons. We put down (Ué , @) diagrams for
the octets and decuplet. Particles having the same charge belong to

the same U-spin multiplete.
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-] _; z'_,,g A | _33'-"-0_" ji,n
| +
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- i P
Fig. 33« The (UZ,Q) dicgram for Fig. 4. The (Uz »Q)
the baryon octet. diagram for the pseudo-
; scalar meson octet.
ol & ’
T - - R S - 5
s —|1 L fp ‘EL e —| !x* h"
[ | Lk (A S L, ]
ke -~ -y - = I
! T ilay! 5 o : y 3
g 1 o l‘ - i
P: |+ ¥+ xp+ N
BT
Fige 35. Te (U, ,Q} diagram for
¢ symbol
Fig. 36. The (U, ,Q)
diagram for the baryon

the vector meson octet.

(w°,¢°) denotes the combination of
“and ¢° that belongs to the octet.

o]
w

resonance §-+ decuplet.
The N* 's may also be

denoted by 4 's .



To study conservation laws we write

J_g (EJ -i-.--E_J) I -J_gi (E3 -Eﬂ) - Uy

z

v =
-EEH,,-»%Hz -

Z

The thﬁee-dimensional representation of the U 's are

0 0 0 ¢ S o e + S - T ¢
1 Tl ; aad
0 ¢ e ¢ 0 0O 0 -1

which shows that U; ’ Ub ’ Ué as def'ined above are generators of
the U-spin group. They commute with Q . In all strong and electro-
magnetic interactions Ué is conserved because Is and Y are separate-

ly conserved. We shall now lcok into the question as to whether total U

1s conserved. We assume a non-derivative interaction Lagrangian density

o

tnt tat °
physical quantity will be conserved in the intersction, if it commutes

with ‘;[Lnt. .

We have expressed the infinitesimal transformation of a quark wave

and the interaction Hamiltonian density is then = Thus a

function ¥ as (1 +1i A LA) ¥ . The corresponding transformation for

an operator 0 is
A A AR T A
(1 - 4 ¢ LA)O(‘I-'-S LA)-O ie[LA,O].

If 0 is invariant under SU, , it must commute with the eight independent
operators of the group. The Lagrangian density for very strong inter-
actions ;?vs is by its very definition such an invariant operator.

Hence J?vs commute with U& ’ Ué s U? 9. Which are three independent



=y

operators of the group. It follows that total U is conserved in
very strong interactions.

The medium strong interactions give mass differences between isospin
multiplets. In the weight diagrams we go from one such multiplet to an-

other by applying the operators « Since the mass differences

Faz? Bas
are present even when the charges are the same, let us confine our atten-

tion to Ea s B

= and the third operator of the U-spin group Ué s and

enquire whether it is possible to take the medium strong Lagrangian
density °{;s proportional to these operators. Since total isospin is
conserved, Im commutes with I° . Now E - does not commute with 4

because E*s changes the I=-eigenvalue; for example, in the baryon

octet
(8, , 12" = B 1.23% - " 5 2
a -%(1.2 -2.2)p.
However
v, 2] = -%[13,12] -rE[Y,I"] - 0,

because both. Y and Is commute with I° . Thus mes can be propor-
tional to Uz » U;z s etc. Since U; ’ UL s U? obey the commutation

rules for angular momenta,
v, ,0'] =0
2
B?,¢] =v, (0 ,0] & [0 ,0]0. = 0, eto.
Hence an expression far¢t;s that is a linear combination of powers of
Ué will conserve total U-spin. Nothing essentially new comes from

considering E, , E_, and a third related operator.

To make the position of electromagnetic interactions clear we take



the specific example of baryons interacting with the field of potential A¢ 3

so that the Lagrangian density is

L + - - S e
Cfem = ie (@ «{a!: Wl i S | - Taf -E‘ra...-)Aa,
where ¥, denotes the Dirac matrices and units are chosen such that

A=c=1. We write

20
A°
for the baryon octet, where in SU3 space 2% |{8} s> 4 P =

{8} ,2> etc., and we see that

low = 20 (Fy, ab) 4, .

Thus fem transforms like Q and a similar result holds for quarks and
for bosons, though there may be an additional Qz dependence. We have
seen that Q commutes with U.r ’ Uy 9 Uz and therefore these three
quantities and total U-spin are conserved in electromagnetic interactions.
Since ;{ = is a scalar in U-space, it follows that the electromagnetic
current which for example for baryons is 1 e (F g Q@ b) , is a scalar.
Moreover the photon, whose emission or absorption is given by the operator

Q , should be treated as a scalar.
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Very Strong Interactions

We wish to point out how conservation of UZ and of total U may

provide information about branching ratios for the production of nuclear

. - 1 . .
resonances by pion-nucleon and kaon-nucleon collls:l.ons( ). By inspection

of Figures 34, 35, 36 we see that a %~ = p collision can lead to N¥ p*
and Y, *" K*" | and that %~ p belongs only to a U =1 state since it
is compounded of two U = :72 states and has Uz =1, The processes

X #p > N& o P* (10.1)
n o+ D -*'Y,*- + k=¥

can therefore come only from & U =1 amplitude A , say. We recall

the expansion of a state of total angular momentum number J and third

component m

Qjm " Z (j’ j2 o I J m) ¢j1jzm:"’2 .
J,Jj mm

e @
where (J, 4, m, m, | 5m) are Clebsch-Gordan coefficients given by the

formula

(2541) (3,%3,-3)t (3#d,=3,)t (3+3,=3,)17%
(j, J,m m I jm) s 6m m -
e Wina " 1412 (3, # 3, # 5 +1)!

X (€34, )t (3, -m, )t (G,4m,)0 (d,-my)0 (Jem)! (.i-m)!]%
X Z-E?i [(3, 43, =3=x)t (3, =m,=x)! (3 4m,=x)! (=3 4m 4ec)! (§=3,-m4ac)t]™,

the summations being carried out as long as we have not the factorial of a

(1) S. Meskhov, C. A. Levinson and H. J. Lipkin, Phys. Rev. Lett. 10,
361 (1963).
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negative integer. On reading off the values of U and Uz we see that

the matrix elements for the processes (10.1) are

<‘J'f.-pl' N*-p*ﬁb = (g%g—%l 11) A = ?A

1

- s ey 1 I 6 <
<t pla s B3 w (s l11)a = -%4A.

Hence

|z p | ™" p*5]%2 = 3] «x” p | Y'*'K*'">|2,

which shows that the probability of ogcutrrence of a final state N#~ p+
is three times that of Y, *” K*' .

Similarly, if we consider the processes

K &« p » Y;“— + p*

K » p > E% & K,
we see from the diagrams that K p has Uz = 0 and may belong to
either U=0 or U=1 , while the final states may both belong to
U=1 or U=2., Thus only the U =1 channel comes into play and

<k p | : o>

NI—-"

-
-

I1o)=1;
l

<" p | 2*" ke*> 1

Nl l\Jl--L

21
22

1
(35

I\?)I--‘L

so that there is equal probability for the two processes. These results
presume that the SU‘3 symmetry is exactly conserved; in other words,

that everything apart from very strong interactions can be ignored.

Mass Relations

We saw that a possible medium strong Lagrangian density is a linear
combination of powers of Uz « Let us examine the implications of taking
1‘: " proportional to Uz e In the Lagrangian density for free spin z

particles the mass multiplies & bilinear combination of wave functions;
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for a proton field it is =p (v, %: -hmp) P . The same seems to
be generally true for fermions of higher spin(') . On the other hand
the mass squared appears for a boson field, e.g. = m,me ¢*¢ for the
charged pseudoscalar field and = 5 m,2 qba ¢a for the neutral spin 1
field. Since the mass differences coming from a{ ms OF® proportional
to the eigenvalues of Uz s We write a mass operator
po=a « BU (10.2)
whose eigenvalues give the masses for a fermion supermultiplet and
squares of the masses for a boson supermultiplet. The common mass of
the members of the supermultiplet coming from the free Lagrangiaen den-
sity is accounted for by the a which like B is a scalar in U-spin
space.
We apply (10.2) to the U = 1 multiplet of the baryon octet.
nE%) = <€ | uEG)]|e% = €| pul=®>
= a + BGQIUZIE'E% = a =

a(3° - %AC’) = a

m(n) = a #8 .
We are neglecting electromagnetic effects and therefore write

a -8 = m(2), a #B = m (N)

@ = g;_-m(i:) - %m(A) p

the 2% = ?Ao state having probability Jl: of being 3° and ﬁ
of being A® . Hence
3m@A) # n(@) n(E) +mn(N
L 2 ik

(1) W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
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a relation satisfied by the experimental values of the masses to within
2 per cent. It may easily be checked that this relation satisfies the
Okubo formula (6.2)

M = a +# bY + c[“i—f- T (xR
For the pseudoscalar mesons we have similarly

3 (m (0))° + (m(x))? 3 i (k)Y « (m (B))? (@ (&)Y ,
k 2

which is verified reasonably well by experiment.
For the %- + decuplet we re-write (10.2) as
p o= a » B° U, ,
because the consténts may depend on the representation. The U =~2
multiplet in Figure 36 shows that
. (ERomaabisoBintog  a ) = o400

m(Y*) = a = 2B, m (v*) e ™ %B .

and therefore
m@7) - n(E*) =n () - n(T*) = ®(Y*) - m (N*) . (10.3)
Figure 18 shows. that
Y = 2(I-~-1)
and the Okubc formula reduces to
B w'a. &% Y,
which gives the equalities (10.3) for the mass differences that are found
experimentally. If we add a term proportional to Uéz to the expression

for the mass operator B , we can get a correction to the original mass

formula (6.2)(').

(1) H. Hareri, Nuovo Cimento 33, 752 (1964).
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So for we have said nothing
about nass differences within isospin
multiplets. Since they all have the
‘same I and the same Y , the Okubo

formula will not distinguish between

their masses. Take four points
Py 9y 'y 8 on a weight diagram as

shown in Figure 37. If electro-

4

magnetic interactions are neglected, ' \\\

the masses of the particles in the
Fig. 37. TWeights at the corners

same isospin multiplet are equal and
of ‘a parallelogram in (13, Uz)

SO
space.

m(p) = m(q) , n(s) = n(r) . (10.4)
On the other hand, if medium strong interactions are neglected, the particles
s and p having the same unperturbed mass aﬁ& the same charge will have
the same mass when the electromagnetic interaction is switched on, so that
m(s) = m(p) , n(r) = m(qg) . (10.5)
Bouations (10.4) and (410.5) may be comprised in
a(p) - m(a) # m(x) - als) = o,
a relatioﬁ Which being obeyed separately by (10.4) and (10.5) holds for all
orders in Jﬁms and J?em s provided that we neglect interference between the
two kinds of interaction. From the decuplet we obtain
m (N*7) = m (N*°) &+ n (Y,*O) - n (Y"-)
m(N*®) = m (7)) & (Y’*+) - n (Y1*°)

(T - n(1*°) + @) - nE7) =

0
0
0

for which there is some experimental evidence.
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Electromagpetic Interacti ons.

The conservation of U-spin for electromagnetic interactions provides
Consider

useful information about processes in which photons take pa.rt(’ ).
We can

the production of nuclear resonances by photon-proton collisions.,

have
L.

v+p-N"‘°+-x
-r-rp-bYt'o-»K*.

Since U=0 for ¥ , the ¥ p state has U=1% s U.z =% s 80 that we
have only a U = z emplitude in both cases. On inspection of Figures

33=36 we see that

<'r'p]N*°','Jl'-.*> 51"12'1i|21 z) e
et tog e
<y pl ¥ K" (1z0z | %32)
and similerly
 ara® W
<y pl m°o™s N
<yl 5"
<y nl Nt~ % -s_vn]' N"“p'> & (%%%-%l 11) . =iy
<~r'n:‘[Y,'-K*> <ynl| v* %> (_3111 1 1)
: A

When the baryons A° ani 3° are produced, our information may be
less precise. Suppose that we wish to compare the amplitudes for
Y% P * 0 # ™
Y+ p = Sl e o
Y+ p = _30 » I,
and

The final state with n and %" is obtained by compounding U = 1

(1)  C. A. Levinson, H. J. Lipkin and S. Meshkov, Phys. Lett. 7, 81 (1963).
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U=1% s and the same composition arises from the final state with
22" = {22.&0 and K'“', 80

<yplnx*> BUj‘lj&Ijﬂ:_{z.
<yp|’=1rz°-‘-(22n°,x*> (1zo0z%]| %)

Hence
V2 <.~( plax* = =« <yp | 2%K™> « Vvi<yp| A®KY
and using theorems that the modulus of the sum is not greater than the
sum of the moduli and that the modulus of the difference is not less
than the modulus of the difference of the moduli we deduce the inequalities
| <yl 2%Kk*> « V3| <y p| 0%°K*3] » v2l<ypl nx*>]

| O b ‘ 0
> [l <ypl2°x| - v3l<ypla®x™s||.
Inspection of the (Uz N Q) diagrams also gives information about
@lectromagnetic decayss for example, while
- -
ReF An I + ¥

is allowed,

is forbidden. In fact Y, *~ belongs toa U = 3/2 state but 2y
belongs to U = % and conservation of total U forbids the decay. It
is also obvious that the decay
> p o+ v
is allowed.
We can compare magnetic moments under the drestic assumption that
medium strong interactions can be neglected while we take account of

electromagnetic interactions. Then all members of a U=-spin multiplet

. have the same mass and charge, and therefore the same magnetic moment p .
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This gives
u(p) = pE" , uE® = p@), pE) = pE@).

Weak Interactions.
To facilitate comparison with the literature on weak interactions we
write down the three-dimensional Hermitian matrix representation of the

SU; operators as given by Gell-uann(')

O 10 0 =3 0 e S
e W40 0Ly 70.2= -9 p e e )

0 00 5 0 -0 ' - 09

0O 0 1 0 0 =% 0 00
LR A A=100 0 sy A=l 0 0 19 ’

1 00 i 0 o0 01 0

o B PP

-
.50 0 0 -2

They have the properties
AN = 261

; ~ L
{Kt,lj] = Zdljkkk - 35"‘11,
where { ] denotes anticommutator, 1 is the unit matrix, f is

Lik
real and totally antisymmetric, dljk is real and totally symmetric

in 1, jJ ,k « The values of fljk and dljk are tabulated in Gell-

Mann's paper. We see that
liiilz = 2‘\(631 ’ 7\.4-}17\.5 = 2(632 ’

(10.6)
Ay #iX = 2%63_,;, A, =2Y3EH , A, = 2VY3H,.

(1) M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
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According to (6.4) the I, ~operator is V3 H and the Y-operator is 2 H, ’

so the charge operator is

Q =

1 1
--2-7«3 L BRB . (10.7)

The usual approach to the study of weak interactions is to assume that

the Lagrangian density for such interactions is of the current-current

type J;+ﬁj; summed over o« from 1 to L .

Suppose that the free field

is described by the variational principle

oy

n
—
&,
P )
L=
-
o
i
]
2
ct+
{1}
o
L ]

.%JQ)
=<l
1
« 1]
Q
Hlm
Q
e_}*)
1l
o

and consider f&

We see that

(10.8)

(10.9)

(10.10)

(10.11)
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= 8L , vy (10.10).
For (10.8) to be true for an arbitrary integration region 8Z must be
zero and it follows that fk has vanishing four-divergence. The free
Lagrangian density for fermions of equal mass taking part in decay pro-
cesses is

-f = "F(Yaé‘a{ + K)*s
a

where k is the bare mass and W =e¢ =1, Let the infinitesimal
transformation of ¥ Dbe

*L - (5Lm' v 1 Imm)ifm .
Then (10411) shows that the vector current density (;.T& Ihit) is
conserved, if we neglect mass differences.

To disouss leptonic decays of strongly interacting particles we

define F-spin current density E&G(x) by

:?t!.a = %311 Yo 2 »
where q 1is the quark wave funotion. jta is a conserved vector current
density with respect to a and an SU& eight-vector with respect to i .
Then
T, 33-18)' b

Pe T RE

L}
B N
=] |

a¥, Qa, by (10.7) ,

and so is the electromagnetic current density in units of the proton charge.
On account of this result we are led to make the assumption that the weak
vector current densities responsible for decays are also combinations of the
L]
cight &%, 's .
Next consider ¥  + i?’;a » that is V6 1 E‘rc E, q according to

ia

(10.6)s We recall that the operator E, increases m, by ;%; and
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leaves m, unchenged; that is to say, it produces a transition with
AIS =1, AY =0

and therefore

AQ=1, A8 =Q ,
because Y is the sum of S and baryon number, which is conserved. _Then
;“ * iisa produces a transition with

AL =2, AY =1
and therefore

AQ=1, A8 =1 .
The current density ‘ysa + i ?%a would give rise to

AL =~z , AY =1, AQ =0 , AS =1 .

Such decays do not occur in nature. Thus we have two conserved vector
current densities

Foe LT Py & 23y (10.12)
the first for decays with AI; =AQ =1, AS =0 and the second with
A13=l2 s 80 =4S =1.

We can now establish a Lagrangian density J{w for the decay of
hadrons. With the current-current hypothesis
G +

:Iw 5 ;ré'Ja .

where

Ja = J Iﬂ + jI’h »

L denoting the leptons and H the hadrons. We already noted that
Iy, =10y, ey )e) « 10, v, (1+y)n).
The factor (1 4;73) is inserted in order to have the leptons left~hand

polarized. JLa is the sum of a conserved vector current density
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i (;e Yy ®) & 4 (;u Y, u) and an exial vector current density
i (i. o, e) + 4 (Fﬂ . 8 k) that is not conserved. In analogy with

this we add to (10.12) axial vector current densities

46 L g @, 3 @, 5y

and assume that :rf,_ a(s) transforms like ¥ under the group. Then we

la
write
3= (%, e 3, a1 (£, w2, NVcos 0

e o+ 2D w1 @, v 2N sime, (10.13)

where the value of the Cebibbo angle © is somewhere between .2 and .26
radia.ns('). ‘jw then gives for leptonic decays the rules
BI, =0Q=%1, AS=0 and AI =+%, OQ=AS=4+1, the ambiguity
in sign arising from the fact that J_ is the product of /% and J .
In none of the above cases do we get AS = = AQ , .‘.\fl:.3 = - 3/2 , such as
occurs in ¥ + nwet 4 Yy ¢

If we make the transformations

A cos® 4 A sin® =2, A, cos® 4 A sin® =7~2'

with consequent transformations of ;:f.a and ju(s) s We can express (10.13)

as

1a

1 =% gl SRCASE S Rlph
The non-leptonic part of of = is
T = BHE o L57) (5° 88,80 o (" » 20 0 2 2,00
This is the sum of products of two eight vectors and, since

D(‘)(1,1)@n(’)(1,1) = D(')(o,o)en(")(1,1)oD(")(1,1) ® D('°)(3,o)

e 2('°)(0,3) @ 0'¥7)(2,2) ,

(1) N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); J. J. Sakurai, ibid. 12,
79 (1964).
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éfNL can be the sum of vectors in severol different dimensions. The assump-
tion is generally made that in the product representation the octet gives the

predominant contribution. Then JfNL is taken to transform like the member

of an octet(').

(1) N, Cabibbo, Phys. Rev. Lett. 12, 62 (1964).




