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ASPECTS OF THE CURRENT ALGEBRA APPROACH

C. Ryan

I. INTRODUCTION.

The past two years has seen the very rapid development
in particle physics of the subject known as the current alge-
bra approach or simply current algebras. The central idea
in this development was first stated explicitly by Gell-Mann1)
in his paper on the octet model of unitary symmetry, though
it is contained implicitly in his earlier paper with Levyz) on
the partially conserved axial vector current hypothesis.
Briefly this idea is that physical currents (i.e. currents whigh
enter in physical theories) may form Lie algebras or more simply
physical currents may satisfy among themselves certain well de-~
fined commutation relations. Further elaboration of this pro-
posal by Gell-Mann and a number of collaborators is to be found

3)

in several subsequent publications”’.

The present spate of activity in this area seems to take

*
Based on a seminar given at the Universities of Glasgow,

Edinburgh and Durham, May 1966.
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its origin from two more or less complementary contributions
which appeared at the beginning of 1965. The first of these .
is contained in the papers of B.W. Leehj and of Dashen and
Soli-tama”) 5h whioh 1% An Ahewn that many of M Seawiss of
a higher symmetry (in this case SU (6)) can be obtained from
a straightforward application of the current algebra approach.
This was a very valuable discovery and while some of the argu-
ments used in these papers were later shown to have quite
drastic implications6), the general philosophy of this work,
namely to use current algebras to derive physieally interest-
ing results, was widely accepted and applied.

The second crucial contribution was that of Fubini and
Furlan7) who proposed an elegant method of deriving exact sum
rules from certain current commutation relations. The im-
portance of this method is that it enables one to fill certain
gaps which remained in the more approximate treatment of Lee
and of Dashen and Gell-Mann. This work of Lee, Dashen and
Gell-Mann and of Fubini and Furlan together provided the im-
petus for the present extensive work in current algebras.

The aim of this report is to give a fairly simple account
of and commentary on the early development of the current al-

gebra approach. We first outline what is meant by this approach
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and how it is used to obtain results of physical interest.
Secondly we comment on twao of the major ingredients of the
approach namely the currents and their commutation relations.
Under the heading "Getting Results" are described the pro-
cedures of Lee, Dashen and Gell-Mann and of Fubini and Furlan
for deriving physical results. Finally we mention some other

applications and describe briefly some recent developments.

II. OUTLINE OF THE CURRENT ALGEBRA APPROACH.

Among the objeets used to describe physical phenomena in
quantum field theoretic terms a prominent place is held by a
class of operators known as the currents. These are certain
iocal‘operators whose matrix elements enter the amplitudes for
various physical processes. As examples we might cite the
electromagnetic and weak currents which play a central role
in the description of electromagnetic and weak interactions
or the pion current which is the operator which appears on the
right hand side of the equation for the pion field operator.
We denote by Jgf(x,t) the current operators we are concerned
with, A being the Lorentz index and @ being the internal

quantum number index. (Instead of speaking of currents here
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we might generalize the discussion and speak of local oper-
ators in general; anything said concerning currents can be
applied, mutatis mutandis, to all local operators of the
theory. )

Given the current operators J Aa(x,t) , We now make the
basic assumption that the equal time commutator of at least
some pairs of these are linear combinations of the current
operators themselves, plus possibly some other measurable
locel operators. We assume, therefore, a relatiom of the
form
[J:‘(x,t) . JBB(y,t)] = 83(::- y)ZK(Aa, BB; Cy) Jc’f(x,t)

+ "other measurable local operators" (1)
where the K(Aa, BB; Cy) are known constants which we might
call structure constants. We see from this relation that if
the "other measurable local operators" are absent, our
assumption is equivalent to saying that the currents, which
are finite in number, form a finite Lie algebra. This is
the or igin of the term current algebra. Hereafter we shall
assume that these "other measurable local operators" are
indeed absent; this is not an essential assumption and we
make it only in the interests of simplicity.

Now with regard to current operators in general, the phys-

ically meaningful things are their matrix elements between
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physical states. These matrix elements are measurable in
various strong, electromagnetic and weak processes. The
value of a relation such as (1) is that it offers the poss-
ibility of calculating these matrix elements theoretically,
for this relation is nothing but an infinite set of coupled
equations for the matrix elements of the currents J ;(::,t).
This is seen by taking its matrix element between any pair
of physical states [ i> and l J> and inserting a sum
over a complete set of states between the operators on the

left hand side. In this way we get

ZI; 3135, 0 m<a |y, 8) 4> - <3l 3y, 8)] m<al T5(x,4)] i>]

= 5:3(3"3’)5;{(5-“: BB; Cy ) <jl Jg(x’t)l i>, (2)
Cy '

and as |i> and [j> range over all physical states we obtain
an infinite set of coupled equations for the matrix elements of
the currents.

The important task now is to devise means of solving these
equations in various cases: of interest. This question we shall
take up im due course. Before that we would like to discuss in

more detail the basic commutation relations expressed im (1).
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III. THE CURRENTS AND THE COMMUTATION RELATIONS.

The idea that physical current operators might satisfy
a commutation relation like that given in (1) was first sug-
gested by Gell- 1;). His argument was as follows. In a
Lagrangian quantum field theory where there exists an exact
symmetry under a Liz group of transformations, the infinitesimal
generators of this group are given as the space integrals of the
time components of the divergenceless vector (or, in general,
tensor) currents which arise naturally from the symmetry in
accordance with Noether's theorems). Thus if we denote by

; 3 ¥ the generators of such a group we have

i [a?x v, o(%st) (3)

where Vu’ A%st) is the divergenceless vector (or tenmsor)
current arising from the symmetry.

Now the infinitesimal generators of a Lie group form a
Lie algebra i.e. the set of gperators {I a! is closed under

commutation. We have therefore the commutation relations

[Ia 5 IB_—_[ = 1Cp I s (4)

where C = are the structure constants of the group. Further-

By

more if the group in question is assumed to be an internal sym-

metry group the divergenceless currents V" = (x,t) transform
2

as members of the regular representation of the group i.e.
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[Ia,vp,E,(z,t)] =1, ¥ _(m®). (5

If we now wish to speculate about the commutator of vh a(x,t)
and Yh’ﬂ(y,t) we note that it must vanish for x £y in ac-
cordance with microcausality and if we assume that at x =y

it is not more singular than a O-function then egs.(3) and (5)

$ell us that we must have

[vh’a (x’t) s vll-,ﬁ (y,t):[ - 55(x-y)caﬂ‘r V&_’T(x,:;;).

This was the first equal time current commitation relation and
all other such relatioms are written down in analogy with it.
We wish to make the following poinf; about this commutation

relation and about current commutatiom relations in gemeral.

1. Although eq.(6) was suggested by a certain internal sym-
metry the existence of such a symmetz?y is not necessary im order
that this relation be true. On the contrary, given a field
theory involving Dirac fields ¥ i(:r) of number N equal to
the dimension of some representation of the Lie group G and

defining the quantities
Qa(xst) = —f(x’t) Y)_'_ ta ‘!(x,t) 9

where ¥, (x,t)
*2(35:15)

¥(x,8) = 2
*m(xst)
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and t, are the matrices of the N-dimensional representation
of G, we find that the operators Qu(x,t) satisfy the com-
mutation relations of the Lie algebra of the group &, pro-
vided only that the i(z,t) satisfy the ordinary anticom~
mutation relations of fermi fields and without any assumption
of invariance under the group G. This illustrates the fact
that a Lie group may through a current algebra play an import-
ant role without at all being an invariance group of the under-
lying theory. Herein lies a possibility of understanding the
various higher symmetry groups which have been under discussion
for some time.

(In practice it may be necessary to assume invariance under
some internal symmetry group in order to derive useful results
but this is not always the case. For instance the well-known
Adler-Weiabergerga’bc%loulaﬁon does: not assume isospin invari-

ance. )

2. In deriving commutation relatioms for currents other than
those which arise as a result of inveriance under a Lie group

we generally appeal to a model. For theories wherein the fun-
damental intermal symmetry is isospin, we postulate a model in
which the Lagrangian contains only a fundamental doublet field,
while for wnitary symmetry, SU(3), we take a model whose La-

grangian is constructed from a fundamental quark or triplet
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field. In such theories we can construct currents of the

form

_Jaa(x) = ¥(x,t) T, £ ¥(x,t) (7)

where the I', stand for the 16 members of the Dirac algebra

A
and the t° are the matrices of the fundamental representa?tion

of the internal symmetry group plus the unit matrix, being
'Eg A

2
group.
The equal-time commutation relations of currents J Aa‘(x,t)

s 1) for the isospin group and (-é-‘-z- s 1) for the SU(3)

may now be deduced provided only that the equal-time commuta-
tiom relations of the fields V¥(x=,t) are knom. If, as is
usually assumed, these are simply the ordinary anticommutatiom
relations of fermi fields, we obtain the equal-time commuta-

tion relation

[Ji(xpt)’ JS(Yst)ﬁl = &3(1'?)**(1’13}[1’& Hta’ Y&?I'B‘I:B] *(xzt; »
8

Then, using the identity
[Tt 5tPl = ¥ [yT,, v 5] (%%

and the fact that the T and %% are algebras, the right

A
hand side of eq.(8) can be expressed as a linear combination
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of the currents, thus yielding a relation of the form given
in eqe(1)s The point of this discussion is to show that
there exist realistic models in which current commutation
relations such as those postulated in section 2 are satis-
fied,

In connection with the derivatiom of eg.(8) it seems
worthwhile drawing attention to two points. The first is
that the assumption of ordinary fermi field anticommutation
relations for V¥(x,t) is not necessary. It is sufficient,

for instance, if V¥(x,t) satisfies
i, (xt)s ¥2(7s8) ¥o(7st)] = 8,8%(x-3) ¥ (xot)  (9)

and this relation is much more general than the ordinary
anticomutation relations (it includes them as a special
case). Relations such as (9) form the basis of the sub-
ject of parastatistics. From a physical viewpoint what
this implies is ﬁat-, as far as current commutation rela-
tions go, the quanta of the fundamental fields, if such
exist, need not be fermions, but rather particles satis-
fying a more general type of statisties. This is a wel-
come feature since it allows one more easily to construct
the normal hadron states as bound states of the fundament-

al parbiclss1°).



nd point about the commutation relation (8) is

1 the assumption that the singularity involved

» than a delta-function is not justified. Specif-

BB i no=ca11ed Schwingsr terms').  These terms
56 ctiie Biehly singuler nabure of currents de-
linear produots of the field gquantities taken a.t

f m-ﬁm point. If instead of eq.(7) we define

J:(x,t) as
(x,8) = lin §(x-e,¢) T, t* y(xee,8) ,  (10)
B tie Gcamitation relation

), 3] = 82y )1im ¥ (x§ 46) b 247 Tt
: *(z""'é'st)

1n§ (787 r) W (x-S 00,2 5, TP

&
Nlm;

O

X *(x‘l"zs' 8 1, (11)

lim is understood to be averaged over all space direc-
L. M .
and higher powers in € are assumed to vanish in the

The second term on the right hand side is known as

Generally this term cannot be assumed to vanish. One

of avoiding the difficulties it presents is to use, not
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all space. If this is done the Schwinger term plays no role,
as can be seen by integrating eq.(11) over x and e ke
other suggestion is that of Bouchiat and Meyer12), who noticed
that in the quark model the Schwinger term is symmetric against
the simultaneous interchange of space and internal symmetry in-
dices. Their advice is to start with a combination which is
odd against this interchange and again the Schwinger terms
will be absent. In the general situation however the pre-

sence of the Schwinger terms must be allowed for.

IV. GETTING SOLUTIONS.

We return now to the problem of finding solutions of the
infinite set of equations represented by an equal time current
commutation relation - eq.(2). In general a complete solution:
of these equations is out of the question. Accordingly we
must devise means of reducing the problem to tractable pro-
portions. This means doing one of two things:

(a) reducing the number of equations somehow to a
finite number
or (b) devising some method of calculating the sum over
the infinite set of states on the left hand side of (2).

Of these two approaches (a) is that adopted by Lee, Dashen
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inn while (b) is the one followed by Fubini and

me Lee-Dashen-Gell-Nann Procedure. **2 )

siderable simplification of our problem results if
fmm the commutation relations for the space integ-
the currents rather than those for the currents them-
; iﬁm‘s if we define

& f a’x JA"‘(x,t) (12)

om (1), (assuming the other measurable operators are
we obtain for the I Ae the commutation relations

e :|: o] - ZK(M, B o) I . (13)

.‘”-tions have the familiar look of the defining rela-
' a Lie algebra, such as those which we meet in con-
: ‘with the ordinary space-time and intermal symmetry
There is one important difference, however, and it
that, Me the case of exact symmetry groups, the ele-
of this Lie algebra are not all time independent - only
Ihieh are the space integrals of the time components of

nceless currents are. The time dependent elements do

'‘a of an invariance group of the theory. In view of
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this we must consider the integration in eq.(12) as being
done in a chosen Lorentz frame and all succeeding operations
with the algebra (13) are then performed in this same frame.

The I are independent of the spatial coordinates and

o
A
so they commute with the spatisl momentum operators. This
has the result that when deducing the consequences of eg.(13)
by teking its matrix elements between physical states, it is
necessary to consider only states of one fixed definite mo-
mentum. In eq.(2) on the other hand, a similar procedure
would still require states of all spatial momentum to be
included.

Lee, Dashen and Gell-Mann then made the assumption that
the infinite set of equations got by taking the matrix ele-
ments of eq.(13) between all possible states may be approx-
imated by setting all but a finite number of these matrix
elements equal to zero, the non-zero elements being between
single particle states only. It is to be hoped that the
finite set of equations so obteined may yield a solution
which is reasonably close to the exact one. A priori there
is no way of judging how justified this approximation may be;
however it would seem a reasonable hypothesis if the domin-

ant matrix elements of a current are those between nearby

states.
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the basis of the above approximation, if we denote by

4=1,2,...N the states between which the operators I:‘
ied to have non-vanishing matrix elements (p is the

| momen tum) andi:the metrix element of the operator I,

n two such states is written as
o 116> = %60 (406,

e equations to be solved are

(j; (p))i, (5:@))3 . (ﬁ:(p))” (iacp))ﬂ‘:[

= ) s, mes o) (&) L ()
Cy s

R A

om the relation (14) it is clear that the present pro-

e amounts to notddng other than finding finite dimension-
ntatiofs of the Lie algebra defined by eq.(13).

W& can find a set of quantities (g:‘(p))“' s i3

«oN, which satisfy eqe(14), then we have found a set of

NxN matrices which satisfy the same mtaﬁm} re- _

1s as the I; and such a set of matrices is by definition

ite dimensional representation of the Lie algebra of the

- This point was first noted by Gmbo13) and in view of it

Ls easy to see why this procedure reproduces the higher
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symmetry results insofar as they refer to the current oper-
a.torl;:” For this purpose all one has to do is to select those
currents whose space integrels satisfy the commutation rela-
tions of the relevant higher symmetry group (in Lee's case
SU(6)) and then take the matrix elements of this Lie algebra
using the states which constitute the basis of an appropriate
representation of the group. The emergence of the higher
symmetry results is then automatic.

There are two major difficulties with the above described
procedure. The first is that the approximation assumption
upon which it rests is strictly unjustified except in the
trivial case when the Lie algebra, eq.(13), is that of an ex-

6)m

act symmetry group of the underlying theory. Coleman
showm that if A is the space integral of a local oper-
ator (J(x,t) such that all matrix elements of the form

<m' A l & , where l s> represents a single particle state

and |m> a multiparticle one, vanish, then A commutes

with the Hamiltonian. An assumption of this kind is an essen-
tial ingredient of the Lee-Dashen-Gell-Mann procedure and so
this procedure is .eciuivalent to assuming that the Lie algebra eq.
(13) is that of an exact symmetry group. This means that
strietly the method cannot be applied in cases where the Lie

algebra (13) is that of a higher symmetry group which is not
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- group of the Hamiltonian. This is a serious

ition to this difficulty of principle it transpires
od gives consistent results generally only for
ues of the spatial momentum, such as zero spatial
infinite spatial momentum'**1? ). The reason for
‘that the operators I Aa_ are not simply the generators
aigebm eq.(13); they are also by definition tensor
under the Poincare group. In obtaining a "solution"
algebra therefore, we need to respect the Poincaré
ties of its generators. Now it is known that re-
ons of the Poincaré group for finite non-zero spatial
re all infinite in dimension. Thus for finite non-
tun states it will in general be impossible to find

. of the Lie algebra eg.(13) using only a finite num-

e these difficulties we feel that the present method
meral approach to higher symmetries is a valuable one.

it is preferable to the ordinary one where one explicit-
2s the existence of a higher symmetry from the outset.
ises clearly that the higher symmetry results can

; be only approximate. This approach also enables one

| ‘the verious representations of a higher symmetry group

> or less equal footing, to distinguish clearly between
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zero and non-zero momentum states and to discover the role of

orbital angular momentum in higher symmetry groups“5 ).

An Example.
We consider a simple concrete example in order to illus-
trate this method. The space integrals of the axial vector
isovector current Aia, the axial vector isoscalar current
Aio and the vector isovector current V‘: satisfy the com-
mutation relations of the Lie algebra of the SU(4) group.
The relation involving the commutator of the Aia with AjB
is
)

o ¥ o
(A A, i aij Capy Vh_ +1i aaﬁ & 3k A (15)

and there are similar expressions for the commutators of all
other pairs of the set. We wish now to determine the matrix
elements of these operators between zero momentum states of
the nucleon. We denote these states by Icr,p 8,0 = 1,2
where o is the isospin and s the ordinary spin index.

By definition we have

& Y ! vl...a I'O',s>

a*ot,st) Luleys) ,  (16)

T
<o, s'| Aia | o8> = ut(o,s') o‘i-zﬁ u(o,s) , (17)

ST
and

o
<otys' | 4% 05> = gu'(er,s') Fulo,s) . (18)
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s.s a constant spinor denoting zero mqmen'l:m
nucleon and the above manner of writing the mat-
ts is simply a concise way of writing the Wigner-
em without introducing Clebsch-Gordan coefficients.
~ are reduced matrix elements and the fact that the
trix element in (16) is unity is because the V'
rators of the conserved isospim group.
now take the matrix element of eq.(15) between zero
‘states of the nucleon and, in the sum over the com-
set of states inserted on the left hand side, we retain
s contributions from these same nucleon states. Then

definitions egs.(16) to (18) we get

3 '.I;L u(o,s)

(¥ ,5) 5,2 u(o",s") u*(o",s") o
(o) o £ u(om,em) w(on,e) o 2 u(o,9)]

- T, g.

M“(o" ,ar.')_-én u(o,s) + i@aﬁe:ljk at (o ,s')?k' u(o,s).
(19)
M& over o" and s" and using the identity

| 355 - 05T T, = z !d'iaﬁji Erm'rﬁ] +% [O'i.O‘jl iz, ""'[3]

| ?’(qe'l,_,;') [i ai.t- €apy -21' + i &'aﬁ & 5k f ] u(o,s) .
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When we then compare the two sides we find the relations

2 2
B W, 5 ¥ . (20)

These relations represent the "solution" by the Lee-Dashen-
Gell-Mann procedure of the algebra of currents in the present
instance.

Physically the quantity g, is the strength of the axial

vector isovector current between zere momentum nucleon states.
This quantity can be measured in neutron B-decay and it is
known: that |g,| = 1.18. (We assume that the bave axial vec-
tor constant is equal to the bare vector constant.) We might
conclude from this and eq.(20) that our approximation proced-
ure is quite good in this instance. This is a delusion.
Our approximation is in fact quite bad because we know that
the coupling of the nucleon to the N*(1238) (3,3) reson-
ance through the axial vector current is quite 1arge16of the
order of 0.6 to 0,8 in the above units) end yet we have ne-
glected it completely.

From a mathematical viewpoint also our approximation
proves to have quite drastic consequences. We notice that
eq.(20) gives g =1 whére g is the reduced matrix element
of the operator Aio between nucleon states. Now this op-

erator is, in the model we are using, the spin part of the

angnlar momentum i.e. the tqtal
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'Ti. is given by
Jy = L;+8; , (21)

is the orbital angular momentum and S; the spin
mentum,is equal to Iio. Since the nucleom has

; + 0‘1

e, < a's’ | J:l l 08> =_1 (o1,s") -fz_'—u(O',s) s (22)
from eq.(18) with g =1 and eqs.(21) and (22) we find
< @'5‘ ' Ili l G’,B > = @ e

words our approximation forces the nucleon to have

l angular momentum equal to zerwo.

is is not, as it might appear, a trivial point. One
nk, for instence, that since | 0,8 > represents a

, state at rest, its orbital amgular momentum ought to
) However, in the present theory, & one-nucleon state
necessarily a one-particie state; it is more likely to
te of three or more fundamental particles corres-
; to some mixture of representations of SUI,S("')’ the
 which merges the spin and the isospin and in that case
u%i.‘ba.l angular momentum will not be zero.

‘Thus our method of solution has forced the zero momenbtum
leon spates, which at first constitute a (2,2) representation
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of the group snI(z) x 33("1 =Ly + si), that is the direct
product of the isospin group and the group of spatial rotations,
to be a (2,2,1) representation of the group suI(z) x sus(z) x
Rs(hi)ﬂ where SUS(Z) is the spin angular momentum group and
113(1.1) is; the orbital angular momentum group. Even more,
these states are forced to be a (4,1) representation of the
group 5“1,3(‘*) x 33(1.1); this is seen from the fact that, in
the approximation used, the sum of the squares of all 15 oper—
ators of the algebra is diagonal and a multiple of the unit
matrix and since this sum is the first Casimir operator of the
group 3“1,3(‘*) it follows by Schur's lemma that the states used
must constitute an irreducible representation of SUI’S(&.).
Hence, although we did not start out with any assumptions about
SUI’S(A.) inverience or multiplet structure, the approximation
n_ethod employed imposes on the states used tha‘l: they constitute
a representation of the group SUI’S(J...) x Rj(I'i)'

. This coneclusion is not at all surprising. It is in fact
simply a verification of the discussion given sbove after eq.(14).
A situation such as it imposes will always be possible for zere
momentum states provided only that the states chosen have the
correct spin isospin complexion. It is clear, however, that
this kind of circumstance can at best be only an approximation

to the real one; for zero momentum states, while they are
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eigen-states of the total angular momentum, are not generally
eigen-states of the orbital and spin angular momenta separately.

From this example one sees how the current algebra approach
works in conjunction with the Lee-DaShen-Gell—H;nn procedure.
The limitations of the approximation are clearly seen and it is
to overcome these limitations that we turn now to a second tech-
nique.7)

(b) The Fubini-Furlan Technique.

The essential difference between the Fubini-Furlan technique
and that outlined above is that the former does not truncate the
sum over the complete set of states on the left hand side of eq.
(2) but rather expresses it in terms of physically accessible
quantities, namely integrals over cross-sections or.known mat-
rix elements. The method is analogous to that used by some
authors to calculate electromagnetic masssdifferences17) and
15 as follows.

One begins, as above, from the integrated form of the com-
mutation felations, eq +(13). One then takes those relations
where

B 2f .o,

(i1) IA& is the space integral of the time component of a

current .
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Ij? = .[ a’x JLA?(x;t) S

(iii) the divergence of Jh‘_ is a measurable local
eperator
@ a
a” JLA (x,t) = k 0, (x) , k a constant
and
(iv the two states between which one takes the matrix

element of the commutation relation are one and
the same.
One sees that this method has a more restricted range of ap-
plication than the previous one (because of the requirements
(1) to (iv)) but it is much more satisfactory because it is
much more exact.
Using (i) and (iv) above, we see that on this occasion

our matrix element equation is

ZL i(e)] 1,71 36" > < 3 (1] ip)>
J(e")
= <10 @O 367 > < 36N 17116 > ]

- Zx(ma,(ma)*; Cy)< i(p*)] IcTI il > . (23)
e
Y

In this equation the matrix element on the right hand side is
always known exactly because, on account of the way IA? and
Iﬁ? were chosen [condition (i) above], the operator Iér

turns out to be either the charge, the baryon number or the
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\;’._‘;gtmngeness operator or some linear combinatiom of these three.
éid'a.of the equation poses no problems therefore. On the
:' hand side the sum over the states § j(p")} will usually
uive contributions from one or more single particle states -
u call 'theée discrete statm - and then from two or more par-
; tﬁclo states - we call these the continuum states because the
,.»:" mass of such states has a continuum of values. For simplicity
| we assume that there is only one discrete state contributing
Bl we call it Jn(p"). We next separate the contribution of
;. y this state from that of the continuum states and this latter is
'I' _ then expressed as an integral over certain cross sections or
hemmtrix elements. The net result is that eq.(23) becomes
8 sum rule for the matrix element of I,” between the state
B i o discrete state | (2")> .
We remark here that the continuum contribution to the sum
rule thus obtained has a straightforward interpretation in
terms of broken symmetry ideas. If the algebra of the IA“
‘ were the Lie algebra of an exact symmetry group the I:‘
Bt 11 coumsto with the Hamiltonian; this would have the
::, result that all matrix elements beimeem single particle and
lﬂltiparticle states would va.nish and so the continuum con-
trihution to the above sum rule would vanish. This contin-

m contributicn is therefore a measure of the amount by which the
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symmetry, represented by the algebra of the ;Am, is broken.
In order to calculate this continuum: con-
tribution we begin by considering the matrix element of IA“
between the state |i(p)> and a general continuum state
|Jc(p') > . In view of the specification of }hs IA:J given

above [condition (ii)] we have
< 3 1,0 1) > = < 3;(p)] [ =) x| 1) >
which, upon using the relations

1i: ” [IA“‘,H] , [H is the Hamiltonian]

and i >

. J

femang -f Px —2bhs o -/d5x 0, T, (=)
%

we can write

< 3gle*) | f &x 8 3 *(x,8)] 1(p)>

a

< jc(P')l I.A. I i(P)> = .
ikl (24)

where ch' gnd E; are the energies of the states | Jc(p) >
|i(p) > respectively. (In cases where the continuum states
are not separated from the discrete ones because of the pre-
sense of massless particles - photons - the denominator on
the right hand side of eq.(24) may need to be defined more
carefully; we shall ignore this difficulty in the interests:

of simplicity.) One sees clearly that the "inelastic" matrix
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elements vanish when the current J (x,t) is divergenceless.
When J (x,t) is not divergenceless we replace its diver-
gence by k 0, *(x,t) in accordance with condition (iv) above
and since this is assumed to be a known local operator its ma-
trix elements can be inserted in the sum rule to deduce the
value of the matrix element < jp(p')l IA“I i(p) > .

The most immediate application of the foregoing is in the
case when the currents in question are members of the octets
of vector and axial vector currents which arise in connection
with the unitary symmetry SU(3). Since this symmetry is not
exact the divergences of the wector currents are not all zero
and one does not expect the axial vector currents to vanish
anyway. In each case it is possible to give an expression
for @ J in terms of other measurable local operators

H llA
and so we can apply the above theory. The relevant express—

ions for a“ J %(x,t) are as follows:

' g in(x,‘l:) = V;(i)(x,t) » the strangeness conserving vector

current,

2 (")(x,t) = tieh (x) v°(*)(x,t) , A(x) the electro-
u magnetic fields
2, in(x,t) - v (2)(::,1:) , the strangeness changing vector
= current,

pV;(i)(x,t) = ¢ x(i)(x) , where x(i)(x) is the kappa

field and C, its leptonic decay constants
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I %(x,t) = Ao(i)(x,t) , the strangeness conserving axial
BA H vector current,
) 0(3)(::,1:) = o x(i)(x,t) where ‘x(z)(x,t) is the pion

o
field and e the pion decay constants

J a(x,t) W~ (3)(:;,1:) , the strangeness changing axial
A H vector current,
aﬁu A' (3)(::,1:) = o K(-t)(x,t) where K(:)(x,t) is the kaon

field and ok the KL decay constant.
2

These expressions for the divergences enable us to compute

the contribution of the continuum terms in a manner which we
shall now illustrate. There is no need to take these rela-
tions literally as operator relations which arise from an
underlying field theory; rather, they should be thought of
as definitions of the respective fields in accordance with
the Haag-Nishijima theorem's).

As an example we take the case when Jp:(z,t) is the
strangeness conserving axial vector current to illustrate how

the present method works.

, 9a,b)
An le: The Adler-Weisberger calculation.
On choosing I: = f Ah_(x,t) Pz = Q; our commutation

relation becomes

[@5__", q;] =21, (25)
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where 13 is the third component of isospin. Taking the
matrix element of this relation between the proton states
IPs(p)> and |Ps,(p')->, - s and s' being spin indices
and p and p' the momenta — we obtain for the right hand
side the expression &_, 53(p' -p) 3 tl?e first term on the

left hand side receives a contribution fi'om neutron states

and with the definition
<N, () o | B () > = 87(p'-p) g, %EN-(S')(;;)«-“E,%SS’(;»)

this contribution is equal to

& 3 S - - M—2.
gt 3°(p'-p) g, (1 Eg)
P
M being the nucleon mass and EP its energy. Then if we de-
note by |a (p") > a generic continuum state contributing to

the sum rule we have

53"3 53(p'—p) = gA2(1 -522') astsakp"‘P)

* ) I <P, a5 | a(e")>< a(p)| o5~ | Py(p)> = Q5" €07 | .
Now using eq.(24) with I Am = Q53'- and the partially conserved
axial current relation

a"u Apo(:')(x’t) - % 'Jti(x,t) ’ (27)

we find
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<a(p) | @t P () > = < a(p") |f ¥(x,0) a’z| P_(p)> |,

.. -2
and a little manipulation with the right hand side here yields

<a(p")| Q5= z|p (p) >

c 383
=5 Eﬁ)z P (2) &E(§ =2) < a(p)| 7. 2(0)| B () >
e (28)

where J&i{x) is the pion current defined by the relation

IHx) = (O-n2) z%x) .

Next we write the summation 2 in eq.(26) as
"

z = fd3p" [awza(w -¥) , (29)
“int

a(p")

where E denotes summation over the intermal variables of
int

the state a , W is its total energy in the centre of mass
system and M is its mass. [Notice from eq.(28) the spa-
tial momentum of @ 1is equal to that of the proton state
Ps(P) ]. Then on setting s = s' in eq.(26) and taking

Z% we obtain, using eqs.(28) and (29)
S

1 = gA(‘l— )+[dw Z‘a(w n [(E 2

: 6
x _(2x)
n? 2 (E,,-Ep)z

p)

. 5
x %HI <a(p)] 370 B (2)> |Z = I<a(p)| 3]0} | P (3)> | ]
- (30)



Quentities F, * and K® are now defined by the relations

3
a @) 3OV B (p)> = (;‘5-3—(§p ¥) RE . Gl

and
DD I SIE NI L & ATCRES o B ¢ Y
8 %ing

where Py is the four momentum of the state a - Py = G),la).

Then eq.(30) takes the concise form

2
1 = 5‘&2(1 -!""2)
gt MW
» [ aw x £ {K"[?i’.(p,Il -p)°]

[(E, -Ep)z y %2]2 (B, "332 EpEy
- k' [w, (pm-p)zl} - (32)

This relation is to be looked upon as a sum rule for the
quantity g, o

In order to evaluate this sum rule we ixeed to relate
the quantities K= [W, (pu-—p)Z] to some known functions,

This is done as follows. The total cross sections for

x -proton scattering are given by

<a >|®
| (Pa)lf'(o)lps(p)l 51“(p+k-—l|a)

oX(W) x flux = (2x)'% z 3 .
. sa (2x) 2k

= ’f:-o(zx)s% 22 |alp,)l (0P (20l ®8(8+k, - 8,)

int
x M _+ 2
-5LE¥m a0,

(33)
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this last line coming from a specialisation to the centre of
momentum system so that Ep+k=w, Ea=llae Sinee in
this system the flux is

lxo EP k : Ep

while -
ko = —1-('24-“2-‘2) 9

2W
we obtain for K=(W, -m,f) the expression
k“ e=em _W

kW, -n 2] = °“[ E. oci(w) . (34)

Thus when the second invariant varisble (p, -p)_-2 takes on
the value -m: the functions K[ W, (pa-p)zl in (32) are
simply related to the total =t - p o¢ross~sections. In order
to use this information it is necessary to devise some means of
making (pa—p)2 equal to -mf in eqo(32). This turns out
not to be possible, for on account of the way that sum rule was
derived we have (p“-p)2 = -(Ep—Em)2 = = p2+ r -
Y p2+%?)2 and this cannot take on the fixed velue -m 12" :
because p is fixed but W ranges over all values from
M+m - to infinity in the course of the integration.

But if (pa----p)2 cannot be made to take on its physical

value -m,mz it can be made to take on the fairly nearby value
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of 0. This is because the quantity p is a parameter in
our sum rule and may be set to any value we wish. From the
above expressions for (Pa —p)2 we see that when p-= o this
quantity becomes zero. If we now take the lim. p +© in the
sum rule, eq.(32), assume that this limiting process can be

interchanged with the integration over W and use the rela-

tion
(Ea-EP)Z : (ua2_12:2 w2 _Hz)z 3
(8, +E) (E, + E)
‘we find
Ry g~ * ‘_’Ez s f aw ﬁ [K™(w,0) - k*(w,0)] , (35)

and so, using (34)

.

1 = 5A2+-2-(°ﬁ) wz 32 [G‘ (W) °+(W)] » (36)

where @‘oi(W) is the =& - p +total cross-section for zero
mass pions. Eq.(36) is the Adler-Weisberger sum mle9aa’b)
c ;
The constant -E-z appearing in eq.(36) can be obtained
g
from the , decay rate I'L « Because of the PCAC assump-
2 2
tion, eq.(27),
2
L i 2 2 :
® S\ N5 *
Pl 1= g 9 (37)
= 8= » /. :
=

3
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where m, denotes the mass of the lepton (m.l.E or me) and

is the bare coupling constant of the strangeness conserv-
7

:
QA_

ing axial vector current. From the value Tﬁ = 3,84 x 10
2
sec._1 19) we find

cegeiiip _
(“«m) £.° = 1909 x0T A" (38)

M being the nucleon mass.
The integral over the total cross sections has been com-

puted by Adler and Weisberger. They find9a°b)

5 [o."W) -0 *(W] = - 37.01 é (Weisberger) ,

wz e (39a)

= = 50.33 iz (Adler) , (3%b)

the difference coming from the fact that Adler made certain
corrections for the continuation in the pion mass. On sub-

stituting egs.(38) and (39) into eq.(36) we obtain

G-°2
A

=10

- (8,° gA)z = = 0,729 x 10 (Weisberger), (40a)

= -0.991 x 10710 (Adler), (40b)

The quantity GA

(renormalized) axial vector coupling constant for neutron decay.

e 8y appearing here is nothing but the observed



Experimentally its value is

G, = GA° g, = =118 Gv(n-b p) 20) ; (31)
-5 24
with G.;V(n-v p) = 1.00#51_0[—2— )o (l|.2)

Egse(40),(41) and (42) then yield the result

-5 :
I GAOI = 0,82 x 3-3—2— (Weisberger), (43a)
™D
. Dbk X 3%2- (adler) (43b)

In view of the uncertainties involved in calculating the inte-
gral over the total cross sections, eq.(39), we may consider
these results as supporting the commonly held view that in .the
bare La.gra.ngié.n the vector and axial vector constants for
strangeness conserving processes are the same. Alternatively,
if we make this hypothesis, i.e. &,°=6," =G (n*p), -
this second equality resulting from the conserved vector current
hypothesis - then eq.(40) enables us to predict IgAI , the ab~
solute value of the axial vector remormalization in neutron de-

cay. The answer is

| &y = 131 (Weisberger), (m)
= 141 (Adler): (Ml‘b)

to be compared with the experimental value 1.18.
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[The present treatment differs from that of Adler and
Weisberger in that these authors express the quantity @k/hmz
in terms of 8y and the strong pion-nucleon coupling constant

8N (gi;a /ﬂ;l = 14o6) by means of the Goldberger — Treimsn

relation 22)

:fz = . (45)

We have chosen not to do this as we believe that the pion decay
rate gives a more direct measure of this constant. If we had

used eq.(45) we would have found

| QAI = 1016 (Weisberger), (4.6a)

= 1.24 (Adler) . ] (46b)

This, then, is an example of the Fubini-Furlan technique
in action. It is seen that at least in the present case current
commutation relations, when applied without drastic approximations

can yleld answers in good agreement with experiment.

The Adler-Weisberger relation: some comments.

While the broad outlines of the foregoing discussion are
generally Satisfaotory, there are at least two points of detall
which one might{consider in need of further examination. Thess
ave the questions (1) of taking the limit p =~ and (2) of

extrapolating td Zero pion mass.
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(1) The first problem concerning the infinite momentum
limit is whether the limit -f) 0 can be interchanged. with the
integration over W in eq.(32 ). The answer is that it can
if the integral is uniformly convergent. Unfortunately we are
not in a position to say whether this is in fact the case. The
resulting integral is of course convergent if the Pomeranchuk
theorem is valid but this alone does not justify the interchange .
Ad.ler9 a)has shown, however, that the assumption that this inter-
change is Jjustified is equivalent to the assumption that a cer-
tain pion-nucleon scattering amplitude continued to zero piom
mass obeys an unsubtracted dispersion relation and it seems al-
most certain that this latter assumption is correct. Thus in-
terchanging the limit 5-*tn and the integration over W is
almost certainly allowed.

With regard to the limit p » ® itself, we recall that our
sole purpose in taking it wes so as to be able to express our
sum rule eq.(32 ) in terms of integrals over =® — p total
cross-sections; the ‘5 » o limit is therefore a strategic de-
vice. There have been a number of attempts, notably by Fubini
and FurlanT) and Dashen and Gell—Mann%B) to raise this 3-*¢n
limit almost to the rank of a principle; at the moment, however,
it seems best to regard this limit as a question of strategy

rather than of principle.
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Another aspect of the infinite momentum limit is that it
has been shomm") that the chiral S8SU(2) x SU(2) algebra upon

which the Adler-Weisberger calculation rests [see eq.(25)],

is equivalent to the algebra of the collinear SU(2) x sU(2)

group when operating on single particle states of infinite

momentum., This fact explains how these two apparenﬂ.y diff-
erent groups give the same results in the limit of infinite
momentum states and it has also been used to interpret the

physical values of the axial wvector coupling constant and the
magnetic moments, as indications that the infinite momentum
nucleon states constitute a definite mixture of irreducible .

representations of collinear SU(2) x SU(2).25)

(2) As we have seen, the Adler-Weisbsrger sum rule gives

the strangeness conserving axial vector renormalization in
terms of integrals of total cross—sections for nl - p scat-
tering where the mass of the emternsl pion has been continmed
to zero. How this continuation affects the cross-sections is
something we cannot know; the effect is asmu;led to be small
and certain model calculations support this viewga) but ultim-
ately we have no real proofs one way or the other,

In view of this we might now raise the following question.
The above calculation does not assume that the pion mass is

zero and the zero pion mess limit arises simply fraom putting
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equal to zero the invariant square of the momentum transfer

(p--pa)2 which normally is equal to —rgxz. But what if the
pion mass were actually zero? Would we thén have an exact

sum rule? Initially this idea runs into difficulties, for if
we set m_  equal to zero everywhere in eq.(36) the second

term on the right hand side becomes infinite. However, this
difficulty is spurious rather than real because when the pion
mass is exactly zero che cannot use the PCAC relation eq.(27),
and so the above method of deriving the sum rule is inapplic-
able. On the other hand it is possible in the zero mass case

to postulate instead of eq.(27) the relation
O -
2 4 x) = 4 $Xx) , (&7)

where dx;(x) is the pion current. (You can get this relatiom
in a gradient coupling model, for example, though it should be
remarked that it seems difficult to get the required current
commutation relations in the same model.) With this relation

& procedure analogous to the above yields again the sum rule
eq.(36) with qx_/'mﬂ? replaced by 4, and furthermore the

sum rule yields the same value of [gA| as before, for due

to the Goldberger — Treiman relation , eq.(45), d, is numer-
ically equal to o /'qxa o Thus the answer to our question

is that the Adler-Weisberger sum rule would be exact in a
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world with pions having zero mass, provided that the relations

given in eq.(47) were valid.
V. OTHER APPLICATIONS.

Applications of the current algebra approach are now very
numerous and only a selection can be referred te here. For
those Qpplicatians which use the Lee-Dashen-Gell-Mann procedure
to deduce strengths of currents, magnetic moments and mass re-
lations the reader is referred to references and the papers cited
therein. The "goodness" of these results varies widely.
Applications which employ the Fubini-Furlan technique seem on
the other hand to yield better results. We now discuss some

of the latter.

(a) Renormalization of Strangeness Changing Axial Current.
In order to explain the importance of the calculation of

the renormalization of the strangeness changing axial current

we recall that the weak interaction Lagrangian for semilepton-

ic processes is given by

1‘ [ Gy ¥, w°(")+ e of+) , Gv"v;‘ (+) , a; AJ (+) ; L, #hec.
(48)

Here vﬁ0(+) (v'1(+)) is the positively charged strangenei:¥19‘~,

conserving (strangeness changing) vector current and Gv@(ﬁv )
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is its bare coupling constant; Au?(+) (Ap (+)) is the posit-

ively charged strangeness conserving (strangeness changing)
axial vector current and QAQ'(QQ ) is its bare coupling con-

stant and Lp is the usual weak current of leptons,

L, = o(x) v, (1+xg)y (=) + i (x) Tp(1+‘r5)vp(=) p

As a result of the Adler-Weisberger calculation it is now
possible to equate Gvo and QAO as explained above. We
would next like to make a similar analysis in the case of G;
and Gh?. With regard to these constants it was first hoped
that all G's in (48) could be chosen equal - this was known
as the univergal Fermi interaction. However, when that theory
is applied in a straightforward fashion (neglecting all renor-
malization effects) the rates for the leptonic decays of strange
particles come out about twenty times too large on the average;
the effective coupling constants for these decays must therefore
be much smaller than Gv° - of the order of -% va or so.

The problem is now to decide whence comes this diminution of'
the effective strangeness changing coupling constants:

(a) Is it due solely to strong interaction renormaliza-
tion effects with the bare constants chosen equal to those for

strangeness conserving processes ? or

(b) Does the diminution arise primarily because the bare
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strangeness coupling constants are much smaller than their
strangeness conserving counterparts with strong interaction
renormalization effects playing only a minor role %

27) -

The alternative (b) is that adopted by Cabibbo
his theory of weak interactions. He postulated a weak in-

teraction of the form (48) with

0

G‘ =GA = Goos 0 ; G-.' = G G sin ©

>
[}

tan 6 ':. 0026 Py
G being the muon decay constant,. This theory gives quite
28)

a good account of semileptonic decays o Let us now ex-.

amine the consistency of alternative (a) using the algebra of

currents.
We begin by defining the operators S 51 as
82 = [’z 2ty (49)
5 b ¢

s53 are the analogues of 05-‘5 introduced in eq.( 25 ); 35*

and S 5- are assumed to satisfy the commutation relation

[35+’ 35-] = Y+ Q 9 (50)
where Y is the hypercharge and Q the electric charge.

(We abstract this relation from the quark model.) We now
take the matrix element of this relatiom between single
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neutron states, notice that the only single particle contri-
bution on the left hand side comes from the X~ state, use
the PCAC relation

ap Al:(i)(x) = cKK-t(x) g (51)

where K&(x) dis the keon field operator and generally proceed

precisely as in the Adler-Weisberger calculation. The result
is the sum rule 29)

Cx 2 K*n K n
2/0= 2 W _
gA(}.‘. +n) = e —2) dW-———é-[c‘o (w)-o-o (w):l,
e Wz-l{
(52)
where notation is similar to that used in the Adler-Weisberger
sum rule. In principle this relation enables us to compute

GA1, the bare strangeness changing axial vector coupling con-

stant.

. 242
From K!~1 decay we obtain for (GK/mK Y“ +the relation

2
o \2 ' (K» pu+y )
—--2-) - - . U 2d2 ’
K é(GA) meu(*l-fhé)
=
where T (K-p.-r;p) is the K'_l decay rate. On inserting

< »%53 -
for this quantity the experimental value )rexpt(K B v )

= 5.41 x 10’ see.”!, we find

2
(f.K.z) ((;;)2 = 9:2%2 x 10-12 s M = proton mass,
e

aln
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whereupon the sum rule in eq.(52) multiplied by (('}A‘I )2

becomes
+
-12 K'n
1 - 2 122 | 0,945 x 10 aw
(6, g,(2 »n)]° = (6, )" + s to (W)
A K A H2 ‘WZ_IZ o
K

iy ;.m ),

The evaluation of the integral in this relation is beset
with difficulties. In the first place the cross-sections,
since they involve neutrons, are not very well known. Sec-
ondly, the continuation of the mass of the external kaon to
zero is likely to have more serious consequences than did the
similar continuation of the pion mass in the previous calcul-
ation. Lastly, the sum rule this time receives contributions
fromthe I =1, Y=0, Ix and Ax atates below threshold
and these contributions have to be included in some way, (by
putting in the Y1‘(1l¢-05) resonance for example). In view
of these uncertainties we are unlikely to obtain very aceur-
ate information from the present relation.

Estimates of this integral are available in the work of
a number of authors. These are

+ e
Lk [ O'OK n(W) - GOK (w):] - 23 mb il

2
Wo-N )

= = 22,5 mb

gy RO - 58
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On using these values in eq.(53) together with the relation

1mb = —Ez— ’ (M = proton mass)
12
we find for G'A the equations
=10 0e49
142 o 2 10
(6, = [6) G = WP+ 22— foha]. ()
073

Now the decay rate for 2 = n +e + ;e as computed from the

weak interaction given in eq.(48) is

T'(C » n+ e"-u-'{n'e) = 3.20xt0 > 1*§1.03 [c;,q,1 By B n)]?

~1

+ 3.04 [G-; g, (R n)lzl sec (55)

where gv(z T n) is the renormalization factor for the vector

current and the various numbers appearing are the phase space

factors. The experimental decay rate is 3)
y C™>n+e +v.) = 8075::106 sec”!
expt e’ » ’

from which we deduce the inequality
[GA2 gA(E--b 2 K € O Bxte T,

Consequently we obtain for G 1, the bare coupling constant

for the strangeness changing axial current, the upper limit

0.49
(G-Az)z W < [{ 0.48} + 0,0081 ]x 10719, (56)
0.73
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The outcome of this calculation is then the following:
since the bare strangeness conserving vector coupling constant
Gvo has a value of about 1 x 10-5 1-2, it is scarcely poss-
ible to maintain the equality of all bare coupling constants
in the weak interaction Lagrangian eq.(48). This conclusion
is predicated on the assumption that all the ingredients of
the above calculation (algebra of currents and PCAC) are cor-
rect and also that the uncertainties in the evaluation of the
sum rule are not large. This is, of courée, a lot to assume.
However, one can say thaf the indications are that the bare
coupling constants for stranéeness changing semileptonic de-
cays are smaller fhan their strangeness conserving counter-
parts, but the amount of the diminution (i.e. the magnitude
of the bare Cabibbo angle) cannot be stated with any degree

of confidence.

(b) Pion-Pion and Pion-Kaon Scattering.

The commutation relations given in eqs.(25) and (50) if
valid should yield information about ®-% and K - scat-
tering. If, for example, one takes the relation (25) between
%" states and uses the Fubini-Furlan-Adler-Weisberger (FFAW)

technique, one finds the sum rule
-+
3 + +
@ - " @] (57)

c 9
2 /s % w dw
2= 22 [34, &

m w -qn :
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while the same relation taken between KXK' states leads to

the sum rule

| YR . - +
(Z,) j"z—ﬂz e ) e w1 . (58)
Bge oty

Now although there is no direct pion-pion or kaon-pion

-
I
Alv

scattering data available there is sufficient information
on these interactions to make some comparison of the sum
rules (57) and (58) with experiment.

The first thing to remark is that the contribution from
the second term in the integral is likely to be very small
in both sum rules; these terms involve === scattering in
the I =2 state and K-m scattering in the I = 3/2
state and cross-sections in both these channels seem quite
small in the low energy region. The signs of the right
hand sides are thus likely to be positive in agreement with
the sum rule.

If we now evaluate the right hand sides of these sum
rules by putting in the low energy resonant contributions -
the & = 1" p° (750) anda 3¥ = 2" £° (1254) 1n (57)

P P

and the J° = 1 K* (891) and J o* k** (1415) in

(58) - we find that we are far from satisfying the sum rules.
If, as is likely, the higher partial wave contributions are

not very large this means that there must be sizable s -wave
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cross sections in both cases and/or large non-resonant con-

+

tributions in the 1 and 2 partial waves.

(¢) Baryon Magnetic Moments.

A number of different methods of deducing magnetic
moment sum rules have been proposed in connection with the
algebra of currents. The first was due to Leeh) who de-

fined the magnetic moment operator mia as

M = ey [r v o (59)

where Vka (x) is the octet vector current. By taking the

commutator of this operator with Ala j a’x A %(x) where
A %(x) is the octet axial vector current and using the Lee-
Dashen-Gell-Mann procedure one can deduce the SU(6) result

I-lp/laln = - 3/2 35) where p_ and By are the magnetic

P
moments of the proton and the neutron respectively. In
addition, by commuting two memders of the set m ia s Lee

1

obtained the relation p.P2 = % < rp2 > where < r x >2 is

p
the root mean square charge radius of the proton.
Both these results suffer from the difficulty that in view of
the way the approximation used forces all states to have orbit-

al angular momentum L =0 (recall section IVa), the only con-
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sistent value for My OF Hp is zero.js) This difficulty
can be remedied either by putting the nucleon in a represent-
ation having non-zero angular momentum or by giving the
quarks anomalous magnetic moments, but neither of these de-
vices seems particularly attractive.

Subsequently a derivation of a magnetic moment sum rule free
from these objections was given by Cabibbo and Radica.ti.m")

Starting from the definition
a 3 a
D, = [d. x J, (x) x; (60)

where Joa(x) is the time component of the isovector current,

and the commutation relation
- 2
[D1+ L D1 ] . 2[ Jos(x) x1 d3x ’ (61)

these authors deduced, by means of the Fubini-Furlan-Adler-

Weisberger technique, the sum rule

O f%’ 2o} - oY1 = 1/3<1%>, (62)

where © 1’?(3) is the total cross section for photo-production

1
on a proton of I =72 (I = 3/2) states and < >

is the
root mean square isovector radius of the nucleon. An approx-
imate evaluation of the integral, neglecting the df,lv contrib-
and assuming that o_}v is dominated by the (3,3) resonance,

gives the result
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I By = “‘nl = 5.5 nuclear magnetons ,

to be compared with the experimental value of L.7.
A third approach is that due to Mathur and Pandit.37)
These authors noticed that on the basis of the quark model

and the algebra of currents one has the relation

0 = [ahox) ), N (63)

where Ji l(o) is the electromagnetic current vector and
M°(x) is the field operator of any of the neutral pseudo-
scalar mesons (n°, K%, K°,m ). On the other hand one

can define a causal amplitude

T(q, py,P,) =

B2 [ a0 |00, 3, (0) e, ] 0(x,)] B,(p)>

5 4 (61)

which is the invariant amplitude or reduced T-matrix ele-

ment for the reaction
o
v (k) + B,(py) = By(p,) + ¥ (a) ,

the photoproduction of a single neutral pseudoscalar meson
on a baryon. (B, and B, represent baryon states.)

Now eq.(63) shows that

1lim. T_(q’ Pys Pz) = 0 (65)
q*0
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and on expanding T(q, Dy p2) in CGLN invariant amplitudesja)
it is seen that eq.(65) represents a sondition on only one of
these. If one then assumes an unsubtracted relation for this
amplitude and in the calculation of the imaginary part only the
contributions of the baryons and of the first baryon resonances
are retained, eq.(65) implies a relation between baryon magnetic
moments. The relations so obtained appear to be in good agree-
ment with experiment.

These results on baryon magnetic moments further encourage
us to think that the algebra of currents represents a correct ap-
proach to the understanding of the properties of strongly inter-

acting particles.

VI. COVARIANT FORMULATION AND CONNECTION WITH SOFT PION

EMISSION.

As a final topic we deal with a very important step in current
algebra theory, namely, the development of a method of deducing
the consequences of current (or local operator) commutation re-
lations in a formally covariant way. This method, which seems
to have been discovered simultaneously by a number of authors,39)
is very closely related to that used by Nambu and his collabor-

%40)

ators in connection with soft pion emission. Basically what

done is to use PCAC and current (or local operator) commutation
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relations 4o link up matrix elements for processes which differ
only in the emission or sbsorption of one or more zero mass
pions. Some of the results here are quite promising but there
are also some difficulties which arise from the most common
formulation of the method. For these reasons we shall

now discuss this question in some detall.

The common formulation begins from the identity

o 5.]«1‘*:: au{e‘iqx B(x@)< B(p“){ﬁf(x), 0(0)]!A(p)>} 3
(66)

where A];(x) 1% the kO isospin component of the axial vector
current, 0(o) is any local cperator eveluated at x, = -
B(xo) is the usual step function in the time and A(p) and
B(p') are arbitrary states having four momenta p and p'
respectively, A(p) being assumed not to contain a pion of
denomination k. In order that this integral converge at
t =+ we impart to g, & small positive imaginary part.
On performing the differentiation in the integrand here

we obtain
0 = —iqu, [ o 8ix) <30I 4(x), o) aGe)>
+ 4 [a 7 0z, ) <30 3,400, (o) lae)> , (6D)

where




o

M, = jdkx o—iax o(x,) a(p)l[A];(z), o(o):[l A(p)(>68;

Next we employ the PCAC relation

2, A=) = o x(x) , (69)

where 'xk(x) is the renormalised pion field and then the last
term in eq.(67) can be written as

-i : [ e (0 -n2) 6(x,) < B(p") ~(x), o(o)]] g i
i m
(70)

and this is equal to

qz?mz.J 29, (2*)5/ 2¢B(p*), = (a)| ofe)] A(p)>
0 (71)

c
"‘2 ’2q° -(21:)3/2 times the matrix element of 0(0)
g +m_

i.e.

between the state A(p) and the state B(p*) -l-xk(q). Henece

rearranging eq.(67) we have
c.,gf—?qo(m)’/ .

<B(2*) x(q) | 0(0) | A(p)>
a® +n’

= -jd""x o 1% g (x°)< B(p')ll:.&t(x), 0(0)]] A(p)>

+ i qul!_l o (72)

The trick now is to set g, =0 in this relatian. When

this is done the first term on the right hand side becomes



=Bl
- <5(e")I[ T5(0), 0(o) [|ate) >

where I;c () is the Py component of the axial isospin de-

fined by

I;:(t) = [de Ai‘(x,t) 4

The commutator here [ 15 (o), o(o):l will in all cases of in-
terest be equal to some other local operator - call it 0O S
as a result of some assumptions about the operator 0(o) (‘such
as: that it is a certain function of quark field operators).

This term is therefore equal to
9l o5 (o)l
- <B(p')| 05 (o) | A(p)> .

With regard to the second term in (72), namely i q‘_‘llu s
we see that this vanishes as q“"' 0 except when Mu has a
pole at that value. This situation occurs when, on the in-
sertion of a complete set of states between the two operators
in the commutator in the expression for lﬁu , eq.(68), there
is a contribution from a state degenerate in mass with either of
the states A(p) or B(p'). The contribution here will also
be generally calculable in terms of other known parameters.

Thus we arrive at a relation of the form

3/2
Cx (27) 1lim V2q° <B(p') ‘th(q)l 0(0” A(p)>
mﬂ:2 q;O

= = <B(p' )|0 ()] A(p)> + :;molqlllll
n

(73)
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where the first term on the right hand side represents the
current (or local operator) commutation relatiom contribution.
As an example we consider the case when 0(o0) = VL(O) 2
the I_3 = <% component of the strangeness changing vector
ourrent of weak interactions, A(p) = X'(p) a single K'
state of momentum p and B(p') = 0 , the vacuum state. In

this instance there is no contribution from the term lim ig I-'-ul-l
‘ g~
and the operator 01;(0) is % A:l(o) ,» the I;s= -& component

of the strangeness changing axial current. We therefore get the

relation

c
2%22*/? 110 Vo, <L(AIVONE' G = F el @) -

m -0
x° W (7%)
Then with the definitions

()| V(o) E*(p)>

g Y
V2 (2%)° vipq,

[f+[-p2. %, =(p=a)°] (p+a) ,

* f,_[-pzs -t’i ()] (P'Q)‘u]

(75)

1 1
(21:)3/2 JZT i Pp fK (76)

0

<ol AL(O)l K"(p)>

and the relations
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-;2—‘- a 72 -’E‘— - o £ and £ = —g—- [see eq.(51)]

* ™ Bg

x

we find
f

t,m? 0,m2) + £ (m% 0,n°) = :5 . (77)

K

Bis La the. Callan-Tradnsi relakions’ Tinking She . of the
form factors f = and f_ for KL decay extrapolated to zero

C
pion mass with the ratio of the KL and x, decay constants.
2

A precision check of this relation requi:‘es a knowledge of
(1) the functional dependence of f_+ f_ on the pion mass and
the momentum transfer squared and (2) the value of the ratio
fx/fK - this depends on the ratio GAO/GA1 of the bare coupling
constants of strangeness conserving and strangeness changing
axial vector currents and therefore on the model of weak inter-
actions. At present such detailed information is not available
but as a rough check let us assume that the form factors f =
eand f_ are constant, that f'+ = 1 in accordance with the
Ademollo-Gatto theoreml"z) and that fK/fx = 1,28, which is the
value given by Cabibbo's theoryl"s ). In that event we obtain
for E = f_/f* the value 0.28 which is very different from the
presently indicated one of about -1)""3 ). This result should
not be taken as evidence against the relation (77) but, as is

more likely, that the assumption of constant form factors is



incorrect.

The above is a simple application of formula (73). A more
complicated one arises in the case of weak non-leptonic decays. In
that event 0(o) is HNL(O), the non-leptonic weak interaction Ham-
iltonian, and A(p) and B(p') are single baryon states differing
in strangeness by one unit. This problem was first studied by Suga-
warahh) and Suzukih5) and later by other authors and a number of
sum rules for the various amplitudes were obtained. We shall not
reproduce these relations but shall rather focus our attention on the

term 1lim i qp.Hp.’ which here gives rise to one of the difficulties
Yy

alluded to at the beginning of this section.

We recall that this term is non-vanishing only if, on inserting
e complete set of states in the expression for MN-’ eq.(68), there is
a contribution from a state degenerate in mass with either A(p) or
B(p'). In the case of 'm: emission there are no such contributions
because there are no two baryons degenerate in mass and strangeness
but differing by the unit of charge (here we do not neglect mass differ-
ences between the members of an isomultiplet); on the other hand for
%x° emission there are non-vanishing contributions because now the
states A(p) and B(p') themselves contribute to the sum over inter-
mediate states. Thus we have the difficulty that the term

lim i qu“;t gives no contribution to charged pion decay but does
Q>0
M

contribute to neutral pion decay.
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One resolution of this difficulty is simply to neglect mass
differences within multiplets. With this assumption the term i qunu
has a well defined qp—* O limit for both charged and neutral pion
decay. One then gets sum rules for the p-wave amplitudes which are
experimentally indistinguishasble from the AI = 7 predictions, with-
out postulating that the Hamiltonian is a pure I =% operator (it
can have an I = 3/2 part also).

Another way out comes from an examination of the Born term in the
amplitude. In this term one finds, in the qp-' O limit, an asymmetry
between charged and neutral pion decay analogous to that in the term
i qp Ml-l- ; in fact this time the neutral decay term vanishes while the
charged one does not. So if we denote the term on the left hand side
of eq.(73) by R(q), the Born contribution to this quantity by B.Bom(q),
and the difference R(q) - B.Bom(q) by E(q) we can then write eq.(73)

as

R(o) = qiimo[ﬂ(q) - By ()]

= - <8(p")| [QI;(O). HPT'(O)]I A(p)> «+ qiimo[i q, M, = By ()]
(78)

In this form we have a quantity, R(q), which tends to a well defined
value in the q,* 0 limit end if we assume that R(q) does not vary
very much with q, so that we can replace R(q) everywhere by R(o) ,

then we can write for the whole amplitude
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R(a) = Ry _(a) + R(o) . (79)

From this formula we can obtain the same AI = % -1like sum rules

as above., A full discussion of this matter will be given elsewhere.
A second and more serious difficulty with the above procedure is

the following. We recall that we have used in egs.(70) and (71) the

reduction formula
Jeo @0*72<300), (@)1 (o) | A2)>
= if atx a—in( a- mi)( B(p*) | e(xo) [,!‘(x), 0(o)]] A(p)>

= (¢’ +n?) [ a*x e FFen(p0)] 0(x ) [x5(x), 0(0)1l AR)> .
(80)
Now it is to be emphasised that this formula is derived precisely on
the assumption that the pion is on its mass shell and consequently the
term on the right hand side is tc be understood in the sense of the

2. Thus if we write

Linit of this quantity as q = = m ]

[ a*x o1 B(p*) | 0(x ) x(x), 0(0)]] A(p)>

2
= Ma) L oad)  (e1)
q +m_

2 2 2 2
for arbitrary values of q°, where B(q”) has no pole at q = -m_ s

€q.(80) is simply
2, (20°/2<3(2"), ()] 0(0)| Ap)> = 1 A(-z?) (82)

The matrix element for the pion at its physical mass is then iA(-mﬂz) 5
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Consider now what happens when we set 0 in eq.(80).
From eqs.(80) and (81) we find
3/ St e k 2
lim V2q_(2%)°/" <B(p*'), = (@] 0(e)] A(p)> = i 4a(c) + im_B(o).
kgt
$ (83)

Comparing this with eq.(82) we see that what we have got is not simply
the physical matrix element with the pion mass continued to zero but we
have an additional term besides. Thus the limit q”;-o is not equi-
valent to continuing the external pion mass to zero. In order to iden-
tify the limit q“fbo with the zero pion mass limit it is necessary to
assume that B(o) is zero or small and it is not obvious that this is

in general the case. This difficulty could be quite a serious one

for the present formulation.

Conclusion.

This concludes our presentation of current algebra theory and its
applications. The present treatment is far from exhaustiveka) but it
does trace the development of the subject along a fairly central path
through the subject. It is seen that the ideas contained in this develop-
ment have proved fairly fruitful and have led to some real progress in
understanding elementary particle interactions. The situation is still
not completely satisfactory, however, and in particular methods of com-
puting the effects of mass continuation are badly needed. Also the need

to take the qp-*o 1limit ought to be overcome in some way. One topic
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of those omitted deserves special mention, namely that of Okubo

and his collaboratorshg) on models and distinguishing between them
by means of current algebra techniques. While the first heady en-
thusiasm for the subject has now waned somewhat, it is felt that
current algebra ideas will continue to prove useful in elementary

particle physics for a long time to come.
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ERRATA

P.40, line 8: The references in question are 4, 5, and 48.

pe 43, last lines The factor -10 ' ° should read 10 >

P&idi, line 3: do.

p.i5, eqs (54): The factor 10 '° should read 10~ ' .

Eq. (56) should read:

0.49
(6)° ¥ < [ O.AB} #0.081] x 107", (56)
0.73

p.58, Eq. (78): Delete subscript PC from Hﬂg(e), to read H“L(e) i

P«59, line 3: after "above" insert the phrase "if the Born terms can
be neglected".
p.66. Insert reference 49: S. Okubo, Suppl. Prog. Theor. Phys. 37-38,

114 (1966).



