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INTRODUCTION

The purpose of the present work is to approach the
problem of gravitational radiation by a method of success~
ive approximations. The first chapter consists of a brief
historical survey of +the problem. In Chapter II, the
method of Das, Florides and Synge for determining static and
stationary fields due to a single body is described and in
Chapter III this method is extended to the non-stationary
case, Chapter IV is devoted to a discussion of the properties
of the non-stationary model in the first approximation and
in Chapter V we examine higher approximations. In the final
chapter, the question of loss of mass due to gravitational
radiation is discussed.

Particular points of notation will be explained as we
proceed, but the general notation, which we use throughout
the whole work, is as follows. Latin suffixes take the
values 1,2,3,4 and Greek suffixes the values 1,2,3. A
comma denotes a partial derivative and a stroke a covariant
derivative. We take the signature of space-time to be +2
and time to be purely imaginary, so that the flat space

metric, inm an appropriate coordinate system, is the Kronecker

delta, & 13 ° We denote the Christoffel symbols of the first
3 1

kind by rij,k = g(gjk,i * 8y 5" gi;j,k) and those of the
second kind by I'Iifj = gkl T

ij,1 °



CHAPTER I
The problem of gravitational radiation.

The excellent review articles by Pirani1’2 on gravitation-
al radiation render superfluous any detailed survey of the prob-
lem in the present work. 1In this chapter, therefore, we shall
merely give a brief introduction to the subject, sufficient to
pose the problem in its general outlines.

The question of gravitational radiation was first
raised by Einstein in a pa.per3 published in the same year as
his "Grundlage der allgemeinen Relativit#tstheorie". Two
years later he published a second papefh in which he used essen-
tially the same ideas as in his previous paper but presented in
what he considered to be a more satisfactory manner. He con-
siders a weak gravitationel field i.e. one which deviates only
slightly from flat space-~time. Using a coordinate system X
where xp_ are rectangular Cartesian coordinates in 3-space and

xJ+ = it , the metric tensor is then given by

where o7 (together with their first and second partial deriv-

atives) are small quantities of the first order.
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Substituting (1.1) into the field equations

ok i SR 9 K =8'E (1‘2)

€.
M
(=

where Ti.j is the energy temsor of the matter distribution,
and neglecting terms of the second order in ¥ 1j he obtains,

by a now familiar process,

*

i § ij,a.a. = =2K Tij ’ (1¢3)

as the equations to be satisfied by Yi;j s Where

3

4.
\ 4 ij = Tij =2 aij Ta& 9 (1-11-)

and 'r i3 satisfy the "coordinate conditions", R

*
Y 35,5 = 0 (1.5)
One recognizes that (1.3) is simply the usual wave equation and,

taking the retarded potential solution, one obtains

it') ' (1.6)
flqu > :

t'=¢ - lf'?j'l ’
where x and E' are the 3-dimensional radius vectors from the
origin of coordinates to the field point and source point respec-
tively.
Einstein considers the matter distribution, or source, to be

of finite dimensions, with centre of mass at the origin of spatial

* The notation and terminology used here is not that of Einstein.
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coordinates. He then proceeds to calculate the loss of energy
per unit time by the source by considering the field at a dis-
tance from the origin large ccmpared to the dimensions of the
source. He takes the stress, energy and momentum of the gra-
vitational field to be given by his pseudotensor, (-!-g)% tij :

where this is defined by requiring it to satisfy
(Ver,' +¥gt,)) , = 0. (1.7)

From (1.7) he finds an expression for the components of the ener-

gy pseudotensor in terms of the derivatives of the AYij' This
expressiom is quadratic and hence of the second order. It is

clearly not unique and several slternative pseudotensors have

been subsequently proposed. On the basis of this expression he

then calculates the total flux of energy through a sphere of large
radius compared with the dimensions of the source and concludes

that this represents the loss of energy from the source per unit

time. Similar work on the linear approximation by other anthor35’6’7
adds nothing essential to Einstein's results.

Despite the elegance of these results, serious doubts may be
raised as to their validity. In effect, the interpretation of
the pseudotensor as representing the gravitetional field energy
is questionable. A great variety of such pseudotensors has been
found (cf. Trautman 19628), but they are either not covariant
under general coordinate transformations or they depend on ar-

bitrary vector fields. Hence, there is & high degree of arbit-
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rariness in the concept of gravitational energy as defined by
such methods. Furthermore, as pointed out by Syngeg, the ap-

proximate g. obtained by linearization may be considered as
- &

J
the exact metric of same distribution of matter. If one cal-

culates the energy tensor for this gij’ using the full (non-
linearized) Einstein equations T, 4= = - G, 59 it will be

found that the Ti are not zero outside the body which acts

J
as source, but are small quantities of the second order. In
other words, they are of the same order of magnitude as the

. pseudotensor components. It would seem therefore that in

order to make physically meaningful statements about the flux

of energy outside the body (assuming that one can define "energy")

one must go beyond the first aspproximation.

In recent work, Sachs1o considers solutions of the linear-
ized field equations which are singular along a timelike world-
line which represents the history of a point multipole source.
He then examines the structure of the Riemann tensor at large
distances from the source in terms of the Petrov classification11
of the Riemann tensor in vacuo. His results are vitiated, in
the view of the present author, by the rather unreal character
of his source and could only be regarded as provisional until
proved true for the case in which the source is an extended
body. This proof is carried out in Chapter IV of the present

work.
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A number of authors have tried to go beyond the linear
approximation, using the methed of Einstein, Infeld and Hoff-
—— (the EIH method). They arrive at highly divergent con-
clusions. Infeldij concludes that "we can always find a reason-
able coordinate system in which there is no gravitational radia~-
tion", and is supported in his opinion by Sch.eideggeru"o Others,

12, Bawial® et cidaveinl Lo asiin e Bde s shbaotiat

such as Peres
the EIH method does not exclude the possibility of radiation.

The divergence of these results would lead one to suspect that
perhaps the EIH method is not suited to the study of gravitation-

al radiation.

Another method has been developed by Bonnor18, in which he
envisages the source as a pair of egual particles comnected by a
spring and expands the metric and cother quantities in a double
series involving two parameters, a characteristic mass and a
characteristic dimension of the source. He works through the
second approximation and finally concludes that the system loses
mass equal to the amount of pseudotensor energy which flows through
a large sphere surrounding it. The use of the pseudotensor raises
doubts as to the validity of this very interesting work. Also, one
would like to see the problem tackled with a more realistic source.

A different approach has been elsborated by Bondi and his co=-

19

workers “. They consider an axi-symmetric material system con-

fined within a closed surface, the rest of space being empty and
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tending to flatness at spatial infinity. They then study sol-
utions of Einstein's equations only in vacuo and at a large dis-
tance from the system. A feature of their method is the use of
a coordinate system specially suited to a radiation field. The
azimath ¢ is invariantly defined by the axial symmetry; coor-
dinates u, © are chosen such that u = const., © = const., ¢
= const., is the equation of an outgoing light ray, u being
timelike; a coordinate r 1is chosen so that the element of ares
of the 2-surface, u = const., »r = const., is r2 sin® @0 ap .
With these coordinates they can write the line-element in a form
which involves four functions of wu, r, 6 . The field equations
for empty space then yield a set of partial differential equa-
tions for these four functions. Moreover, the assumption is
made that each of the four functions has the form of a polynom-
ial in ﬁeéative powers of r, together with a remainder de-
creasing (with its derivatives) more rapidly than the lowest
power of r occurring, as r tends to infinity. They then
show that the behaviour of the gravitational field far from the
source is fully determined by a single function of u and ©,

called the news function. Their main result is that the mass

of a system is constant if and only if there is no news, and if
there is news the mass decreasé% monotonically so long as it
(the news) continues. Sachs2° has generalized the work of

Bondi by dropping the assumption of axial symmetry and obtains
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similar results. In the more general case there are two news
functions instead of one. The latter author also investigates
the asymptotic behaviour of the Riemann tensor in this case and

finds it to be analogous to that which is obtained in the linear

o have obtained similar results using

the tetrad-spinor method of Newman and Penrose>2.

case., Unti and Newman

The foregoing work of Bondi, Newman and others has opened
up some very interesting avemmes of research in general relativ-
ity theory. However, they are still far from solving the prob-
lem of gravitational radiatiom. As has been pointed out, they
study the gravitational field only in vacuo and at a large dis-
tance from the (supposed) source. In no case do they prove the
possibility of continuing the field inwards and joining them to
& physically realistic source -~ in particular, the energy tensor
inside the matter would have to be such as to give a positive
density. Recent a.ttempt323 e %o gain information concerning
the supposed source by examining the asymptotic field seem un-
likely to succeed.

What, then, must we look for if we are to find a satisfac-
tory solution to the problem of gravitational radiation? We
must construct a model universe given by a certain metric tensor
g“ » This metric tensor will have to satisfy the following con-
ditions:s

(i) It must certainly yield a non-stationary field - perhaps

other conditions will also prove necessary;
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(i1) The energy temsor, calculated by equations Y -
=1 Gij

s must vanish outside a certain timelike

world-tube.

(1ii) Inside the world-tube, the energy tensor must yield

& physically realistic distribution of matter. It

is difficult to give a comprehensive definition of

what is meant by “physically realistic“, but we should

certainly demand that the density be positive.
Having obtained such a model, one would then have to extract
physically meaningful information from it. 1In all the work
which we have described above, this involved making statements
about the transfer of energy by radiation and the consequent loss
of the mass of the source. However, we are confronted here with
a real difficulty. There is no such concept in general relativ-
ity as "energy of the gravitational field" or "mass of an extend-
ed body", or at least no one has yet proposed a generally accept-
able invariant definition of such quantities, applicable to all
types of field. Definitions based on the various pseudotensors
cannot possibly be considered as satisfactory. One must there-
fore continue the search for invariant quantities of the gravita-
tional field, capable of physical interpretation, which may poss—
ibly play analogous roles in Einstein's theory to those of energy
and mass in the Newtonian theory.

In the following chapters, the "ideal solution" which has
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just been outlined is not cbtained, but the author hopes to have
gone a certain amount of the way towards achieving it, in a manner
which will be explained in Chapters II and III. In Chapter IV
the linear approximation is discussed and certain results of Sachs
are put on what is believed to be a firmer basis. The questions
of energy and mass are discussed in Chapters IV and V, although
the conclusions arrived at are, for the most part, of a rather

negative charsacter.
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CHAPTER II
Stationary gravitational fields due to single bodies.

2.1 Model universes.

The present chapter will be concerned with model universes,
and in particular with models constructed by a certain method of
successive approximations. It would be as well at the outset
to explain the spirit in which such problems are approached in
this work. The problem is to find 20 functions g, T to

satisfy the Einstein equations
G'ij = - K Tij 5 K = 8x B (2.1 01)

The 83 3 tell us about the geometry of the universe in a given
coordinate system, while from the Ti J information can be derived
concerning the physics of the universe (cf. Synge25 ). The equa-
tion (2.1.1) connects the two sets of quantities.

The ideal would be to have an exact solution of the Einstein
equations for whatever physical situation is being envisaged, a
solution which is, moreover, valid both in vacuo and in the in-
terior of material bodies - in particular, the energy tensor in-
side the matter must be such as to yield a positive density.
However, so far, the only example of such a complete (interior
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and exterior) exact solution having physical significance is

the spherically symmetric Schwarzschild solution.” Confronted
with this problem, there are two courses which one may follow.
The first is to concentrate on the left-hand side of equation

(261.1) and look for exact solutions of the vacuum equations,

G‘ij = O a3 (20102)

in the hope of finding some physically realistic solution which
can then be continued with the requisite junction conditions in-
to the interior of a maﬁerial source. Although an increasing
number of exact vacuum solutions exist, in no case has it been
possible to tie them in with a physically realistic extended
source, apart from the Schwarzschild case already mentioned.‘

In the second approach, which is that adopted in the pre-
sent work, the functions Tij are placed on an equal footing
with the 8 ;5 We try to solve equations (2.1.1) by introducing
a dimensionless parameter k, small but not infinitesimal, and

expanding 8; and TY ina power series in k. Using a co-

J
ordinate system X s where xp. are rectangular Cartesian coor-

dinates in 3-space and X, = it , the power series taeke the form

85 = 6ij . fij - fij a4 (241+3)
Tij = Tij R Tij * ceo E (201.}4‘)
2 3

* This statement should be modified in the light of a recent
paper by W.C. Hernandez in Phys. Rev. 153 (1967), 1359, in
which he presents an interior, static, axially symmetric solution.
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the numerical subscripts indicating the powers of k contained
as a factor in the various terms. The reason for starting with
k2 will be clarified later. The Tij will be zero outside a
3-cylinder in space-time, representing the history of a material
body and must be physically reasonable, certainly giving positive
density. The model is built up according to a well defined
pattern of mutual interdependence between the metric and energy
tensors at each stage of approximation. In this method there

are no terms thrown away as in the approximate methods of Einsteinh

and Eddingtan5’6.
Let us suppose the method to be stopped at a certain stage of

the approximation, say EN. We shall then have

815 = &ij - fij * oo * gij o (241.5)
gl g Sebdig gt o L st g (2.1.6)
2 3 N
with
G'ij o R Tij (P = 2,3, oo N) (2.107)
P

where Gij is the term of order kP in the expansion of the Ein-
stein thsor ¢*J for the metric tensor {2:1:5)5

It is true that the 20 functions given by (2.1.5) and (2.1.6)
do not satisfy the equations (2.1.1) exactly. What we construct
is a model universe with a certain energy tensor inside the his-

tory of the body, and outside, instead of a vacuum, a residual
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energy tensor of order kN""l « In other words, if we take the

metric tensor (2.1.5) as the exact tensor of our universe and
calculate ‘I‘ij from the equations, Ti'j = - &'-1 (}i"j s Wwe shall
have an energy tensor inside the body, the first N terms of
which are given by (2.1.6), and outside, a residual enérg tensor
of order kN"'1 « By proceeding far enough in the approximation
method we can make this residual energy tensor as small as we
please.

The model which we intend to construct is that of a radiation
field due to a finite extended source. In other words, we shall
consider a lump of matter such as, for instance, the earth or the
sun or & star, and some sort of disturbance taking place in the
interior of the matter giving rise to a radiative field. The
methdd used will be an extension of that due to Das, Florides and
Synge26, as modified by Florides and SyngezT, which gives the field
of & single body at rest or in uniform rotation about an axis of
symmetry. These two papers will henceforth be referred to as DFS
and FS respectively. 1In order to gain a better insight into the
extended method, it will be of some advantage to consider first the

static and stationary case as treated in DFS and FS.

22 Static and stationary models.
Consider a single body at rest or in uniform rotation about an
exis of symmetry (stationary system). The Newtonian equations of

such a system in rectangular Cartesian coordinates are
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My npndygd g 2P Yo
(24241)
(enpe 5.9

where p is the demsity, u o: the velocity, S B the stress
and V is the potential. Commas, as usual, indicate partial
derivatives. These equations are invariant under the follow-

ing transformations:

p "__kzps u,*ku, (20202)

where k is an arbifrary constant. Thus, given one Newtonian
model, we have an infinite sequence of such models. This sug-
gests that a relativistic model should have the same property
and that the metric tensor should contain an arbitrary dimen-~
sionless parameter k. Furthermore, from (2.2.2) we conclude
that in order to avoid fractional powers, the density should be
represented by kz. We seek, therefore, a power series in k
for the metric tensor, where k2 is a dimensionless parameter
of the order of magnitude of p a2 or ma.-1 s M being the mass
and a being a typical radius of the body. In the case of the

"1 is of order '1(3'.6 and 1077 respect-

sun and the earth masa
ively. Since the principal contribution to the field comes
from the mass, the metric tensor will have the form given by
(2:143).

Let us agree to consider a finite number of terms, so that



gij = aij &+ gij * oco * g.j ° (202.3)

Explicit calculation of the contravariant components of the

Einstein tensor for this metric is similar to that of DFS for
ij

the covariant components. It is found that G may be ex-
pressed as an infinite power series
g = Gl’j +* Glj PR o N al'j + see (2.2.5)
2 3 N N+1
N+1

where the circumflex accent indicates the term of order Kk *
in the expression for the metric (2.2.3) which ends with lg‘l 5

Defining the star-conjugate of a tensor by
ptd o Mt 3™, (24245)
it is easy to show that
p*"‘ij = pi'j . (2246)

From DFS we take the result

g o e Y (2.247)
N ey
where
L? e : g - o - 2.2.8
N+ . E(gijsa& g gﬂ'&’lJ ﬁla’aj gja:ai) ( )
and &-i‘] is the term of order 1«:N in the expansion of the
N

Einstein tensor for the metric

. o = a’, o s = ®oe > 2.20
8 5 T fla + +N§1ij ( 9)
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From (2.2.8) we get the useful identity

i (242410)

¥

i ¢ satisfy the coordinate conditions

81

ﬁ’ij,d = 0, (242.11)

one may easily verify that

% H = 3 ° eZle
gl Rt - i U Rt

With these preliminary remarks made, we shall now proceed
to give the essential steps in the FS method following the ex-
position of .Syngeze. Consider a timelike 3-eylinder B divid-
ing space-time into two regions, an interior I and an exterior
E. The interior will represent the history of the body. We
seek 20 functions 8y » tli'i‘j of the coordinates to satisfy the

following conditions:
(1] BT s =P v (2.2413)

(11)

i
o

in E, (242014)

(111) 9 15 reasonsble physically in I,

certainly giving positive denmsity, (2.2.15)

(iv) T2, = 0 on B, (22.16)

where n j is the unit outward normal to B.
In the present method, condition (ii) is relaxed. We

shall be satisfied if we can make Ti'Jj as small as we please
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in E, smaller than, say, the energy tensor of radistion in the
solar system. The plan is to build up metric-and energy tensors
of the forms (2.1.3) and (2.1.4) in successive steps by a process
of induction.
Suppose we have found
fij’ f 13 ...,Nilij; fij, ;L‘i'j, ...H":“1ij, (2.2.17)

such that for the metric

B -l R ias (2.2.18)
we have
_ g o T e BT Pl s BR)y - (2a19)
p P
gij .- X (Pega. ), (20200

with conditions (iii) and (iv) satisifed. Let us assume that
: 1

gﬁ (P=2,0ee, N=1) are of order x ! (xg(xpxu)i)as x
goes to infinity, and of class 01 s Dpiecewise 03 o We now
have a universe which has in E an energy tensor (called the

residual energy tensor) of order kN. In order to reduce the

residual energy tensor to order km"l we seek functions ? 3

and T:l"'i such that for
N

gij = Bij o gij *+ ose +Nf1ij + ?-j 2 (2.2.2’1)

we shall have
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N N
Pramrr e in E, prd n, = ¢ emB. (2.2.23)
N N
We choose le first and then deduce § ¢
N R
Our choice of TiJ is rather severely restricted by the

N
previous steps. Using the divergence identity

4 . o (2.2.24)
|
we derive
¢t jRK P aig J (242425)
ol
where
i ..:"1(1':‘LJ gad +rgj) ¢ (2.2426)

Substituting the metric (2.2,21) in (2.2.25) and taking the

terms of order kN we obtain

G'ij = K Ki (2.2027)
N Y N

where, by (2.2.19) and the fact that K- involves only gia.
N

and GiJ of order P less than N,
P

. (I’id p&d 4 pd, Tia)N - (202.28)

N ad

The right-hand side of (2.2,28) is the term of order kY in
the expansion of the expression inside the brackets. It is

clear that it only contains terms of 8; 3 and T Y up to and
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From (2.2.27), we see that in order to satisfy (2.2.22)

I.‘:"J must satisfy partial differential equations
N

P X, (242.29)
N *J N

in which the expression on the right-hand side has already been
determined by the earlier choices. Note that . 0O in B,

: N
so that the problem of finding '1.‘1‘1 resolves itself into an in-

terior problem in the domain I.N

It may be remarked at this stage that what has been said
from equation (2.2.3) up to now, with the exception of the manner
in which sij behaves as x goes to infinity, is equally valid
for the non-stationary case and will be used when we come to
study that case. For the present, however, we consider a sta-
tionary field so that B is given by an equation 1‘.’(::,I ’I2’13) =0
and all the functions occurring asbove are independent of x)
Equation (2.2.29) then breaks into two parts:

(1) solve in I: T"Y = - kM, with T“"nv= 0O on B,

N3V N N
(2424.30)
(1) Solve in I: Tl*"v= - K%, with T""”nv -0 on B.
N ® N
(262431)

The necessary and sufficient conditions for the existence
of a solution of (2.2.30) and (2.2.31) (a solution which will
be highly indeterminate as there are only 4 equations for 9
unknowns) are that for an arbitrary Euclidean Killing vector

field Ep satisfying



Ep1v+sz= 0 (262032)
and for
g, = i, (2+2433)
we should have
J = [ Kigi d;x = 0, (202034)
N 1 N

where djx = dx1d;x2<ix3. Since the §i have already been de-
termined, the method would bresk down if (2.2.34) were not sat-
isfied. However, it is an essential feature of the method
that (2.2.34) is, in fact, satisfied. To prove this, we sub-
stitute the metric tensor (2.2.18) into the identity (2.2.26).

Picking out the term of order k' and using (2.2.28) and (2¢2.19)

we obtain
Gijj RS Ki ° (2.2035)
R ? N
Hence
& ald
x§ = [Ig ,351 a;x (2+2436)

Integrating by parts, this integral may be carried onto B

and through B, by virtue of the continuity of ¢td (which
N

J

is easily proved) to the infinite sphere. Furthermore, sincs
the g's are of order x-1 at infinity and each differentiation

B i) e of arinr 2 ot 10
N

finity and so the integral over the infinite sphere vanishes and

increases the order by unity,

Jd = oo
N
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We have therefore proved that quantities ™Y and ‘.El"”
N N
exist, satisfying (202.30) and (2.2.31). Note that the com-

ponent TM" does not occur in these equations. We can there-
fore chogse this component arbitrarily in so far as the math-
ematics of the problem is concerned. Normally the choice of
o 1111 be guided by the physical situation envisaged.

3 Assuming then that we have found T:"‘.j satisfying (2...2 29)

and the conditions (2¢2.14) and (2.2 915), we define

el d(xr) 4 7 EI(x)

%3(5) 2 h..[E-t-IN - gt

|x - x|
e L d

(2.2.37)
It is not difficult to prove that (2.2.37) implies

ﬁ*ij,j = O - (2.2.38)

which are the so-called coordinate conditions. In proving
this, a little care is required with regard to the boundary B
(ef. DFS appendix).
From (2.2.37) we obtain
Fa b WP L, (2.2439)
N 1 N N

where A is the Laplacian operator. By (2,2,38) and (2.2.12)
this may be written

S P O (2.2.40)
NJ N N
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Hence, by (2.2.7), the requirement (2.2.22), namely

ij ij

N N
is satisfied.
Since G-j'ni is of order :x:-l" at infinity, the integral

(22.37) congerges and furthermore 1%:' j is of order x | at
infinity, as is also required for the inductive process.

We have thus found a set of fun_ctions gi j and %"ij e
satisfy (2.2.22) and (2.2.23) and established an inductive pro-
cess which can be carried out to any order. The residual en-
ergy tensor outside the body may therefore be reduced to any
order in the parameter k. In the case of a static field only

even powers of k will occur, whereas in the stationary case

one will have both even and odd powers.

We conclude this section with some remarks concerning the
conditions imposed on TJ' J at the boundary B. In the sbove
work, we have demanded that Ti J 11;_j =0 on B. A stronger
condition would be to require Tij to vanish smoothly on the
boundary, that is, thet T 9 together with its partial deriv-
atives to some order should be zero on B. With this condi-
tion all of the preceding work is, a fortiori, valid. The only
difficulty which might arise is the following:

Let us suppose that Ti'j (P = 2,...,N—1) vanish, together
P
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with their partial derivatives up to the Mth order. We write

this as

'l S S (P'w Boecs ol s (2.2.41)
P -

=i

It follows that

¥’
N

6 o 8. {2.200)

=

Instead of (2.2.30) and (2.2.31) we now have the problem of

finding in I a solution of

Tl-“’ = —K“,
N *Y N
(262643)
= aoe
R e

with K*, E* satisfying (2.2.42) and (2.2.34), such that
¥

Tpv=0 on B,

N M
(242.54)

Tl'-v = 0 on B.
N M

The existence of such a solution is proved by a theorem
of McCrea and Synge>’. As a matter of fact, it is proved in
this theorem that there exist, under the above conditions on

Ki s Ssolutions pHY ’ T“'v satisfying
N N N

™™ = 0 on B,
N Ma

TL" = 0 en B ,
N M+1

(242445)
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Hence, the condition of strong vanishing on the boundary can be
carried right through every stage of the approximation method.

| This modification of the boundary conditions will be of scme
adventage when we go on to consider the non-stationary case. It
is justified physically by the fact that in the sun, say, or in a

star, the density and pressure tend to zero at the surface.



CHAPTER III.
Gravitational radiation from a single extended source.

3¢1 Introductory remarks.

The physical situation envisaged is that of a body at rest
up to a certain time t = 0. The interior and exterior fields
are therefore static up to that instant. Then, at time t = O,
some disturbance occurs which changes the energy tensor in the
body. The distui‘bance, or at least its first-order part, lasts
for a finite time, after which the field becomes static once again
(that is, to the first order of approximation - for higher orders
it is found that the time-dependence must continue). Thus to the
first order of approximation, one has a region of space-~time which
is radiative sandwiched between two static regions. However, when
we consider the higher orders the picture is not quite so simple,
as we shall see.

The method used in this chapter is an extension of the DFS
method. The essential inductive procedure is set up in paragraph
C of section (3.2) and the first step in the induction is described
in paragraph A of the same section. Strictly speaking, these two
paragraphs are sufficient to give the essentials of the method but,

in order to introduce with mater clarity the distinctive features
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of the non-stationary model, the second stage of the approximation
is described in detail in paragraph B. It is well known that in
other approximation methods, such as that of EIH, difficulties of

convergence arise at higher approximations. In the present method,

the quantities describing the field are expressed in the form of in-

tegrals which converge at any given event of s;gaoa-time: The be-
haviour of these integrals as one allows the field event to go to
infinity along variocus types of world-lines (to be specified) is ex-
amined in Chapter V.

Before entering into any detail, it is as well to describe the
rather obvious formal extension of the work of the previous chapter
to the non-stationary case. As we have already pointed out, what
has been said in the previous chapter from (2.2.3) to (2.2.29) ap-
plies equally well to the non-stationary case. The completion of
the work for this case depends on the existence of a time-dependent
3 whioh satisfies (202+29) and on the convergence of any integrals
fzet with in the ensuing work. These questions will be dealt with in
the next section, but for the present let us assume that we have found
i satisfying (2.2.29) and the requisite boundary conditions. We

H
may then define

gij(fsit) = II-/E*I(g“ij(f' ’it') + x'1§¢ij(§l’itt))dw (30141)

where & = Ix-x'l-1&3x', £ = t-|x—=x'|; & is the absolute

2-content of a 3=cell on the mull-cone drawn into the past from




o

the field point (x,it) (cf. Synge” ).
The coordinate conditions (2.2.38) are again satisfied and
(3.1.1) implies that |
z0e%; = -« rd g, (30102)
N N N
where [] is the D'Alembertian operator. By (2.2.38) and

(202012), this may be writtem

f. e en T o (30103)
N4 N N
and hence, by (2¢2.7),
Gi"j = =i Tij ° (301 oll-)
N N

Finally, we emphasize again that the validity of these
formal calculations will depend on the existence of Tij sat~
N
isfying the required conditions and on the convergence of the

integral (3e101).

3,2 Non-stationary model universe.

The model will be described in terms of a background Min-
kowskian space-time. The set of functions 8; j is then a
tensor field over this space-time.

Let B be a 3-cylinder, with generators parallel to the
t-axis, dividing space~time into two domains, an exterior E

and an interior I. The intefior will represent the history
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of & body. In the static case no special assumptions of sym-
metry were required, but we shall find it necessary in the pre-
sent case, when we go beyond the first approximation, to choose
the various scalar, vector and tensor quantities occurring in
the work in such a way that they possess reflectional symmetry
in three mutually orthogonal planes in the background Buclidean
3-space. In anticipation of this, the surface of the body is
taken to have the same reflectional symmetry. Let t = O,

t =t be two hyperplanes enclosing a region I; of I.  Tet
S1 and $2 be the lower and upper boundaries respectively of
the region of space-time traversed by the null-cones drawn into
the future from all events in I;. S1 and 32 will divide
I into three regions, Io’ I1 and 12, with I1 = I; + Iq .
Likewise, E is divided into three regioms, Eo, E1 and E2
(ef. Fig.1).

The model will be built up step by step in accordance with
the method of the preceding chapter as completed in section 1 of
the present chapter. The field in IO + Eo will be taken to
be static.

A. The first approximation.

We begin the method at the first order, that is at 0(1:2).

In accordance with (2.2.14) and (2.2.29), and since the term K-

2

does not appear, we must choose Tij to satisfy
2



Figure 1, Non-stationary model universe.




DG
gij = 9 t5i B, ' (30241)
gij’j a8 S Takn (30242)

Furthermore, guided by FS, we require that

p— - "
g""l"’h-o :LnI°+I1+12,
:g“" = 0 in I Il , (3.2.3)
W .0 da 1 Al L.
2 o 1 2

Also, we demand that T Y shall be of class C° on B and on
2
t=0, t=1, where M is some sufficiently large integer.
To construct T Y in accordance with these requirements,

2
we start with

shtisaM ) i te) (3e2.4)
2 - o
A" (x) =0 in E and both it and F(t) are of class Cu,
2 L

with F(t) satisfying

F(t) = 0 for t<0 and t> ¢,
. (34245)
[ F(t)at = 0.

o
The first of (3.2.5) ensures that the second of (3.2.3) is ful-
filled. We demand further, for the reason already given, that

AMY (x)- possess reflectional symmetry in the same three mutually
-4 :
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orthogonal planes as nientioned with regard to the surface of
the body.
Next, in accordance with the third of (3.2.3) and (3.2.2),

we define TMY by

2
P _ o0 for <O,
2 (3.2.6)
L T“A' =0 in B+1,

g ¥ 3 W

and satisfy the latter by taking

3
b -if ™Y at, t>0. (362.7)
2 g »”
o]
Thus we cbtain
t
L | f F(t) dt, t> 0. (3.2.8)
2 g 37

o
On account of (3.2.5) it is clear that

s
2

= 0 9 t >T o (3.2.9)

We have thus satisfied the third of (3.2.3).
Finally, in-accordance with the first of (3.2.3) and (3.2.2),

we define Thh' by
2

g‘* = -py(x), t<0 (3.2.10)

(where pz(x) is positive and possesses the same reflectional
symmetry as the surface of the body), and
™Y L% - 0 everywhere, (3.2.11)
2 ¥V g ok

v



so that
t
A -pz(x)-i[ Tl”” ds, t>0. (3.2.12)
2 =8
Hence,
e -p(x), t<O
T = - p(x) = AP fd-nf F(E)E , > 0.
2 g 7

Because of (3.2.5) it follows that

™ o - p,(x) - A“"’wfdn[.ﬂ F(g) A&
2 2 o 0 (3.2614)
= -0:;(5) (say) , t>7 .

Note that we have AMY , PF(t) and 7 at our disposal to en-
sure that 0‘(35) is positive.

We havz thus obtained Ti'j to satisfy all the require-
ments (3.2.1) to (3¢2.3). Iz‘q'ote that, to this order, we have
a time-dependent energy tensor sandwiched between two static
ones. In effect, referring to Fig.1,

=0, g“"=o, g“’=-92(,§) a1,

ij [
g is variable in 11 A (3-2015)

oo, .0, ™ a-o(x) iIn IT+I,.
g- " > 2~ |

Fron T ¢ we derive &

i3 by the retarded potential formula
2 -

as in DFS,
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ij
gij = ufg* & , (302416)

the integral being taken over the null-cone drawn into the past

from the field point (x,it). Since ™9 =0 in E, the domain
= 2

of integration is, in fact, finite.

From (3.2.15) and (3.2.16) we derive the following inform-

ations
= O £ 4 O in I +E +I,+E
gp.l.. : gl.],h. ) ) 2 -
(3.2.17)

gij is variable in I'l - E,1 .
2

B. The second approximation.

We now have g.. and a residual energy tensor of order kz"

otd

in E. Since we want the field in Io - Eo to be static, we
shall use only even powers of k. To reduce the residual energy

tensor to order k6 s We begin by choosing Ti‘] to satisfy, in

L

accordance with (2.2,29),

S o dn B

N

e T T e (3.2418)

sd L

'J.‘i'j is of class CH en B,
Wh.ere’ by (2.2.28),

B e (oo el oimy (302.19)

k& 2"'52 o 8d 5



.3, -

Since here and later .'r.‘j"i is to vanish in E, we can express

the last condition in (3.2.18) by saying that o anishis
L
strongly to order M on B, and writing
P e B (342420)

M
It is clear from (3.2.19) that K- 20 on B.

It is at this stage that we use the condition of reflec-
tional symmetry in three mutually orthogonsal planes which were
impose@. on the surface of the body and on P g (5) ’ Pz(_lf) .
This condition implies that we shall have tﬁe same symmetry in
all quantities constructed from these, and, in particular, KW
has this symmetry. Hence, it follows from considerations aﬁ-

alogous to those of Florides, Synge and Yukawa.z’ 1 that

[ﬁ”a“ dx = 0, (3.2.21)
Tor all ¢, E’p being an arbitrary Killing 3-vector, that is,
satisfying
By T B V5 (302.22)
Consider now
f* = (I:é2 a3 2 + Ié . 'I'“) (3.2.23)
In I +1I,, we know, from (3.2.15) and (3.2.17), that



and

. = fga = 0c G2

Hence, from (3.2.23), we obtain

fl- w 0 in IO L 12 ° (3.2-26)
With this information concerning K- we now return to
; b4
equation (3.2.18). Our task is to find T9 in I to
L
satisfy
ghy . Stk g (342027)
T S T i
T)+v o T)‘J.l. . K,+ (5.2.28)
b0 Y gk s
and such that T9 =0 on B. Since | K*Z d;x = 0 for
: y M s o
all t, and since by our choice of T we have ensured that

2
K”E O on B, then, by the theorem of McCrea and Syngeze, there
L
exists THY satisfying

I
Y = ~x* forall ¢, (3.2.29)
v’ L
and such that Tuvﬁ 0O on B. Thus to satisfy (3.2.27) we choose
L
L everywhere. (3.2.30)
e

It remains to satisfy (3.2.28), which reduces to

Tu"h_ % ugy (3.2.31)
5> s



o

K* is subject to the condition (3.2.26). We satisfy

3 L
‘these by taking

f*‘* = -ph@)-iftf"dt o 15.2.%)

o)

p,(x) is the time-independent value of sadh S 20

3 o
For the value of T** in I,, we shall have
s

f‘* = -p,(x) - 1[t£‘* at (3.2.33)

i o]
which again is time-independent.

To summarise then, we have the following situation as

regards the part of order Kt

of the energy tensor:

F?' In IQ 9

it _ o, % ana THY  are independent of time;
L L L
(302434)

sz.. =0, T™ an vg“" are time-dependent; (3.2.35)
b b b

pE+ _ o, THY ana T are independent of time.
L & 4
(3.2436)
3 In accordance with the general method, we then calculate
3 for the metric
| (302057)J
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the part of order ¥ in 69, viz. &9, and define
L

gy (®it) = 4 [(T*ij(x' ,ie1) + 7! Et(xr,1e0)) e,
b Sy L (342.38)

t*' =% - [f-ij
For (x,it) in I+ E_ , this is a static DFS metric tensor and therefore
the integral over the null-cone converges everywhere in this region. At
any event in I, + B, + I, + E,, for which &t is finite, the above integral
also converges. In effect, it is the sﬁm of twéyintegrals - one over an

infinite domain (the intépsection of the null-cone with E) and snother over
a finite domain ( the rest of the null-cone). The first integral converges
because the values of the integrand are those of the static FS case and the I
second is finite because the domain of integration is finite. Therefore
the whole integral has a finite value. The question of how Ei j(_:é,it)

is

behaves as the field event "goes to infinity" in I, +E, + I, +E

1 1 2 2

deferred to a later chapter. It will be seen that one may remove the re-

s‘trictiqn of having t finite.

From (3.2.38) and (3.2.34) - (3.2.36) we obtain

o, = 0 ia I +B , (3.2439)

ff_ij.h > ﬁuu

Eij is time-dependent in I, +E, + I, + E, . (3+2.40)
For the second equation of (3.2.39) we use the fact that

E“l* =0 in I_+E,, (3e2.01)

as may be verified by straightforward calculation.




We now have a metric

a s = 5 » s . ele

& ; 15% 813 * &3 (3+2.42)
such that when we calculate from it the energy tensor by

. e (342.43)
we obtain

w3 o ol b, 0(c®) (3.2.44)

2 L
6

and so, in E, there is a residual energy tensor of order k .

C. Induction from 0(1{2N 2) to O(km) "
Suppose we have found
g ’ gia, *esey g ij H TlJ, Tla’ eeecy T lj 9 (5.2.&-5)
otd 4 2N=2 ) 4 2N-2
such that for the metric
82 = 5 e Bss ¥ eae + & : (3.20’-]-6)
iJ i3~ 5 oNpLd
we have
e g Lt L R (BN, B1Y (Bi2akT)
2P 2P
ij
T = 0 in E (P=1,000, N-1) , (302.48)
2P .
and
e i L o MR LS B (302.49)
2P M
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We then have a universe which has in E a residual energy tensor of order
kZN. To reduce the residual energy tensor to order k2N+2 we seek Z%l j

and T such that for

oN
sij = Sij & gij + .o-o + 2%3 (3-2.50)
we shall have
T e Y (3.2.51)
oN on
i e s el P S T (3.2.52)
oN N M
As before, we must find T9 to satisfy
ON .
T"JJ = -Ki - R (3.2453)
oy * oN
where
1
PR g T L T (342.54)

2N

Equations (3.2.53) may be split in the usual way into

T“v b Tp.ll. = - Kp 2 (3.2. 55)
oN 2V 2" ’)4' 2N
v
Tll- 4 Tul. .- e 958
s o B - (3+2.56)
To satisfy these equatiams, we take TM* = 0. Equation (3.2.55) then
| 2N
becomes
T R L (3.2.57)
o 7 2N

Because of the reflectional symmetry we again have
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f Lol dx = 0 (3.2.58)
oN H
: & :
for all t, where Ep is a Killing 3-vector in the background Euclidean
3-space. Furthermore, by (3.2.49),
Kl'l = 0 on: B ., (302059)
2N M
Therefore, by the theorem of McCrea and Synge already mentioned, there
exist solutions of (3.2.57) such that
™ - 0 on B. (3.2.60)
2N M
From (3.2,56) and from the faot thet K*=0 in I_, we can satis-

oN
£y (3.2.56) by taking

T"‘*=-p(_:5)-i[tx'+at in I, (3.2.61)
2 2N o N

where - p (5) is the arbitrary time-independent value of TM+ in Io'

2N 2N
Since t is finite in I2 s 80 %8 21‘.'!{3“" and we can always adjust the
function p(x) to ensure that
m'ﬂ
™ < 0 .
2N

We then define for any event in I + E

G, .(x,it) = 1*[ ( pld(xr ity + ™1 BY(xt,18')) Ao,

- (3.2.62)

t'=t-|x-x1.

Por (x,it) in I_+E the integral (3.2.62) is typical of the kind

(o) 2
which occurs in the static FS case and therefore converges. At an event
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in I, +E, + 12 + E for which + 1is finite, it is the sum

1 1 22
of two integrals (cf. Fig.2) - one over an infinite domain (the
intersection of the null-cone with Eo) and another over a finite
domain (the rest of the mull-cone). The first integral converges
because the values of the integrand are those of the static FS
case and the second integral is finite because the domain of in-

tegration is finite. Hence the whole integral has a finite value.

The question of how zﬁidgf,it) behaves as one "goes to infinity"
(in a sense which will be defined) is deferred to Chapter V.

It will be shown there that cne may remove the restriction of

having t finite. One may then show in the usual manner that

2 s K e W 4 Tl (3.2.63)
oN oN :

We have thus estsblished an inductive process in I + E
which can be carried out to any order and which exhibits the in-
terior and exterior gravitational field of a single radiating
body to any desired degree of accuracy. The residual energy
tensor outside the body at the Nth stage of approximation is of

order kmhz'



CHAPTER IV.

The radiation field in the first approximation.

ko1 The asymptotic field in first approximation.

Having constructed a model universe representing a radia-
tion field due to a finite extended source, we now proceed to
investigate some of the properties of such a field. To do this,
we shall consider the principal part of the field (i.e. the first
approximation) at distances from the source large compared to the
dimensions of the latter and investigate what is observed by a
distant observer equipped with some kind of appar#ﬁus to measure
the components of the Riemann tensor. As was first suggested by
2

P‘irani3 » the key to such an investigation is contained in the in-

variant classification of gravitational fields due to Petrov11.
Before tackling the main problem it would be as well to present

the salient features of the Petrov classification.

A. Thé Petrév classification.

The brief eipositian given here follows that of Syngejj.
Besides the usual convention for small Latin and small Greek
letters, in this section we use capital Latin letters having

the range (1 9233,43596)‘
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Let us teke a particular event in space-time and let us
suppose that we have transformed the coordinates so that at

this event the metric has the wvalues

= 5 ° (11-01 .1)

g&I.b ab

The components of the Riemann tensor in this coordinate system

will be denoted by R We suppose, further, that the event

abed °
is in empty space-time, that is, outside any material bodies and,
therefore, that

R&:b = 0., (4.1.2)

What we have to say conecerning the Riemann tensor in vacuo ap-
plies equally to the Weyl conformal tensor in the general case.

Because of its symmetries, the Riemann tensor majr be re-
garded as a mapping of the 6-dimensional vector space of bivectors
into itself and so we are led to consider the problem of finding
the eigenvectors and eigenvalues of a given mapping, i.e. of

finding AN and F ab such that

Ra?.'n»cd ch o Fa,'b * (ke103)

If we correlate number pairs in the range 1,2,3,4 to single

nurbers in the range 1,2,3,4,5,6 according to the scheme

(23) o1, (31)©2, (12) 03, (1L)6L, ()5, (34) 6.
(4ol k)
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we may exhibit the whole set of components of R od‘(axoept
for reversals of sign) in the form of a 6x6 matrix R, and
the components of F ap 10 the form of a column 6-vector Fpos

so that (4e1.3) becomes

Ryp Py = A R, - (he1s5)

Furthermore, given (4.1.2), it may be shown that R,s may be

written in the matrix form

M N
R,p ﬂ(n u) " (Le146)
where M is a real, symmetris, trace~free 3x3 matrix and N
is a symmetric, tirace~free 3x3 matrix, all of the components
of which are pure imaginaries. It is easy to nhe;k that there
are thus 10 independent components, as required for the Riemann

tensor in vacuo. Correspondingly, we may write F A in the form

(FA) = (:) ’ (Lets7)

where G is a real 3-vector and H is a pure imasina.l'y‘_: 3-
vector. In this way, (4.1.5) becomes

(: :)(:) "(G)- (4e1.8)

H
Then, defining

K = M +N, J=G+H, (4e149)
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so that K is a symmetric complex 3x3 matrix with zero trace

and J 4is a complex column 3-vector, we find that (4.1.8) is

equivalent to
ET w23 (l4e1410)

The problem is therefore reduced to that of an eigenvalue prob-
lem in a 3-dimensional complex Euclidean space. One may then
proceed to find the eigenvalues and eigenvectors and to write
the matrix K in canoniecal form, that is, in the form which it
assumes in a basis defined by the eigenvectors. The details
may be found in the work of Synge already mentioned. We shall
merely give the main results here.
We may exhibit the complete classification as follows:

Class 1:

eigenvalues: M , A, A, distinct (A, +2, +2 = 0);

eigenvectors: 3 non-null, mutually orthogonal, with

lines uniquely determined;
canonical form of matrix:

l, o
K = o 12
o o

) 3 (he1:11)

3

00

(The terms "null" and "orthogonal® are used in the sense of the
complex Euclidean space).
Class 2a:
Eigenvalues: M\, ;f?\a =X, (A, +2r, =0) ;
eigenvectors: J1 non-null with line uniquely deter-
mined, and all vectors in plane orthog-

onal to Jﬁ H
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canonical form of matrix:

—

A © O
K = i SR B (4et1412)
o o 12

Class 2b:
eigenvalues: M\ ;612 =2, (, + A, = o) ;
eigenvectors: J 1 non-null with line uniquely deter-
mined;

J, null with line uniquely determined,

2
orthogonal to J‘l 3
canonical form of matrix:
A i o
K = o A+l i s (4e1413)
o i A -1
2
Class 3a:
eigenvalues: 7\' = 7\2 = 7&3 =0 ;
eigenvectors: one null vector N with line uniquely
determined, and all vectors orthogonal
to N;

cancnical form of matrix:

(o] o 0
K = e ; (hele1l)
o I =1

Class 3b:

eigenvalues: 'h, =7Lz = ?\3 =0 ;
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eigenvectors: one null vector with line uniquely
determined;

canonical form of matrix:

o 1 o
E w1 %5 w; L1} (4e1.15)
o i

Class 3¢ (K = 0):
eigenvalues: zero ;

eigenvectors: all vectors .

Other ways of characterising the Petrov types have been de-
veloped by Debeverih and Penrose35 based on the multiplicity of
distinet prineipal null directions of the Riemann tensor at an
event. The relation between their characterization and that

given above is resumed in Table 1.

B. Petrov type of the first order part of the Riemann tensor

at large distances.

In this section, we consider the field given by the metric

tensor
gy = O5y+ & 5 (1e1.16)
where, by (3.2.16),
2 i ae0)
! =< ]
gij(.zlit) - ll'[ - dsx ] (k—o'lo"?)
Ix-x!|

I t'=t-|x-x],
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Table 1. The first column gives the several classes as
defined in the text. The last three columns are taken
from Pirani (Brandeis lectures, 1964). The second column
exhibits the degree of multiplicity of the principal null
directions, e.g. 1111 means that all four principal null
directions are distinet, 211 <that two of them coincide,
etc. In the fourth ka is a principal null direction -
in the second and subsequent rows it is the multiple prin-
cipal null direction. Type D is also referred to as
degenerate type I, and type N as degenerate type II.
Square brackets in the fourth column denote antisymmetrization.
Class Partition of Symbol for Equation satisfied by thod

principal Petrov type
null direction

1 [1111] I X(o By Joafe Xo] & s
2 [211] II B afe Ko7 KX = 0

28 [22] D (er I) RBygre ke ] x> 40

3 [31] III By oale Xe] xt =0

3a (4] N(orIr,) R . k°=0

30 - 0 R 4, =0
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In other words, we are dealing with the linearized field which
constitutes the principal part of the total field. Sachs1o
has treated of splutions of the linearized field equations which
have a singularity along a timelike world-line and the asymptotie
behaviour of the Riemann tensor of such a field. We have already
indicated in Chapter I why Sachs' treatment must be considered as
unsatisfactory. The advantage of the present treatment is that
instead of a line singularity we consider a physically realistic
source i.e. one which is extended, with an intermnal structure
given by the energy tensor. Secondly, the components of the
Riemann tensor are obtained explicitly in terms of the energy
tensor of the source.

The part of O0(k>) of the Riemann tensor derived from the
metric (4e1.16) is

Boga = F (& 5 * Ec,n " Sue,p " Spa) o (1418)
In order to determine how Izti k1 behaves asymptotically, we ex—

pand the denominator in the integrand of (4.1.17) in the form
| -gg'l"1 = 1z + ollx™®) . (4e1419)
Hence, we may write

-1 13000 340 ' -2
gij(g,it) = ux| [T'z (=',1t') azx' + oflz|™) .
(Le1.420)



B s

The integral on the right-hand side will be a function of x
and t. From (3.2.15) and (32.17), it is clear that at this
stage we must distinguish between the region E1 s, Where gi;j
is time-dependent, and the regions EO and E2 where gi:}
is static. Let us consider first the region E1 .

Since Ti’j venishes smoothly on B we may certainly dif-

2
ferentiate twice with respect to :z:u and t under the integral

signe From
t' = t-|zx-2] (heta21).
we obtain
'I -i x o wx' x
S oL R o). (t.22)
o x, oot | x|

Hence, for any function f('zf',it'), we have

af *;  of -1
= -1-‘[-‘0 +o(lx|™") (ket423)
51:” ff 5::11 -
and
a
5% = g%: (helo2L)

We thus obtain from (4.120)
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: B 13 -2
L xvalzl jg‘ olils de' # O(IEI )’

Sidsmy =
WA _ -2 id ' |2
&g, =~ 4 Aonylxl [g* gy 4=+ o(xI™),
(4e1425)
S “A [ meld -2
8 50 = W1zl fz* Al 2ozl

For the sake of brevity we have omitted the independent variables.

In order to simplify matters, the Riemann tensor will be calculated
at a point (x1 ,0,0,it). In so doing there is no loss of generality
as the spatial axes may be rotated so that, for any event considered,

X, = x3 = 0. Under such a rotation all the formulae used up to now

remain unchanged.

Let us define

. 2[ ?iJ’M il , (Lel426)

the integral being taken over the intersection with I of the
null-cone from the (fixed) distent point (x,it). Then, denot-
ing the 0(| El—d) term of the Riemann tensor by _R;i 5 and
writing this as a 6x6 matrix according to the scheme (L4.1.4), we

obtain by straightforward calculation



o o 0
0 t.!S -t23
|-1 0 -t23 t22
SLE YL P N
I | -it?
0. . 244" -it?

0 0 0
it' 3¢%¢ it?® it
-it' 374 a®? e
24 -Zitiitlitd-‘l -itzittz -itsitfs
2 _it24_tl2 _t22 423
3 —itsf-tw 23 . _ta.s 1
(he1427)

33

23

This is further simplified by the fact that (cf. 2.2.38)

Substituting for g¥*

€%13, b

0.

(4e1.28)

ij from (4.1.20), using__(lkd +25) and equating

coefficients oflic F"1 with zero, the four equations of (4.1.28)

become

-1

22

t

SR T

12

-it

""i'bjs

33
+ t

44
+ t

24
+ t

34
+ t

[} [}
QO 9 O

]

Hence, nijkl may be written in the form (4.1.6) with
2

|

N=[‘§:

|—1

|-1

o .0 . 0 © o

0 0

33 23

t -t
-t

0 0

it23

it>®

(4e1.29)
s (4.1.30) |
2 (Lhe1431)




Hence, by (J-I-o'i 09}’

0 0 0
T % AP % A e I e TR a
+ Sel. se
4
Comparing (4.1.32) with (L4.1.14), we recognize that Rijkl
2

is of class 3a or Petrov degenerate type II. Hence the result
of Sachs is also true for an extended source, at least with re-
gard to the ' f|-1 term. The complete Peeling Theorem of Sachs
for the linearized field, which deals also with the succeeding
inverse powers of l 5| s Will be considered in a later section.
In the general context of the present work, the physical signif-
icance of the succeeding powers is doubtful because when we go to
the next order of approximation there is a | f|-1 term of order
k}"' and, no matter how small k is, this term will dominate the
| 3:"-2 term of order k2 for sufficiently large | fl'

By using the tensor approach to the Petrov classification
(ef. col.l of Table 1), as we shall do when considering the Peel-
ing theorem, we might have obtained this result in a more direct
way. However, _1‘:lhe matrix method as used above yields an explicit
expression for %i K1 which is particularly simple and will en~-
able us to bring out further interesting features of the asymp-
totic field and the way in which this is related to the sourée.

~ Before considering these in detail, we shall deal with the Petrov
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classification in regions Eo and Ez .

To fix our ideas, let us take the 0(1:2) part of the Riemann
tensor at large distances from the source in EO. Since Ti‘i is

2
independent of time in I_, (k.1.20) will be slightly modified to

beccme
g5z = 4 x| [ g‘ij(f') azxt + o(lx™).
(kot433)
The integral in this case is an ordinary volume integral in 3-space
instead of being over the null-cone as in the time-dependent case.
Differentiating with respect %o a spatial coordinate of any term
invelving an inverse of I EI now increases the order of the inverse

power by unity. Hence

uom,x, = 8, [zl [ 2 Hanae + ofl2l™).

Siisuy v
(4e1434)

The dominant part of the Riemann tensor for large le is there-
: -3 -
fore of order lxl 8 and will be denoted by Ri x1 Calculat-
s 2
ing the components of this part at a point (;:c1 ,o,o,it_) as before,

and using the values !l'i‘i as given by the first of (3.2.1 5), we
2

obtain
ot B 9

2 e w2 9 s owl fypt oW e ST ((4639)
0 0 -

where



— g

A = f P(z') d3x' ® (’+o1¢36)
2
I
Hence, by (4.1.12), R 7 1is of class 2a or Petrov type D in
2
Eo' This is as one would expect since, to this order of approx-
imation, the field at large distances from the source is a
Schwarzschild field.
->
In E2 E Izli K1 is given by the same expression as (L4e1.35)

except that instead of m we shall have

mn' = [C;(E') d;x' ’ (16-01037)
where, by (3.2.14),
o(x') = p(x') + ga!" (x'), (ke1438)
W i Y o aim
q = [Tdnjn F(e) d& (a constant). (ke1e39)
o o

Substituting from (L4.1.34) in (4e1.33), applying Gauss's theorem

and using the fact that A®Y  vanishes strongly on B, we obtain
2

m' = m N (4.1 o-’-l-O)

Hence the dominant term in the 0(1:2) part of the Riemann tensor
is the same in E and E,. Equation (4.1.36) states that, to
this order of approximation, there is no loss of mass due to the

gravitational radiation in the model under consideration.



4e2 Transfer of energy.
In order to gain a more intuitive, physical interpretation
of the results of the preceding section we shall use the edquation

of geodesic deviation (cf. Synge and Schildjs)

:%i U"'vkvl (he2.1)

which describes the relative acéeleration of two neighbouring
test-particles. In (4¢2.1) u 4is a special parameter along
the geodesic world-line € of one of the particles, e dx?/ﬁu
is a vector tangent to C, Vi is the orthogonal comnecting vec-
tor between C and the geodesic world-line C!' of the other
particle.

Let K%a) be an orthonormal tetrad propagated parallelly
along €. Suppose that u is the proper time on C, so that
D = du /38 & it vester, end 1at ¥ = }“(4) Multiplying

(4e2.1) by 1.( y» We obtain

a%v i
duz‘&! *l( ) ijkm (II-) vkl(z'_) = 0. (4.2-2)
Since
Y & x’(‘b) v®) (4e243)

we derive from (4.1.38) that (cf. Syng337)

dzv!a.! + R(allﬁ l;.) V(B) = 0. ()-}--2024—)

du



)

This, then, is the equation of geodesic deviation in terms of
the components on an orthonormal tetrad, propagated parallelly
along one of the (neighbouring) geodesic lines and such that the
timelike vector of the tetrad is always tangent to the world-
line.

Going back to our model universe, let us consider an ob-
server moving freely at a large distance from the body. His
world-line will be a timelike geodesic. Since we are consid-
ering only terms of order k2 and the Riemann tensor is already
of that order, we may take the world-line of the observer to be
a geodesic in the flat background space for any interval &f proper
time which is not large like k '. Any higher approximation to
the exact geodesic will merely give terms of order greater than
k2 in the components of the Riemann tensor referred to a tetrad
such as that specified above. The geodesic will therefore be
simply a straight line. We take this line parallel to the t-
axis, and so the proper time along the geodesic will be t. In
other words, to the first approximation, the observer is at rest
relative to the source. Let us suppose that the observer (who
himself may be treated as a test-particle) throws out test-part-

icles in various directions and measures their distances and ac-

celerations relative to himself. He may then calculate R(akﬁh)

in some frame of three orthogonal spacelike axes. If these

happened to be parallel to the coordinate axes which we have
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used, then for | I >>|x'| he would obtain R(ah-Blu-) in E
1
and 121@4610 in E, as given by the matrix u in (4.1.30)
and (4e1e35) respectively. In general, of course, he will have
chosen a different frame, but the eigenvalues and eigenvectors
of his matrix M will be the same as those of the M obtained
above. Eet us therefore consider M as a real symmetric,

trace-free 3x3 matrix in its own right. Define

e=t", d=1%". (4o245)

Then, (4.1.30) may be written

o 0 0
X = Ixw, w = [0 e | . (h2.6)
0 -d =¢

M' has three distinct eigenvalues, O, (o242, —(e24a2)2,

1
2 2
y ,a),

respectively (the last two must be normalized to obtain umit vee-

with eigenvectors (1,0,0), (O,-o-(cz-nd sa) (0,—o+(c +d

tors). Hence, by a rotation in the 23-plane we can get M in

the form
0 0 o
M = 'E'-1 ( 0 Ve*4a? 0 j(4e2:s7)
(4] 0 024-6.2 ,

which gives the components of R(al..B 1) in a frame consisting

2
of the three eigenvectors of M. By following the same pro-
cedure our observer would arrive at the same (invariant) result.

The same argument is valid for the region E
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Now, since the tangent vector to the observer's world-line

is given by
sk ogoged (4e2.8)
(!‘.) ll- F) el e
the equation (4e1.40) becomes
dzvga) Ly Vi, w0 (4e2.9)
5 olakpl ) "(B) ~ ©° o
it
In Eo we shall have, by (L4e1.31),
)« mldFryy . ) sy,
a2 at>
2, (4e2410)
2IG) = -alxlPvg, ,
a2

so that a particle in the 1-direction is accelerated away from
the observer and particles in the 2- and 3-directions are accel-
erated towards the observer. In E1 the relative accelerations

to O(Lfl-d) will be given by

Ei(i.).=0, d_zz(gl=*°2*dzv(2'),

at? at?
, (4e2411)
dzv!é! = - V02 o+ d.z V(s) .
2
at

Here the 1-direction is parallel to the x1-axis of our original
codrdinate system but the 2- and 3-directions have been rotated

to point in the directions of the remaining two eigenvectors of
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M. THence, when the observer passes from Eo to E1 s he will
notice a new pattern of relative accelerations polarized in the
23—p1§ne. Particles in the 2-direction are accelerated away
from the observer and those in the 3-direction towards him.

When his world-line enters E2 the relative accelerations be-
come the same as in Eo' The observer is thus able to "measure"
the effect of the changes taking place in the source. From an
intuitive Newtonian point of view, one might conclude that the
added pattern of accelerations in E indicates the presence of
an energy flux in that region. However, as long as the concept

of energy is not defined in an invariant manner in general rela-

tivity, such a conclusion is of doubtful validity.

4.3 The Peeling Theorem.

As already mentioned, the asymptotic behaviour of the Riemann
tensor in the linearized case has been treated in a thorough manner
by Sachs1o. As the source of the gravitational field he takes an
unaccelerated point multipole with world-line z°(s), where s is
the proper time, and with world-velocity e’ = dzayas. Teking the
retarded potential solution of the linearized field equations he
found that the (linearized) Riemann tensor could be expanded in the

form

N III IT I i
abed abed gbed abed abed . O(r_G),

R = + + g—— o +
Shod r ' r2 r3 rl" r5

(ke3e1)



where

r = - ea(xa -2) 3 (ke342)

x* being the field event at which the Riemann tensor is cal-
culated. This has been generalized in subsequent work of Sach320
and of Newman and Penrosezz, but in their work there is no ex-
plicit introduction of a source - it is merely assumed that a
physically realistic source exists which is compatible with the
asymptotic fields which they consider. However, remaining with-
in the context of the linearized theory, we have already indic-
ated yhy the use of a point source is to be considered unsatis-
factory. We shall therefore derive the result using a physic-
ally realistic (i.e. extended) source. In sect.B we have
shown that for an extended source, the [§|_1 term is as in
(4e341). One could continue to use the method of that section
to investigate the succeeding inverse powers of L5|. However,
it proves rather cumbersome, so we shall adopt a slightly differ-
ent procedure.

-In the following we shall drop the subscript 2, indicating
that we are dealing with the first (0(k°)) spproximation, and
since the background flat metric is 8ab we may bring'all the
indices down to the covariant position. Hence, for (4.1.17)

we write

Bap(Xsit) = l’[ T (x'sitt)de, ' =t - |x-x ,
(ke3.3)



where
L RE e P L (ke3.0)
and
Ty = oo Tab’b = 0, Tab; 0 onB. (4e3.5)
The (linearized) Riemann tensor is
Labc§ =z Bdbcd:pqrs gpq,rs (e3.6)
~ where
Bahcd:pqrs (aag§6q§br§ds + 0 6d Bar§c$ 8apsdq;abrgscs
-8, 88,5, , (4e3.7)
and so we have
Laibcd 2 Babcd:pqr%[ P9 rs(ﬁ"lt')dw g (4e3.8)

The colon in the B symbol merely serves to separate dummy in-
dices from the others.

From (3.2.4), (3.2¢8) and (3.2.13), we see that the energy
tnesor in first approximation is expressible as a sum of a stat-
ic and time-dependent part, the (44 )-component being the only
non=-zero component of the static part. In what follows let us
consider Tdb to denote only the time~dependent part of the
energy tensor. Since equation (4.3.5) is satisfied by the stat-

ic part it must also be satisfied separately by the time~dependent
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parte A general solution of (4e.3.5) is given by (cf. Dorn and
sm1d33)

Tab o~ H&O‘bd,ﬂd ’ (403-9)

with
S i R

(h-o}.‘lO)

M = 0 on B .
abcdll-l-Z

Although (4e3.10) implies that T

M, changes sign within I,

since

[Tup s i f“wzmardz" < (ke3.11)

by Gauss's theorem, the existence of the static term in the (44)-
component of the total energy tensor ensures that positive density

is maintained. By (4.3.L4)

|

i
N=
o2
o

o (ha3.12)

= = 6 06 -
T;q cpq:uvTuv i chf-‘-W pu qv Pq uv

Thus (4e3.8) becomes

(x,it) = E (x',it')dw , (4e3.13)

Lab cd abed:uvrs [ Huev.f‘ ,efrs

where

Eabcd:uvrs o o B&bod:pqrs cpq:uv ' (ke3.14)
Finally we write
(x',it')dw,

(4e3415)

(E,it) =

Lah,cd. Fab cd:uvrsefgh f Mueavf s8hrs



where

Fabcd:uvrsefgh » Eabcd:uvrs 5egﬁfh o (4e3.16)

We now choose an origin in space~time in the following manner.
We choose the spatial origin in the domain I of the source. This
fixes the time-axis. In order to fix the time-origin we draw the
null-cone into the past from the field event at which the Riemann
tensor is being calculated and take as origin of time the point at
which this null-cone cuts the time-axis. This means that at the

field event in question
t = r = |x|. (4e3017)

Let x' be the radius vector of any point in I. Then

2
|35 -E'I - |x| - x' ax“ |x| + 5 :c}'L x) ax_ax lxl * oos (4e3.18)
= r-1 x!; +0 , (4.3.19)
where -
x bn
1, = £ c = Z-H : (ke3420)
» "
n= v

the coefficients bn being functions of la and x& of the form

af . '
bn Ga» oo.a ﬁ oooﬂ 1 ...1an xﬁ’o.oxan ’ (I-I-03021)

the G—~term being a combination of Kronecker deltas. The essential

point of the argument is that o is small when r is large.
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Now, the integral involved in (4.3.15) is, more explicitly,

(xt,it?) —L t' = ¢ - |_§-£.'| .

/ e oo, (403.22)

The second of (4.3.22) gives

[ ] = Y - ! - - L X+ 09e2
%) %), ilz 5' it ir*ilp.xu i0, (4e3.23)

by (403.19), and so, by (Le3.17)

= ! - o o e
xz". = iluxp io (4e3024)

Let us suppose that Mue vf 8re analytic in their fourth argument

so that
o n
...io" ~
Muevf,ghrs(z"x;&) = Z.Ln!_)_ Huevf,ghrs(n) 5 (4.3.25)
n=0

where the last symbol means that we differentiate n +times with

respect to xl:_ and then put xll = ilp xl; « Now, define

-410)° 1
Hn = ( ic') & o (ll-ojozs)
o e
Then, (4.3.22) gives
0
I = Z In 3 In = [Hn Huevf’ghra(n) dsx' L] ()-|-03.27)
n=0

In this and in the following formulae there is no summation

over the suffix n unless explicitly indicated.



il

The integral (4.3.27) may be written in another way. In
effect, let us cansider any function F(x' ,xl:.) in I, vanish-

ing strongly to some order on B, with xL = :i.lll xl'_l o We write

this as
F(x') = Fix'y i 35 xL) : (4e3.28)
D “5 will mean "substitute X = il x! in F end then differ-
entiate with respect to x;l n, F i will mean “differentiate
9

F with respect to x; and then substitute xl"_ = ilp x*: " Yo
thus obtain

Dels = P Lt . o342

M " A iy el (423429

Since Dl;f' is clearly zero, we may write (4¢3.29) in the form

e

D.F = F'r +ik, F,hl (4e3430)
where

kl-l = lp ’ kll- = i ’ (11-03031)
and so, kr is a null vector,

E Eu.n 0, (4e3.32)
Let us then consider the integral
o= @ ]
Jr ...d.[ Hn F,(n)rdBX ° (#-3-33)

I

By virtue of (h.3.30) we obtain
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I, = [Hn(Dr E’(n) -ik 'i"’(m)) azx’ (4e3.34)

- [[Dr(ﬂn 'F',(n)) - (o, Hnﬁ,(n) - 1kr'§,(m_1)] dzx .
(ke3035)
Using Gauss's theorem and the fact that F vanishes strongly on
B we find that the first three components of the first term in
(4e3.35) are zero and the fourth component is clearly zero.
Hence

JI‘ = —-/ (DI‘ * ikr E) nf’(n) d3x' » (#-3-36)

where Dr acts only on Hn and E acts only on F,(n) s 1its

effect being defined by

L

i e Ui 2011
Applying (4.3.36) successively to (4.3.27) we obtain

In - [ (ng-p ik gE)(Dhq- :I.khE)(Dr-l- :!.krE)(Ds-l-iksE)H niue v, (n) 455"

(4.3.38)
and so, finally, we have
Labod; e
4 Fabcd:uvrsefghy(ngﬁkgm(Dh"'ikhE)(Dr"'ikrE)(Ds*iksE)Hn‘iuevf,(n)djx i,
e (4e3.39)

With the Biemann tensor in this form it is possible to examine the
structure of the cocefficients of succeeding inverse powers of r.

We shall do this for the first two terms, viz. O(r ') and 0(r-2).
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-1
Denoting the term of O(r 1) by Labod s We have, by (4.3.39)
and (4e3.26),

=1

bonod
-
= F&bcdmvrsefgh f(Dg*ikg?)(Dh-l-ikhE)(D +ik E)(D +ik E)H ¥ oevr 35"
; (4e3.40)
where H_ s the r ' term of H . By (4.3.26),
- -
HO A (1'-05.41)
"
Hence,
-1

e o
bbed = T Fabcd:uvrsefgh kgkhkrks/ l‘uev'f',(lq-) df' + (he3042)
Multiplying (L4.3.42) by k; and using (k.3.16), we obtain

-1

Lovea <a

= . &
r kdkekf{kbkdaauﬁc 3 kakoéb 5d kbk au dv kakd bu.acv

x z(kb a acauv * Rk Sater - K eOaaluy = ke kegd be uv)y vf (L)djx
(4e3.43)
Inspection of this expresion, using (4.3.32) and (4.3.10) yields

-1
La.bcd kd. = 0 (ll-ojoll-)-i-)

=1
and hence L, . is of class 3 a or Petrov type N (cf. Table 1,

col. 4).
-2

Denoting the 0(r™2) term of the Riemann tensor by L a od?®
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we have
-2
Lebed ,
_ .
e PR v f (Dg-i-ikgE)(Dh-rikhE)(Dr-rikrE)(Dsdd.ksE)[Ho M i
-2
]
*H M vf’(z)] 5", (4e3045)

where

-2 1t -2 i

= = e —— - 'x* :
H, -1‘—-*-‘-!_2 » H o2 Gy = 32))5x - (he3046)

Multiplying (4.3.46) by k, , Wwe find, after a somewhat lengthy

-2
calculation, that ka.La.bcd may be expressed in the form

-2

1
ka I'abod - r-ékb vcd. ) (11-05047)
where
vcd - wod - wd.c ’ (IG-OBGJ-I‘B)
| with

ch = 2E.ka kdegH1 nagoh,(h.) + i.ka ko DgHO M 1 ’(3)

-2~ ""2~
k |DDH M D M
+ k [ ,(3)*kakh DDH

ac/ gh agdh g c1 agdh,(3)
1 | o -2 ~
o kakhk“‘[ nﬂ#"h»m_—_{ * [ikskhkd [ Dofy Magun, (1)  (Be3.49)

o
1
D ko .=
* Kg% f a’n™1 Magun, (3) * ¥ e ua 2 f;usuh,U):I :
For brevity, we have omitted the symbol dj.x' under the integral

signs.
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Equation (4.1.93) implies that

-2 -
an k —= e Ll
T R e PR e (4.3.50)
-2
Hence La.bcd is of class 3b or Petrov type III (cf. Table 1,

col. L) and so we have established that

N 111 P i
Lo = =22 4 —29%2 4 o(T3) o (4e3.51)
r r

For the higher order terms the calculations become rather cum-
bersome, as they do in the case of the point source considered
by Sachs, but, in principle, the same procedure as above can be
carried out for these terms. In addition to (4.3.51) there will
be another term arising from the static part of the energy tensor.
In section 1 of the present chapter it was shown that the coef-

=1

ficients of r and r_2 are zero in this term and so the first

two terms of (4o3.51) remain undisturbed. However, for higher
powers of r-d, the static term must be considered and may be
treated in the same manner as the time-dependent term. We have

already seen that the r - static term is of type D.
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CHAPTER V.
Higher approximations.

5.1 The second approximation.

In the present chapter we take up the question of the be-
haviour of the metric tensor as the field event goes to infinity
in all directions of space-time. The present section will be

concerned with the second approximation, i.e. with
3 -] A%
8 i (yoit) = 4 [(mH oMM ya . (5.1.1)
et L L

We shall prove that the retarded integral e1e1) is bounded as

one goes to infinity in all directions of space~time and that it
tends to zero (in varying degrees according to the space-time

direction) whenever the field event goes to infinity in a manner

which entails |y[ *>® ,

The proof of this is not necessary when we consider only
the region I° - Eo since, in this region, null-cones drawn
into the past lie entirely within a static DFS domain. For
the remainder of space~time there are three main cases to be
considered according as the field event goes to infinity (i) in
E,, (ii) in I, and (iii) in E,. We shall explain in each

case what is envisaged by the term "geoes to infinity".



T

In what follows we shall take the interior I of fig. 1
to be the history of a sphere. In so doing there is no loss
of generality as, if necessary, we can make 'l‘iJ = 0 over part
of the sphere. The envelopes S1 and 82 then become null-
cones with vertices on the world-line of the centre of the
sphere. Let us choose this world-line as origin of the space

coordinates and the vertex of S, as our time origin.

1

(i) Going to infinity in E, .
Let us take an event P(y,it) in E, , and consider the
value of the integral (5.1.1) at that event, the domain of in-
tegration being the null-cone N drawn into the past from P
(ef. fig. 2)» We shall then see how the integral behaves as
P goes to infinity along the null-line which passes through
this event and intersects the world-line of the centre of the
sphere.
In order to do this, we project the domain of integration
onto the 3-space orthogonal to the t-axis. The projection of
the intersection of the null-cone N with S1 will be given by

the equation
lz-yl+lxl = ¢, (5.1.2)

where (x1, xs x3) are the current coordinates, (yﬁ, Yoo y3)
and t are fixed. Equation (5.1.2) is simply the equation of

an ellipsoid of revolution with foci at the origin and at Y.
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Figure. 2, The field event in E1.

Eo

Figure 3, Space projection of figure 2,
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Denoting the semi-major axis and eccentricity, in the usual way,

by a and e respectively, then (5.1.2) tells us that

$ =28 |z| = 2ae , oo (5a1a3)

and hence,

e = |yl/ % (5e1.4)

From now on we shall write simply y instead of Izl .

The projection of NN I will be a sphere, where the symbol
A has the usual meaning of "“intersection". Taking the case in
which this sphere is wholly contained within the ellipscid of
revolution (the case in which it is not included requires only
minor modifications), the 3-dimensional picture is as illustrated
in Fig. 3 - the complete picture is got by rotating the figure
about the major axis.

Going back, for a moment, to the original space-time picture,
we derive from (5.1.1) that

If“ (z.it)] < {ij(zr,it) -3 [nlfij T E.i.ﬂ dw .
(5.1.5)
The integral on the right-hand side of (5.1.5) may be written
) - %
‘};i;] = Iij-r {ij* I.ij . (501.6)

where
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(1) 3 ia%

Y3 = Ax 1[ |6+ ao, (5.1.7)
5 NNE, L
(2) - A 3

Yij = Lk 1[ Is'*ljl dw , (5.1.8)
L NnE1 L

(3) e o

Ty5 = ’+f |ze®d o 7 1] dw . (5.1.9)
et NNI & L

(3)

For large y, Y 3 is clearly of order y-1. We there-
L

fore confine our attention to the other two terms. Let us begin

(2)
with ¥ .
IR

ture is the region E1 of Fig. 3. Since we are dealing with re-

The domain of integration in the 3-dimensional pic-

tarded integrals, the contributions to the integrals at different
points must be taken at different times. However, since we are
interested merely in orders of magnitude, we may set upper bounds
on the several integrands, which bounds are independent of time,
and thus reduce the problelm to one of volume integrals in 3-space.
We do this in the following way.

is time~dependent, &*ij is of order

g-
. g b
x for large x. This means that there exists a finite con-

In E1 s Since

ale
stant M such that IG i‘jlxz <M for all events in E1 s 1.0
4

such that

2

I;G;*ijl < <% in B, . (5.1410)
X

Hence by (5.1.8) and (5.1.10),




(Eij(x,it) S £ ¥ —f— in By o (501411)

2 | y-=|

To integrate the right~hand side of (5.1.11), we take spherical
polar coordinates (x, €, ¢). Let us call this integral J,

then we have

P BRI Tt S (5.1.12)

Bl i E

= IFUQTL 2300 . a0 3 , (5.1.13)
|z—x|
-1 [7 [ * _5in@
5 L K fa(1_e)j [ |y—x| dx a0d¢ , (5ete1k)

[5(14-6)/"[ I;in: dx a0 & , (5.1.15)

where a is the value of © at the points where the sphere

where

-l
i

C-l
[

r =X outs the ellipsoid. We already know the values of a
and e in terms of y and t by (5.1.3) and (5.1.4). From

these we obtain

a1 -e) = ¥t -y) = £n (say),

(5.1.16)
a1 +e) = z2(t +y) .

At any event in E1, t=y = m is of the order of magnitude

of € +1, where © is the period over which Tij is time-
2

dependent. Hence, if we let y go to infinity keeping m



T

constant (i.e. along a null line in E, dram from the central

world-line), it is evident that Jy is of order yq for large

b
To integrate Jz s We first of all consider
® sin6 ae
f —_— (5e1.17)
o R
where
R.2 = Iy-xlz = y2+x2-kycose. (5.1.18)

Brom (5.1.18) we obtain

RdR = xy sin® 46 (5.1419)

and so, (5.1.17) becomes

a
L% . 13#3)' IS (5.1420)
= £ [(t-2) - (y-0)] . (5.1421)
Hence,

J, = %/:y 3—;-’-61: . Eyj-(logy-log 1) (5.1.22)

En
- My MY y>e, (5.1.23)

y

The procedure for J3 is the same except that we have

[2-Li6-9-x-m (5.1.24)

B RN
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and therefore,

3 y

J !E(t+y) (1’;-:1 - 2) ax (5.1425)

i

%{(t-l-y) log %1- (t=-y)} (5¢1026)

§ { (2y+m) log 2%";1]_ -n} . (5.1427)

Letting y tend to infinity and keeping m constant as before,

we obtain
J3 —3 —-—g as y —» ® , (5.1.28)
(2)

Combining these results, we may state that z,.Yi 3 tends to zero

like y-1 log y as y tends to infinity along a null-line in E,.
We must now esteblish the asymptotic behaviour of (:"i 3 given

by (5:14.7)s Since gij is independent of time in Eo ,h-:'l.t follows

that f}*i‘j is of order x—z" for large x in Eo' By an argument

L (1)
similar to the preceding, we find that ¥ 13 is of order y : for
L

large y (going to infinity in the manner prescribed above).
Collecting all the foregoing results, we have, by (5.1.5),
that as y tends to infinity along a null-line in E,, Igi j(x,it)l
L

tends to zero at least as fast as y-1 log vy«

(i1) Going to infinity in I,.

The method followed here is similar to that employed above, so

it will be sufficient to give merely a brief outline of the argument
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and state the eventual results.

Ve consider lgij' at an event (z,it) contained in I,

L

and, keeping y fixed, see how it behaves as t +tends to infin-
ity (cf. Fig. 4). The 3-space projection is illustrated by Fig.
5 The intersections of N sith 31 and 82 form two confocal
ellipsoids of revolution. The projection of NM B is a sphere
as before. The foci of the confocal ellipsoids are the centre of
the sphere and the point ¥ s which in the present case is an in-
terior point of the sphere. We note that for large t, the two
ellipsoids are very nearly spheres, but, for safety, we shall not
use this epproximation at this stage.

We denote the semi-major axis and eccentricity of the outer
and inner ellipsoids by a5 €, and ars €55 respectively.

Let us take the vertex of S, to be the origin of time and let

1

t =h be the time coordinate of the vertex of S, (the space co-

2
ordinates of the vertex of 32 are, of course, the same as those
for 8,, viz. (0,0,0) ). From Fig., 4 we see that h dis of the

same order of magnitude as € +T . We then have

2 ay e = ¥, 2 ay = t
(5.1.29)
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Figure 4., The field event in Iz.

Figure 5, Space projection of figure 4.
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eyl < f |petd 4 D
(1) (z) 3y () (5.1.31)
e };13 413 "'Ylj 5 7 y 17
where ( )
1 " :
Yi9 = L | retd 4 é*lj| dw
Lyt NNI, &4 A
(2) i & 3
= 13
: = Lk lé* Id.m
Ela j;ﬂE 4
(3) (5.1432)
> - f i
?ij 4k 1[ IG'*:LJi dw
I :Nf)E, b :
(&) E
Yy = z+x"[ |é+19] ao .
4 JNNE 4

The integrand on the right-hand side of the first of (5.1.32) is
time-independent (cf. (3.2.17)) and therefore bounded as t tends
to infinity. We may majorize the‘other three integrals of (5.1.32)
by ordinary volume integrals in 3-space in a manner similar to that
already used. When we calculate the volume integrals, we obtain
expressions involving h, y and t. Keeping h and y con-

stant, we find that for large % 9
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(2)

Y;s; < finite term independent of t + term of 0 12 1
Tt t

(3)

Eij < term of 0O % o (5¢1433)
(%) : e it

Y < erm o =g °

1 2

Collecting these results, we may therefore state that Igijl
i

remains finite as we go to infinity in the manner described above.

(iii) Going to infinity in E, e

The space-=time and projected 3-space pictures in this case
are a8 illustrated in Figs. 6 and 7. The latter is similar to
the previous case except for the fact that the second focus is out-
side the sphere I. If the field event is close to the radiative
region, the sphere will intersect the inner ellipsoid, but this will
entail only minor modifications which do not affect the essential
argument .

The process of "going to infinity" in the previous cases
could be defined in a relatively straightforward manner, however,
in the present case, we must distinguish between the various dir-
ections in which one may go to infinity. We begin by deriving an
expression in terms of y and +t which majorizes Igijl at an
event (y,it) in E,. This expression will be valig for any

event in E2, in the sense that it does not assume the large-




Flgure 6, The fleld event in E,,

2
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F.'I.gure 7.

Space projection of figure 6,
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ness or smallness of y or t or any quantities involved in it.
We may then see how this upper bound behaves as we go to infinity
in the following three ways: (a) fix y and allow t to tend to
infinity; (b) fix n = t-y and allow t (and consequently, ¥)
to tend to infinity; (¢) let y =e¢(t-h), 0< B, € es moge e
and allow t (and consequently y) to tend to infinity.

We have, as before,

gy (roitd] € vy (raat) = & [ I 4™ @M d0, (5.3
51,3 13 N

Rl L L
and
(1) (2} {3) (%) ( )
};i:] = ‘}:ia *{13 . L‘Eij *'};i;} > 5135
where
(1) : =
Yis = 4[ |oetd 4=t 8eid) ae
A o b i I
(2) 2
Yy; = w“‘f 18#49] aw ,
ok NNE L4
(5) (51436)
Y lg.x-1[ Ié-"‘i'jl do ,
L*v NNE &
() =y
Yi: = l;.x—1f |G-*i']| dw .
Ral NAE_ 4

By (3.2.17) and (3.2.36), the integrand in the first of (5.1.36)
(1
is independent of time and hence I-i 3 is time-independent and is

of order y~1 for large y. Some rather obvious considerations
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() 2h)
likewise show that ( Yi3+ Yy 4 may be majorized by an ex-
L d g d

pression which is independent of time and is of order y"1 as

(3)

y tends to infinity. This leaves us with Yej 0 where the
domain of integration contains the radiative region.
As in the previous case, we take the vertex of S1 to be

the origin of space-~time and the time coordinate of 82 to be

he If ay, © and a are the semi-major axes and eccen-

1 93 Ps
tricities of the outer and inner ellipsoids respectively, we have
2a1 = t, 2&161 = Y 2&2 = t-h, 2&292 = Y o

(5.1437)

By the same argument as in case (i) we can show that

(3) a a _
Yi3 § I = Lk nf : (5¢1.38)
K xy-x

where M is a constant. Using spherical polar coordinates, we
denote by a , @, the values of ©® on the intersections of the

sphere r = x with the outer (81) and imer (82) ellipsoids re-

spectively. We then have

I o= 3+ 3,40, (5.1.39)
where
a (1-e. )
v o~ ' " sin0 d®ax
, = M -

%2 9‘2(1_32) 'Z . r‘
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Figure 8, Going to infinity in E,, case (a).

N4

Figure 9, Going to infinity in E,, case (b).

b3

Figure 10. Going to infinity in E,, case (e)
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a_(1+e_)
@ 2 2
1 sin® 40 dx
J, = n[ E 5 (501040)
aJa (1-¢,) Iz—fl
a.’(1+e‘)
J. = M 1 8inb 46 dx
e Jo Ja,(14,)  |y-x|

A straightforward integration yields

J, = '—[Zx + (y=t+h) log x} I'e‘(t-y)

'ﬁ'(t-y-h)
J, = L {log =} lz(t ~hey) 5 (5eteld)
y Z(tmy)
gy = 2 lo - ﬁ(t‘.y') e
3 y {(t"'y') g X 235} I'g(t+y—h)

Note that (5.1.41) are the exact integrals of (5.1.40). By
(5.1.39) and (5.1.41) we obtain finally

i i (y=t+h) log -—i- + h log :Lt-?yx + (tey) 1og t-l-y-h 3
(501.42)
and this is the exact integral of (5.1.38).
To see how J behaves as one "goes to infinity", we con-
sider the following three cases: _
(2) Fixing y and allowing t to tend to infinity (of. Fig. 8),
we obtain

J 2_ 31:!'!1' ® (5‘1‘11'3)
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(b) Let t=y =m and take m to be constant. Then let y
(and t) tend to infinity - in other words, we allow the
field point to go to infinity along a null-line through the

event (0,im) (ecf. Fig. 9). We obtain

J & Mh 1-9_5_Ly . (541004 )

(¢) Letting y = c(t-h), 0<B,$.c~<.62<1 and allowing t

(and y) to tend to infinity (eof. Fig. 10), we obtain

R dxc
J v —log X . (5.1445)

To sum up all the foregoing, we have found that Eij as
given by (5.1.1) has a finite value everywhere in space-time and,
furthermore, that it tends to zero whenever the field point goes
to infinity in a way that involves y*«, In the latter case,
it tends to zero most slowly, like y'-1 log y, along null-lines
drawn from the world-line of the centre of a sphere constructed

in the mamner described above.

5.2 Further approximations.
So far we have examined in some detail the model universe

defined by an energy tensor
7 o PIartd 4n 1 (5.241)
2 L

and a metric tensor



85 = 5ij+gij+gid I Te® (5.2.2)
2 L

such that
U ¥ie P2 gMasvoseld A S oy
; T * (5.2:3)

" 502-5

o . P .0 i E.
2 L4

In E there is a residual energy tensor of order k6 which tends
-ly

to zero like r ' as r tends to infinity in E_, where r = |zl

In E, and E2, we have seen that we must be careful in defining

1
how one goes to infinity. However, we found that the metric tensor
is bounded everywhere in space-time and that when the field point
goes to infinity in such a way that r +tends to infinity, the met-
ric tensor tends to zero ( in the several ways we have described
in the previous section). 1In the latter case, the residual energy
tensor also tends to zero, its order at infinity being, at most,

that of the square of the metric tensor. We now examine two fur-

ther stages of the approximation.

A. The third approximation.

By (3.2.53), we must first of all find ' 1 4o satisfy

gl o, tanghis (502.4)
N 6

J

By virtue of the reflectional symmetry which we have imposed on

the model, we shall again have

[ g‘gpdjx = 0, forall t, (5.2.5)
I
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where E_.’p is a Euclidean Killing 3-vector. From (3.2.54) we

ocbtain
L K 3
€ o by sled t e (ginzjk,n hak.ﬂg
(5.2.6)
Yok,

& (an 12|J'ksn h_jksj

Taking the fourth component and separating the indices, we obtain

16{"=Iée‘f’hi:&""-r(311'’lF ZﬁT,B)TL *(ZM,L ZM,B)EM*
* Corn ~ 86%ar,0 ~ 8ulor ) 4
(54247)

* Ol * Tor,8 = 388055 = 38 Tir s ~ BT, 334;‘81,4)5“

wlBP. - el cLmn g gl % Yo+,
oot T BB T 85,0 T i,k T 58 Bu,6 T Banpn,uY
By (3.2.17) and (3.2.39), we find that
it = O sl (5.2.8)
6 0
In I,1 s there is no simplification in the expression for lélP but
that poses no particular problem. In I,, we shall have, by
(3.2417) (3.2.15), (3.2.36) and (5.2.7),

£ = (g, + 25 ,) T, (5.2.9)

or, since !l.‘l'J'F is independent of t in I2 ’
2
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121* = [(zg,“* +2Z ﬁBB) g“’l’4 . (5.2.10)
We may now return to (5.2.4)., We must find T9 4o
satisfy s
g“"’v + g”l*'h - - rg“ IV (5.2'.1"‘[)
el AN e P (5.2.12)
W B B 6

with the requisite boundary conditions. In accordance with

the general method, we take

T"’4 = 0 everywhere, (5.2.13)
6
which leaves us with the task of finding g"" and g“* to
satisfy
. T EPNS | T T R (50241L)
6 Y 6
e <X i T, (5.2.15)
g ¥ 6

and vanishing smoothly to order M on the boundary. From
the preceding steps, we already know that El vanishes smoothly
toorder M on B .

By (5.2.6) and the results of the preceding section, Ep
is bounded everywhere in I, that is, for all t. Hence, by

our general method, it is possible to find g"v to satisfy
(542.14) for all t and which vanishes smoothly to order M on

the boundary. We satisfy (5.2.15) by taking
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.b
- - . = Kh- ® el
1'“*6 %(,5) ifo ; at (542.16)

where -p(x) is the arbitrary time-imdependent value of Thh
6" 6

in I« In I, we shall have, by (5.2.10),
Sz 3 t
 an i -p(_g)-if K* at - (g, + % g0 P (5.2.17)
6 6 o 6 L L 8,2
Hence, in virtue of the results of the preceding section, it is
clear that né“* is bounded as +t tends to infinity in I .
We have thus found 'iIZ‘:I'j to satisfy the required conditions

and, as in (3.2.61), we then define

gy = & (retd 4 o Geldy 4 (502018)
6 6

E+I 6

in 1 o E 0? this integral is independent of time. Hence, by
DFS, it converges and is of order oy S large r. At any
event in I14+ E1+12+E2 s for which t is finite, the integral
(5.2,18) also converges since, outside a finite domain of the
null-cone, the values of the integrand are those of the static
DFS case.

From (5.2,18), we can then show, in the usual way, that

B0 % LW T3, (5.2.19)
6 6

where
b aldgoonte el | (5.2.20)

6
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From what has been done up to this, we see that we can go
a certain number of steps in our method without making any re-
striction as to the domain of space-time in which we are certain
that all the integrals, which occur, converge. These steps may
be represented schematically as follows:

s > g =* T g - © (5.2.21)
2 2 L L 6

Up to TV all the quantities in (5.2.21) are bounded every-
where ig space~time. It is with Ei j that difficulties begin
to arise. We have seen that this is bounded in I o E . and
at all events of I, + E.+ I+ E

ki Rotes Gies |
we can go further. We know that along a null-line through

for which + is finite, but

the point (0,im) , where m is fiaite, 8y is of order

1-1 log x and gij of order x-1 s for 1::1'59 x. Hence,

e+id 45 of orde? x 2 log x, at the most, for large x along
guch a line. By going through the work of the preceding sec-
tion, we find that %i 5 is of order x ] (log x)2 at large dis-
tances along a null-line through the point (0,im), m being
fixed and finite. |Herce it is bounded and tends to zero as

x tends to infinity along the null-line. We can repeat the

same argument for the further steps in the approximation and

find that, in general, as _x tends to infinity along g mull-

line through (0,im), & 3; tends to zero es x-1(105 x!N-1.
2N

In particular therefore, for an observer in E1 at any distance
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from the source, gui 3 is bounded for finite N.

If one were satisfied with the first three orders of
approximation one would have a model with a residual energy
tensor of order (m/a.)h' outside the body. In the case of
the sun (m/a)!" is of order 10 2% and so the residual energy

density outside would be 10-18 that of the sun's interior mean

density.

B. The fourth approximation.
Again, teking g"u"= 0 everywhere, we must find T"w, Tu’

8 8
satisfying the requisite conditions on the boundary and

Nl e SN T R L
g v 8 g o 8

For gi we obtain

Ki s T T'ik T & Jk
& EAg T g“‘ * Ca,1™ in Dgcn) T
iy
- (ll_jks ng Iz‘,jk,m) Eik
(5.2.23)
+ (T ) pdk

R ST - -
gJk,i " 3im ) Jk,m pim o 3km® Sir Srm o gk,m’ 3

+ (71 - - .
§3c,3" §im Taen ™ Eim Taen* Eor Em Lic,n) g”‘ -
For the same reasons as before, the first of (5.2.22) admits
a solution, for all t in I, vanishing smoothly to order

M on the boundary. Straightforward calculation yields

gl* =0 & I (5.2.24)




FMgurell,

14

5%

E-

Eo

Incomplete non-stationary model umniverse.
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L L
-(g, 8, +28., 8., * & . qad P Ay
S Bl * T B * B, * )2 g T
+ g P+ 3g . g otk (5.2.25)
I"Vzl-p lll- zl_zl-)\- M,l 2
We satisfy the second of (5.2.22) by teking
t
g O i[ £ at , (5.2.26)
8 8™ o 8

where - p(gg) is the arbitrary time-independent value of
T44 in 1 In I, we shall have, by (5.2.25),

%
[(shhﬁfgvv)Th“ (g hhfﬂgyhgik thfzg )Thh;a T”KHt

(5.2.27)
This is finite provided t is finite. Otherwise we see that
in the third term we have an 1ntegra1 of terms involving gvh.
which for large t is of order t s and hence on intemt:.on
yields logarithmic terms. We therefore take a certain value
to of t, large compared with the dimensions of the body and
with T , but finite, and assert that what we propose to present
is an incomplete model universe consisting of all of space-time
except that part which is in the future relative to the inter—

section of t =t  with I (ef. fig.11). In other words, the
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the lower boundary of the excluded region is formed by the
intersection of t = to with I and the lower bound S,
of null-cones drawn into the future from all events in this
intersection. In adjusting the value of t we have the
arbitrary p(g) at our disposal to ensure positive density,
and correspgnding quantities for the higher approximations,
as mentioned in Chapter III. Note that it is only at this
(4th) stage of the approximation that t, must be introduced.
Finally we define
8: s = [ (zotd 4 ™ By @ L (502.28)
gtd I+E 8 8
We have already shown that as one goes to infinity along a

null-line from (0,in), m being finite, is of order

gt
xrd(log x)° for large x and is therefore bounded, tending

to zero as x tends to infinity.



CHAPTER VI.
Loss of Mass.

As in the case of energy, there is no generally accepted
invariant definition, in general relativity, of the total
mass of an extended body. Several definitions exist for
what is termed the "total energy" or "gravitational mass" of
an isolated system (ef. Trautmana). All these definitions
agree, when applied to the Schwarzschild metric, yielding the
constant m which occurs in the line element. However, it
is not obvious that the different expressions give the same
answer when applied to fields more complicated than that of
the Schwarzschild metric, or that they have any meaning when
applied to a non-stationary system. Furthermore, these ex~-
pressions are not invariant under general coordinate trans-—
formations.

In order to find a definition of "mass" applicable to our
model universe, we shall try to avoid the confusion of pseudo-
tensors and take the Schwarzschild field as a basis of compar-
ison. First of all, let us consider the body and its gravi-
tational field in their initial static state. Although the

body and its energy tensor are not spherically symmetric, one
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would expect that at large distances from the source the
field approaches that of a spherically symmetric source i.e.
that it is asymptotically a Schwarzschild field. If we

take the exterior Schwarzschild metric in its usual form

-1
8 = (1 _%) d_r2 + rz(d.ez-!- sin®6 dq'>2) - (1 -%)dtz ’

(6.1)
we may define the "mass" of the central body to be the con-

stant m. Introducing Cartesian coordinates x, by

x, = r sin® cos¢ , x, = sin® sing , X, =r cos©

(6.2)
we have
-

rr=x = , rdr = x dx (6.3)
and putting x = it, we may transform the line—element (6.1)
into
where

] dx dx
= 8,0 4 [(1-3B) 4] 2L |
Eap ap T 2
814 = 0 9 (6.4)
25 L
By =7 Ty ”

39

Florides and Synge”” have applied the DFS method to

calculate the metric tensor due to a spherically symmetriec
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body up to the second order of approximation (inclusive).
For r>>a (a being the radius of the body), their metric

tensor may be written in the form

2(m'+m2) 1
sdﬁ = [1 +* ] 5”1- 0( -2' ) P
b of r
ga" = 0 9 (6'5)
2({m
g, .= 1 - e +0(3;) ’
; i r

where, in terms of the present work, m /a is of order x°

and mz/a. is of order k°. In particular,
m, =/.Ip2(_:5) a,x (646)

and m, is proportional to mf/a « The essential point
for our purposes is that (as they have shown) the metric (6.5)
is in fact a disguised Schwarzschild metric (to order k‘)
and that the mass of the central body, to this order, is, in

accordance with our definition,

n = I!I.l +m2 ° (607)

We therefore adopt the following procedure in the case
of our model. First of all, we shall calculate the metric
tensor in Eo up to order k. Then for r>>a s Where
a is a typical radius of the body and r = |x| , we shall

compare the coefficients of r-' in the components of the



T

metric tensor to those of (6.5). In this way we hope to ob-
tain an expression for the mass of the body in its initial
static state, up to order k*. We shall see that although
this procedure gives an unequivocal result at the first order
of approximation, serious difficulties of interpretation arise
at the second order. Although the O(k*) part of the metric
tensor is not independent of time in E2 it becomes so as
t*® , in a sense which will be defined presently. We may
therefore apply the same procedure as outlined above to the

metric tensor (t =+ ) in E, and compare the result so ob-

2
tained to that of the initial static state. This will enable

us to make some statements with regard to the change in the
mass of the body due to radiation.
Before proceeding with the explicit calculation of the

metric tensor in Eo and E we must explain in what sense

2’

the field in E_, becomes static as t tends to infinity.

2
We have seen that our method for determining the mass involves
the calculation of the metric tensor at large distances from

the source. Let us take r fixed with r >> a and consider

how gij behaves as we allow t +to tend to infinity along a

line x = const., |x| =1r >>a , where
e T

o 3 vl (6.8)
i3 23 ot h_ig
In E2 ’ gi;j is independent of time and gij is given by

%



Figure 12. Non-stationary model universe in second approximation,
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[(m-“ R s:-if')am. (6.9)

Let S, (F:i.g.1 2) be the upper boundary of the region traversed

by null-cones drawn from all events in 11 « Then, since Ti'i

; 4
is independent of time in 12 so also is [ T"':"jd.cn in that part

of E2 which lies above S-h_.

[ a-*ijdm . By arguments analogous to those of Chapter V, one

Hence we need only consider

may show that the contribution to this integral from the inter-

4, 8oes to zero like 1 ana
the contribution from Eo goes to zero like t_z g 88 t->o

section: of the null-cone with E

along the specified line. Hence as t - ® , the integral be-

comes, in the limit,

[&*” do , (6.10)

L

where the functions é"‘ia are given by their time-independent
I

values in E2 and the integral is taken over the whole infin-

ite range of the three variables X9 X5 X 0 Hence, proceed-
ing to the limit in the manner prescribed above, gi j tends
towards a static value given by (6.9), where Tij is given by
its time-independent values in I, and [ E‘i‘idw is defined
as for (6.10).

We are therefore in a position to compare the coefficients
of r , for r>>a, in the metric tensors of two static

fields and consequently the mass of the body for the two cases,

<0 and t > ,
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A. Comparison of mass at O(kz).
(1) <o,

By (3.2.4 - 6), (3.2.,10) and (3.2.16) we have, in E,,

gﬂ ” 23&“’ * gaac 2 0.4 g.“ » —2;,’ (6.11)
where P(@')
v = 2 deI 2 (6.12)
.  lx-z'l

For r>> a (a being a typical radius of the body), we may

write

2 5
v = — + 0( r2 ) (6.13)
2
where
m' = f p(x') d5x' . (6.14)
: v 9B i
Hence, to order k2 m
2m'*
2 1
&, =<1+T)6“’+0(:-2)’
&s = 0, (6015)
2ml
PP =1--2_+0(1-2-)'
r

Comparing this with (6.5), we find that the mass of the body

for t< 0 is m' , to this order of approximation.
2



(1) ¢t » o,

Performing the same calculations for (3.2.4), (3.2.5),

(362.9), (3.2.14) amd (3.2.16) we obtain in E s for r>> a,

2m|!
& = (1+2)5,, + ofl2)
r
sﬂd - 0 (6016)
2“1“
84‘ = 1 ""‘"'g-’ oo O( %)
r r
where
m" = o(x') d,x* (6417)
2 [12 2(5 -

and., by (302.'“}-) 9

v m
C = p4+qa s G = dn/ F(£)dZ (a constant) .
2 2 e A8y - Jdo o
' (6.18)
Applyimg Gamss's theorem to (6.17) and using the fact that

AP w =0 on the boundery of I,, we obtain
2 9

' = m', (619)

Hence, as already mentioned at the end of section (ke1), we
eonclude that there is no loss of mass at this order of

approximation.
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B. Comparison of mass at O(k: ;

By (3.2.38), we hawe
2
: i iJ
g x)=){ (= x')-l-x x}—i—inl-l-E.
h_ij(- I E 3 (-' (v IE;‘EE'I o o
(6.20)
From the definition of &9 as the O(k*) part of the Einstein

4
tensor for the metric, 85 = 513 + gij we obtain
?

ad j :
G = - L* - 8 L*
L ia el Ziaj el

- e : L
%gdb(gdb,lj gij,ab‘gaj,bi‘ghi,aj) +2 $ij 5 em
; p . s (6.21)
155aby &b ~ Tai,bragib * % 013 T ,chab 40 °

Furthermore, we know that, in 1!:(J + Eo ’

gcl -2 VB” ’ gdu =e g«u . IV, (6.22)
where P(’S') de'
¥ e [B . (6.23)
|x-x°]

Substituting (6.22) into (6.21) and taking star conjugates,
we obtain, in I _+E_, '

Y o o "ol e
= (vz):ﬁ‘ uy l"vv‘,pv zv,p v,v .

(6e24)

E

"
o

r_qgv -F'?’»

&
&

]

|

F ]

o

S

®
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Finally, noting that

j(vz)wq—i—x., = () = o(}), for ra,

te* B (6.25)

we obtain, from (6,20),

Sues gT"‘v(x)dx'-‘!fo(W %,V.JE}——+0(1§)

0 (6+26)

5H
fos = %[11;*“(5')&3::' + 0( -::2) .

for r> a in Eo. Note that the second term in the first
of (6.26) has not been expanded in inverse powers of r. In
principle, it would be possible to carry out this expansion,
but the resulting coefficient of r-1 would be rather com-
plicated.

Comparison of the first of (6.26) with the first of
(6+.5) does not allow us to draw any conclusions about the
mass of the body at O(k )e This is due to the fact that
the »' term of (6.26) is not spherically symmetric and
hence, despite what one might expect, the field of the body,
when calculated beyond the first approximation, is not
asymptotically a Schwarzschild field.

While keeping this difficulty in mind, we think it is
worthwhile to point out that the second and third of (6.5)

and (6.26) admit a comparison which, if accepted, would
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yield

n' = = 2] (g . 627
: [ 1zt dagx (6.27)

as the O(kl")% part of the mass. Combining this with (6.14)
we obtain as the mass of the body to O(kl"), for £<€ 0,

n' = [10(2(5') -2 T"'“(g"))djx' § (6.28)

It is interesting to note that (6.28) is what one would
obtain from Tolman's expression""o for the total energy of

a static system, viz.,
U = [v_g(r*-7")ax. (6429)
_ 4 0

He obtains this by calculating, in the case of a static

system, the usual expression,

U = [-f'.-g (T: + t:) a,% (6.30)

which (allegedly) gives the total energy, where t J‘ are

the components of Einstein's pseudotensor in an appropriate
coordinate system.

Continuirig a little further on the present line of dis-
cussion, we may calculate the corresponding qua.ntit} for +

* ® in the same manner and obtain

J;

m!l

o(x') - (T°%(x*) - 7 l'L(:r:' ] ax'
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where the 1‘"" are those of 12. Denoting the values of
L
T"J in Io and 12 by superscripts (o) and (2) respectively,
L
we have, by (3.2.29) and a simple calculation, that (E%) and (6)
L L

satisfy
(O)I-W (o)l-l
T = =K = P v in I a
I sV L 2 2".l &
(2) (6e32)
(2) = k" u o¥N in I, ,
p MY ) 2ol
o
respectively, where
o(x')
w ~ f 2(\1 d3x| 5 (6.33)
2 I, |3§-,3_E' I
Also, by (3.2.33)
(o) (2) k
T44 o o g T44 = =p _i[ Kh'dto (603,4-)

On comparing m' (6.28) and m" (6.31), we see that
although the integral of the first term is the same in both
cases this will not be so for the remaining (O(kl’)) terms.
Hence, we would conclude that, at this order, there is a
difference between the mass of the body for t< 0 and t->,
The explicit calculation for the difference in mass cannot
be carried out because of the indeterminacy of the equations
(6.32).

) The main conclusion of the present chapter is therefore

& negative one, viz., that the field of a single static body
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calculated by the DFS method is not asymptotically a Schwarz-
schild field when one goes beyond the first approximation.
The agreement of the rather uncertain definition of mass ob-
tained by considering the 8,4 term with the mass obtained
by the pseudotensor approach would only seem to cast further
doubt on the validity of the latter. It is the author's
belief that the difficulty encountered here, and indeed uni-
versally, of finding a satisfactory definition for "mass"
and "energy" is essentially due to the fact that these
Newtonian concepts cannot be transferred directly into the
scheme of general relativity. Instead, one must look for
invariant quantities, capable of physical interpretation,
which may perhaps play a role in general relativity analogous

to those of mass and energy in Newtonian physics.
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ERRATA to

GRAVITATIONAL RADIATION

by

Julian MeCrea

Communications of the Dublin Institute for

Advanced Studies, Series A, No.18, (1968)

p.35, Eqne(3.2.33) should read T'* = - p(x) - %[82 £ at .
L b .
pe65, Eqne(4e3.35), line 2, 3rd term in bracket

should read: —ikr Hn F,(n+1) .

Eqn.(4.3.36) should read: Jr = -f(Dr + i kr E) Hn },(n) d.3x' :

p.67, Eqn.(4.3.45) last term in square brackets on right-hand side

L]

=2
should read: + H1 Muevf,(‘l) .

Eqn.(4.3.47), right-hand side should read: e Vi o

Pe7k4, Expression (5.1.23) should read: Mm 1'9?-1 as y-+ o ,



