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INTRODUCTION

In the application of the su(3) group to the theory of element-
ary particles a central position is held by weight diagrams. It is
in these diagrams that the multiplets, e.g. the 0  meson octet, the
%f baryon decuplet, are ordered according to the values of their third
component of isospin and their hypercharge. Moreover in considering
the interactions of”elementary particles gne sometimes has to deal with
the direct product of two irreducible representations of the Lie alge—
bra of SU(3). Such products may be reduced by application of the
theory of group characters. Since this presupposes a fairly extensive
knowledge of group representations and in particular of integral repre-
sentations of the general linear group, one may seek an slternative
method and this is provided by weight diagrems. We shall later explain
this alternative method and apply it to specific examples.

Tt is therefore worthwhile to look into the whole question of the
weight diagrams for the semi~simple Lie algebras of rank 2. These
diegrems are two-dimensional figures. In Cartan's notation (Certan
1913) the algebras in question are the following:

1 Az, which is the Lie algebra of the special linear group in three
dimensions over the complex field SL(3, a). This in turn contains
the subgroup SU(3).

2. B2, which is the Lie algebra of the rotation group in five dimen-
sions over the complex field S0(5, @ ).

3. CZ’ which is the Lie algebra of the symplectic group in four dim-
ensions over the complex field Sp(u, a). This algebra is isomorph-

ic to B2 end we ghall include C2 in our discussion of B2 , when-
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ever we do not state to the contrary.

G2, which is the Lie algebra of Cartan's exceptional group of rank
2. This exceptional group is a subgroup of SO0(7, @ ), the rotation
group in seven dimensions over the complex field.

The algebra D,, which is the Lie algebra of S0(4, @ ), is not semi-
simple; it is the direct sum of two A‘1 algebras. We have there-
fore to consider only three essentially different algebras A2’ B2,

G2.
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ddmale=sia it

SUMMARY OF RESULTS FOR LIE ALGEBRAS

1a. Commutation Relations and Root Vectors.
We take a vector space of r dimensions with a coordinate basis

(x1,x2,... xr) and consider a set of transformations

- .
x' = ¢i(x1,x2,... X5 8ysBpscee as) (1.1)

depending on the s independent, real and continuous parameters &,,
Bpseee B - We choose the ¢i to be analytic functions of the a's.
For the set of transformations to form a group there must exist the

jdentity transformation and we suppose that it is given by a, = 8,

= ... =8 = 0, so that

xi = ¢i(x1,x2’o.- Xr; O, eene O)n

There must also exist the inverse transformation of (1.1); that is

to say, there must exist 51,22, aee ES such that

xi = ¢i(x1',}[2', L] Xr'; 31 ,8.2, LR as) [

Finally on meking successive transformations

" _ . - . 1 1 t
x" = ¢i{¢1(x1,x2...xr, a1...as), ¢2(x1,x2...xr, a1...as) cas 3 8y 58y ...as}

it must be possible to find a1“,a2",... as" such that




"o . " n "
xi —¢i(x1’x2’ooo xr, 3.1 ,32 poo o 38 ) °

If each at" is an analytic function of 8 5855000 By a1',az',“. as',

we have a Lie group of order s .

We make an infinitesimsl transformation of a function £ of the

x's in the neighbourhood of the identity:

9x dd
8f X L o
0f = o= A 63;. = da 5 # dx ’
axi aa‘ v t at 8.1:8,2: oae =8.S=O axi

summed over repeated indices. We write this

where & has been put for Sat and

3¢,
i 0
LA = .a"é:; 5-;; (A:‘l,z’ seo 8) .

8 =8,% one =a.s=0
It may be shown (Hamermesh 1962, p.299) that on teking the commutator

s
of LA and LB we obtain

D
[LA,LB] = Cpp Ly (1.2)
If the LA's are elements of a vector space end the product of +two

elements is defined as their commutator, the last equation shows that

the product belongs to the vector space. The algebra of the LA's

D
AR ?

We shall sometimes think of CABD as the BD-element of a matrix CA .

The commutators always satisfy the Jacobi identity

is determined by the C which are called the structure constants.

L

A,[LB,LC]] - [LB,[LC,LA]] + [LC,[LA,LB]] = 0



A set of elements LA that constitute a vector space and that have
a product defined by (1.2), the product obeying the Jacobi identity,
are by definition elements of a Lie algebra - the Lie algebra of the
group in which the LA's arose. An infinitesimal transformation

of the group is given by

summed over A . We shall deal only with Lie algebras of groups of
linear transformations: that is to say, with Lie algebras of subgroups
of the general linear transformations in n dimensions over the com-
plex field GL(n, a ). It can then be proved directly, and without
difficulty, that the infinitesimal generators LA of the subgroup of
GL(n, GZ) are elements of a real vector space and that moreover, if
we define the product of two elements as their commutator, they con-
stitute a real Lie algebra (Simms 1969, p.11).

The next step is to put the commutation relations (1.2) into

manageable form when the algebra is a semi-simple algebra; that is

to say, when it contains no abelian invariant sub~algebra. According
to Cartan's criterion a necessary and sufficient condition for this

to be s0 is that the matrix E)p defined by

E . D
8ss = Cpp Cpgp

be non-singular. After come calculation it is found possible (cf.

McConnell 1965) to express (1.2) as




[Hi,Hj] = 0, [Hi,Ea] r, (¢)B,

(1.3)

[Eh,E_a] = § ri(a)H ’ [Ea’EB] = NaBEa+B .

In these equations Hi’Hj stand for commuting LA's, which are

brought to the diagonal by a similarity transformation. Working

in the regular representation where LA is identified with - CA

" }
we write Hi for - Ci when diagonalized. We use Latin indices

for A to label the commuting elements: if £ is the number of

them, £ is the rank of the algebra and we let i,J = 1,2,....2. When

A is greater than £, we write it as a Greek letter and we put

- G’t = E’C O ('T,‘ = 4e+1, ,£+2, L ) 8)

It is found that

b _c i B oo, (B) (1.4)

ij ia ia
We also write the ac-element of G, as ri(a); that is,

a

C. = ri(a) (105)

1

and call (r1(a), rz(a), coe rlﬂa)) the root vector r(a). To each
r(a) there corresponds an E,, so Ea+B in (1.3) corresponds to

r(a) + r(B) , and

a4
This NaB will vanish, if r(a) + r(B) is not a root vector.

Moreover for every _E(a) there exists an r(-o) equal to —_s(a)



and a corresponding E-a' In order to conform with conventions in
the literature of elementary particle theoretical physics (cf. Behrends,
Dreitlein, Fronsdal and Lee 1962) we normalize the root vectors, as we

can, so that

3r () ryfe) = 8,y (1.6)

the summation being over all the a's.

To avoid unnecessary complications we shall henceforth deal almost
exclusively with semi-simple Lie algebras of rank 2. When we refer the
components (r1(a), rz(a)) to rectangular axes, it is found that the

root diagrams that they constitute can only be the following:

!
V6 % -
1 (#) f(z')
# (-1) 1"(')
Y6
r(-2)
~ (_1'_)
A4 r(-s)
Fig.1.1 -~ The root diagram for A2. Fige1.2 -~ The root diagram for B

o




Fig. 1.3 - The root diagram for G2.

When r1(a) > 0, we sey that r(az) is a positive root vector. For

the A, algebras (1), £(2), £(-3) are positive root vectors.

1b. Weights.

From now on we shall deal with representations of the Lie algebras
and we shall denote by Hi’ Ed not only the elements of the algebras
but also the matrices representing them. This will not cmuse confusion.
Since H1 and H2 commute, it is possible to find simultaneous eigen-—

vectors of H1 gnd H2 in the representation space. If u is such

an eigenvector, so that

H u = m, u, Hyu = m,u, (1.7)
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we say that (m1,m2), or more briefly I, is the weight of u.

We shall refer to u as a weight vector. If there is only one

vector u satisfying (1.7), we say that m is a simple weight.
If there are two, three, ... linearly independent u's, we say
that m 1is a double weight, triple weight ... , or generally a

multiple weight, the weight multiplicity being the number of lin-~

early independent u's that satisfy (1.7) We say that a weight
m' is higher than m", if m1' > m1" or if HHH:m{'and mé > mg .
We shall now quote from Racah (1965) some properties of weights

and weight vectors of semi-simple Lie algebras:

1. The weights are linear combinations of the root vectors with
rational coefficients.

2. Weight vectors corresponding to different weights are linearly
independent.

3. The weights are situated in a lattice determined by the root
vectors.

This means that two neighbouring weights differ by a root

vector. If we take a string of weights like m, m + E(a),
o+ gz(a), sss 5 there are no gaps in the string, e.g. between
m + 5r(a) and m + 8r(a) we must have m+ 6r(a), m + 7r(a) .

If E, acts on the vector u with weight m, then by (1.3)
H,Eu = EHu + ri(a)Eau = (mi + ri(a))Eau . (1.8)

If the representation is irreducible, either Eau vanishes or
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it is a weight vector with weight m + r(a). For this reason

we may speak of E  as a displacement operator. If in an irre-
o

ducible representation one starts with a weight vector and oper-
ates successively with the displacement operators, one may obtain
a1l the basis vectors of the representation. The number of

these, being the number of linearly independent vectors, is just
the total numbef of weights, multiple Feights being counted accord-
ing to their multipliecity. The total number is therefore the
dimensiom of the irreducible representation. The set of all the
weights for e representation, reducible or irreducible, constitute

the weight diagrem of the representation.

L If m is a weight, then
2(m.x(a))
2
| ()l

_ - is zero or an integer.

5. If m is a weight, its Weyl reflection

2(m.x(a))
g E(a) (1.9)
| z(e)l

is also & weight and has the same multiplicity.

We note that (1.9) is obtained from m by a reflection in
the line through the origin that is perpendicular to the root
vector 'E(a). Two weights connected in such a way are called

equivalent weights. We deduce from the last theorem that a

weight disgrsm is invariant under Weyl reflections. In a set of

equivalent weights the one that is higher than the others is called
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the dominant weight. The highest of the dominant weights in a

representation is called the highest weight of the representation.
6. If a representation is irreducible, its highest weight is simple.
7. Irreducible representations with the same highest weight are
equivalent.
There is therefore a one-to-one correspondence between in-
equivalent irreducible representations and their highest weights.
8. For an algebra of ranklz, there are £ fundamental dominant
weights such that every dominant weight is a linear combination
of these with non-negative integral coefficients.
For an algebra of rank 2 this means that there exist two
fundamental dominant weights ¥, and Fos S&Y, such that every

dominant weight is expressible as
KE1 + UV, (1.10)
with A,u0 =0,1,2, ...

9. Every dominant weight (1.10) is the highest weight of an
irreducible representation D(A,u), say, of the semi-simple Lie
algebra that has w, and X, as fundamental dominant weights.

We note that @, is the highest weight of the irreducible

representation D(1,0) and that %, is the highest weight of

D(0,1).
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We consider the weights of the regular representation.

In the general case of rank AZ
H, =-C, , E =-¢C (i=1,2... 850 = f+1,... s)

and by (1.4) and (1.5)

A

¢ f=0, ¢ oo, c. P . ri(a) SaB. (A=1,2...s)

ia
The weights in the regular representation are such that my is
an eigenvalue of Hi s that is, of - Ci .  Now Ci is a dia-
gonal matrix with the first diagonal elements equal to zero
and the others equal to the ith components of the root vectors.
The minus sign is of no consequence, since for every root vector
there is an equal and opposite root vector. Hence the weights
of the regular representation are the root vectors, plus a zero
weight. The only multiple weight is the zero one and its multi-
plicity is ,E, the rank of the algebra. Thus, for example, the
weights for the regular representation of the algebras A2,B2,G2
are situated at the extremities of the root vectors in Figures
1¢1,1.2,1.3 and at the origin, which is a double weight. The
dimension of the regular representation is the number of root

vectors added to the rank.
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1¢. The Graphical Method of Calculating Weight Multiplicities.

We return to equation (1.8). If we wish to find the multi-
plicity of a selected weight in the diagram corresponding to an
irreducible representation of a semi-simple Lie algebra, we may
start with the vector v of a simple weight, e.g. the highest
weight, and go from this to the selected weight by a sequence of

displacements of weight vectors. This will give a vector

E, ...E E, v. (1.11)

t 2 1

Having done this by all possible sequences we would have to use
the commutation relations to see how many linearly independent
vectors are so obtained. This will be the required multiplicity.

It is clear that this procedure could become very tedious
and so could easily lead to error in calculations. To simplify
the approach we shall replace expressions like (1.11) by graphs.
When u is a vector of a simple or multiple weight m , Wwe

~

agree to represent Eau by the directed line from m to magg(a) s
if the latter is present in the diagram. If it is not present,

E,u is zero. Likewise we represent EgE u for B #£-a by

(1.12)

(=)




-12-

We indicate by placing a heavy dot at m that we atart with a
vector having this weight. It will therefore usually be super-

fluous to place arrows on the vectors. EaEBu is represented by

// (1.13)

. I
end, as m + r(d) + r(B) may be a multiple weight, this may not
be equivalent to (1.12). 1If r(a) + r(B) is not a root vector,

the NaB in (1.3) vanishes, E, eand Eg commute and

./ - // : (1.12)

When £(a) + E(B) is a root vector, the difference of (1.12) and
(1.13) is NooE, Y ¢ In considering multiplicities what inter-
ests us is the number of linearly independent vectors that are
associated with a weight. We are therefore not concerned with
non-vanishing numerical multiples of the vector, so that we shall

take NBaEa-«-Bu to be just Ea_'_ﬁu and therefore in the present

case

// - '_// + / - (1.15)
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If EﬁEa vanishes,

// / : (1.16)

When B = - a , we employ the relation

[Ea, E-a] = Z:iri(a)H.l y

which gives

EE_u-E_Bu z ri(a)Hiu

+ (1.17)

1]
=

. M

e
2]

e
Pan
Q
L

This is depicted as

/ - / = (1.18)

and for clarity we have included the arrows. The relation (1.18)
is true no matter what is the multiplicity of m . If it is a
simple weight, there is a unique vector to which it can return

and so

/ = e (1.19)
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More generally, if we have a simple weight, we can reduce any
path that returns to it without leaving the weight diagram to

a dot:

(1.20)

To find the multiplicity of a given weight in a diagram

for an irreducible representation of a semi-simple Lie algebra
of rank 2, one starts from a simple weight, e.g. the highest

weight, and examines the paths from this to the given weight.
The number of independent paths is taken to be the multiplicity
of the weight. The reliability of this method has in fact been
checked in specific cases by independent calculations (McConnell
1970).



CHAPTER II

A, WEIGHT DIAGRAMS

2a. Irreducible Representatiions of Az.
To obtain a weight diagram for a representation of A2 we

take the m, axis horizontal and the m, axis vertical, and we mark

1
the positions of the points (m1,m2) that correspond to the simul-
taneous eigenvectors of H1,H2 that constitute a basis of the re~
presentation. In order to classify the representations, we cal-

culate the fundamental dominant weights for A2.

Let us take a dominant weight M , where

¥ o= Me, + Mg, (2.1)
810 &) being unit vectors in the directions of the m, sM,=8XE S
We find from Fig.1.1 that
2(Mex(1)) 2(M.x(2))
p = -\/'3M1 R - = 1/3 M1 + 3M2
|z(1)] lz(2)]
(2.2)
2(M.x(3))
~ = -V3 M, + 3M,
| 2(3)|
and therefore by theorem L4 of section 1b
2/3M, =1, , VM, + 3M, =T, , - VM, + M, =T 5,

(2.3)
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where 1:1;172,rc3 = 0,#1,425000 The same equations come from
r(-1),x(-2),z(-3). On making Weyl reflections of M with respect

to r(1),r(2),r(3) we obtain from (1.9) and (2.2)

; Ly 13 ooy . 13
gy + Hpe, (2, - S My)ey - (M, + 52 My)e,

\
(zM ;

G e o G, -2
+ 3 M2)31 + (2 M, -§M2)32 .
On comparing this with (2.1) we deduce tha‘g, if M is tobe s
dominant weight, then

i) M,2 - M so that M, is positive or zero

1 19
. L ¥3 )
ii) M, > 2N, 3 M, , ices M, 3 -Y3 M,
1 V3
iii) My 2 2M, ¢ N, ice. M, 3 V3 M, .
We conclude that
M, 20, ¥, > V3 IM2I . (2.4)

Returning to (2.3) we see that

'r1>O, '1:230, 1350

Ty 2T,

Mi=mw3, M= g
and in order to satisfy (2.1)

T, 2 l2x, -1,

so that Ty 2 T, - Let us therefore write
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where N and p are positive integers or zero. Then

M (1,0 + 2 (0,)

Mars D) + sz -2 -

4=

According to (1.10) the fundamental dominant weights are

(s5:%), (z3--%).

Then theorem 9 of section 1b shows that

A4+ N ~-u
(375 7e ) (2.5)

is the highest weight of the irreducible representation D(A,u)

of the algebra A2 .

2b. Boundaries of A2 Weight Diagrams.

We saw in section 1b that weight diagrams are invariant under
reflections in lines through the origin perpendicular to the root
vectors. On referring to Fig.1.1 we deduce that the weight dia-
grams for A2 are invariant for a reflection in the m, axis, and
for reflectioms in the lines m, = :'fjmz . Now a reflection in

m, = V3m, followed by & reflection in the m,-axis is equivalent

to a rotation about the origin through an angle of %? . The
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weight diagrams are therefore invariant under such a rotation.
To discuss the shape of the boundary we start from the high-

est weight M . Since the root vectors r(1),r(2),r(-3) are

positive, the boundary lines issuing from M cannot go in the
directions of these vectors. The lines may go in the directions
of r(-1),r(-2),z(3) and by taking combinations of two of them
at & time we see'that in the neighbourh?od of the highest weight

the boundary can be like

Since the weight diagrams are invariant under the rotations through
angle %? > the boundaries are, respectively, an equilateral tri-
angle with vertex downwards, an equilateral triangle with vertex
_upwards and a hexagon with alternate sides equal in length, all

-

boundaries being symmetrically situated with respect to the m,
axis.

Let us relate the boundaries to irreducible representations
of A2 o We do not bother about the trivial case of D(0,0) s
whose weight diagram consists of one weight at the origin. Since
M is simple for an irreducible representation, the corresponding

weight vector v 1is unique apart from a scalar multiple. For

the triangle with vertex downwards
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which gives

M1 = wf}Mz.

On comparing with (2.5) we see that the representation is a
D(\,0) . The highest weight is x(ﬁ— , %) and the reflection
of this in the m, axis is M - 5}3 s %) « The difference of
the m, coordinates is j% and, since |£(1)| ='$3 , there are
A units and A+41 weights in the horizontal side. To sum up,
the boundary of the weight diagram of the irreducible representa-
tion D(A,0) 4is an equilateral triangle with vertex downwards,
symmetrically placed with respect to the m, exis and having in
each side M\ wunits, each being the length of a root vector.
The boundary of the weight diagram of the irreducible representa-
tion D(O,u) is likewise an equilateral triangle with vertex
downwards, there being p units in each side.

The hexagons are therefore the boundaries of the weight
disgrams for the irreducible representation D(A,u) with A,u
non-vani shing. According to (2.5) the highest weight is

<x+p_ x-y_-).

23 6

If we reflect this in the line through the origin perpendicular

to r(}) , we obtain
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(" rea) (2.6)

23 6

This is the extremity of the side that goes from the highest weight
in the direction of ‘5(3) . The aifference in m, coordinates

is p/2/3 and, since the length of the projection of .5(3) on the
m, exis is 1/2/3, we deduce that there are p units in this side.

The difference in m,

coordinates betwien (2.6) and its reflection
in the m, axis ;s M3, so there are N units in the horizontal
line Jjoining them. Hence the boundary for an irreducible D(X,p)
representation is a hexagon symmetrically situated with respect to
the m, axis with alternate sides equal in length and with two
horizontal sides, the upper one having A units of length of a root
vector and the lower one having u units. When u =A, the hex-
agon is regular, it is symmetrically placed with respect to both axes

and its highest weight lies on the m, axis. An example of a D(\,\)

1
representation is the regular representation. We saw at the end of
section 1b that the weights in the diagram of the regular represent-
ation are situated at the extremities of the six root vectors and at

the origin. On referring to (2.5) we see that A =1 and, as the

dimensiom is 6 + 2, the regular representation: of A2 is D(B)(1,1).
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26. Multiplicities on the Boundaries of A2 Diagrams.

We shall investigate multiplicities in the diagram for a
D(\,u) representation, and in the course of this we shall cover
the cases of D(\,0) and D(O,u) representations. We first

look at the multiplicities of weights on the boundary.

Fig.2.1 - Weights in a D(A,p) diagram of A, .

The highest weight marked A in Fig.2.1 is simple and starting
from it we proceed along various paths to ByC,Dy.cc o« The number
of independent graphs to the weight in question is the multiplicity.

B We may go from A to B ina variety of ways, e.8.

L d

AB, AA'B, AFA'B, AA'B'B

with the respective graphs
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\ i </ ; (2.7)
Let us show that the last three are equivalent to the first.

/ N+ 7

by (1.15), but the last graph vanishes because there is no weight

In fact

to the right of A. Moreover

</ = > , by (1.14)

= , by (1.19),

and

LA

(2.8)
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We have thus only one independent graph and B is a simple weight.

c Since B is simple, we can start from it and proceed to C.

We have paths obtained by displacing (2.7) by 5(3). In eddition

we could have a path like BAA'B'C'C and for this

by (2.8).

Continuing along D,E, ... we find that all the weights there
are simple. Similarly all the weights along the side AFG ...
are simple. On rotating twice about the origin through an angle

2n/3 we deduce that all the weights on the boundary are simple.

2d. Multiplicities in Hexagonal Layers.
We shall deal with successive layers of weights assumihg that
they remain hexagonal. It will clearly suffice to examine layers

parallel to the side ABC .... We commence with A',B',C',... .
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A' Starting from A we have already two independent graphs

We take several other paths and show that each gives a combination

of these two;

i
+

A

>

/N

by (1.20V ,
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The multiplicity of A' 1is therefore 2.

B! We start from B and obtain the independent graphs

~

(2.9)

but the latter one exists only if the weight C 1is present;
otherwise B' is on the boundary and we are off the layer.
We may as before show that all paths from B to B' give only

linear combinations of the graphs (2.9), for example

AN

E' We start from C and obtain multiplicity 2, if D exists;
otherwise the multiplicity is 1.

We therefore see that the multiplicity is 2 for all weights
along the line A'B'C'... . Arguing as before we conclude that

the multiplicity is 2 all along the layer.
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Going to the next layer we consider A", B",C"ee
A"  Starting from A we can get two graphs by adding A'A"

to those for A', viz.

. (2.10)

If we follow the path ABB'A" , we have

/NN

and so get nothing new. If however C exists, we have in additiom

ABCB'A" and for this

The last graph cannot be reduced to a combination of (2.10), so the
multiplicity is then 3. We can bring a classificatiom into these
graphs by saying that we can have 2,1,0 horizontal lines in the
graphs from A to A", that we have 1 horizontal line only if
B 1is present and that 2 such lines are there only if in addition

C is present.
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B",C"y... The multiplicity of B" is 3 provided that D
exists; it is 2 if € exists but D does not. Then it is
on the first layer. Continuing, we see that the multiplicity
continues to be 3 as long as we keep on the second layer.

There is now a general pattern for the variation of multi-
plicities. As we go from one layer to the next there is one
extra independent graph, since there is one extra horizontal line
from the point on the boundary at the same horizontal level.

The increase in multiplicity persists as long as we can come in
diagonally from the hexagonel boundary. It therefore persists
until we reach the triangle obtained by peeling off hexagonal
layers of weights. The multiplicity is the same for all weights

on this triangular layer.

2e. Multiplicities in Triecngular Layers.
Let us first look at the multiplicities on the boundary of a

weight diagram, when the boundary is triangular. We take the
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T
Fig.2.2 - Weight multiplicities for a

D(O,u) diagram of A, -

vertex upwards as in Fig.2.2 and calculate the multiplicities of
L',L"’.O. .

L Proceeding from the highest weight L we have various graphs

ATV

etc. . Now

= , by (1.16),

————)
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A A

ARNER VAN
\ +
N - N /\ s by (1.18),

etc. . L' is therefore a simple weight.

L" Since we have shown that L' is a simple weight, we may go
from it to L". We obtain the same type of graphs as in the
previous case, so L" is also a simple weight. All the graphs

are equivalent to

" L' L

We may argue in this way that the weights along the horizontal
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base are all simple. By rotating we deduce that all the weights
on the boundary are simple.

When we began with a hexagonal boundary and peeled off layer
after layer, we arrived at a triangle on which all the weights
had the same multiplicity, s say. We can include the case of
a trianguler boundary in this by putting s =1 . We now ex-
amine what happens when we go to the next triangular layer.

We continue to refer to Fig.2.2. : To say that s 1is the
multiplicity of L,L',L",... means that we have s, and only s,
independent graphs from the highest weight A of D(A,u) to
L,L',L",00e & To express this in another way: all the independ-
ent graphs from A to L',L",... may be obtained by adding LL',
LL",... on to the independent graphs from A to L . A similar
result holds for graphs from A to M,N ... .

Consider the weight M'. We may take any path from A +to
M' as passing through L because, if for example it were to come
through M, we could replace AM by AL+LM. We therefore turn
our attention to the portions of the graphs from L to M' and
for clarity we letter the starting points of graphs. Choosing

different paths we have, for example,
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Yy

VAN
N

S

L L :

These show that all independent paths to M' may be reduced to
L'M' added to all independent paths to L'. The multiplicity
of M' is therefore s and the same is true for every weight in
the triangular layer. Going to the next layer we obtain in pre-
cisely the same way multiplicity s again.

We conclude that, once we reach the triangle, there is no in-
crease in multiplicity. In perticular if the boundary is a tri-
angle, all the weights in the diagram are simple. The rules for

multiplicities in A2 diagrems were first given in Wigner 1937.
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2f. A, Dimensionality Formule.

2

We put down weight diagrams for certain irreducible represent-

ations of A2 marking the multiplicity of each weight:

11
11 1 1 2 1
1 11 : 1
p(3)(1,0) p(3)(0,1) p(®)(1,1)
111 111
111 1 2 2 1
11 1 2 3 2 A
1 12 2 1
11
p{19)(3,0) p(27)(2,2)

R T T T 11
12 2 2 2 1 12 2 2 A1
1 2 2 2 1 12 3 3 2

1 2 2 4 12 3 2 A
1 2 1 12 2 1
11 11
D(35)(h,1) D(h2)(3,2)

The weight diagrams are used in elementary particle physics to
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display particles according to the values of the third component
of their isospin and their hypercharge. The D(B)(1,O) weight

diegram is used for quarks, the D(5)(o,1) for antiquarks, the

D(B)(1

,0) for %+ baryons, O mesons and 1 meson resonances,
and the D(1O)(3,O) diagram for the 3/2+ baryon resonances.

The dimension N(X,u) of the irreducible D(A,u) represent-
ation can be calculated by summing the multiplicities in the dia-
gram. Since the boundary of a D(A,u) diagram contains altern-

ate sides with N and p units, it follows that
Nu,A) = NOv,u) .

To calculate N(\,u) we shall therefore take \ > p .

We first find the total number of weights in the hexagonal
layers. As we go from one layer to the next, there will be a de-
crease of one unit of length in each side. Taking account of the
increase in multiplicities we have the total number of weights in

the hexagons equal to

3{}\+p+2[7\—1+p-1]+...+uL7x-(p-1)+1]I

p=-1
32 (r+1)N+p-~2r)
r=0

(w+ DG Mo+ 20 - 5p?) . (2.11)

When we arrive at the triangle, the multiplicity is p+1 and the

number of units in the side is A -pu. The total number of weights
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in the triangular layers is therefore equal to
R+ -p+D)+M-p)+ e v2+1]
= (p.+1)(‘12’7»2-)\p.+‘12‘u2+%7\-%p.+1) .
When this is added to (2.11), we obtain altogether
o+ DER + s 2+ Fus 1),
and therefore

NO,u) = (0 + D)+ 1) +p +2) .

This is verified by the specific examples that we took above.

We may note in particular for regular hexagonal boundaries that

NN = (+ 1)



CHAPTER III

B2 WEIGHT DIAGRAMS

3a. Irreducible Representations of B2.
We first seek the dominant weights for the algebra B2. Let

M given by

Moo= Me, +MNe, (3.1)

be any weight. If we take r(z) to be successively the r(1),

5(2), eee 5(—&), we find for

2(4.2(e))
(@) [°

the respective values

2\/6M1 s wf6(M1 + M2) y 2\/6M2 , w/6(-M1 + M2)

(3.2)
-2\f6M1 s 46(M1 + M2) s —2f6M2 s w/'6(M1 - M2)
and for the Weyl reflection of M the respective values
Moy ape,,  Mpe-Mpe,,  Me -Me,, Me +de,  (3.3)

repeated once. From theoram 4 of section 1b and (3.2) we deduce
that

2w/6M1 = g 2\/6M2 = o, , (3.4)
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where

4
61’ 0.2’ 5(0‘1 _62) = 0, i‘:‘, 12, eeoe o
For M +to be a dominant weight we have from (3.1) and (3.3)

M, >-M

1 soM1>O

1 3

My> +M,, so M,3 |M2|
)

2 2 2
and therefore
M1>O, M2>O, M1>M2.
Hence in (3...)
0'120, 0‘220, 0,20, ,
and
0—1’ 62’ %(61 -0—2) = 0, 1, 2’ sen o
We therefore write
61 “0—2 = 2“. 9 0-2'—')\. ()\.,l..l=0,1,2 see )

and we have from (3.1) and (3.4) that
¥ = 31-3{()\ + 2p)31 +X32} .

Thus the dominant weight has the general form
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)‘(Exg’ﬁz)*'li%,o)'

The fundamental dominant weights for B2 are

1 1 1
(572 5 572) > Gz, 0 -
For each zero or positive integral value of X and of p we have

a D(A,u) irreducible representation with highest weight

(%ﬁ) : (3.5)

3b. Boundaries of B2 Weight Diagrams.

On referring to Fig. 1.2 we see that the perpendiculars
through the origin to the root vectors are themselves root vect-—
ors, so the weight diagrams are symmetrically placed with respect
to the m, , m, axes and with respect to the lines m, = +m .
Since a reflection in 5(1) followed by a reflection in r(2)
is equivalent to a rotation about the origin through an angle
% s the weight diagrams are invariant under such a rotation.

The multiplicities of all the weights in a diagram are determined,

when we know those in the sector of the first gquadrant between
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the m, axis and the radius vector making an angle % with it.

We examine the possible shapes of the boundaries of the weight
diagrams excluding the trivial case of the D(1)(O,O) represent-
ation (McConnell 1966). If M is the highest weight of an irre-

ducible representation with weight vector v, the lines to neigh-

bouring weights can be snly in the directions shown here

—————————) "

(a) (v) (c) (a)

By teking these in pairs we can obtain six possible shapes of the
boundary near M. However not all of these are allowed by the
commutation relations. If, for example, we have a combination

of (a) and (c), then

N3’_2E_1v = LEB,E_ZJV = 0,

which is contrary to the supposition that there is a weight to the
left of M as in (a). We may likewise exclude the combinations
(a) and (d), and (b) and (d), so that we are left with three allowed

possibilities



=
=

Y

I II IIT

Since the diagrams are symmetric with respect to the axes and
invariant for the rotation through %3 the highest weight M for
case I must have M, = M, and (3.5) shows that it belongs to a
D(X\,0) representation. The boundary is a square with sides parallel
to the axes. In case II the highest weight must lie on the m, ax s,
so by (3.5) the value of A is zero, the representation is D(C,u)
and the beundary is a square with vertices on the axes. The bound-
ary for case III is octagonal, the alternate sides being equal in
length.

We letter the highest weight A in the D(K,p) diagram of

\<z\ &

Fige3.1 - The boundary of a

D(\,u) diagram of B, -
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Fig.3.1. Let X be the reflection of A in the m, axis and
Y +the reflection of A in the line m2 =my . The coordinates

of these are

) d(Rod) . r(de3R).
The root vector in the direction XA is r(3) and its length is
ag . There are A units of this lengtp in XA . The root vector
in the direction .AY is r(4), its length is 71-3- and the length
of its projection along the m, axis is -%Z . Hence there are
¢ units of length é%- along AY . The boundary for the D(\,u)
representation has N wunits in the sides that are parallel to the
axes and M units in the slant sides. This will include the
cases of D(A,0) and D(O,u) . Since the units of length are

unequal, we cannot transfer results from the D(A,0) to the

D(O,n) diagrams, as we could for the A2 algebra.

3c. Multiplicities on the Boundaries of B, Diagrams.

2

We shall first look at the multiplicities of weights on the
octagonal boundaries. We consider the weights along ABC ...

in Fig.3.2.
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D
c' C
B" B! B
A" "n A! e A" tt A' " A" A' A
Fll"" F'"" F"" F'll F" F' F
G" " G LB G“ G' G

Hll 1t Hl " H“ H ] H

Il" I" Il I

L . .

Fig.3.2 - Weights in a D(A\,n) diagram of B, -
B Starting from A we shall show that the graphs to B are

equivalent to AB . Thus

NI

on referring to the root vector diagram of Fig.1.2, but the last

graph vanishes because A 1s the highest weight. Then

PN AN




NN

S0 we may conclude that B 1is a simple weight.

c We start from B , which we have shown to be simple, and
show that graphs from B to C are equivalent to BC . The

only new type of graph that occurs is that which commences from

NN

We conclude that C is simple and that similarly D ...

are simple. The same argument holds for F, G, ... and we
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conclude that the weights on the octagonal boundaries are simple.
By omitting the slant side and rotating the vertical side we de-
duce that we have simple weights on the square boundaries of the
D(\,0) diagrams, and by omitting the vertical side we see that
we have simple weights on the square boundaries of the D(O,p)

diagrams.

3d. Multiplicities in the D(\,0) Diagrams.

A! " A" A' A

F'" F" Fl F
G'" 6" & G
H'l' H" H' H

Fig.3.3 ~ Weights in a D(A,0) diagram of B, -

We mark weights near the highest weight in Fig.3.3 and ex-
amine multiplicities in the layer just inside the boundary.

F! There are two linearly independent graphs from A , viz.

-~

(3.6)




Ly

All other graphs from A are linear combinations of these, e.g.

g

NNl

=/+[_*

=———>, ‘+\ -

N N

F" By shifting one unit towards the left we can use the previous

diagrams to go from A' to F" except in the case of paths like

A'AFF'F"

A'

[ e

and in this case

A R

We conclude that F"

is a double weight.
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We may continue this procedure until we reach the end of
this layer. Simce all the weights have the same multiplicity,
we may say that the linearly independent graphs from A to F",
F'",... may be obtained by adding to (3.6) the paths F'F" ,
F'F'™ , s &

There is an alternative way of looking at this. To find
the multiplicity of F" we could start from F and go to F"
by the independent graphs FF'F" and FAF'F" . This alternat-
ive way has the advantage that it can be extended to the calcul-~
ation of the multiplicities of G", H'", etc. . To deal with
G" we start from G and obtain three linearly independent
graphs GG'G", GFG'G", GFAF'G" . These may be classified as
having 2,1,0 horizontal lines. Having established that the
multiplicity of G" 1is 3, so that there can be three independ-
ent graphs from the highest weight A to G" , we can show
that the multiplicity of G'" 1is also 3 by starting from the
simple weight A' , and so on for other weights in the layer.
Similarly we can classify the linearly independent graphs from
H to H'" as those having 3,2,1,0 horizontal lines, wiz.
HH'H"H'", HGH'H"H'", HGFG'H"H'", HGFAF'G"H'" . We conclude
that the mdtiplicity increases by one as we go from any layer
to the next one.

We can now calculate the dimension N(A,0) of the D(A\,0)

representation of the Lie algebra B We see from (3.5)

o
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that the highest weight is (Esg s 533 ) . As we move in
along the diagonal from the highest A to F' , each weight
is diminished by ( Jg ) 53 ) . This means that the origin
will be a weight for N even but not for A odd; in this
case there is an innermost layer of four weights. To calcul-
ate N(A,0) we must treat separately N odd and A even.

For M odd we have on proceeding outwards from the centre
of the diagram a succession of layers, the number of their
weights being

L, 12, 20, ... 4(A=2), u4:

with the respective multiplicities

A+l A=
- "_?"—, ceoa 2, 1 .

2 ?

The total number of weights is thus

Lt 4 2(0=2) + 3(A=h) + ...+ 7‘—“?’-1-.1}
At Al
z 2
= LI r(A-2r+2) = L(A+2)Z r -8 § 2
r=1 r=1 r=1

- % (+1)(\+2) (A+3) .

For N even the number of weights in the layers as we move
from the centre are
1, 8, 16, ... L(A=2), 4X

with the respective multiplicities



The total number of weights is therefore

o1+ b(0-2)2 + eee + L(A=20)(r41) + ol + ho2. % + 1(% +1)
LI
= 7—5-+1 + L ZiN + (A-2)r - 2r2}
r=0
= 7 (1) (h42) (h43)

as before. This is the total number of linearly independent

vectors in D(A,u) , and so

N(A,0) = 3 (M) (hs2)(h43) . (3.7)

3e. Multiplicities in the D(O,u) Diagrams.

E

. .D
crooctoc
B'" B" B' B

A" 1 A 110 AH A 1 A

Fig.3.k - Weights in a D(Ou) diagram of B, -
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We calculate multiplicities in the first quadrant for weights
shown in Fig.3.4.

A' We stert from A and see that in fact there is essentially

only one graph
— A . (3.8)

Indeed, since there is no weight vertfically below A ,

D (3.9)

It is easily verified that all other graphs reduce to (3.8).
If we start from B, C, ... , we shall find immediately that
B'y C', o.. are simple, so that the first layer consists of

simple weights.

A" We have two linearly independent graphs from A , viz.

. (3.10)

L]

We note that these contain 2 or 0 horizontal lines from A H
the case of one horizontel line is by (3.9) equivalent to the
first graph of (3.10). Likewise B", C","... are all double

weights.
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ﬁ'" The only linearly independent graphs from A are

and these are obtained by adding A"A'" +to (3.10). There are
only 3 or 1 horizontal lines from A . The multiplicity along

the layer A'"B'"C'" ... remains at 2 .

é"“ There are three linearly independent graphs from A , viz.

4

The multiplicity along the layer is 3. The increase by one comes
from the possibility of arriving diagonally at A"" from the
weight C on the boundary. The next increase arises when we go
horizontally two further weights from A .

The law of multiplicity is now clear. The boundary and
first layer consists of simple weights, the next two layers con-
sist of double weights, the next two of triple weights, and so on.
According to (3.5) the highest weight is (i% s O) and, as we
proceed horizontally in units of 5@ s Wwe shall have a weight
at the origin.

Let us calculate the dimension N(O,pu) of the D(O,u)
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representation of B The number of units of length in the

5+
side is 4u , so the number of weights on the boundary is Ly .,
Working in from the boundary we have for successive layers the
number of points where weights occur and their respective multi-
plicities as follows:
oy Wu=1) 0 w(u-2) , w(u-3) , eee b2, b1, A
(3.11)
1T, 1, 2, 2., .. .
We now distinguish between K odd and u even. For p odd,
(3.11) is
oy b(u=1) , u(u-2) , ... n.2, A 1
1, 1, 2, R e

2

and the total number of weights is

L(2n-1) + 4(2u=5)2 +... + u.s.Egl + 4.1.E§1 + &El

p-3

=2§"§'ﬁ+h§(2u—1—45)(5+1)
s=0
= % (b+1)(ue2)(2u43) . (3.12)

For u even, (3.11) is

oy bp=1) 0 b(u-2) , b(u=3) , e Be2 , L1, 1
1, 1, 2, 2, T T TS

and the total number of weights is

bof(2u=1) + (20-5)2 + ... + b1+ (Ba) .
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This has the value (3.12), so

N(Ou) = % (us1)(us2)(2u43) (3.13)

3f. Multiplicities in the D(:A,u) Diagrams.

We saw in section 3¢ that the weights on the boundary are
simple, and we now investigate multiplicities of weights within
an octagonal boundary. We shall first calculate the multi-
plicities of A',A",A'",A" in Fig.3.2 for the cases of differ-
ent numbers of weights along the bounding sides through the
highest weight. From these we shall later deduce the multi-
plicities of B',B", ... ; C',C", ... ; etc. . The multi-
plicities of many of the remaining weights can be found by a

Weyl reflection through the line m, = m

2 1°

A (i) B only present

This condition means that C, D, ... do not exist.
Starting from the simple weight A we certainly have 2

independent graphs

[\ . (3.14)
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It is immediately verified that all other graphs are linear com-

binations of these; for example, the path AFGF'A' has its

N -

graph

= +

where we have used the information that A and F are simple.

The multiplicity of A' is therefore 2 .

(1) C_ present
This condition means that C is present and that D, E, ...

may also be present.
It will be proved by reducing the new graphs to (3.14) that

there is no increase in multiplicity. For only C present,

N\

/
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AV NN

and the same method will be appliceble when D, E, ... exist.

We conoclude that the multiplicity of A' is 2 in all cases.

A" (1) B_only present

We oan add the path A'A" +to (3.14) and we can also travel

/\ (3.15)

It is clear that these are independent and we shall verify that

by the path ABA" , so that we have altogether

7

other graphs are combinations of them. Thus, for example,

-
- 7




]
i

—____—l\\\\\:’ —-————\\\\\\"
Ir
and the multiplicity is 3 .

(i1) ¢ Eresent :
In addition to (3.15) we have the transition ABCB'A" . Now

NN\
- I NCNNL

so that the new graph is not included in (3.15). Confining our

(3.16)

attention for the moment to graphs that do not go left of C we

check that they are linear combinations of

NN

(3.17)



For example,

N._-*’\—\-*_R-*/\

and, if G exists,

NN

~ N
NG I
NG

which by (3.16) is a linear combination of (3.17). We therefore

i
9

v

have four independent graphs (3.17), if and only if both C and
G are present. If G is not present, the linear combination

vanishes and there are only three independent graphs in (3.17).
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We note that, even when C is absent,

exists but is a linear combination of (3.17).

When we admit graphs that go to the left of C , including
those that go to D and E , we may reason as we did for A'
that there is no"increase in multiplicity. We conclude that,
when G is present, the multiplicity of A" is 4 and that it

is 3 otherwise.

A'" The graph theory follows the same pattern, so we shall
merely state the results and these can be verified without dif-

ficulty.

(i) B only present

The multiplicity is 3 and the three independent graphs are

those obtained by extending (3.15) to the point A'" , viz.

(3.18)

(1i) C only present

The graphs are now
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(3.19)

S—

The last graph is linearly independent of the first four end a

linear relation exists between these four, if and only if G does

not exist. Hence the multiplicity is 5, if G exists, and it is

G does not exist.

(iii) D_ present

There is now an edditionml graph

AT A

It may easily be proved that




At A D

= + linear combinations

of (3.19) .

A'" A

The presence of D will give an extra 'fnultiplicity 1, if and
only if H exists. The multiplicities of A'™ when D is
present are as follows:

multiplicity 4, if G is not present,

multiplicity 5, if G is present but H is not,

multiplicity 6, if H is present.

A (i) B only present

The multiplicity is 3, the three independent graphs being

I\

(3.20)
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(41) C _only present

There are six graphs, namely (3.20) and

(3.21)

There is one relation between them, when G does not exist.

Then the multiplicity is 5; otherwise it is 6 .

(iii) D only present

We can have at most eight independent graphs, viz. (3.20),

(3.21) and

| /



bl

If H is not present, the first of these two graphs does not
give an extra multiplicity. If moreover G does not exist,
the last graph does not give an extra multiplicity. Hence we
have

multiplicity 5, if G is not present,

multiplicity 7, if G is present but H is not,

multiplicity 8, if H is present!

(iv) E present
There is a new graph

E

Al' 1" A
which gives an extra multiplicity, if and only if I exists.

We therefore have

]

multiplicity 5, i is not present,

multiplicity 7, i is present but H is not,

Lo
tor RS 9

]

multiplicity 8, i is present but I 1is not,

multiplicity 9, if I 1is present.

We collect the results for the multiplicities of A, A',

A", A, A" and put them down for different numbers of weights
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on the slant side of Fig.3.2, assuming also that there are suf-
ficient weights on the vertical side tc give the maximum multi-

plicities.

B! B B

L]

.
L]
L[]
.
.

[
L]

L]

(e) (v)

. oE
oD' .D s o .D
. . oc . o ® -C
o . . -B o - - o .B
A A
& 6 4L 2 1 9 & L 2 1

(c) (a)

We enquire whether these results can be taken over for the
multiplicities in horizontal strings through B, C, ... . The
only difference is that now in going, for example, from C to
C' we can start in the slant direction CA , which was not

possible for the path from A to A' . It is easy to check
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that nothing new comes from this. Thus, if we start from C ,

The method employed for (a) above can therefore be applied to

the weights on the horizontal string next to the boundary for
any other case, and it will give the same multiplicities. Like-
wise the weights on the next horizontal string are as in (b)
above. If we take a weight diagrem where the slant side goes
as far as E and the vertical side goes at least as far as I ’
the weight multiplicities for points to the right of the vertical
line of symmetry will be as shown in Fig.3.5. If the last weight

on the slant side were D , we would omit the bottom row of

E

9 6 N 2 1A
Fig.3.5 - Multiplicities in a weight diagram that

has five weights on the slant side and at least five

weights on the vertical side.
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Pigo.3.5. We have the useful results that the multiplicities
on the first layer parallel to the horizontal boundary are 1,2,
3,3, «e. , that those on the next layer are 1,2,4,5,6, «os ,
and that the multiplicity is 2 for the layer next to the slant
side.

A line through E at right angles to the slant side passes
through D",CM",Brun grewn | AccordiﬁF to Fig.3.5 there is no
increase of multiplicity to the left of this line for the hor-
izontal strings through E and D . This constancy of multi-
plicity as one approaches the m, axis is in fact a general
feature of the weight diagrams. To illustrate this let us go
back to the case (b), where C is the last weight on the slant
side. The line through C perpendicular to the slant side
will pass through A"", which we have seen to be of multiplicity
6. If now we take a graph from A to A'"", it will be re-
ducible to (3.20) and (3.21) extended from A" to A'"" ; for

example
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The multiplicity therefore does not increase. Similarly, if

we take an example of a graph ending on A"""

A" nn

NN\

We just have (3.20) and (3.21) extended from A"" +to A""" ,

so again there is no increase in multiplicity.

Many of the multiplicities of weights on horizontal strings
through F,F,H etc. may be obtained by a reflection in the line
through the origin that makes an angle w/l with the positive
m, axes. Thus, if as in Fig.3.5 the slant side ends at

1 2
E , the multiplicity of F' being that of D" 1is 3, the mul-

m

tiplicity of F" being that of C'" is 5, the multiplicity of
F'M 3is 8, The multiplicities of the remaining weights can be
determined directly by the graphical method.

Since the multiplicities in a D(\,u) diagram depend so
much on the number of weights on the bounding sides, it is not
easy to state a simple comprehensive rule for the multiplicity

of an individual weight. The graphical method will therefore
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not provide the multiplicity N(A,u) of the representation.

However for future reference we note that

NOo) = 3 (M) e iss) . (3.22)
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CHAPTER IV

G2 WEIGHT DIAGRAMS

La. Irreducible Representations of G2 .
To find the irreducible representations we calculate the

dominant weights. If any weight H is given by
]

¥ o= Me, +Me, (4.1)

and we take r(a) to be the r(1), r(2), ... r(-6) of Fig.1.3,

we find for

2(M . r(a))
Se——
| ()]

the respective values

41/3M1, 2 V3M, + 2M,, 2 ~f3M1 + 6M,, LM, (.2)
-2w/'3M1 +6M2,-21/3M1 + 2M, ,

and the negatives of these. We find for the Weyl reflections

of M the respective values

1, Y3 V3 1
- M, + Mg, , (-2 -FM)ey + (- F M, 4z Hye,

i, '\/-5 '\/—2 I
(- 20, -2 My)ey + (-2 My -2y, , Mpey-Mpe,
(4.3)

(zm, *’lféé Myle, + (1/'22 M, -2M))e,

(- %M1 +‘—£2 My)e, + (‘£22 M, + %Mz)gz
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repeated once. From theorem 4 of section 1b and (A.Z) we
deduce that

4{3 M1 =Tq L'MZ =Ty s (ll-ol&)
where

1
T1ﬂ2,§(’r1 —12) = 0’:1 9'_’:2, ceas o

For M +to be a dominant weight we have from (L.1) and (4.3)

that ‘ i
M1 2 - M1 , 8o M1 2 0, Ty 2 0

M, > V3 My s so T, 3 X,

and thus

'1:1 - 312 = T1 ""\72 - 212 = 2N . ()\-30,1,2 con)

We also write

Ty = H (930:1’2’ cee )

and then by (4.1) and (L..4)

2N +
L V3 21*%22
1

Ml 0 +n@2, D .

X

The fundamental dominant weights are therefore
1 aoa
('2_7_ s 0) ’ (}+ s 7

For each zero or positive integral value of A and of u
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we have an irreducible representation D(A,u) with highest

welght

(Bt by (125)

Lb. G2 Weight Diagrams near the Highest Weight .

The extremities of the roott vectors in Fig.1.3 are
points in a lattice formed by equilateral triangles. Since
neighbouring weights in a diagram are separated from each
other by root vectors, the weights also constitute such a
lattice. The regular representation is D(14)(o,1) ,
its diagram having weights at the ends of the root vectors
and at the origin, which is a double weight. The boundary
of the diagram may be viewed in two ways, viz. as a concave
twelve-sided polygon determined by the extremities of the
twelve root vectors or as the regular hexagon determined by
the extremities of r(2),r(4),r(6),r(-2),r(-4),r(-6) .

We examine the shape of the weight diagrams for any
irreducible representation in the neighbourhood of the
highest weight. If M 1is the highest weight, the follow-

ing weights do not exist:



=

+ 2('5) ’

=

+ £("6) ’

=

+ r(1)
(46)
¥+x(2), ¥+ rx(3), M+ oy .

We draw in Fig.L.1 lines from M in the directions of

r(1),x(2), ... r(~6), the lines being full for the

-1

Fig.4+1 - Lines from the highest weight

in the directions of the root vectors.

directions corresponding to (4.6) and hatched for the directions
in which weights may exist. We indicate by a at the end of
a line that it is in the direction of E(a) . We then study
separately the possibility of each hatched line being a boundary

of the weight diagram.

1) x(5) & boundary line
The highest weight is simple and, if v is the weight vector,

E% Eb vV = Eb E% v + N&B EL+B v,
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where NaB is non-zero, if and only if -E(Q) + E(B) is
a root vector. When the line 5 is a boundary, Ehv =0
and hence

EA EB v = NLB E4+B v .

(4.7)
Fige1+.3 shows that, if we limit our attention to the hatched
lines, Ng £0 for B =-2 and B = -3 only, and that in
these cases the respective values of rl4) + r(B) are r(6)
and 5(5) . Now, since 5 is a boundary, Esv does not
vanish and putting B = -3 in (4.7) we see that E-BV

does not vanish and therefore that the line -3 is not
outside the diagram. We conclude that the other line
through the highest weight that constitutes a boundary is
either =3 or -4 .

When the lines through M on the boundary are 5 and

_3’

and therefore
1
0 = [ELI_,E_LI_]V = r, (%) Hyv + r2(l+) Hyv = 2 Myv,

from Fig.1.3. The highest weight lies on the m, axis and
putting M2 equal to zero in (4.5) we find that p is zero
and that consequently we are in a D(A,0) representation.
When the lines 5 and -4 pass through M , there is no

special relation between M1 and M2 and the representation

is & DO&;L) .



1) r(6) s boundary line

Esv now vanishes. We obtain a hatched line by com-
bining 5(5) with E(-1), 5(-}) and E(-h,) only. Reasoning
as above we deduce that the second line through M is 3(-&.)
and that the highest weight belongs to a D(O,r) representa-

tion.

111) r(-1) g boundery line

Under this assumption the lines 5 and 6 would be outside
and, since =5 and -6 have to be outside anyway, it will be

deduced that M = O . The representation is D(0,0) .

iv) r(-2) g boundary line
It is found that this possibility does not in fact exist.

v) r(-3) a boundary line
This can occur only in conjunction with 5 as a boundary

line, as we discussed above.

Le. Boundaries of G, Weight Diagrams

2

The weight diagrams are invariant for Weyl reflections in

lines through the origin perpendicular to the root vectors.
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For the G2 algebra these are just the root veoctors themselves.
In particular the diagrams are invariant for reflections in the
m,, m, axes. Since a reflection in £(1) followed by a re-
flection in r(2) 4is equivalent to a rotation asbout the origin
through an angle 7—; s the diagrams are invariant under this
rotation and it will suffice to examine properties of weight
diagrams in the sector enclosed by the lines r(1) and r(3) .

i

i) D(A,0) boundary

The highest weight is (Wk—-, 0) on the m, axis. The

1
lines through it are r(5) and £(—3) » which enclose an angle

2 . On account of the invariance under the rotation through

3
% » the boundary is a regular hexagon symmetrically placed with

respect to the axes and having two horizontal sides.

ii) D(O,u) boundary

The highest weight, marked A in Figeha2, is (il.? TR %p) .
The angle between AB and AF is -2323 s SO an examination of
AF will give a description of the whole boundary. There ex-
ists a weight at F (‘% TEn --:-;p) and, since there are no gaps
in a string of weights, we have weights all along AF spaced
at a distance z, which is the length of r(k) . The reflec-
tion of F in OA will bring us to the point B on the m,

axis and continuing by rotations through the angle 7-;- we obtain

the regular hexagon ABCDEF .
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Fig.4.2 - The boundary of the
D(O,u) diagram of G, -

As was mentioned at the beginning of section 4b, there is
another way of looking at the shape of the boundary. Since
neighbouring weights in the diagram differ only by the root
vectors, there will be for A, 8ys Bpy eoe B weights 84> 8o
... at a distance r(-1) and r(-5) away. We could thus
regard A 8y 8y By 8y ee. 88 the boundary. This will be the

boundary of a concave polygon of 12u sides.

ii1) DM ,u) boundary

The highest weight, marked Q in Fig.4.3 1s according

to (4.5)



P

Fig.4.3 - The boundary of the D(A,p) diagram
of G2 near the highest weight.

@ t).

There will be a weight at the point P with coordinates

Bz, -t

Thq;g are u units of 7 in PQ and each of these gives rise
to an indentation as for the D(0,p) representation.

The angle between PQ and QR is %', so the side follow-
ing QR will be obtained by rotating PQ through the angle ’% .
By rotating the point P we find that the coordinates of R are

()\-'l- '}\--O-E).
LY3 ? 4
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The difference in the m, coordinates of Q and R is 2;53

and the projection of r(5) on the m, axis is Zj%r- s S0

there are A units in QR . By rotating PQ and QR six

times we obtain a dodecagon with alternate sides of lengths

5933 and % . As in the case of the D(O,u ) representation,
we may say that the side PQ eand those obtained from it by rot-
ations are inden?ed. If we take the ipdentations as part of the
boundary, we have a ooncave polygon with a total of 6 + 12u

sides.

Ld. Multiplicities on the Boundaries of G2 Diagrams

The discussion of the multiplicities of weights on the
hexagonal boundary of a D(A,0) diagram is similar to thet
carried out in section 2¢ for the hexagonal boundary of a
D(A,u) diagram of A,. The weights on the boundery are
therefore simple.

We next examine whether the welghts on all boundaries are
simple, provided that for the D(O,pn) and D(A,pn) represent-
ations we take the boundary to be convex. To prove that they
are simple it will be sufficient to establish this property
for the weights By 8oy ees of the side AB in Fig.4.2;
the same method of proof will obtain for the side PQ of Fig.

L.3. The highest weight A is simple. If we proceed from
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A to a, directly, we have the graph

I

and, 1f we go along A g @

1

g s Ve have

N

On referring to (1.15) and Fig.1.3 we see that

TN NN

I+ may be verified that more roundabout paths may be reduced to

A 8, » €.

PN SENEPE N

and a,

applied to show that the multipliecities of 859 a3 etc. are one,

is therefore a simple weight. The same method may be

and it is applicable also to the weights on sides that are not
indented. The weights on the convex boundaries are therefore
simple.

We now examine what are the multiplicities at points on a
concave boundary where the internal angle is reflex. We return

to Fig.4.2 for the D(0,p) representation and considering the
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welght g, We see that we may travel to it by

N
AN

Now

+ \ (408)

and the last greph is zero when we start from A . The multi-
plicity of &, is therefore one. If we start from &y in
order to find the multipliecity of 8y » the last graph of (4.8)
no longer vanishes. Then the graphs (4.7) are independent, and
the multiplicity of &y is 2. This is so for successive g's
until the last one, whose weight by symmetry is simple. This
method is applicable also to Fig.h.} and shows that in fact

the multiplicity is always 2 for the indentations of the D(A.u)

boundary.

Le. Multiplicities inside the Boundaries of G, Diagrams .

2

Fige Lolt shows weights near the highest weight A of a
D(A,n) diegram. If F,G,H, sare deleted the representation
will be D(A,0) . We have just found that the multiplicity

of both I and H is 2, so we turn our attention to J,K,L .
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E
¥ +D
. .C
L
. .B
K
. LA
J
I.
i . F
H.
.G

Fig.loh ~ Weights ina D(A,pn)
diagram of G2 3
On account of the symmetries of weight diagrams it may not be

necessary to calculate many multiplicities in a specific weight

diagram.

J Starting from A we have, if C 1is present, three graphs

/N

The first two are linearly independent because I exists. If
H 1s not in the diagram, there is a linear relation between
the three graphs. Hence the multiplicity of J is 2 for D(7,0)

and 3 for D(A,pn) .
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.§ There are four graphs

\_\/\\I\\

and for D(A,0) a linear relation exists between the first
three. Thus the multiplicity of K is 3 for D(A,0) and 4

for D(A,u) .

L It is easily seen that the multiplicity of L 1is 3 for

D(7A,0) and 4 for D(A,u) .

We have assumed throughout that we have not gone so far
along the string as to encounter a reduction of multiplicity
by a reflection symmetry. Multiplicities for other weights
may be readily found by the graphical method. Even for the
D(A,0) representation the multiplicities are not constant
along the layer J,K,L, «o. It is therefore not easy to
make general statements about weight multiplicities inside the
boundery or to use the graphical method to calculate the dim-
ension N(A,p) of the D(?u,u) representation of G2 . For

completeness we note that
Nw) = (1eM e [1+30e)]l1+300020) 1 (19)

X [1+1Z(x+3u) ][1+-15(27~+ 3p)l.
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CHAPTER V

REDUCTION OF THE GENERAL LINEAR GROUP UNDER

SUBGROUPS WITH LIE ALGEBRAS A,, B,, G, -

5a. Standard Results for Homogeneous Integral Representations.
There is a yell~known procedure fpr constructing homogeneous
integral representations of GL(n,d) , the general linear group
in n dimensions over the complex field (Boerner 1963, Chapter V).
To construct an rth rank tensor one makes a partition [X1,X2, .

kp] such that

)\1+)\2+..-+)\p=r, x1>)\2> noo?)\p-

We call a set of empty boxes with successive rows containing

k1,12, oo KP boxes a Young diagram. One puts into each box

an integer from 1 to n in such a way that in any row the inte-

gers are non-decreasing from left to right and in any column they
are increasing downwards. We call a Young diagram with integers

in its boxes a Young tableau and, if the integers are filled in

as just described, we call it a standard Young tableau, or more

briefly, a standard tableau. We depict a standard tableau in
Fige5.1. Corresponding to this we write P for the product

of permutations of all the elements of each row, viz.
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Y 8, . . . 8
1
&\ 4+ &\ 4+2 . . &\ 1P
Bran +1 ° y &r
P

. i
Fig.5.1 - A standard Young tableau.

P = {14+ (a.,le.z) + (a,'a;) 4 e + (a1a29.3) + ene

+ (3132)(3331+) + ooo + (848, oo %1)}
(5.1)

x {1+ (a.)\1+1a.}\1+2) 4 oeee + (ta.)\“-._1 .ee a)‘1'n‘2)}
X eee X {1 4 eee + (ar_)\ IRTY a.r)} .

We write Q for the product of permutations of all the elements
of each column with a coefficient 1 (~1) for each even (odd)

permutation, viz.

e = {1~ (3157\1+1) R W )}
P (5.2)

x {1~ (aza.h1+2) ces * (aza)‘1+2 cee )} X ...

Starting with a given tensor component Ta = a T construct
1 2... r
QPTa a a ° It may then be proved that these new tensor
472°°° "

components for all different allowed values of B s8py coe 8

constitute a basis of an irreducible representation of GL(n,d.).
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It follows that the degree N of this representation is the
number of standard tableaux that can be constructed for the given
Young diagram, that is, for the given partition [X1,X2, cee Xp] .
The theory of group characters gives (Boernmer 1963, p.187)

N 1 ’ 2 ? - 9
Nl_)\1 ’)\2’ ees )\ ] = L 1 = (5'3)

p V(n-1, n"2, L N} 1, 0)

where

. i
v(u, sUny eee u_) = n(u -u,)
1272 n 1< i J

and we identify ’As with zero for s>p. To different Young
diagrams there correspond inequivalent irreducible representa-
tions.

The tensor component Ta1a2 e 8 may be expressible as

a product of the basis vectors in the n-dimensional space, i.e.

T = x(1) x(z) x(r) (5.4)
8,8, ees 8 a a, " "a_, ° ‘
172 T 1 2 T
Then QPTa is a homogeneous polynomial of degree r

8- L N ) a
172 T
in the x's. We shall write this polynomial as a bracket placed

round the entries in the tableau:

8.1 32 see a.)\1
by g 42 °° Ba
1 1 12
prg)xgz) xgr) = . . . (5.5)
r
ar_k' +1 e ee ar A L ]
- P

As we shall explain later, it may be possible to associate the
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x(i)'s with the boxes of the Young diagram in different ways.

If the transformations of the x's are

n
1
1=1
the general rth rank tensor Ta a a will have a transform-
172°**"r

ation matrix Likewise in the case of

8311133212 se sjrlr )
the irreducible representation corresponding to a given Young
diagram the eleménts of the transformgtion matrix will be homo-
geneous polynomials of degree r in the sjili « We say that
the representation is a homogeneous integral representation;

if the polynomials were not homogeneous, the representation would
just be an integral representation. If we take a subgroup T(n)
of GL(n, ) , the set of s's is restricted and as a result
the homogeneous integral representation may reduce. Then by
changing the basis, if necessary, a block of the original trans-
formation matrix may now consist of zeros only. If we can prove
that a block of zeros arising from T(n) implies that the same
block will consist of zeros for GL(n,Z) , we may deduce that
the irreducible homogeneous integral representations of 6L(n, @)
will remain irreducible under T(n) .

Let us show that the irreducible homogeneous integral repre-
sentations of GL(n, @) remain irreducible under SL(n, ) .
For the latter group (5.6) is replaced uy
n

x! = o
J 1= Jlxl ’



where

o’ . = _j-]-—-
i1 YWaet s

A homogeneous polynomial of degree r in s is (det s)r/n
times the same polynomial in ¢ . Henoce, if the latter van-
jshes, so does the former. Thus a block of zeros for SL(n, @)
gives a block of zeros for GL(n, @) , and this establishes the
theorem. In particular any irreduciblb homogeneous integral
representation of GL(3, ) remains irreducible under sL(3,¢) ,
that is, under the group whose Lie algebra is A2 .

Associated with any linear transformation A(t) , which
belongs to a subgroup of GL(n, C) and depends on a real para-
meter t 1in such a way that A(o) 4is the identity I , there

is a Iie algebra with an element O defined by

dAgt!
0 = d.t °
£=0

An infinitesimsl linear transformation A(e) is I + €0. The
representation space of the O's is the same as the representa-
tion space of the linear transformations A The transforma-
tions A satisfy the condition det A #£0 , which is not necess-
arily satisfied by O . This point, however, is not a signif-
jcant one in the above discussion of irreducible representations
and Young tableaux. Thus the tensor components of (5.5) corres-
ponding to standard tablesux are a basis for an irreducible re-
presentation of the Lie algebra of GL(n, ¢) , which we shall

denote by gl(n,(E) , +the dimension of the representation being
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given by (5.3).

Suppose that the representation space of the group of linear
transformations A 1is a known direct sum of irreducible subspaces.
When A acts in one of these subspaces, O will act in the same
subspace. Hence the reduction into irreducible representations
of the group leads to the same reduction of the Lie algebra into

irreducible representations of the alge?ra.
We may go ffém a Lie algebra to a Lie group of linear trans-
formations by making an exponential map. Thus given O we can

define A(t) by

2
At) = o0 = 44404 DT L.

- - 2! ’

The representation space of the A's will be the representation
space of the O0's . On exponentiating in this way the reduction
into irreducible representations of the Lie algebra will leed to
the reduction into irreducible representations with the same dim-
ensions of the Lie group. Thus to examine the reduction into
irreducible representations of a group or its Lie algebra, we may
perform the calculations for either and take the results over to
the other. The reduction of the group may be performed by using
the theory of group characters, the reduction of the algebra by
the method of weight diagrams. Since the latter is a more ele-
mentary way, we shall employ it exclusively except in Chapter

VIII, where the two methods will be combined.
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5b. Young Tableaux with Two or Three Entries.

In many applications to physics one is interested in tensors
of rank 2 or 3 . Since the theorems quoted in the previous sec-
tion presuppose quite a good knowledge of representation theory
and of the theory of group characters, it is worthwhile to give
an alternative more elementary deriva?ion of some of the results.
We restrict our investigations to infinitesimal transformations
(McConnell 1969).

We shall first deal with bilinear expressions. Let x,
be a basis vector for n-dimensionml vector space and let O be
an infinitesimal operator in this space; in other words, let

1 + €0 be an infinitesimal transformation. Then we may write

Oxa = z]:_)\alx__l. . (5.7)

We consider the product of itwo basis vectors x, and Ty » To
the box representing x, We can add the box representing Yy

either on the same horizontal line or in the same vertical line

al|b a
b
For the partition 2] when a is equal to 1 , b can have

the values 1,2, ... n ; when a is equal to 2, b can have
the values 2,3, ... n , and so on. The dimension of the

representation, which is the total number of tensor components,
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is thus
n§n+1 2

n + (n~=1) + ... +1 = 9 .

For the partition [12] b >a , so the dimension of the repre-

sentation is

n"1+(n-2)+.oo+1 = M

2 *
. i
It may be checked that these figures agree with (5.3). The

QP-operator for (2] is 1 + (ab) and for [12] is 1 - (ab).
The tensor components are therefore, respectively, the symmetric

functions

XV, * %Y, (a € )
and the antisymmetric functions
XYy = %Y, - (a < D)

When 1 + €0 acts on Xy, s We obtain

1+ eo)xayB (xa + era)(yB + eOyb)
= Xy * era.yb + xa.GOyb + sos o

Hence the infinitesimal operator acts in the product space of

x, and ¥y according to the rule

o(x,y,) = (0x )y, + %,(05,) (5.8)

and so
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O(x,y, + Xpy,) = Fi"al"‘r"’b *’i x M1

* El M1*¥Ya _tfi XM o

that is
o(x y2xy,) = 2 My emyy) 21 A (2 2xy,) o (5:9)

Thus when O acts on Xy, * XV, » ::.t produces a linear com-

bination of functions with the same symmetry. In the notation

of (5.5)
xza.yb*'xbya = lanl, xa‘yb"xbya =[b]’
(1) (2)

with y . Then we

if we identify x with x and x

see from (5.9) that

Ola b] = ;ixalu b] + 2 xbl[a 1] (5.10)
1
a 1 a ( )
0 = 2 A +2Z A - 5.11
b 1 2w 1 °11y

It may happen in (5.10) that 1 > b , whereas for the standard
tableaux we have agreed to take only 1<b. We can, however,
replace [1bJ by [b1l] . Similerly if 1>%b in (5.11) ,

we can write [%J as - [‘;’_] , so that in fact 0[%} is
expressible as a linear combination of brackets corresponding to
standard tableaux. It will be convenient to retain the defin-
ition (5.5) also for sequences a,s8,s =+ 2, that do not give

a standard tableau.
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The construction of the above sums of products of X, and ¥y

may be expressed as

X |a
alb| @ .
y Ib

al @ |b
x y X y
We have put x and y at the sides of the boxes to indicate the

variables to which the a, b are suffixes. To extend to the
i

case of trilinear products we write

X
® ® = ® v D
x y z Xy z
x y X z X
= ® @ ® 7 . (5.12)
zZ y 2

X y =z
The functions corresponding to the partition (3] are totally
symnetric in the products X, Yy % The number of functions

may be found without recourse to (5.3) as follows: If in

we first put a=b =1, we can have ¢ =1,2, ... n giving

n functions. If weput a=1,b=20ra=>b=2 we can have

¢ =2,3, «oo n and therefore 2(n-1) functions. If we put

a=1,b=30ora=2,b=30ra=5b=3, we can have ¢ = 3, L,
eeo n and therefore 3(n-2) functions. Thus the number of

totally symmetric functions is N[3] , where



-90-

1.n + 2(n-1) + 3(n=2) + ¢oo + no1

n
% a(nel-a) = g&rﬁ%ﬁez&l .

a=1

N(3]

Similarly the number of totally antisymmetric functions 1is

N[13] , where

N[15] = 1+ (142) + (14243) + oou + (14243+ .00 + n-2)

_ n};-z, a(a+1) _ n(n-1)(n-2
a=1 2

To find the number N(2, 1] of functions of mixed symmetry we

note that (5.12) gives
no = N[3) + 2N[2,1] + N[13] ,

from which it follows that

We must examine whether each set of functions related to

the diagrams

(5.13)

of (5.12) is a basis of an irreducible representation. From
(5.8) we deduce that the effect of operating with 0 on X ¥y, 2,

is given by
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O(xaybzc) = (Oxa)ybzc + xa(Oyb)zc + xayb(OZG) .

Hence for the first diagram of (5.13)

OPX_¥, 2, 0% xy 2, = 2{(Oxa)ybzc + xa(Oyb)zc + xayb(OZC)}

PO X VpZe s

so that O and ”P commute. By writing Q X Y%, @s

i+ X Y2, We see that the O commutes with Q . These re-
sults may be extended to P defined in (5.1), Q defined in
(5.2) and T defined in (5.4), since the factors in (5.1) commute
among themselves and the factors in (5.2) commute among them-

selves. Hence for all QPT given by (5.4) and (5.5)
o(QeT) = gp(oT) .

Now OT 4is the sum

Ox(1).x(2) eese x(r) + x(1).0x(2)
e, e, a. 8y a,

eee x(r) + ees + x(1)x(2) eee O
a. &) “a,

and O(QPT) is therefore the sum of r brackets obtained from

QPT by replacing each x successively by Ox . According to

(5.7) this is in turn a sum of brackets with the same structure.
We conclude that, when an infinitesimal linear transformation is
made on a bracket corresponding to a given partition, we obtain

a linear combination of brackets corresponding to the same part-
ition. By iterating we can establish the same result for a

finite transformation.

X

a

r

(r)
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The brackets that so arise may not all correspond to stand-
ard tableaux and we would next have to show that such brackets
are linear combinations of brackets corresponding to standard
tableaux. This is obviously true, when the tableau consists
of a single row or a single column. We shall now examine whether
it is true for a (2, 1] partition.

We can without loss of generality egamine the problem by
taking the cases of tableaux with entries 1,2,3. The allowed
tableaux have the following essentially different entries

1 1 1 2 1 2 1 3
(5.14)
2 2 3 2

illustrating for i b the general cases
a = b<ec, a<b = ¢, a<b<ec, a<c<b,

respectively. The forbidden tableaux are those with the entries
2 1 2 2 2 1 2 3 3 1 3 2
(5.15)
1 1 3 1 2 1

illustrating respectively, the general cases

a>b =c, a=b>c, c>a>hb, c<a<hb, a>c>h,
a>b>c¢c.
It will suffice to show that the brackets corresponding to (5.15)
are linear combinations of those related to (5.14). For the

second diagram of (5.13) we have by definition
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(1 = (ae))(1 + (ab))x ¥, 2,

|
o ®
o
—
u

(1 = (ae))(xFy 2, *+ X,¥,2,)

and therefore
a t:]
c
. ]
On substituting the values of a,b,c into this we find that
2 17 SEER 2 2 1 2
1 2 1 1 = 712
(2 17 1 2] 1 3]
3 52 R

*Tp%e * %pYa%e T *via T FoVc%a ¢ (5.16)

(5.17)

LI 1
- W
N
J
1}
!
| a—
W =
N
| I
*

This shows that the brackets with the entries (5.15) are linear
combinations of those with the entries (5.14). These latter
brackets are linearly independent, as we see from (5.16), so
they constitute a basis of a representation of GL(n, @) .

What we have established for the partition (2, 1] end

X,y,2 associated as in

Xy

(5.18)
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and hold equally well for

X 2z

(5.19)

y

What is not evident is whether the brackets for one assignment
of x,y,z are linear combinations of those for the other.

The bracket [2 b] for (5.19) has from (p.16) the value
xazbyc * xbzayc - xczbya - xbzcya
= X% * BYe%a T XYa® T T¥a’e (5.20)

and we must examine whether this can be expressed as a linear
combination of those for (5.18). On including non-standard
tableaux, as we may, there are at most six combinations of
a,b,c, viz.,

a b a c¢ b ¢ b a c a ¢ b

b a c b a
Some of these will vanish when two of the entries are equal.
Inspecting (5.17) we see that for a,b,c all different there

are only two linearly independent ones which we shall take to
be [Z’b] and [s c] s, namely,

¥aTb%c ¥ Xp¥a%c ~ X IpZa T XVela

and
X Ve% * X Ya%p T ®pYeZ%a T XIbZa

It is obvious that (5.20) is not a linear combination of these
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and we can conclude that (5.18) and (5.19) provide two linearly
independent bases for representations of 6L(n, €) . Further-
more we may easily check that we get no other independent basis
by putting a y or a 2z at the first box of the first row.

We therefore have two, and cnly two, independent representations

for the [2, 1] partition.

5c. Young Tableaux and Weight Diagrams.

The group GL(n, C) is the set of all non-singular nxn
mgtrices. If we denote by I + % eA OA an infinitesimal trans-
formation of the group, the infinﬁtesimal generators OA are
elements of the Lie algebra denoted in section 5a by gl(n, ) .
Moreover the infinitesimal generators of any subgroup of 6L(n, € )
constitute a Lie algebra. In previous sections we considered such
algebras for n = 3,4,5,7, namely, A2,C2,B2,G2, respectively.

Suppose that & basis vector with weight E(a) for an irre-

ducible representation of one of the algebras A2,B2,G2 is de-

noted by x_  or y_ . Then according to (5.8)

H; (x5, (Hyx, )y + %, (Hyw)

(5.21)

(m; (&) + m; (b))x ¥, »
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so the weight of x Yy, is the vector sum of the weights of

X, and Yy - More generally, the weight of a continued product

X§1) x(z) PP x(r)
1 & &r
is the vector sum of the individual weights of the xgl)'s .

i
On performing the QP operation as in (5.5) this sum is unal-

tered, and the weight of the tensor component represented by
1

“ r

the bracket is just the sum £ E(at) . Thus the weights of
t=1

all tensor components corresponding to Young tableaux with the

same entries in different sequences are equal. This is true

for all partitions; thus we have equal weights for

[13345], [133 133 130
R L R :
5 5

We pointed out in section 5a that given a Young diagram
with r boxes, or alternatively given any partition of r ,
we have a corresponding irreducible representation of GL(n, Q)
and that a basis for this is provided by the bracket symbols of
(5.5) that are related to all the standard tableaux that can be
constructed for the diagram. Moreover we pointed out that
this is equally applicable to gl(n, @) . Indeed the only
essential difference between GL(n, €) and gl(n, d) consists

in the rule of transformation of the product; namely,
S(Xa yb) = (Sxa)(syb)

for GL(n, {) becomes
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o (xy,) = (0x)y +x/(0y)

for gl(n, @) . The algebra gl(n, d) is the algebra of all
nxn matrices, singular or not. The dimension of an irreduc-
ible representation of the algebra corresponding to the symmetry
specified by a Young diagram is given by (5.3).

The result (5.21) gives a convenient way of reducing the
direct product of irreducible represent;tions of A2,B2,G2 into
irreducible representations. Consider, for example, the weight

NP

diagram for the 0) representation of B, and associate

x1,x2,x3,xh with the weights in descending order as in Fig.5.2.

x3. ) X1
i
26

X, X,

Fig.5.2 - The basis vectors for the D(h)(1, 0)

representation of B2 .

The weights for the product representation D(h)(1, 0) ® D(u)(1, 0)
will be the sixteen vector sums of all combinations of the

weights of Xy 9X59%X35%) and will therefore appear with the
multiplicities shown in Fig.5.3. According to (3.5) and (3.7)

10
the highest weight in this figure cen only belong to D( )(2, 0).




1 2 1
2 b 2
1 2 1

Fige5.3 - Weight multiplicities for the product
reoresentation D(“)(1,o) ® D(“)(1,o) of B, -

When the weights of this representation are removed from those
of Fig.5.3, we are left with the weightd of D(5)(o,1) and

D(1)(0,0) , and thus

(1,0 ® p¥)(1,00 = p{19(2,0) @ 25,1 @ p{1(0,0) .
(5.22)
This reduction brings out another point. The highest weight
cen belong only to the tensor component XV, s which apart from
the factor 2 is just .1 1] . According to the discussion of the
last section all the basis vectors of D(1O)(2,O) are therefore
symmetric bilinear forms. Now we see from (5.3) that the dimen-

sion of the irreducible representation of gl(k, @) correspond-

ing to the Young diagram is 10. Hence this repre-

sentation of gl(4, d) does not reduce under the subalgebra C2 .

Since the only other Young diagram with two boxes is

all the remaining weights must belong to antisymmetric

bilinear forms. However we know from equation (3.5) that the
highest weight (;&;, 0) belongs to the irreducible representa-

tion D(0,1) of B, or C which by (3.13) is five-dimensional.

2 ’

This means in fact that at the centre of the diagram only one

linear combination of [1:) s [%] belong to D(B)(O,‘I) .
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The other linear combination can belong only to D(1)(O,O) .

Hence the six-dimensional irreducible representation of gl(u, ¢)

related to the diagram reduces under 02 into

25 0,1) @ 1(")(0,0) .

We define the basic representation of A2,B2,G2 to be

the irreducible representation of lower brder that has a funda-
mental dominant weight as its highest weight. We shall see
immediately that it is the one from which the irreducible re-
presentation with the other fundamental dominant weight for
highest weight may be obtained in the reduction of the direct
product of the basic representation by itself. For A, the
basic representation may be taken as either D(j)(1,0) or
D(z)(1,0) , and on using weight diagrams as explained above

we see that

0,1 & 31,00 = 03 0,1) @ 82,00  (5.23)

2D0,1) ® 00,1 = 2P1,00 @ 20,2) .

For B, it is D(“)(ﬁ,o) and as we see from (5.22) that
> (1,0) ® p™)(1,0) contain d{3(0,1) . For 6, it
is D(7)(1,O) and on referring to the weight diagrams of section

Lf we see without difficulty that
1,00 ® 21,00 = 10,00 @ 27(1,0) @

D(“*)(on) & D(27)(2,0) .
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By taking direct products of basic representations we can obtain
any representation, including the one—-dimensional D(1)(0,0) .
The latter point has been established for B2 and G2 , and for

A we have on further displacing the weights of (5.23)

2

D(B)(1,O) ® D(3)(1,o) ® D(3)(1,o)
0,00 @ 28,1 @ 2,1 @ 27,0 .

We note that in a basic representation all weights are
simple. If working in such a representation we operate with

an E  on a basis vector X, with weight m(a) , we obtain

Ea Xg T Xa X 0

where for non-vanishing ka the vector X, corresponds to a

simple weight m(a) + r(a) . We have, of course,

H, x, = mi(a) X, .

Hence for any operator O of the algebra

a a
where A is a scalar multiple that may be zero, a' =a for
O=H, and the weights m(a), m(a') are both simple.

In the following chapters we shall relate in greater detail
Young tableaux and weight diagrams for the different semi-simple

Lie algebras of rank 2 .
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CHAPTER VI

YOUNG TABLEAUX AND WEIGHT DIAGRAMS

FOR g1(5,C) AND B,

ba. Highest Weights and Young Tableaux.

We put down in Fig.6.1 the weight ddagram for the D(5)(0,1)
representation of B2 . We assign to the weights the basis
vectors x1,x2,x3,x4,x5 in such a way that their weights are

in descending sequence. Referring to Fig.1.2 we may see the

m

2
L X
V6 172
35 *3 3 m,
1
V6
'x
A

Fige6.1 - The weight diagram for the
D(5)(O,1) representation of B2 .
effect of operating with an Ea on an X, . Thus E1,E2,E3

operating on x5 will produce x3,x2,0, respectively, apart

from a multiplying numerical factor.
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We may teke X,,X,,X5yX) ,X; 88 & basis for gl1(5, @) .
Young diagrams will have at most five rows and (5.3) will be-

come

v(: 4 FINR Y 2+3 Y 3+2 S )-k+1 ,12)

N[A, A A
i 3t 20 1!

3’7‘z+’7‘5] =
(6.1)
For a given standard tableau we can conftruot tensor components
as in (5.5). The tensor component with the highest weight is
that in which there are the maximum number of 1's, then the

maximum number of 2's ete., viz.

P1 1 1 e 1 1 ]

2 2 coe 2

3 3 .. 3 .
L oo b

5 eee 5

According to section 5S¢ the weight of thi: is
Am(1) + Am(2) + 2,m(3) + A, mu) + Aaa(s) .
Fig.6.1 shows that this equals
713 R N K (6.2)

In the reduction of gl(5, @) wunder its subalgebra B,
the weight (6.2) will be the highest weigh% of an irreducible
representation of B2 . According to section 3b the boundary

of the weight diagram for this representation will be a square
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with vertices on the axes when kz - kh = 0 , which implies

)\.2 = XB = )\)+ ° (603)

We shall denote such a boundary by O , and we shall denote

by [ the square boundary of a weight diagram when the sides
are parallel to the axes. Returning again to section 3b we

see that (6.2) is the highest weight of gn irreducible represent-

ation of B2 with a weight diagram having a [J boundary, if

This implies

and therefore

M=y N, =g (6.4)

If both (6.3) and (6.4) are satisfied, that is to say, if

Ay =h, =Ry = IR (6.5)

the representation must be D(1)(O,O) . In all other cases
the boundary of the irreducible representation of B2 with
(6.2) as highest weight is octagonal. It should be remembered
that some of the A's in the partition may vanish.

When (6.2) is the highest weight of a representation of
B. with boundary [J , it is impossible for the weight of

2
any vector of the representation of gl(5, d) corresponding
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. 2 2
to the partition [X1 ,'}\3,)\1F ], that is [X1’l1’K3’XAJXL] ’
to be outside the square. Indeed, if a weight were at the

point P 4in Fig. 6.2, another weight would be at Q by re-

P

Fig.6.2 - Boundery of a B, diagram
with weights outside.

flection. This is excluded, since Q would then be higher
than the highest weight R . The impossibility of having a

weight outside a <> or an octagonal boundary is not evident.

6b. Irreducible Representations of gl(5, ) associated

with a D(O,n) Boundary.

The Young diagrams that obey (6.3) have highest weight

and this corresponds to the tensor component

1
Tg ()‘1 - X5,O)



o ] ‘
2 2 ... 2 |
3 3 .. 3 . (6.6) '
T |
5  5...5 i l

Since this is the only tensor component for the partition

. !
A 1’)‘23’)‘4] that Has this weight, the weight is simple and,
as we saw above, it is the highest weight of a D(O,u) re-

presentation of B, with a boundary <> . By referring to

2
Fig.6.1 we see that a displacement vertically upwards is given

by the replacements 3 -+ 2 or 4 =+ 3 , and that a displacement

in the direction of the slant side above the m

1 axis is given

by 1> 2o0r 4= 5. Of course the transition 1 -» 2 could

be made by the succession 1 > 3, 3> 2 but the effect on

(6.6) would be just the same as for the direct transition.
We shall proceed along the slant side and consider the

multiplicities of the weilghts.

The tensor components at the

next weight will be

E 1 1 2 | |1 1 . 1
2 2 P 2 2 ces
3 3 ees 3 3 e .(6.7)
L Lo ees L Lo eee
5 5 cee 5 5 5 eee 5
- ] -
The first exists when X1 > Kz ; the second exists when Kz > K5 .



-106-

We exclude the case (6.5), and then the multiplicity is 1 or

2 according as one or both the inequalities

A, ~h, 21, Ny = hg>

are satisfied.
Proceeding from (6.7) we have in the next step 1 = 2 in

the first bracket if l1 - 12 > 2, 1= 2 in the second if
i

k1 - 12 > 1; we have L - 5 in the first bracket if l2 - X5

21 and L - 5 in the second when lz - ks 2 2. The multi-

plicities of the weights are therefore

L for A, ~A,2 2, A =A_2 2

1 27 2 5
2 for X1 - kz 2 2, lh - KS =1 or 11 - lz =1, 12 - 15 2 2
1 for 7»1-)»222, )\2=)\.5 or )\1_7\2, )\2-)\522
O for A, A, =1, A, =]\ or A, =A A -A_o=1.

1 2 2 5 1 27 "2 5

At each subsequent stage there is a rise in the multiplicity of

a factor 2 if both X1 - lz and XZ - XS satisfy the next higher

inequality, and no change if only one of them obeys this condition.
If neither obeys the next higher inequality, we are outside the
representation corresponding to the tableau. We conclude that
the maximum multiplicity as we go along the slant side is 28 ’

where s 1is the lesser of 11 - Xz and kz - XS . If k1 = l2

or 12 = XS , s =0 and the weights are therefore all simple

for the partitions (A,*,A_ | and [11,x2“] .

5
The maximum multiplicity occurs s steps from the highest

weight. On account of the symmetry of the weight diagrams we
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must check that this does not bring us more than half-way along

the slant side. The total number of steps along the slant side

is )\1 -7\5 , Which we write
A=A, ¥ ("2 -xs) . (6.8)
When A, -2, <X, -Ag, s =X, -%, and (6.8) shows that

i
4

é<g(x1 -xs) ,

and the maximum multiplicity is therefore attained before reach-

ing half-way along the slant side. For X1 - 7\2 > 7\2 - 7\5 we
obtain the same inequality. When 7\1 - 7\2 = 7\2 - 7\5 ,
3 = 5’(7\1 - )\5)

and the maximum multiplicity is reached half-way along.
Returning to (6.6) and (6.7) we note that these, and any of

the subsequent tensor components, are annihilated if we put

3> 2o0r4L=>3, This means that none of the weights corres-

ponding to the tensor components lie outside the O boundary.

As we go along the slant side from 71—6' (7\1 - X5,0) , We

obtain
8 weight at 71-3 (A = 250) with multiplicity 1
" " " .}g (}\1 - )\5 - 1’1) " ] 2

n " " '71'5 ()\1 - }\5 - 2’2) " 1" 2

" " " Li} "
L] L ] L] L] LN ]
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& weight at 71-3 (A, =hg - 7r)  with mitiplicity 2T

" " Lid " "
. 3 . . eee

" " " 71'6 ()\1 - )\5 - s,s) " " 2%

Since there are no weights outside the boundary and since all
the weights on the boundary of any diagram corresponding to an
irreducible representation of 32 are simple, we deduce that
each of +the above is the highest weiéht of an irreducible re-

presentation. Moreover, since

oF _ 2r-1 - 2r—1 ,

the representation with highest weight 53 (K1 - XS - r,r) ,
that is D(2r, A, - Xs - 2r) according to section 3a, occurs
21‘-1 times. The weights on the boundary of the weight diagram

corresponding to the partition [X1,k23,X5] therefore belong to

p(0,% =) @ D(2, A, -x5-2)@21)(4, Ny =R, k) @ ...

1 - 25) .

® 2

D(2s, A, =1\,

This will not in general be the full reduction under B2 of
the representation of gl(5,d) corresponding to the partition,
since there may be weight diagrams of B2 that do not come as

far as the boundary.
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6c. Reduction under B2 of Representations of gl(5, €)

with totally Symmetric Bases.

The representation with basis of totally symmetric functions
of order r corresponds to the partition |[r] . This satisfies
the conditions (6.3) for a boundary < and, as we saw in the
last section, the weights do not go outside the Q with highest
weight fg (r,0)". According to (6.1{ the dimension of the
gl(5, €) representation

N(r] = (r+1) (r+2) (r+3) (k)
2l

We compare this with the dimension N(O,r) of the representation

of B, with highest weight gz (r,0) given by (3.13) viz.

N(o,r) = (r+1)(r+2)(2r+3)
6

Taking r = 0,1,2,3, ... we have the table:

r 0] 1 2 3 L 5 6 7 8

N(o,r)
N(r]

—

5 14 30 55 91 140 204 285 (6.9)
5 15 35 70 126 210 330 L495| .

—

For r=0 and r =1 the representations of g1(5,d:) do
not reduce under B2 s they are the almost trivial cases of the
1- and 5-dimensional representations. For higher values of r

there appears an interesting relation, viz.

Nlr] = N(o,r) + N(O,r-2) + N(O,r=L) + ...
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ending with N(0,1) for r odd and with N(0,0) for r even.
This would suggest that the representation D[r] of gl(5, @) ,
corresponding to the partition [r] , reduces under the subalgebra
B, into irreducible representations as follows:

2
D(0,1) for r odd

pir] = D(0,r) ®D(0,r-2) @ D(Oyr-4)D ... B
D(0,0) for r even.
i (6.10)

The most direct way of finding whether this is the correct
reduction would be by the use of the theory of group characters
(Littlewood 1940,p.240) . We shall, however, treat it as an
exercise in weight multiplicities. It would be conceivable
that the same value of N[r] might be obtained from representa-
tions with [} or octagoneal boundaries, or that it might come
from representations with O boundaries, the representations
being other than those in (6.10). We shall therefore examine
the multiplicities at every point in the first quadrant in the
weight diagram associated with the representation of gl(5,Q)
corresponding to the partition [r] .

To do this we first construct the totally symmetric basis
vectors associated with weights on the positive m, axis, re-
ferring to Fig.6.1. For the fundamental 5-dimensional repre-
sentation there are basis vectors x

3

immediately to the right. We may express these in the notation

at the origin and Xy

of (5.5) as [3] and [1] . As we are concerned with only one
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partition in this section, there should be no danger of confusion
with the notation for a partition. For bilinear products we can

have at the centre the weights
n(3) +n(3),  wn(1)+n), n2)+p),

and these correspond, respectively, to the linearly independent

basis vectors

3 3], 1 5], [2 u].

We note that we can always replace 3 3 by 1 5 or 24 without
changing the weight. To obtain the vectors for the weight next

to the origin we make the substitutions
53, 3=+1, 2-0, L0,

the latter two denoting that we delete terms arising from the
displacement of 2 and of 4L . We then obtain for the three
points on the m, axis

13 3]

[1 5], a3, (111, (6.11)

[2 4]
the multiplicities being the number of independent vectors, that
is, 3, 1, 1 respectively.

For trilinear products we start with 3 3 3 at the centre,

replace 3 3by 1 5or 24 , and displace, so obtaining



-1 =

L33 3y (13 3y

435}, w15, 13}, wv11l.  (6.12)

12 3 L) 12 y]

This is equivalent to 3 being added to the entries of the first
term of (6.11), and 1 being added to all the terms. The latter
produces a shift without change of multiplicity. We note that
the multiplicity of the origin is still 3 . For quadrilinear
products we may start with [3 3 3 3] and replacing 3 3 by 1 5
and 2 4 obtain 3+2+1 expressions. On displacing (6.12) by
addition of a 1 we get altogether

(3 33 3]

1335 1333 [1133]

(2334, 1135], 11145, (1113], 1111]).
M2us5] 1234 [1124) (6.13)

[1155]

(2 2 4 4]

The multiplicity structure is now evident. Coming left
from the highest weight we see that the multiplicity of the first
two 4s 1 , +the multiplicity of the second two is 1+2 , ...
the multiplicity of the pth two is =z p (p#1) . This is also
the multiplicity of the weight at the centre for r = 2p-2 or
r = 2p-1 . Moreover we can easily write down from (6.13) the

r-dimensional basis functions at any point on the positive m,

axis.
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We next examine how the multiplicities of weights vary
as we go from a point on the m, axis along a layer in the
first quadrant parallel to the slant side. Such a displace-
ment is obtained from 1 =+ 2 or 4L » 5, and we find that we
obtain for the boundary and for the next two layers, respect-
ively,
[11ee111), [11a00112], [(11e.422],0000(1200.02], [22...2]
(11.0.113], [11...123], [11...223],... (22...23] ;
(11...133], [11...233], [11...2233], ...
(11eea115], [M1e.220], [11...2224], ...
[11eca20], [11.00125], [11...1225], o0
We see that the first two consist of simple weights, that in
the case of the last replacement L4 - 5 adds nothing to 1 - 2
and that, as far as we have gone, the multiplicity is 3 along
this layer. The reason for this constancy of multiplicity is
that once 33 has appeared it can be replaced for the same weight
only by 15 and 2 . Now on starting from [11...133] and
making repeatedly the substitutions 1 - 2 the 33 remains and
gives multiplicity 3 . The same will be true when we start
with [11...1333] , [11...13333], etec. and we conclude that
the multiplicity remains constant along each layer. We may
therefore study the reductiom of D[r] by merely considering
the multiplicities at the points on the positive m, axis.

We consider separately the cases of r =2p and r = 2p#l .
For the first one we put down the multiplicities for the repre-

sentation [2p] at each weight on the positive m, axis start-
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ing at the centre, and subtract the corresponding multiplicity
for D(0,2p) .
[2p] 1424, .+(p+1), 142+..4p, 14240eDPy o o o

14243, 14243, 142, 142, 1, 1

D(O,Zp) p+l, P P> o o o

3, 33 2, 2, 1, 1
difference 1+2+..4p, 142+, o4+p=-1, 14240 04p=1, o o o

142, 142, 1, 1, o, O.

The difference gives the multiplicity for [2p-2], so we have

for each weight the multiplicities as follows:

milt.([2p] = mult.[2p=-2] + mult.D(0,2p)

milt. [2p-2] = mult.(2p-4] + mult.D(0,2p-2)

mult. (4] mult.[2] + mult.D(0,4)

mlt.[2] mult.[0] + mult.D(0,2) .

Since D[0] = D(0,0) , we deduce that the multiplicity at any

point for D[2p] is the sum of the multiplicities of
p(0,2p), D(0,2p-2), ... D(0,2), D(0,0) .

In the case of r = 2p#1 we note that D[1] = D(0,1) and find

that at any point on the axis the multiplicity for the D[2p+1]
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representation of gl(5, €) is the sum of the multiplicities for

D(0,2p+1), D(0,2p-1), ... D(0,3), D(0,1) .

We conclude therefore that the reduction (6.10), which we had

suggested from inspection of the table (6.9), is in fact correct.

6d. Reduction under B2 of certain other Irreducible

Representations of gl(5, Q) .

Since irreducible representations of gl(5, €) with total-
ly symmetric basis vectors reduce under B2 , 1t may be asked
whether this is so also for representations with totally anti-
symmetric basis vectors. These will correspond to the parti-
tions [18] , where s takes the values 1,2,3,4,5. The
partition (1] is a special case of (6.3), so its boundery is

Q. By equation (6.1) the value of N[1| is 5 and, since the

representation D(0,1) has boundary <{> and is five-dimensional,
we conclude that the representation of GL(5) corresponding to
the partition (1) is jus the D(B)(O,1) representation of
B2 . It therefore does not reduce.

The partition [12] satisfies (6.4), so its related bound-

ary is [ . The highest weight of the representation of g1(5, C)

corresponding to this partition has [12] for basis vector, and
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Fig.6.1 shows that the highest weight is therefore 7z (1,1) .
This is the highest weight of the D(1o)(2,0) representation
of B, and, since NL12] is also 10, we conclude that the
representation of gl(S,dl) corresponding to the partition
L12] is just D(1O)(2,0) and is therefore irreducible under
B, . The representation of gl(5, @) corresponding to [13]
is also D(10)(2,Q) . Likewise the representation of gl(5, @)
corresponding to the partition L14] is D(S)(1,O) and that
corresponding to ,15J is D(1)(O,O) , sa all the representa-
tions of 81(5, C) that have totally antisymmetric funotions
as bases are irreducible under B2 .

The boundary of the weight diagram of a representation of
] is

gl(5, €) corresponding to the partition ;X1,12,X3,k4,k5

[J, when the conditions

are both satisfied. The tensor component corresponding to the

highest weight is

i 11 oo 1 1ﬁ
22 ses 22
33 .. 3 :
b b oeen b
55 v 5 |

If we wish to study the multiplicities on the boundary, we
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can start at the highest weight and work down the vertical side.
This is done by the replacements 2= 3, 3> L . In the first
instance 2 =+ 3 will occur only if )\2 -)\32 1 and 3- 4

only if )»3 - )\l» 2 1 . However, even if )\3 = )»h , Wwe can at

a later stage have 3 = L from a 3 that has already been put
into the second row by a 2= 3 replacement. The statement of
multiplicity rules would thus involve "specifications of )»2 - X} ’

- A We therefore simplify the situation by

)\2 - )‘h. R 7\3
putting

L|. .

and consider only the representations whose bases are the tensors
corresponding to the partitions (2°] and [32] .
We first examine how the 50-dimensional representation of
gl(5, €) related to the partition [22] reduces under B, .
The tensor component for the highest weight is
1 1
2 2

and the weight is 7z (2,2) .
PO T U A A
" |3 B 3 B 1

c" | 6 c* 3 cC 2

Fig.6.3 - The multiplicities of weights in the diagram
for the D[22] representation of gl(5, C) -
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We mark this as A in Pig.6.3, and by writing down the Young
tableaux that have the correct weights we assign to other weights

in Fig.6.3 the following tensor components:

117
2 [53
¢ 1] 117
133]" (24 )
ge [12] 117 [12
13347 [25])7 L24
oo (117 [1271. [13
3517 |34 [24
o [11] 127 sl [13 2 2 23
55)° |&5])" |25 |35 [au] |36] °

These enable us to affix the multiplicities to every weight of
Fig.6.3. The total number of weights for the representation

is therefore

Li(A+142) + (143+3)} + 6 = 50 ,

which is correct. We have all the weights of the diagrams of
D(35)(h,0) ’ D(1A)(0,2) s D(1)(o,o) , and the reduction is

therefore
p(2?] = D(35)(4,0) | D(1“)(0,2) @ D(1)(0,0) .

It is straightforward but takes rather longer to show that
the 175-dimensional representation of gl(5, C) corresponding to

the partition (32] reduces under B, a&s

(2] = (6,00 @ 0B (2,2) @ p{19)(2,0) .
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As was pointed out at the end of section 5a, the reduction
under B, of irreducible representations of gl(5, () may be
interpreted as the reduction under the rotation group SO(5, (I)
of irreducible representations of the general linear group

GL(5, C€) .
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CHAPTER VII

YOUNG TABLEAUX AND WEIGHT DIAGRAMS

FOR gl(4,{) AND G,

7a. Boundaries of Weight Diagrams associated with
Young Diagrams.
We associate the basis vectors x1,x2,x3,xu of the repre-

sentation space of the algebra g1 (L, ¢) with the weights of

m

2
X 1 X
3 m L .1
, m
1' 1
B
RN L2

Fige7.1 - Basis vectors associated with the weights
of the D “)(1,0) representation of C, -

the D(h)(1,0) representation of C2 in descending order as
shown in Fig.7.1. For the irreducible representation D[l1,X2,X3;XL]
of gl(k, €) associated with the partition (M, ,7»2,7~3,7\1+] the

dimension N[X1,X2,13,ku] , as deduced from (5.3) is given by
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1

N[)\1’ 29 3’)\ ] = 12 v ()\ +3’ A +2 )'3'.'1’ A ) (701)

The tensor component associated with the highest weight is

p— =

11 1

2 2 [ N ) 2
(7.2)
3 e 3

l&--o-l{-

e &

and the weight is )\115(1) + 7\2{1_(2) + 7\3&(3) + 7\1&1_1\1‘(1;) , where
n(1), m(2), m(3), xg‘(u) are the weights of X, ,%,,XssX, , Te-

spectively. Thus the highest weight is

;\/‘g(" TR S TR VLS VEEL SR ¥ (7.3)

and it is simple because (7.2) is the only bracket with Ao Ats,

N, 2's, Mg 3's, A A's.

We see from (7.1) that for any positive integer <

N['}\1+q:, Aot x3+¢, A 1] = N[A,, xz,x3,x 1.

A

The reason for this is that we go from a tensor component for
D[7»1+'t, )»2+’C, 7\3+'t, 7\1_.’4-'17] to the corresponding tensor com-

ponent for D[)\1+q:, A+, 7\3
bracket T columns with entries 1,2,3,4, and this can be

+Ty 7\1++'1:] by adding to the

done in only one way. Since

n(1) + m(2) + n(3) + () = 0,
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the positions of the weights are unaltered by these additions.
Thus D[A 11"] is one-dimensional with the tensor component

(14 e 1 1]

having zero weight, and the weight diagrém for the D[7~1 +T,
A, 4T, 7\3-0-'1:, “Ah_-m:] representation of gl(l4, ) is the same
as that for the DD\1 ’7\2’)‘3’)‘41 representation. To express
this differently, the weight diagram for D[, A, 3,)1] is the
same as the weight diagram for D[”A,I - 7\1'_,12-11'_, 7\3-%#] .
This result will often simplify caleculations.

Returning to (7.3) we study the conditions under which
it is the highest weight of & D(A\,0) or a D(O,un) represent-
ation of C2 . On comparing it with (3.5) we see that it is the

highest weight of a D(\,0) representation, if

x1-xh+x2-x3 = AN, - (12-x3) ,

. 2
that is, if X, =7\3 . The partition is then [)\1, LY )\L]

and the Young diagram has the shape
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The highest weight is 21'6 (Ay-X,, Ay =},) and this is the
highest weight of the D()“l -XA,O) representation of C, .

Now equations (7.1) and (3.7) give
NI sh 20 ] = 500 =2 s (=2 e2) (1, =3, #3) (hy =R, 42) (hy =2, 1)

1
N(hy =2,,,0) gy =+ Oy = 2 +2) (A -2 43) o
5 i
By studying the variation of the quotient of the two expressions

on the right hand side one finds without difficulty that

2
N AN T s NGOy -2 ,0)

the equality occurring only when 7\2 = 7\1 or )‘b. = 7\2 . This

means that all the weights of D[x13,x ] and of D[x1,x23] are

L
accounted for by those of D(x1 -xu,o) and of D(X1 -xz,o) re-

spectively, and therefore that these representations of gl(h, a)

do not reduce under C2 . In particular the one-dimensional

3] do not reduce.

D[)x,'h_] and the representations D[\, ] and DD\‘1

1
We see from (7.3) that the highest weight is the highest

weight of a D(O,u) representatiom, if

)\1 —7\)4’-)\2+)\3 = O,
80 that

A, -)\2-(7\3-)%) = 0

and therefore




)s1 =7\2 s A, = A (7.1;.)

giving a Young diagram

ie

This will include D[A,*] and also D['A12] . For (7.4) the
highest weight (7.3) becomes 715 (n, =h5,0) , which is the
highest weight of the D(O, L 13) representation of C, .

From (7.1) and (3.13)

2 ., 2 1 2
ND»1 , M) = Tz-(x1-x3+1)(x1-x3+2) (11-x3+3)

3

N0, My -hg) = %(x1-x3+1)(x1-x3+2)(2x1-33+3)

2 2
and 50 N[T»1 ’)\3 ]l > N(O,).1 -’AB) for A, > )\3 . Apart from
the one-dimensional DD»#*] , all the representations D[a 12,)» 32]
of gl(k, ) reduce under C, . Ve shall now examine how they

reduce.
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2
1

of gl(4, ) under C, -

7b. Reduction of the D[\ ,ksz] Representation

Let us put K1 ~ ks = r and, as the weight diagrams are

2
1

the reduction problem for the latter. The highest weight for

the same for D[\ ,X32] as for D[r?] s we shall consider

this is ﬁg (r,0) and corresponding tensor component is
i

'[111...11] (7.5)
222 o466 22 .

If we move along the m, axis to the next weight %% (r-1,0) ,
then according to Fig.7.1 either a 1 is changed to a 3 or
a 2 is changed to a L4 . We may therefore say that when we
move from any weight on the m, axis to the next one on the
left, we replace a 2 by a L4 and change each 24 pair into
& 13 pair in such a way that we obtain a bracket corresponding
to a standard tableau, which implies among other things that
the 1's are as far left as possible on the first row and the
L's as far right as possible on the second row. Starting

with (7.5) and proceeding to the left we obtain

[ 1111 ] o111 ] [oa. 417 oo 11 oo 11
-‘c. Llll-)-{-)-l-J -.o. u{l}-J _o.. l{—’-&J [N W} 21{- L) 22
vee 1112 vee 1127 e 12] ee 12

ese M.J _-.. MJ see 3)-{- eoo0 23

- - S G . (7.6)
ee 1113 (... 113 ves 13

_-a. MJ -oo 21:14.J -ooo ZLLJ




426~

vee 1123 ] ... 123 ves 22
vee 2340 ... 23 es 33
vee 1133 ce. 122

el
)
|
]

ctd.
vee 1122 ]
cer 334k |

eas 222
ees 333

r*
| 1
2

veo 1222 1
cee 3334 |

11

vee 1223 |
L"' 233 J

ves 2222
see 3333_ °

—

The omitted entries are 1 on the first row and 2 on the
second row. We have bracketed together tensor components with
the same entries which therefore differ only in the distribution
of the 2's and 3's among the rows. As we move left the
multiplicities of the welights are
1, 141, 14241, 1424241, 142434241, oo

It is not clear from what we have done so far whether the
multiplicities will continue to increase. Let us confine our
attention to brackets that all refer to one weight. There are
two considerations to be borne in mind: the number of L4's in
the second row and the number of 23's that are replacing the
14's . For no L4 in the second row there is no replacement
and just one bracket. For the replacement of one & there are

two entries i and i in the last column, provided that there
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was one L left in the second row; that is provided that we
had at least two 4's to start with: otherwise we have multi-
plicity 2 . For the replacement of two L4's end with at least
four L's present originally we cen end the first row with 22,
23, 33 . Ve may look on this as 2 placed before 2,3 for
one replacement and 33 added on. If we had originally only
three L4's , we pow end the first row with 22 or 23, soO
there are two brackets. When we make replacements of three

L's , we can end the first row with 2 pleced before 22, 23,
33 and, if there were originally at least six L's , also with
333 .

Hence for any even number 2t of L's initielly present
the number of brackets increases by unity for the first t re-
placements and the number of brackets then is t+1 . When we
meke t+1 replacements, we have only (t=1) L's 1left on the
second row and the multiplicity is the same as for t-1 replace-
ments. The multiplicity will decrease steadily by one until
a1l the L4's have disappesred. Now we see from (7.6) that we
have 2t L4's after 2t displacements from the highest weight,
so the multiplicity here is

1 22434 aee vt + (t#1) +# ¢+ (5-1) + o0e + 1
= t(t+1) + (t41) = (t+1)2 .

For t = 2 the multiplicity is 9 , which agrees with (7.6).
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For an odd number 2t+1 of L's , t replacements give
multiplicity t+1 . When t+1 replacements have been made,
there are left only t L's in the second row and this gives
again multiplicity t+1 . VWhen we make a further replacement,
we reduce the multiplicity by one. The total multiplicity of
the weight obtained by 2t+1 displacements from the highest
weight is therefore .obtained by adding t# to (t+1)2 and so
is (t+1)(t+2), which again agrees with (7.6) .

We combine these results saying that after 8 displacements

along the m, eaxis from the highest weight the multiplicity for

1
the Der] representation is % (s+2)2 for s even and %(s+1)(s+3)
for s odd. Thus the multiplicity of the origin will be obtained
by putting s =r . Our investigations were based An the fact
that one tensor component at the weight in question is
[11 cee M e M ]
22 vus 2l oes bb (7.7)
—— N
r-s s

and our discussion centred entirely on the last s columns.
According to Fig.7.1 we can find a tensor component at any point
along the string of weights in the first quadrant going backwards
at an angle %: to the m, axis, if we replace 2 by 3 a pre-
scribed number of times in (7.7). In obtaining the tensor‘com-

ponents we are precluded from replacing 23 on the second row

by 14 because there are no vacancies in the first row for a 1 .
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The multiplicities will therefore come entirely from replacing
14 in the last s rows by 23 . The multiplicity is there-
fore exactly the same as that derived from (7.7); 4in other
words, the multiplicity is constant elong the string of weights.

The tensor components for the weights on the string through
the highest weight, obtaimed by putting s = O in (7.7) end
making the replacement 2 = 3 repeateddy, are

[mon]s [Bas] o [Bas]e oo
If we make a vertical upwards displacement from one of the weights
of the string, the tensor component is obtained by putting 2 -+ 1
in one of the brackets (7.8). The tensor component vanishes,
so there are no weights in the first quadrant vertically above
the string. It may be proved similarly that there are no weights
of the D[rz] diagram outside the boundary of the D(0,r) repre-
sentation of C2 in any quadrant. Thus the boundary of the
D(0,r) diagram is the boundary of the p({r?) diagram.

Since the multiplicities are constant for D[rz] along
layers parallel to the boundary and since the same is true for
D(O,r) , we write down from section 3e the multiplicities for
p(o,r), D(O,r-1), ... D(O,r-s) for weights on the m, axis
obtained by 0,1, ... s left displacements from the highest

weight:
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s 2%+ 2t 5 4 3 2 1
p(o,r) 1+t 1+t 3 3 2 2 1
D(0,r-1) 1+% t 3 2 2 1 1
D(0,r~2) t t 2 2 1 1
D(0,r=2t) 1 1

D(0,r-2t-1) 1

For s = 2t the total number of weights is
1 #1 #2+2+ oo +t+%+ (241),

which is just the % (s+2)2 found for D[rz] . TFor s = 2t#
we have an additional t+1 , as we had for D[rz] . The ex-
amination of the weight multiplicities has therefore given the
reduction under C, of the Der] jrreducible representation

of GL(4, @) as

p[r’] = D0(0,0) @ D(0,1) & D(0,2) B ... & p(o,r) .

The reduction of D[l12,132] is therefore

D[7»12,7» 2] = p(0,0) @ D(0,1) & D(0,2) & ... & D(o,x1-x3)

(7.9)

3
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7¢. Reduction of the D[X1,122,k4] Representation of

gl(L, ) under C, .

We saw in section 7a that the weight diagram of DD\,‘ ,7»22,)»#]
is the same as that of DD\1-)\L»’(7\2—)\A)A] and that its highest
weight is the highest weight of the D(A 1‘)‘130) representation of

C We shall write

2 L]

7\2-)\A=a, A, -A,=b, (7.10)

so that

7\1—7\)4_ = a+b,

and shall examine the reduction under 02 of the irreducible
representation DLa#b,az] of (b, @) -
The tensor component for the highest weight of the D[a+b,a2]

representation is

2 oo 2
3 see 3 ) .
b
a

We would obtain the same weight by the replacement 23 = 14 but,
as we have already the maximum number of 1's , we cannot con-
struct a second tensor component and the weight is simple. We

now proceed step-by-step to the left on the horizontal line through

the highest weight. For each step we replace a 1 by a 3 and
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then replace 23 by 14 in all possible ways.

in turn
1 eee 1 oee 13
2 eee 2 ,
3 eee 3

giving multiplicity 2 for a2 1

1 LN )
2 ese
3 eoe

1 eee 1 aes 33 1 cee 1 00a 13
2 4ee 2 ’ 2 ve0 3
3 eee 3 3 e b

az 1

giving muiltiplicity 2 for a =1

1 01 oo 333 1 a0 11 .20 133
2 40 2 s 2 o0 23 H
360 3 3 es 34

a =2 1

giving multiplicity 2 for a =1,
1 LN ] 1 33 LI 3
2 eee 2 9 e
3 ese 3

giving multiplicity 2 for a =1,

1 o011 oo 113 1 .. 111 ..
2 oo 33 3| 2 .- 333
3 ol 3 oe LLL
az 2 az 3
3 for a=2, 4 for a:
1 eee 1 e 1 e
2 es e 3 e 3
3 ase L{» ) l&-
3 for a =2, .« b for

We thus obtain

1 e 11 oo 11
2 eoe 33
3 ese b b

a3z 2

and 3 for az 2



=1 33_

a =b-1, b+l for a2 b .

Since we can no longer add 1's , +there can be no further in-
crease in multiplicity for increasing values of a .

When we make another shift, we obtain

1 oo 113 . 31 1 oo 113 oo 3_1 1 601 o0 11 oo 11
2 o0 23 . ; 2 oo 3 jeee 2 ee 3 (X 3
LS L 3)4- 3 LN ) I-l' 3 e Ll- o0 )+
- L - L o -
az 1 az 2 b+1

giving multiplicity 1 for a=1, 2 for a =2, -.- b+1 for

a2 b+l .

The effect of +the additional 3 is therefore to reduce the pre-
vious multiplicity by one. When we have made b+u shifts, we

require at least u columns to get

1 vee 11 eoe 13 oo0 3

2 see 23 se e 3

L} cee 3 b4 eee L

u
and multiplicity 1 . If a <u, the tensor component vanishes
and we are outside the weight diagram. Altogether we have malti-

plicity O for a < U, 4 for a=u, 2 for a= usl, eee
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b+l for a > u+sb . At this stage all the places in the first
row have been filled with 1's and there is no further increase
in multiplicity. We conclude that the multiplicity increases
by one as we shift left to a maximum of b+l , but that this
maximum is attained only if a2 b .

We next consider the case of a <b . As we go left from
the highest weight, the multiplicity iné;eases steadily up to
a+!1 and no more. As more 3's are introduced, the multiplicity
will drop by one for each additional 3 .

There are two observations that we may make about the tensor
components associated with the weights on the horizontal line
through the highest weight. We notice that they all vanish, if
we make any of the substitutions

21, 23, L1, L4L-=>3.
This implies that we have no weight of the D[a#b,az] represent-
ation in the sector of the upper half-plane bounded by the hori-

zontal line and m, =+ m We may likewise establish e sim-

2 1°
ilar theorem for the four boundary lines of the diagram for the
D(a+b,0) representation of C, , and we deduce that these also
constitute the boundary of the diagram of the D[a+b,a2] repre-
sentation of gl{k, €) . The second point is that for D[a#b,az]
the multiplicities in the vertical line down from the highest
weight are just those that we have obtained for the horizontal

line through the highest weight.
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We have now sufficient information to obtain the reduction

under C, of the D[a+b,a2] representation of gl(4, C) .

2

As we come down from the highest weight, we have for a2 b

miltiplicity 1 at 5173 (a+b,a+b)

n 2 at 51-5 (a+b ,a+b-2)

i
3 at 5}3 (a+b ,a+b=4)

n

b+l at 31-3 (a+b,a=b), 31—5 (a+b,a-b=2), etc. .

The points at which the multiplicity is increasing are the high-

est weights of the representations of 02 :
D(a+b,0), D(a+b-2,1), D(a+b=4,2), ... D{(a-b,b) .

Moreover the multiplicities on this side, and therefore on the
whole boundary, are accounted for by these representations.
Hence it would seem that for a > b the reduction might be

Dla+b,e’] = D(a+b,0) @ D(a+b-2,1) @ D(a+b-4,2) @

(7.11)
ee. @ D(a-b,b) .

Similarly, when a < b , it would seem that the reduction might
be

Dla+b,a2] = D(a+b,0) @ D(a+b-2,1) @ D(a+b4,2) @

(7.12)
eee @ D(b-a,a) .
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To establish (7.11) and (7.12) it would be sufficient %o
show that the sum of the weights, due account being teken of their
multiplicities, in the representations on the right-hand sides of

(7.11) and (7.12) is equal to Nla+b,a®] . According to (7.1)
Niatb,a®)l = 75 (a+1)(a+2)(b#1)(bs2)(asbs3) ,  (7.13)

and we note that this expression is symidetrical in a and b .
The sum of the weights for the representations on the right-hand
side of (7.11) is by (3.22)

b b
I N(atb-2r,r) = é (a+b+3) I (r+1)(a+b+1-2r)(a+b+2-r)
r=0 r=0

b
% (a+b+3) & { (a+b+1)(a+b+2) + r(a2+2&b+b2-3)
r=0

- 3r2(a+b+1) + 2r%

L (a4043) (1) (a42) (0+1) (b+2)

N[a+b,a2J ’

by (7.13). We can go from the right-hand side of (7.11) to the
right-hand side of (7.12) by interchanging a and b and, since
the expression for the sums of the weights Jjust calculated is
symmetric in a and b , We have now

a

2 Nla+b-2r,r] = Nia+b,a2j .
r=0
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The two sums are identical for a =b . The reductions (7.11)

and (7.12) have therefore been established. The reductions

are possible because all the weight diagrams for the C2 algebra
actually reach the boundary of the weight diagram for the D[a+b,a2]

representation of gl(4, €) .
2

We return to the more general notation DI[A y ,12 ’}\h] using
(7.10).  For Ny mhy 2 A = i
2
(7.14)
@9(2‘2“7‘1"‘4’7‘14‘2)
and for 12—}\46 7\1—)\2
2
DIngA, A 1 = DOV ,0) @D A -2,1) @D(A, A -4y2) B
(7.15)
sae e D()\1+)\)+-2)-2’)\2-)\)+) .

When )\2-)\l+ = 7\1-)\2 s the last representation in the reduction
is D(o,xz-xh) . Then the multiplicities on the boundary in-

crease until we come to the middle point of a bounding side.
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7d. Reduction of the D[ 12,7\3,%] Representation of

gl(4, C) under C, .

The weight diagram of DD\12,X3,)\)+] is the same as that of
pl(x 1-7\4)2,7\34\&] . We therefore study the reduction of the

D[pz,r] representation of gl(k, ) , where

Xy =M, =0 Ag=-M\ =T34 (7.16)

According to (7.3) the highest weight is -2-\/.15 (2p-r,r) , which
is also the highest weight of the D(r,p-r) representation of C,
according to (3.5) . Since the boundary is octagonal, we shall
use the letters in Fig.3.2 to designate the weights.

The tensor component corresponding to the highest weight A 1is

P
 r—————————

11 eee 1 eee 11

22 tee 2 000 22 (7.17)

33..-3 °
L ~—
r

Since we cannot replace 23 by 14 in this, the highest weight is
simple. According to Fig.7.1 we go verticelly downwards from the
highest weight by the replacement 3 = L . This will give a
unique tensor component after each replacement, so the weights
here are simple. Since any of +the replacements

b» 2, 4>, L>3,3>1,3>2 (7.18)

will annihilate these tensor components, there are no welghts
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for DpZ,r] +to the right of the verticel line down from the
highest weight. We go from (7+17) to the tensor components
for the weights along the slant side ABC ... by repeated re-
placements 2~ 3 . The weights will be simple and the tensor
components will be annihilated by (7.18). We conclude that the
boundary of the D(r,p-r) diagram is the boundary of the
D[pz,r] diagram and that the weights an the boundary of this
are simple.

As a preparation for the reduction of D[pz,r] under G,
Wwe examine the multiplicities along the string A A" A",A', eee
The tensor components for A' will be obtained by replacing 2
by L4 in (7.17) and possibly later replacing 14 by 23 .
Now when 2 is replaced by 4 , the L will have to be in the
third row and the displaced 3 will have to go to the end of
the second row, or alternatively the 4 will replace the 2

et the end of the second row. Altogether we shall have

1 e 0 1 . 11 .1 LN ] 1 [N ] 11 1 * 0 1 [ N ] 12
A 2 002 e023) 312 o200 2] 524024023 (7.19)
3 a0 b 3603 3 e 3 .

If we refer to (7.6), we note that for A the last two entries
of the first two rows are the same as those in the last bracket
of (7.6) and that the last two entries of the first two rows in
the last two brackets of (7.19) are the same as the last two in

the two brackets Jjust to the left of the last bracket of (7.6).
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In fact these entries arise merely from the 14 = 23 replacement.
Going along the string to the next weight we have

1eetleedt S PO PP 1ee1ee12 PO P
A" [ 2..22..23 05 1 20,2003 | 5 | 20020035 |5 2.02eelli |

3..“& 3-0’4— 30 0)4- 3. -3

10.1..12 1.-1.-13 1..1.‘.22
2..2. -3’-}& » 2. 020 -2)4- ’ 20020.33

3.-3 3..3 3.03 [

Again we may compare the last four brackets with the four brackets

in the middle of (7.6). The multiplicities are therefore

A A" Al A
1+(1+1)+(1+2+1)+(1+2+2+1) 14(14+1)+(14241) 1+(141) 1
1 +2+4+6 1 +24+4 1+ 2 1
(7.20)
The next point to note is thet, when we proceed from one
of these weights along a layer parallel to the slant side, the
multiplicity is constant. The line of reasoning runs much the
game as in section 7b, and the result may be checked by con-=
structing explicitly the tensor components.
We refer to Fig.3.5 of section 34 and write down success-
ively the multiplicities at A, A', A", A'", ... for repre-

sentations of 02 whose highest weights are A, AY, A", A, ...
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under the assumption that we have at least five weights on every

side of the octagon:

An 4] A LA A" A 1 A
9 6 L 2 1
6 L 2 1
L 2 1
i
2 1

It thus appears from (7.20) that the multiplicities for D[pz,r]
are found by superimposing the multiplicities of the C2 repre-

sentations
d(r,p-r), D(r,p-r-1), D(r,p-r-2), D(r,p-r-3), ... . (7.21)

These will also give the correct multiplicities in the layers
parallel to the slant side. We have so far not paid attention
to the layers parallel to the vertical side. If, however, the
representations (7.21) exhasust all the weights of D[pz,r] s
then automatically the layers parallel to the vertical side
are taken care of.

We therefore propose that the irreducible representation
D[p2,r] of gl(L, ) reduces under C, into irreducible re-

presentations of C2 as follows:
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D[pz,r] = D(r,p-r) @ D(r,p-r-1) & D(r,pr-2) P ... B D(r,0) .
(7.22)
To establish this it will be necessary and sufficient to prove
that

N(r,p-r) + N(r,p=r=1) + o= + N(r,0) = N[pz,r] .
According to (3.22)

P—T "1p—r
z N(r,p-r-t) = ZI (14r) (14p-r—t) (24p=t) (3+2p-r-2t)
=0 $=0

1"'1-?2 { 641 3p+9p +2p 3 _8r—1 Opr+2r -3p r+pr
t—O

-t{1 3+18p+6p2-10r—6p1‘+44-r2] + 3t2[3+2p-r] - 2¢7 ]

35 (14)(p-r+t ) (p+2) (p+3) (p-r+2)
= Np'rl

by (7.1). This esteblishes the result (7.22). On returning to

(7.16) we deduce the reduction

2
D(x, .xyxh] = D(XB LM -xj)ggn(xB-xh,x-x 1)@903_7\&,“_;\3_2)@

vese + D(A,= ), (7.23)

370,00

which we had set out to perform.
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76. The General Problem of the Reduction of the D[k1,l2,kj,kh]

Representation of gl(k, €) under C, .

The discussion of section 7a and equations (7.9),(7.14),(7.15),
(7.23) show how the DLX1,12,13,XA] representation of gl(k, Q)
reduces under G, when any two M\'s are equal. When they are

all unequal, we write .

7\1-)\A=p, )\2—7\.4=q, XB—.)\A_=I‘

and consider DLp,q,r] - The tensor component for the highest

weight, which is simple, is

The highest weight is 271/2 (p+q-r,p-g+r) and this by (3.5) is
the highest weight of the D(p-q+r,q-r) representation of G, .
It may be proved, by the method employed in the previous sec-
tion, that the boundary of the weight diagram of the D(p-q+r,q-T)
representation of 02 is also the boundary of the weight diagram
of the DLp,q,r] representation of g10+,() . Clearly it is
also the boundary of the diagram for all Dip,q+T,r+T] Tepre-
sentations but, since N[p,q+T,r+t] # Nip,q,r] for = #0 ,

the weight diagrams are different.




~4ldy -

Information about the reduction of D[p,q,r] may be ob-
tained by peeling off the weights belonging to D(p-g+r, g-r)
and other representations of C2 . The weights on the bound-
ary for Dlp,q,r] are not simple and the reductiom will not
be an easy matter. Indeed, on account of the difficulty,
pointed out in section 3f, of specifying multiplicities for
the D(A,u) representations of C, , iit will not be possible
to deduce from a study of weight diagrams alone a closed formula
for the reduction. By constructing the tensor components for
weights on and inside the boundary one can obtain the partial

reduction

Dlp,q,r) = D(p-g+r,q-r) @ D(p-g+r,q-r-1) @ D(p-q+r,q-r-2) B ...
(7.24)
@ D(p-q+r=-2,q-r+1)@® D(p-gq+r-2,q-r) @ D(p-g+r-2,9-r-1 YD ... .
This may be useful as a guide to guessing the reduction
in a specific case. One would have to check the dimensions
and also to verify that the multiplicities at each point are
correct. If, for example, we wish to reduce D[6,5,3] ,

we may be guided by (7.24) to write

D[6,5,3] = D(4,2) @ D(4,1) @ D(4,0) @ D(2,3) @ D(2,2) B D(2,1) .
(7.25)
The total number of weights on each side is 630. To check the

multiplicity at the point 33 (1,1) we construct explicitly
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the tensor ocomponents for the p(6,5,3] representation of
gl(4, ) and find thet there are 23 of them. By employing
the rules given in sections 3d and 3f and using the graphical
method whenever the rules are not gtated we obtain for the
representations on the right-hend side of (7.25) the multiplic-

jties at J% (1,1) to be, respectively,

[}
"6y by 2, 5y by 2 -
This adds up correctly to the multiplicity 23 and so verifies
(7.25) .
The reduction under 02 of the irreducible representations
of gl(k, ¢) may, as pointed out in section 5a, be interpreted
in terms of the reduction under the symplectic group sp(l, €)

of irreducible representationms of GL{k, C) .
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CHAPTER VIII

YOUNG TABLEAUX AND WEIGHT DIAGRAMS

FOR g1(7, Q) , o(7,C) AND &,

8a. Relations between g1(7, Q) , o(7,() and G, .
We associate ?he basis vectors x1,x§,x3,xu,x5,x6,x7 of
the representation space of the algebra gl(7, C) with the

weights of the D(7)(1,0) representation of G2 in descending

¢
o
_&N

Fig.8.1 - Basic vectors associated with the weights

of the D(7)(1,O) representation of G, .

order as shown in Fig.8.1. The root diagram for G, is that

of Fig.1.3 and the elements of this Lie algebra are consequently

H1,H2,E1,EZ,EB,EL,ES,EG,E_1,E_Z,E_B,E_A,E_B,E_6 . (8.1)
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The maetrix representing H1 is diagonal and the diagonal elements
are the first components of the weights in the representation of
G2 in question. We saw in section 4c¢ that the weight diagrams
are symmetric about the m, m, axes, 80 the matrix representing
H1 is traceless and similarly the matrix representing H2 is
traceless. Moreover the non-vanishing elements in the matrix
representative of any displacement operptor Ea are off the dia-
gonal. Hence all the matrices corresponding to (8.1) are trace-
less. This shows that G2 is a subalgebra of sl(7, ) and by
exponentiating, as explained in section 5a, it may be deduced
that Cartan's exceptional semi-simple group of rank 2, which we
shall denote by G , is a subgroup of SL(7, () .

It may be verified that G is also a subgroup of S0(7, €) ,
the rotation group in seven dimensions over the complex field.
It was found (McConnell 1968) that G has an invariant bilinear

form which on assigning basis vectors as in Fig.8.1 becomes

= Xy¥y < XY 4 Xg¥o 4 X, Y) + XYz = Xg¥o - Xy, .
In particular

2
-2 X%, - 2 XX + 2 X% + X, (8.2)

is invariant. If now we put

X1+X7 i -x1+x7
— = 1 — = z7
V2 V2




x2+x6 "x2+x6

e 6

xé+x: xé—xi

V2 RS V2 =t
X, = 7

the invariant (8.2) becomes
Z +22+Z +22+22+22+22
3 L 5 6 7 °

G is therefore a subgroup of the orthogonal group o(7, €) and,
as it is also a subgroup of SL(7,C) , it is a subgroup of
s0(7, €) . The order of the Lie algebra so(7, L) , or By

in Cartan's notation, is 21, while the order of G2 , being the
number of elements (8.1), is 14. Thus G, 1is not isomorphic
to so(7, ¢) and G is not isomorphic to so(7, €) .

We might proceed, as in previous chapters, to exemine the
reduction of representations of gl(7, €) under G, using the
method of weight diagrams. Since however G2 is a subalgebra
of so(7,C) , it will be of greater interest to study first of
all the reduction of representations of gl(7, €) under so(7, ) .
This we shall do employing the theory of group characters for the

respeotive groups.
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8b. Reducibility of Representations of GL(7, {) with totally

Symmetric Bases.

If {\] is the Schur S-function for the general complex
linear group in a finite number of dimensions corresponding to
a partition [N, M, )\t] , say, and (M) is the S-function
for the orthogonal group, then (Littlew?od 1940,p.240)

(= () + Zgg () (8.3)

summed for the S-functions {8} of the set & such that in}
appears in a product {[6tint , gfm?\ being the coefficient of
{7\} in the product. The set O is that of partitions into
even parts only:

?]

21, i, 1291, (6], 4,21, oo @ (8ok)

For odd n +the dimension of the representation of o(n, C)
corresponding to the partition [’)\1 M orees A )ods (Littlewood
1940,p+236)

Qq[(ap - aq)(ap *a +n- 2)] ﬂ(2a2 +n = 2) ,

(n-2)t(n=-4)! ... 11

where

as = )\S—s+1; S=1’23"'-_——° (8'5)

The dimension for 0(7, () is therefore
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4
U

3158

[(aﬂ-az)\a1-a3)'\a2-33)(a,|+a2+5)(a1+as+5)(a2+33+5) x
(28,45)(22,+5)(2a5+5) - (8.6)

We apply this to a representation with a basis of totally
symmetric functions corresponding to the partition r].

Equation (8.3) becomes
(r] = () +Zgg, () .

We take different members of (B.L) for © and find the corres-
ponding m's by application of nodes (Littlewood 1940,p.9k).
For & = [2] we have [mn] = [r-2] only and this occurs only
once, so that g =1 . TFor & =[4] we have m = [r-4]
once only and similarly for & = [6] , [8] , ete. . For & =
(22] 1t is not possible to find an [n] that will give [r]
according to the rules of application of nodes. Similarly we
get no contribution for [(4,2], [6,2], [u,zz], ees o Thus

(1) for r odd

fr] = (2) + (r=2) + (r4) + co0 +

(0) for r even
and under 0(7, () we have a reduction of the representation
of G-L(?, () into the direct sum of representations of 0(7, ([)
corresponding to the partitions [r], [r-2] [r-%] ete. . We

write the result
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d(1) for r odd
plr] = d(r)@d(r-2)Bd(r4)D... B

a(0) for r even .
(8.7)
If we denote by m any of the r, r-2, r-4, ... , we deduce

from (8.5) that

and from (8.6) that the dimension N(m) of the d(m) represent-

ation of 0(7, @) is given by
Nm) = (1+m) (141 (4R (143) (8.8)

Moreover since self-associate Young diagrams do not exist for

an odd dimensionality, e.g. for GL(7, €) , the irreducible
representations of 0(7, ) do not further reduce under S0(7, ¢ )
(Weyl 1946,pp.155 and 164).

We next examine whether these representations of so(7, C)
reduce under G . We work in terms of the Lie algebras con-
sidering the possible reduction of so(7, €) under G2 . The
basis vector of the highest weight in the representation of

so(7, €) corresponding to the partition [m] is

(m)

x1(1)x1(2) soe x1 .

This is also the basis vector of the highest weight of the
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D(m,0) representation of G, . From equation (4.9), viz.

M) = (193)(1an) (13 0o) J1+50020) 114 00e3) ]
x [1+(243u) ] (8.9)

for the dimension N(A,u) of the D(A,n) representation of

G2 we deduce that

N(m,0) = N(m) ,

as given by (8.8) . This shows that the representations of
so(7, €) with bases consisting of totelly symmetric tensor
components do not further reduce under G2 , and it will follow
that the representations of S0(7, ) with such bases do not
further reduce under the exceptional group G .

We may therefore deduce from (8.7) that

p(1,0) for r odd
p[r]laD(r,0) @ D(r-2,0) & D(r-4,0) & ... ® {

where D[r] may be taken as referring to either 6L(7, €) or
gl(7,¢) and D(s,0) is then taken to refer, respectively, to
G or G2 . The reduction for the algebras could also, in prin-
ciple, be obtained by constructing the weight diagram for the re-
presentation D(r] and removing from it successively the weights

of the diagrems for D(r,0), D(r-2,0) etc. . However, since

p(0,0) for r even
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as we saew in section Le, it is not easy to state general multi-
plicity rules for G2 diagrams, it would be diffiocult to obtain
by this method the reduction for r greater than 3 , say.

To sum up, the irreducible representations of the general
linear group in seven dimensions, which have as a basis totally
symmetric tensor components, reduce under the rotation group in
seven dimensions but do not further reduce under the exceptional

group.

8c. Reducibility of Representations of GL(7, ) with totelly

Antisymmetric Bases.

We consider the representations corresponding to the part-

stions [1¥)], where r =1,2,... 7 . Then (8.3) becomes

(171 = (1r)+25&n1r m) .

For & = (2] we have to construct one column of elements by
adding two nodes with the same label. This is not permitted
by the rule of application of nodes which forbids the placing
of two nodes with the same label in one column. Hence the

g in the above equation vanishes for & = (2] and it likewise
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vanishes for every other ® of (8.4) . Thus
(171 = (1N,

and the representation does not reduce under 0(7,C) . Since
it is possible to place two nodes with the same label in any
Young diagram that contains more than one colum, we see that
the only representations of GL(7, ) ‘that do not reduce are
those corresponding to the partition 171 .

We next examine the possible reduction as we go from gl (7, €)
to G, . For gl(7, €) the dimension N[7\1,7\2,k3,)\u,)\5,7\6,)\7]
of the representation corresponding to the partition

[x1,)k2,x3,xu,x5,x6,x7] is, according to (5.3), given by

v(6+)»1,5+)~2,l++)3,3+?7+,2+7»5,1+1 ,'}.7)
11 2% 31 4! 5! 6!

N[, ’)‘2’)‘3’)‘4’)‘5’)‘6’)‘7] =

(8.10)
with
V(Z‘I’ZZ’ZB’ZL..’ZS’Zé’z?) = irjj(zi—zj) s
and so
N(1) = 7 = N[16]
N[12] =214 = N[1°]

N[1°] =35 = N[1*]

L}
-h
]
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The representation D(1/] of gl(7,€) 1is just the 5{1)(0,0)
of G, and the p{1] or D[16] representation of gl(7, )
is just the D7)(1,0) of G, . Tms for the partitions 11,
[16], [17] there is no reduction as we go from gl(7, ) to
G2, or from GL(7,C) to G . Furthermore it is easy to prove
(of . MoGonnell 1968) that D(1°] or p[12] of g(7,C) re-

duces under G2" to
51,00 @ (0,1 -

Let us therefore pay attention to p[1°] . For this the
basis vectors are totally antisymmetric trilinear forms. Since
Fig.8.1 and indeed all G, weight diagrams are invariant for a
rotation about the origin through an angle‘% , we chiefly con-
sider basis vectors that have weights in the first quadrant

enclosed between the m, axis and a radius vector meking with

it an angle‘% . We write pgr with p<€qs€T at a point
122
115
12l 112
22
Lbdy g
147 140
2.6 M7 . B
35 126 1L 111
237 135 123
156 23k

Fig.8.2 - Weights for trilinear forms in the
basis vectors of D(7)(1,0) .
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where the weight is obtained by taking the vectorial sum of the
weights related to xp,xq,xr in Fig.8.1, and thus obtain Fig.8.2.
The basis vectors for DL13] must have three different entries,
so from this figuré we can immediately put down in Fig.8.3 the

multiplicities for this representation.

Fig.8.3 - The weight multiplicities for the
D[13] representation of gl(7, C) .

1 1 1
1 2 2 1
1 2 3 2 A
1 2 2 1
1 1 1

Fig.8.4 - The multiplicities for the
527)(2,0) representation of G, .

It is found from section L4e that the multiplicities for
the D(27)(2,0) representation of G2 are as in Fig.8.4. On
subtracting these from those of Fig.8.3 we obtain the reduction

under G2 of the D[13] representation of gl(?,() :
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239437 - 22,0 @ 271,00 @ 21(0,0) .

Since there is no reduction in going from gl(7,C) to so(7, Q) »
we may interpret this equation as expressing the reduction of the
d(13) representation of so(7, ) under G, .

We conclude that irreducible representations with totally
antisymmetric bases, and these alone, do not reduce under
s0(7,€) and that, apart from the a,lmo‘st trivial cases of the

one- and the seven-dimensional representations, they do reduce

under the exceptional group.

84. Reducibility of Representatioms of GL(7, () with Bases

having Mixed Symmetry.

The tensor component for the highest weight of the irreducible
representation D[)»1 ’)\2’13’)‘14,’)‘5’7‘6’)\7] of GL(7,{) that corres-

ponds to the partition [7»1 ,7\2,7x3,7\h—,7x5,7\6,7\7j is

IR T
22  eeeeees 2

33  ceeee 3

L4t eee bt

5 eee 5

6 ee. b

L7...7 .
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It is clearly simple. On referring to Fig.8.1 we see that the
highest weight is
- - - A - -
2(7\1 17) + (XZ 6) + (Xj )5) 5 XB + Xs Y

, . (8411)
L V3 L

If this is the highest weight for a D(A,0) representation of
the exceptional group G , then according to (4e5) the m,
will vanish. This requires that Xz 4 13 and K5 = K6 , 8O

the Young diagram will look like

(8.12)

This will include the cases of the partitions

r]l, r°), 1, (')

and in particular

11, 431, 181, .
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If (8.11) is the highest weight of a D(O,t) representation

of G, equation (4.5) shows that m, =‘f3m2 and this is found
to imply that 7»1 =x2, )\.3=)\)+=7\5 and )\6=’h7. The
Young diagram has the shape

(8413)

This will include the Young diagrams for the partitions

2], (21, 71,

and in particular
21, 121, (.

We shall examine the simplest case of a representation
whose basis consists of tensor components that are neither
totally symmetric nor totally antisymmetric, namely, the repre-
sentation that corresponds to the partition [2,1] . Its Young

diagram belongs neither to (8.12) nor to (8.13). When the
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representation of GL(7, €) is reduced under 50(7,C) ,

equation (8.3) gives

{2,141 = (2,1) + (1)

and therefore

D[2,1] = a(2,1) @ ?(1) . (8.14)
Now from equation (8.10)
N[2,1] = 112

end, since the dimension of d(1) is 7 , the dimension of
d(2,1) must be 105 , as we can verify by referring to equa-

tion (8.6). We express (8.14) more precisely by

D(112)L2,1) - d(105)(2,1) ® d(7)(1) .
(8.15)
Let us see how the irreducible D[2,1] representation of
gl(7, €) reduces under G, . Returning to Fig.8.2 we can
readily calculate the multiplicities for this representation;
for example, the point with the entries 115, 124, 223 has
as basis vectors the tensor components corresponding to the

Young tableaux
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The weight multiplicity is therefore L . We then plot all

the multiplicities in Fig.8.5.

1

Fig.8.5 - The weight multipliocities for the
D(112)[2,1J representation of gl(7, () -

We see from (L.5) that the highest weight in Fig.8.5 is
the highest weight of D(1,1) , which according to (8.9) is
6L~dimensional. By using the graphical method of Chapter Iv
it may be shown that the multiplicities of the D(G“)(1,1)

weight diagram are as in Fig.8.6.  When the weights of this

1
1 2 2 2 1
1 2 4 s 2 1
2 L kb2
1 2 4 k2 1
1 2 2 2 A
11

Fig.8.6 - The weight multiplicities for the
D(64)(1,1) representation of G, .

figure are subtracted from those of Fig.8.5, we are left with
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those of D'7)(1,0) as in Fig.8.1, those of 221 (2,0) as

in Fig.8.4 and those of D(1h)(0,1), since this being the reg-
ular representation has a diagram with two weights at the origin
and one at the extremity of every root vector of Fig.1.3.

Hence the D|2,1] representation of g1(7, ¢) reduces under

G2 as

p(12)(5,17 = p{8)(1,1) & 027 (2,0) & 0" (0,1) o0 (1,0 .

On comparing with (8.15), adopted for Lie algebras, we deduce
that the d(105)(2,1) representation of so(7, () reduces

under G2 as
21095 1y = o811y @ (2,00 @ 2 ™(0,1) .

We must remember that the (2,1) here refers to a partition, while
the (1,1), (2,0), (0,1) refer to (A,u) values.

We conclude that, when a basis for an irreducible represent-
ation of GL(7, ) consists of tensor components with mixed
symmetry, there is in general a reduction of the representation
as we pass to the subgroup o(7, C) and a further reduction as
we go to its subgroup G . We obtained for the above specific
example the first reduction from the theory of group characters
and the second by combining this with an inspection of weight

diagrems. While it is not easy to state in precise terms
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general theorems for such successive reductions, the reduction

for simpler Young diagrams can often be carried out without too

much difficulty.
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