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oSO UERNIONS, LORENTZ TRANSFORMATIONS, AND THE CONWAY-DIRAC-EDDINGTON MATRICES

by
Je. L. Synge

Dublin Institute for Advanced Studies

I. Introduction.

It is now sixty years since Conway (1911) introduced quaternions
s a notation in the special theory of relativity. He was followed soon
after independently by Silberstein (1912), and a number of papers on the
sub fect were subsequently written by Conway and others. Yet, on the
whole, quaternions have been used very little in relativity, and one may
ask whether this is due to some inadequacy in the notation or to other
reasons.

An ordinary quaternion is composed of four real numbers, and
ordinary quaternions form an algebra under addition and multiplication.
ney are therefore easy to uss. However, their particular field of
applicability is Euclidean L-space, not Euclidean 3-space nor space-time.
Reflections and rotations in Euclidean L4-space lend themselves admirasbly
to quaternionic treatment, as has been shown by Coxeter (1946) in a very
ciearly written paper. For the application of quaternions to reflections
in Buclidesn 3-space, see Tuckerman (1947) and Wagner {(1951).

3ince Minkowskian space-time can be converted formally into

suclidean 4-space by the simple expedient of imaginary time (xL =1it),

M

nd since a Lorentz transformation may be regarded as a rotation (with

perhaps & reflection) in Minkowskian space-time, it might appear that

Lorentz transformations could be treated by quaternions with nothing



more than minor adjustments arising out of the imaginary time.
But that is not the case. The intrusion of the imaginary
element is not trivial. To explain this, let us use the expression

Minkowskian guaternion (or minguat for shurt) to denote a quaternion

which is the sum of a real vector and an imaginary number. Minquats

belong to the wider class of complex guaternions (biguaternions

Hamilton called them), and com lex quaternions form an algebra under
addition and multiplication. But, and this is the difficulty,

minquats do not form an algebra; the sum of two minquats is a minquat,

out the product of two mincuats is not in general & minquat.

To deal adequately with Lorentz transformations, we must (as
will be seen later) use complex quaternions, and indeed there is no
trouble here because they form an aigebra. What is troublesome is the
fact that we are constantly compelled to come down out of this wider
jomain into the domain of non-algebraic) minquats. If quaternions
are to receive due attention in relativity, this point must not be
slurred over. If it is slurred over - if, in fact, attention is not
constantly directed as to what is real, what imaginary, and what comrlex -
then the intending user is likely to reject quaternions as a confusing
netation.

The primary aim of the present paper is to give a brief but
complete account of the aprlication of quaternions to Lorentz trans-
formations, general and singular. There is little novelty in the
results, except perhaps in regard to the singular transformations,

which do not appear to be well known. I take this opportunity to
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acinowledge that on a previous occasion (Syhge, 1956, p. 93) I
overlooked the singular transformations, and to thank I. Robinson and
A. H. Taub for drawing my attention to the omission; in a later
edition (Synge, 1965), this is corrected.

This paper being in fact a tribute to the work of the late
Professor Conway, I have included a section dealing with his
quaternionic approach to the matrices associated with the names of
Dirac and Eddington. The paper ends with a list of references, in
which the titles of papers are included to make it more useful. But
since my aim is expository rather than historical, I have not attempted
to assign specific formulae to their originators.

I thank Professor C. Lanczos for discussions which have

gregtly illuminated the subject for me.

2. The three standpoints.

To gain a complete understanding of the Lorentz transformation,
one must view it from three different standpoints: (i) physics,

(ii) geometry, (iii) algebra.

(1) Physics. In modern quantum physics the Lorentz transformation is

so closely woven into the basic equations that it is impossible to
sepavate the physies from the algebra. I shall consider here only the
traditional physical approach, in which two observers in uniform relative
motion compare observations made on moving particles or photons,
describing what they observe in quasi-Newtonian terms, velocity being

the J-vector (dx/dt, dy/dt, dz/dt) and so on. Since the Newtonian

notation is badly suited to the discussion of relativity, calculations
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become very complicated unless the two observers cooperate in their
choices of spatial axes in such a way that the Lorentz transformation

takes the simple familiar form
| -2
' =y(x-vt), 7' =y, 2" =z, et =xy(t -vx),y T =1-v".

Hence emerge the formulae for rod-contraction and clock-retardation.
But the Newtonian notation obscures essential features of the Lorentz
tranaformation, and in that notational Jjungle the famous 'clock
naradox' continues to be reborn, no matter how often it is brought out
into the light and killed. Nevertheless, in so far as the Lorentz
transformation belongs to physics and not to pure mathematics, it 1s
from the physical standvoint that any geometrical or algebraic formula

is ultimately to be assessed for meaning.

(ii) GCeometry. vace-time in specisal relativity is a flat L-space

for which, if the coordinates are suitably chosen, the metric form is

ax“  + dyg + dzz - dtzi

We have then an orthonormal tetrad of axes of reference, and a Lorentz
transformation presents itself in two 2ifferent but equivalent ways.
We may hold the axes fixed and give tc space-time a displacement which
is rigid in terms of  the metric {2.2), or we may hold space-time
fixed and change the axes rigidly. However, it is more in the true
spirit of geometry tc forget about coordinates, and to think of a
Lorentz transformation as a rigid displacement of space-time into

itself, in much the same way as we are accustomed to think of an

(2.2)
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orcinary rovation in Euclidean 3-space.
There are four types of Lorentz transformation: 1t may be
proper or improper, future-preserving or future-reversing. The

ollowing symbolism may be used:

future-preserving future-reversing
Lrroper (+ +) ('l' ")
(2.3)
LMpProner (- +) (- ~)

These types are best defined by considering what happens to an
orthonormal tetrad as a result of the transformation. Let T and T
denote the tetrad before and after. The transformation is proper if
T can oe changed into T' either (a) by continuous transformation
preserving orthonormality, or (b) by this followed by reflection in
the origin of space-time: otherwise it is improper. It is future-

preserving if the timelike members of T and T' point into the same half

of the null cone, and future-reversing if they point into different

halves. Future-reversal, ilmportant in modern physics, is without

meaning in the traditional physical view described above.

(iidi) Algebra. A Lorentz transformation is a linear transformation

{iﬂH;E;t) - (x',y',z',t') with the conservation

2 2
SRS y2 1 32 - t? = x'2 + y'2 + 3'2 -~ t'2. (2.4)

If X stands for the column matrix with elements (xiy,z,t), a Lorentz

trensformation may be written

X‘ = L}:J (2-5)



where L is a 4 X4 matrix satisfying
P
ImL = m, (2.6)

where tne tilde denotes transpose and m = diag (1,1,1,-1), the
Minkowskian matrizx. The symbols in the scheme (2.3) may be obtained
by writing down (detL, L@h) and replacing these quantities by their
S1gNns. It is obvious from (2.6) that detL = +1 or -13; the former
belongs to a proper transformation, the latter to an 1mproper one.
L@g 1s positive and negative for fiture-preserving and future-reversing,
respectively.

A Lorentz transformation conserves scalar products; if it
carries (x,v,z,t) into (x',v',z2',t") and (K,Y,Z,T) inte (X',Y',2',T'),

then
XX + vY 422 = tT = x"X" + 'Y 4 z'Z' - £'T', (2.7)

Indeed this is the best way to look at a Lorentz transformation, for,
if (2.7) holds for every pair (x,v,z,t), (X,Y,2,T), then the trans-
formation is linear with the conservation (2.4), and so it is a Lorentz
transformation.  Thus (2.7) is both necessary and sufficient for
Lorentz character.

Any proper [uture-preserving Lorentz transformation may be

written in the {fornm

~ i
Ll' - D 1 D 3 (2-8)
where
T + 2 ¥ - iy ax B
- -— - O
u = :{+i}?‘ £ - 5 3 D = \ '5' 9 dEtD—“I, (2-3;}

the star indicating complex conjugate.



Ihav tihis gives the conservation (2.4) is verified immediately by
taking the determinants of the matrices in (2.8).

As will be shown below, we can also express a Lorentz trans-
formation in terms of gquaternions. The formula (2.8), which belongs
to splnor theory, is a link between matrix methods and quaternion
methods.

Tnls completes a brief review of the background against which
8 quaternionic treatment of the Lorentz transformation may fittingly

be disrlayed.

3. Quaternions and minguats.

We have to deal with numbers (in general complex - complex

conjugates will be indicated by a star) and guaternions. A quaternion

1s an expression of the form
9= Q48+ e, + qze; + Q) (3.1)

are guaternionic units,

where Qy s q2, qi, qh_are numbers and 31, 52, e3

which satisfy the non-commutative multiplication rules

62 - o2 - 2
17 T2 7 73

= -1,

5255 = €, = —ejeg, 3551 = e, = —9153, e, 8, = 33 = “6261- (3.2)

A quaternion is essentially an ordered tetrad of numbers, and we

may write (3.1) as
1= (a5 95 235 9,), (3.3)

with the understanding that it is a matter of indifference whether we

write ¢,e, or e, o and so on. We write = 0 if, and only if, the four
‘1‘1 -14.--‘., q ; >

: i
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nunbers in the tetrad vanish. We write q = q' (and say that the

two quaternions are equal) if, and only if, their two ordered tetrads
are the same. Te add or subtract two quaternions, we add or subtract
the numbers in their respective tetrads. To multiply a quaternion by
a number, we multiply the numbers in its tetrad by that number.

To multiply two quaternions, we proceed to multiply out two
expressions of the type (3.1) as we would in ordinary algebra, but
with one important reservation: we do not treat the multiplication of
quaternicnic units as commutative. Instead, we substitute for
ordered products as in (3.2). Thus the product of two quaternions

is itself a guaternion. In fact, quaternions form an algebra under

addition and multiplication.

We have been considering complex quaternions (the biquaternions

of Hamilton). If the tetrad of numbers as in (3.3) are real, then
we have real quaternions. It is easy to see that they too form an
algebra under addition and multiplication, for at no stage can a
complex number leak 1n.

A quaternion as in (3.1) (in general complex) possesses two

types of conjugate:

* * # * *
q"'l e,1+q232+q5e5+q4

Complex conjugate: q

(3.4)

Hamiltonian conjugate: g

- q1e1 - qzeﬁ - qjej -+ qh .

F4

For two or more quaternions we have

# * % * * % %*
(qiqﬂ) - qt qu , (qiqﬂqﬂ!) — qt qﬂ qﬂl , ees X (3_5)



W: JET': (q'q"q"'T= g g" q', ... (5_6)
Here (3.5) is obvicus: the first of (3.6) is easily verified, and the
others then proved bv induction.

The norm of a guaternion g as in (3.1) is

- 2 2 2 > -
19 =9 +*aq *a; +g° = qgq, (3.7)

and the scalar product of two quaternions p, q is

z(p a + ap) =p,q + Dy, + p5a; + 2,9 =2(p g+ ap).  (3.8)
The ncrm and scalar product are numbers, in general complex, the norm

being of course the self-scalar-product. As an alternative notation,

we may write

(QIQ) = Q.E; (P:Q) = (Q:P) = %(P Eﬁ+ q‘E)' (3-9)

Then from (3.2) we have

('E,.I: 31) -~ (Egﬁ 32) = (55? Eﬁ) = 1?
(525 53) = (353 52) = (Ejg E?) = {51: E;) = (51: EE) = (92: 91) = 0,
(3.10)

which suggests that we might regard €,5 €55 €, &8s an orthogonal triad

3

of umii vectors in Buclidean 3-space.

A nuaternion g is a unit guaternion if

(e,0) =g g =+1, (3.11)

and we shall call it a positive or negative unit quaternion according

as the 2ign is plus or minus.
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For the applicaticn of quaternions to Lorentz transformations

it is essential to introduce Minkowskian quaternions (or, briefly,

mlnguats): a minquat is a gquaternion

where (q1, 0¥ q3} are real numbers and qh a pure imaginary.

Silberstein (1912} called this a physical gquaternion; Fischer

(1557, p. L) called it & technical physical quaternion.

A minguat is of course a complex quaternion. If we add two
minquats, we get a minguat. But if we multiply two minquats the
result, in general, is a complex quaternion which is not a minquat -
the imaginary element leaks into the first part. It is clear then
that minquats must be handled with circumspection.

The reason for introducing minguats is this. Let X, X, 33, xj+
be an event in space-time, with x, = it (imaginary time). Then the

),

minquat

X = X, e, + X . €e_ %+ X_e._ + X (3.1})

171 2 2 553 L

may be regarded as a L-vector in space-time. Although this is a

complex gquaternion, the norm and scalar product are real:

i

i

F - 2 2 2
1x,x) = XX X, + X, + x, - L,

oot e (3.1%)
{ 1Y e ; - 1 q I '
XX = olx x'+ ¥'x) = x,x) 4+ ¥l o+ x.x, - tt'.
g / ( ) ,.1 ..1 y. % 3 3
These are invariant under Lorentz transformations. The L-~vector is

spacelike, null, or timelike according as its norm is positive, zero,

or negative.
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It is important to note that g is a minquat if, and only if,

T o+ q = 0;-] (3.15)

s

Tris 1s obvious by (3.4). If we use S and B to denote the operators
"star" and "bar" as in (3.4), with I for the identity operator, we
have

52 = B® = I, SB = BS. (3.16)

The minquat condition (3.15) may be written in the following forms:

- B

(B+S)g=0, (SB+1I)g=0, g +q=0. (3.17)

i« Reflections and Lorentz transformations.

Let p be a unit quaternion, so that

(pyp) =pp = e(p) = + 1. (441)

Let g be any guaternion. Then the formula

qg'' = -e(p)pap (4.2)

transforms g into another gqguaternion q'. This formuls may be

inverted by multiplving by E on the right and on the left, giving

¢ = -e(p) pq' p, q = -e(p) p q' p, (4e3)

which last is of the same form as (4.2) with g and q' interchanged.

e — —

Another useful form is obtained by multiplying (L.2) on the right
by p:

g'p + »q = O. (4ods)



2t = -e(3) T ¢, (4.5)

All these several rorms retresent the same transformation

q—>» q'. We shall now see that this transformation has an

important property: it conserves scalar croducts. To prove this,

let g and Q transform into o' and Q', so that we have

g' = - E(}:‘) 2 E -9 ' = - E(p) P 5 Pe '\‘J""’S)
Then
' Q' =pq3pQp = e(p)pqQo,
(4.7)
'q'=:Qrogp = e(p) p Q q £.
Adding and using the notation (3.8) for scalar products, we get
(¢, Q") = e(z) p (q,Q) . (4.8)
But the scalar usroduct is 2 number snd so can be carried out in
front, giving
(e', Q') = (q, Q). (4.9)

The conservation of scalar products is established, and this includes
the conservation of norms.

The conservation of scalar »roducts is the essential property
of Lorentz transformations, but it would be wrong to call (4.2) a
Lorentz transformation, since a Lorentz transformation scts on

h-vectors (minquats), whereas so far q is any complex quaternion.
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Let = now take both p and g to be minquats, so that
o +p*=0,pp= e(p)=2+1,q+qg*= O.

Apart from being a minquat, q is free. To show that (4e2) is
indeed a Lorentz transformation, we have to show two things:
(2) Minquats transform into minquats.

(b) Scalar products are conserved.

To establish (&), we carry out application of star and bar

as follows, using (L.10):

' = -e(p)pap= e(p)p q* p,
q'* = e(p) p* qp*= e(p)pap = -aqa',
qI# +E' = D:

50 that g' is a minquat. The conservation of scalar products has

already been established.

Let us restate this result which is of basic importance.

Let p be any unit minquat, so that E + p¥* = 0, p'E = e(p) = + 1.

Then when applied to any minguat q, the transformation

'

' = -e(p)paqrp

is a Lorentz transformation (i.e. it conserves minquats and their

scalar Jpruductsl

When applied to p itself, (4.12) gives

The minquat (or Lh-vector) p is reversed by the transformation,

(L4.10)

(4011)

(4.12)

(4.13)
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whixch is in fact a reflection along p, i.e. a reflection of space-

time in the 3-flat orthogonal to p.

We have now to ask this gquestion: Given two minquats, q

can we find a unit minguat p such that the transformation ;g.12)
carries q into q' ?

i

and q',

Since the transformation conserves the norm, it is clear that

the answer is negative unless g and g satisfy

9 q=24q'aq'.

(4.14)
We shall accordingly assume this to be the case. Then, using the
form (4.4) for the transformation, we seek %o find p to satisfy
Q' P+pa=0, D+p*=0,pp=celp)= +1. (4e15)
The solution is far from unique. Let us seek one of the form
p= 6(q" - q), (4.16)
suggested by the reflectional property, 6 being real number.
Substitution in the first of (4.15) gives
' p+pa=06[q' (g -q) + (q' - q)ql =0, (4417)
by (L.14).

The second of (4.15) is also satisfied, since q and

qi'
It remains only to satlisfy the last of (4,15), that is,

6%(q" - q)(3' - )

are minquats.

= E(p) = + 1. (11--18}

If (q' - q) is spacelike, we are to take the upper sign; if timelike,
the lower sign.

In either case & exists, with an ambiguity of sign,
which is trivial since (L.12) is even in p.
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Thus p exists, satisfying the required equations (4.15)

unless (q' - q) is a null minguat. For our purposes this does not

lmpose a serious restriction. It means that, given q, we are to

avoid minguats q' of the form

e

q'l — q + n (#-19)

where n is null, i.e. nn = O. Since the norms of q' and q are

equal, (4.19) gives

q' EW = (q + n)(a'+'ﬁ) =qQQq +4yn +ngqg
or

(a,n) = oO. (14.20)

Thus the reflective process g =% q' can fail only when g is
orthogonal to a null vector. From our knowledge of Minkowskian
geometry we know that no timelike vector can be orthogonal to a null
vector, and so there exists a reflection (or Lorentz transformation)
which carries a timelike vector into any other timelike vector of the
same norm. If q is spacelike, we cannot reflect it into a timelike

S

q' because their norms differ in sign. But if g and g' are both

= — e

spacelike (with the same norm) and they are both orthogonal to some
timelike vector, then (q' - q) is spacelike and we can effect the
reflection taking_g into ﬂ'. It would be possible, but tedious, to
validate these conclusions algebraically.

We are now to see that any Lorentz transformation can be

accomplished by a succession of three or four reflections. We start

with the idea that a Lorentz transformation is a displacement of all



the events of space~time such that some specified orthonormal tetrad
of vectors is carried into another specified orthonormal tetred.
Sacn of these “etrads includes a timelike minquat, say T for the
«nitial tetrad and T' for the final tetrad. Our first task is to
carry T inte T' by a reflection along some unit minquat, say v with

vve=e(v)=+1. TWe know that this can be done: then the trans-

formation of all minquats q is of the form

—

a' = - E(v) v E V. (1|..2“|)

-

This is only the first ster in the complete Lorentz trans-
formation, but we must pause to consider the meaning of the sign of
e(v). In Minkowskian space-time the complete null cone has twc
distinct parts. If the 4-vectors (or minquats) T and T' point into

the same part of the null cone, we have a future-preserving

transformation; then the difference (T' - T) is spacelike, and
cef. (4.18)] e(v) = 1. On the other hand if T and T' point into

different parts of the null cone, we have a future-reversing

transformation; +the difference (T' - T) is timelike and e(v) = -1.
Having made the transformation (4.21), our two tetrads have
a timelike member in common. The remaining members of each tetrad
form an orthonormal triad, orthogonal to the common timelike member.
A reflection, say u with €(u) = 1 since u is necessarily spacelike,
will bring the first member of a triad into coincidence with the

first member of the other triad. This gives & transformation



-17-

qﬂ = - U q' '!.1, (l|--22)
and so, by (4.21), the whole transformation up to this point is
q" = e(v) uvqv u. (L.23)

Another coincidence of members of the tetrads will be achieved by

some reflection s with e(s) = 1, and this gives the transformation

qur - = g qu s, (l|..2"+)
so that the complete transformation to this point is
Q"' = -¢e(v)suvgvus. (4.25)

We have now brought three members of +the o0ld tetrad into
coincidence with three members of thé new tetrad. Each of the
three reflections reverses the orientation of the tetrad, and so we
are left with a tetrad with an orientation opposite to that of the

original tetrad. Now a proper Lorentz transformation is one which

conserves orientation; an improper one reverses orientation. Thus
1f the transformation is improper, it has been completed as in (4.25)
by means of three reflections, since, if three members of an
orthonormal tetrad are given, the fourth member is defined within &
reversal of direction. But if the transformation is proper, we

shall have to add one more reflection, say r with e(r) = 1:
qQ"" = - p E"'T* (L.Eé)

With (4.25) this gives, for the complete transformation,
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t

g" =e(v)rsuvgvusr. (4.27)

Let us now simplify the formulae by writing q' for the left

hand side of (L4.25) and (4.26), and summarise as follows: All

Lorentz transformations (proper and improper, future-preserving and

future-reversing) may be exhibited as follows:

proper: q—> q'=¢(v)rsuvagvusr, (L.28)
improper: q —» q' = -¢e(v) suvgvus,
future-preserving: e(v) =1,

future-reversing: e(v) = 1.

i

If we write
rsuv = a, (4.29)

then, since these factors are minquats, it follows that

i
35

vusr = a . (L4+30)

Further,

EI.E = E(v)- (ll--.?ﬂ)

Treating the second of (4.28) in a similar way, we may suppress the

individual reflection vectors, and state that all Lorentz trans-

formations are included in the scheme

proper: qQ-—> q' = gaqga ,

improper: g —> q' = -€agqa *, (1.32)
future-preserving: e = 1,

future-reversing: £ = -1,

EELE — E
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or, in tabular form,

proper improper

fluture-greserving q' = aqa* q' = - a q a*

(4.33)

future-reversing q' = ~ a q a¥ q' = a q a¥

We are to note that, although a is built up out of minquats, it is
itself a complex unit quaternion, not a minquat in general.

In the formulae (L4.33) we have succeeded in expressing all
Lorentz transformations in terms of qguaternions. The argument has
been somewhat long because it was desirable to make sure that all
Lorentz transformations were included and classified into proper
and improper, future-preserving and future-reversing.

Henceforth we shall concentrate on the proper future-

preserving transformation

q —» q' =aqga¥*, aa=1. (La30)

As derived above, the unit quaternion a is a product of four
minquats, and the question arises whether (L.34) is a Lorentz
transformation only for an a constructed in that way. Let us test

the matter, using (L.34) with no restriction on a except

&2 a8 = 1 (4+35)
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Let g and Q be any two minquats and gq', Q' their transforms. We

have
- — — ¥ e
Q' = aqa s Q' =a Qa , Q' =a Q a,
' Q'=aqga a Qa =agqQa, (1.36)
using the complex conjugate of (4.35). Likewise

Adding this to the preceding equation, we get

(¢'; Q') =a(q, Q) a =(q, Q) aa = (g, Q). (4437)

Thus the transformation (L4.34), for any complex a satisfying
(L.35), conserves scalar products. But does it conserve minquat

character 7 Let us see:
q' =aqa , ¢ = a q a = -a 'E'; s (#.58)

since q is a minquat. But
%

q'= a q a = =-4q' , (4.39)

which establishes the minquat character of q'.  Thus the trans-

formation (4.34) conserves minquat character and also scalar

products. But what is the number of degrees of freedom ? We know

that a Lorentz transformation has in general six degrees of freedom.
Now a, as complex quaternion, contains four complex numbers, i.e.
eight real numbers. The condition (4.35), being complex, is

equivalent to two real conditions. Thus the transformation (L.34)
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hes & - 2 = 6 degrees of freedom, the same as a Lorentz trans-
formation. Since (4.3, ) conserves scalar products, we are
entitled to conclude that it adequately represents all Lorentz
transformations of one of the four classes. But which class ?
This is answered by choosing, as we mav, a = 1. Then the trans-
formation is the identity, q' = g, and this is surely a proper

future-oreserving transformation. Since change of orientation

and future-reversal are discontinuous operations, they are

inconsistent with (4.34), since any positive unit quaternion & can
be reached continuously from a = 1.

Thus although the construction of Lorentz transformations
in quaternionic form by a succession of reflections is of interest,
it is possible to start with (4.34) and verify directly that it
represents the most general vroper future-preserving Lorentz
transformation. A similar verification can be carried out for the

other three transformations shown in (L4.33).

But is the positive unit quaternion a in (4.34) unigue ?

Might we not express the same transformatlion in the form

q,"—"b"»'lb ’ bg=15 (Li--li.ﬂ)

with b £ a ? If we can, then

— —

2ga = baghb (Lal1)

for all minquats q. Let us multiply in front by b and behind by

X

a .- This gives
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- -

baq?—"q.bﬂ’
or

% -

cg =q¢ , ¢ = b a. (4ali2)
-, * .
Fut g = 1 (a minquat): this gives ¢ = ¢ and so ¢ is a real
quaternion, say

C = ciey 4 Che, + Cz85 + O (Lali3)
Put g = 2, in (4,42): we get

- Cy - c293 + c332 + che1 = = c1+ c233 - cjez + E.1ﬂJ+ ’

and 50 ¢, = ¢, = 0. Put g = e, this gives ¢, = 0, 2ad so ¢ is

2 3z 2 1
merely a real number. But
cec = E.a E b = 1,
and so ¢ = + 1. It follows from (u,az) that
b = + a. (Lolids)

Thus, if we are to preserve the transformation (4e34), the only

change we can make in the unit quaternion a is to reverse its sign.

To sum up: Any unit quaternion a defines a Lorentz trans-

formation ms in (4.33). A Lorentz transformation defines a unit

quaternion a up to an ambiguity in sign. Although the details have

been filled in only for a proper future-preserving transformation,
the stastements are true for all four types in {4.53). It is of

course obvious that those formulee are invariant under sign-reversal

of the guaternicn a.
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This duality is of importance since it corresponds to the
duality of spin-transformations yielding a given Lorentz trans-
formaetion. But for present purposes it is unimportant, and, in
deeling with a Lorentz transformation, we shall assume that the

unit quaternion a is given one of its two possible values.

5. General and singular Lorentz transformations.

Henceforth let us confine our attention to the simplest and
most interesting type of Lorentz transformations, the proper future-
vreserving type. Under such a transformation, any minquat (or

Minkowskian L-vector) g goes into q' where

q'=aqﬂ 3 (5'1)

Where a is any positive unit quaternion:
a ; - 1. (5#2)

A study of Lorentz transformations thus reduces to a study of
positive unit quaternions, in general complex.

It is convenient to refer to a quaternion of the form

3131 + E2E2 -+ {35&3

as a vector, Cys Cp C being numbers, in general complex. Then
(a - a) is a vector, while (a + a) is a number, and we may resolve

the quaternion a into a vector and a number by writing the identity

a=z2(a-a)*s(a+a) (5.3)
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Then, from the unitary condition (5.2), we have

(a+2) -(a-28)°=kan = L (5.4)

We have now to consider two separate cases:

(i) General case: z(a ;j # + 1.

(5.5)
(ii) Singular case: s(a + a) = + 1. (5.6)
We shall examine each in turn.
(i} General case. Noting that the square of a vector is a
number , we can, in view of (5.4), define a complex number X
(uniquely except for sign) by the equations
Because of (5.5), ¥ s not zero or a multiple of m, and so
(having chosen one sign for 1) we can define a vector 1 by
I siny = %(a -'gj; (5.8)
We have then
2 —
I — ""1, I =+ I = C',

(5.9)

the lzzt of these thﬂlﬂg for any vector. Returning to (5'3)3

we note that in the general case any positive unit guatarniun a

may be expressed in the form

a = cosy + 1 siny ,

(5.10)

where y 1s a non-zero complex number.

On account of (5.9), this
may also be written

5

H

exp( y I). (5.11)
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Either of these expressions may be called the first standard

form of a in the general case.

(ii) Singular case. In the singular case, (5.4) gives

(a -';)2 = 0. (5.12)
Define the vector J by

J (5.13)

i
[l
—
{0

!

@ |
i

Then

he

(5.14)

]
o
Cy
+
il
1
o

Since a reversal in the sign of a does not alter the transformation
(5.1), we may arrange, without essential loss of generality, that

the upper sign holds in (5.6). Then (5.3) gives

This may be called the first standard form of a positive unit

guaternion a in the singular case.

To sum up, the Lorentz transformations read as follows:

%
(i) General case: q' = exp(y I) qexp(~y*1I), (5.16)
12 = o 1, I + T = 0.
*
(ii) Singular case: q' = (1 +J)q (1 -7), (5.17)

N
n

0, J+dJ = 0.

Note that the vectors I and J are in general complex vectors.

Let us check up on the numbers of parametzrs. A Lorentz
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working out the right hand side of (5.20), and comparing it with

the lef't hand side, we obtain the transformation

x' = x cos(y - y*) + it sin(y —;{"),
y' = y cos(y +y*) - 2z sin(y + y*),
(5.22)
z' = y sinfy +-x*) + 2z cos(y +*x*),
t' = ix Ein(}: —x*) + t c{}s(x —'x*).
In the second and third of these equations we recognize a rotation
in the (y,z)-plane. If we now choose y = ziff, with @ real, this
rotation disappears, and we are left with
x' =xcosh f§ - t sinh £,
y' =y, z' =z, (5.23)
t' =t cosh § - x sinh f.
On putting tanh @ = v, this reduces to the familiar form (5.19).
It may be noted that when we take, as above, I real and y
a pure imaginary, then we have a ) = a. Silberstein (1924, p. 154)

did not make it clear that a transformation q' = aqga, although
adequate *o describe the transformation (5.19), does not in

genersl preserve minguat character.
6. Invariant null rays.

(i) General case. With I as in (5.16), define quaternions m and n by

m=i(I + i)(I# +1), n=1i(I - i)(I* -i). (6.1)
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We heve

m = i(wI* + (-I + i), m# = ﬂi(I# - i)(I - i)#

and so

Thus by (3.15) n» (and likewise n) is a minquat. Further, since
(1" +3)(-I" +1) = o,

and the same equation holds with i changed to -i, we have
mm = 0, nn = 0.

Thus m and n are null minquats, i.e. L-vectors lying on the null

COTe .

To see what happens to m under the Lorentz transformation

[5.16), we write (rememhering that y is a numher)

#
m —p» m' = Exp(:{ I)m E]{p(—'x* I)

¥hen we expand the last exponential and multiply the series by

!F * - L i E

(1 + 1), every term except the {irst is destroyed by virtue of
(6o )e A similar destruction of terms ccecurs with the middle

exponeniial, and we get, with a similar result for n,

; il
m—3> m' = knm, n —»> n' = k n,

(6.2)

(6.3)

(6.4)

exp iy~ y*) exp y(I - i) i(I+i)(I*+i) exp [~ x*(:t*- i)l].

(6.6)

(6.7)



where k is the real number

k exp i( Y - '3{*). (6.8)

Thus the null rays on which m and n lie are invariant under the

Lorentz transformation, the null vectors being extended and

contracted in the ratios k and k—1. The 2-flat containing m and n

is unchanged as a whole by the transformation.
It follows that the 2-flat orthogonal to m and n is
unchanged as a whole; in fact, 1t undergoes a rigid rotation.

To examine this, we introduce the comnlex auaternions
3 S a

* # %
P =i(I +i) I -i)= iII +i+I -1 ,
* # * (6¢9)
g =i(1 -i)(T+1i)= 1iII +1-I+1.
These are not minguats, but by addition and subtraction we obtain
the minquats
" ¥ I . * -~
r=5(P + Q) = (I I + 1), s =5 i(P - Q) = i(1 -1 ). (u.@ﬂ)
Under the Lorentz transformation (5.16), we get
P —» P'=F exp il y +%x*); ,_
(6.11)
Qo =p §'=Qexp (-i(y +x¥)],
and hence
r =y r' =r cos © + 5 sin ©
(6.12)
s —» s' = -r sin® + s cos 0,
v = vy + x*.
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1% . ensy to see that r and s are orthogonal to m and n.

Thus tha Lorentz transformation (5.16) rotates the 2-flat

orthogoenal to the invariant null rays through an angle ( X *‘I*)'

(i1} gSingular case. With J as in (5.17), define n by

=
n =-id4J . (6.13)
Then

*
=~1dJ J, n = iJ J,n4+n = 0,

i3

— *  * (6'14)
nn ==JdJ J J

i
O
-

Thus n is a null minquat. Under the singular Lorentz trans-

“ormation {5.17) we get

-
n— n'"'={M+J)n(1-J)
= =i(1 + J) 35 (1 - J')

=-130(1-3)=-137 =n. (6.15)

Thus the null minquat n is unchanged by the transformation, and

indeec the whole null ray on which it lies is unchanged pointwise.

Define now twc real vectors r and s as follows:
* *
o= Jd 4 J ’ S = i(J - d ). (6;16)
It is sasy to show that

rn+nrs=0_, sn+ns=90, rs4+sr=0, (6.1?}

so that n, r, 8 form an orthogonal triad; in fact, r and s lie

in the 3-{'lat tangent %o the null cone along n. Under the
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transformation (5.1?), we get

rey = (1 43T+ INA =T

(1 + 3T+ -33)

Il
c
+
=
i
H
Sl

and

s —3 s' = (1 + J)i(J - J*)(1 ~ J*)

1(1 + (I - 5= J*)

% *
i(J-=J)=-21J34J

i

S <+ ZN.

Thus r, as well as n, is unchanged, and s is pushed in the

direction of n. The 2-flat of n and r is unchanged pointwise,

and the 3-flat of n, r and s is unchanged as a whole. From

the condition of Minkowskian rigidity, the transformation of

this 3-space determines the transformation of all space-time.
Let us now obtain expressions for Lorentz trans-

formations in terms of null minquats.

%
(i} General case.

Let us recall the null minguats m and n of (6.1):

i

3 s * _
m=i(I + i)(T + i) iIT - I -1 - i,

* * L
n=1(I - i (I - 1) iTT + I +1I -1,

We are to solve these equations for I, which also satisfies

(6.18a)

(6.18b)

(6.19)
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e obtain directly

mn = (I +3i)(I +3i)(-I - i)(-T - 1)

23 (I #4)(T +« i)(I + 1)

H

-2n(I + 1),

Multiplying these on the left by n and m respectively, and

subtracting, we get

nmn-mnm = -1;.bI+2:i.(En-Em),
where b is the (real) scalar product

b = (o, n)=2(mn +nm) =2(mn +nmn)

We have essentially solved for I above, but the expression can be

simplified. Since m and n are null, we have, with the help of (6.19),

nmn - mnm = n(2 -nm) -mn(2 -nn)
= 2b(n - m)
E
= =4b(I + 1),

and so our equation for I beccmes

-4 - —
-4 I = 2i(mn-nm)
= L4ib - 4i n m,
or
® - =
I +1 = inmb .

Taking the complex conjugate and remembering that m and n are
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minquats, we get
I'i“—*“il’lﬂlb .

Combining this with its Hamiltonian conjugate, we have what we

need:
I+i=imnb , I-i = -inmb .
Defining the complex scalar ¥y by
Y = exp iy ,
we may write (5.10) in the form

a = cosy + I siny

-2i (T +1) -xyNT - 1)),

I

and hence by (6.20)
- e _..1 R _-1 —
a = (mn+nm) (ymn+y nm.

Tnis may be called the second standard form of a positive unit

quaternion a in the general case. It displays a in terms of the

two invarient null rays (rays, not L-vectors, since only the

ratios of components are involved) and the complex scalar vy,
related to y by (6.21). The first factor in (6.23) is of course
a real scalar. Since each null rayv involves two parameters and
Y invelves two also, there are six parameters in (6.23), the
correct number.

It takes only a moment to verify that e as in (6.23)

(6.20)

(6.21)

(6.22)

(6.23)
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satisfes a a = 1, so that a does in fact yield a Lorentz
transformation. ¥t is typical of quaternion formulae that,
though they may be difficult %o find, once found they are
immediately verifiable. Having found a formulas such as (6.23),
and naving verified that it does yield a Lorentz transformation,
one mignt be tempted to assert that the quaternion a of any proper
future-preserving Lorentz transformation could be so written.

But that would be false. For (6.23) is available only for a

general Lorentz transformation, not for a singulsar one.

(i1) Singular case. Collected from (5.14), (5.15), (6.13), (6.16),

the relevant formulae for the singular case are

b
1

%* " e
a=’¥+J5n..—.—iJJ:.r::J+J3J2=U,J+J=0.. (6.24)

We recall that n is the invariant null minquat and r an

invaeriant resl vector. Defiine a real number P by

B 'l(JJ$ T“E;r) 73 3 . (6.25)
="z TPl =Lyl gy vt dyd o b ded g o

this vanishes only in the trivial case where J = 0. Note that
_ 2 i
rr= ~(J+TNWJ+T)= 28. (6.26)
Now

- %, ¥ X
nr= iJJ(J+ J) =iJ(J7 + J J) = ~ 2iBJ, (6.27)

and sc¢ we have

-~

8 = "i+-"5fi§3 n;. 1,,‘-'5#28)

his expresses a in terms of +the invariant null minguat n and
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the invariant (real) vector r. It may be called the second

standard form of a positive unit quaternion in the singular case.

We have already seen that in the singular case a contains

four parameters. It might aeppear that there were six parameters

in (6.28) viz. three in n and three in r. But one parameter 1is

lost through the known orthogonslity of n and r, and a second

parameter is lost since the expression 1n (6.28) is unchanged if

n and r are both magnified in the same ratio.

We may also write (6.28) in the form

M

Il

H |

r
:nd the corresponding singular Lorentz transformation

nr

q—> q'=(1+4=~=—) g1 +i%%=).,
rr rr r

The singular Lorentz transformation may also be

presented

in a rather simpler form. Let n be a2 null minquat and u a unit

minguat orthogonal to E_(and so necessarily spacelike).

then
nn=0, uu=1, nu + un = 0.

Consider the quatermnion

We have

(6.29)

(6.30)

(6.31)

(6.32)
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(1 #nu)(4 +un)

1T+ nu 4+ Uun + nuun

T4
b Lo

hy'(6.§1). is clear that a + ; = 2, and

¥ -
qQ & =(1+nu)q(1+

q=~> q' = a

is a singular Lorentsz transformation.  Here

parameters in

n and three in the unit minquat

sne on account of their mutual orthogonality, and another one

necause a is unchanged by adding to u a minguat proportional to

n; +that leaves four parameters, the correct
We note that, to put (6.52) into the
(5.15), we are to put

J = nu,;

We verify immediately with the aid of (6.31) that J2 =0, J +

as in (5.14).
(£.3.) leaves n unchanged.

e, by (6.2) and (6.35) it is

T o= J + J = n u

We can check very easily that the transformation

As for the invariant spacelike vector

= 1, (6.33)
30

u n) (6431)
we count three

u, but we deduct

number.

form 1 + J, as in

(6.35)
J =0,

n u, (6.36)

whers. as throughout, we make use of the relation (3.15) for

minquats.

cut for vue orthogonalitv of

the minquats n and

{The right hand side of (6.36) would not be a vector

u.)
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" . desolution into minquats.
Any complex quaternion can be resolved uniquely into

the complex sum of two minquats:

— E) i
a = R+iS, R+2 =0, S +8S =0, '7.1)

where R and $ are minquats. Since the minquat or L-vector is
a geometrical object in space-time, whereas a 3-vector (as Iord
in the preceding work) is not, it might be expected that this
resolution into minguats would be very useful in dealing with
Lorentz transformations.  Actually, the results are somewhat
disavcointing.

The condition that a is a positive unit quaternion

(2 a = 1) leads to

RR - SS=1, RS + SR = O, (7.2)

the second being the condition of orthogonality of R and S.
There are the following possibilities (apart from the trivial
R = 8 = 0):

(a) R =0; S unit timelike.

() S = 0; R unit spacelike.

(4) 58 =0, 3 £0; R unit spacelike orthogonal to null S.

(e) © 7 SS )*- 1; R spacelike orthogonal to timelike S.



~38-

The Lorentz transformation reads

The condition for the singular case _cf. (5.5)] is that
the scalar part of g should be 1. This means that R shall

oe o (real) vector,

R + R = 0, (7.4)
and that S shall be of the form

S = V F i, (7.5)

where V is a (real) vector. The general case obtains when one
or both of these conditions is violated.
For both general and singular cases, we have the following

result for the transformation of R under (?.}):
R —» (R +iS)R (- R + i8)
= (RR + iSR)(- R + i8)

RR(- R + iS) - iRS(~ R + iS)

R(- RR + s88) = - R. (7.6)

Thus, combining a similar result, we get
R—> -R, S —> 8. (7.7)

Thus we know what happens to the 2-flat (ﬁ, E) as a whole: it

goes into the 2-flat (R, S).



_59_

(i) General case. Identifying the unit quaternions in (5.10)

and (7.1), we have
R +iS = cosy + Isiny (7.8)

The cuantities on the :ight hand side have already been given
geometrical meanings (rotations, null minquats), and by
identifying the real and imaginary parts and the vector and
scalar parts of the two sides, we can transfer those geometrical
meanings to R and S. But the resulting formulae are complicated
and therefore uninteresting.
(i1) Singular case. This is somewhat more rewarding.
Identifying (5.15) and (7.1), we have

R + iS =1 + J. (7.9)
Let us split the complex vector J into real and imaginary parts:

J = L + iM. (7.10)
Here L and M are real vectors. The condition J2 = 0 gives

2 2

L - M =G, I.M-l'ML:G, (?_11)

so that L and M are eqgual orthogonal vectors. Remembering that

R and S are minquats, (7.9) gives

p——

R=DL, S=M--i. (7.12)
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The invariant null mincuat n of (6.13) is

*
n o= -3 J7 = - i(L + iM)(L - in)

- IM + ML - i(L2 + M2)

- R(s +1i) + (5 + i)R - iR - i(S + i)z

2
- RS + SR - iR" - i(8 + 1)2.

The invarient vector r of (6.16) is simply
0
r=4J+J = 2L, = 2R.

in Tact, R itself is an invariant vector under the singular

Lorentz transformation.
d.  Physical interpretations of general and singular Lorentz
transformations.

When we think in physical terms about a Lorentsz
transformation, the primary concept is that of twﬁ frames of
reference in uniform relative moticn. The choice of spatial
axes by each of the two observers is a somewhat secondary matter
from this standpoint. Unfortunately this separation of primary
and secondary is not maintained in the mathematical theory. A
transformation of spatial axes, quite apart from a change in the
frame of reference, changes the quaternion which generates the
transformation. Indeed, the distinction between genersl and
singuler Lorentz transformations, although interesting and

important in the mathematical theory, is really quite trivial

(7.13)

(7.14)
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when regarded from a physical standpoint. It amounts to no more
than o svecial cooperation between the two observers in their
choices of spatial axes. This is explained below.

(i) General case. In a general Lorentz transformation (we

consider only those which are proper and future-preserving),
there are two (and only two) null rays which are conserved.
There are in fact Just two null L4-vectors which maintain their
directions in space-time, one being magnified and the other
contracted in the same ratio as in (6.7). Now the momentum and
energy of a photon are the four components of a null 4-vector or
minguat, and so we can give the argument a physical turn by

speaking of photons. Taking the speed of light to be unity, the

photonic minquat is
hy(u + 1)

where h is Planck's constant, v the frequency, and u a unit
vector drawn in the direction of +the photon's motion.

To magnify a photonic mingquat by a factor amounts to
multinlying its frequency by that factor, leaving its direction
unchanged. Ihe existence of the two invariant null rays may
then be interpreted as follows. Imagine photons travelling in
all directions, but only one photon in each direction. Let
them pbe observed by two observers, S and S', in uniform relative

motior. Any particular photon will, in general, appear to be



-] 0

travelling in different directions (i.e. with different direction
cosines) and with different frequencies when viewed by S and S'.
sut in the totality of photons, there exist two, and only two,

for which the directions appear the same tc S and S'. These

correspond to the invariant null rays. We may call these two

vhotons communal photons.

1f either cobserver changes his spatial axes, or if both

observers do so, after the change there will again be two communal

_.El...i
..I-

cnotons,; but they will not be the some photons as before. If

the observers play with their spatial axes, they can arrange that
the two communal photons have direction cosines (1,0,C) and
(=1,0,0} for both observers. If that is done, and if there is

& further cooperation with regard to the directions of the spatial
axes perpendicular to the direction of the thotons' motion, the
Lorentz transformation comnecting the observations of S and S'
takes the simple standard form (2.1). The magnification and
contraction of the null minquats imply Doppler effects (violet-
snif's =and red-shift) connecting the frequency observations made by
S and 5' on these two communal photons.

(ii) B8ingular case. In the singular case, therse is only one

&

communal photon, not two, and since there is, as in (6.15), an
invariant null minquat (not merely an invariant null ray), there
1s no Doppler shifi, Again, given two observers, S and 8', in

uniform relative motion, it is a question of playing with the
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spatial axes in order to achieve the desired result when moving
chotons are observed as described above. What the observers
have to do is to change their spatial axes in such a way that,
of all the photons, there is Jjust one which appears to both S and
3' to be travelling in the same direction (i.e. with the same
direction cosines) and to have the same frequency. If that is
done, then the Lorentz transformation commecting S and 3' is
singular.

Tc illustrate this, and to show the quaternionic method

at work, consider the complex vector

J = —k(e5 - ie,). (8.2)

Here k is a real number; a complex number would complicate the
calculations a little, without any real gzin in generality. We

have 3¢ - 0, and so, as in (5.17,,
-
q'' = (1 + Na(1 - ) (8.3)

is & singular Lorentz transformation. Since

*

J = -k(e, + ie,), (8.4)

5 |

the invariant null mincuat is, by (6.13),
*
n = -iJJ = 2 kz(e2 + 1), (8.5)

Explicitly, (8.3) gives
1 ' s 1]
g Ve, 2 95 + 1t
= (1 - ke + ikeﬂ)(xe1 + ye, + ze; + it)(1 + ke3 + ikeﬂ). (8.6)

x'le



To obtaip the transfermstion (x,y,z,t) — (x',y',2',t'), all
we nwve Lo do is to work cut the right hand side, reducing it to
vueternionic form, and then equate coefficlents of ouaternionic

slements. Trhe result is

x! © + 2k(y - t),

i

v = Zkx - 21{2(:; - t)’

=
1t

2
-
i

Z

i L - 2kx - 2k“(y - t). (8.7)

H

It may be immediately checked that

2 - ~ P -
x'" - y*g + 217 - t'£ = X +vV +2z =1t . (8.8)

' = x +2k(y - ), y' = t' = v - t, z2' =z, t'" + kx' = t - kx.

~—
o
L]

w0

S

To see what L-vectors are invariant under this +rans-

f'ormation, we put x' = x;, y' =y, 2" = z, t' = t; we find that

3

there is a double infinity of invariant 4-vectors, viz. those
satiorying the twe cordditions x = 0, v = t. The inveriant null
a-vectors must satisfly the further condition z = 0, and sc¢ we have

singis infinity of fawvariant null 4-~vectors all lying on a
singie null ray, l.e. the particular nul) minquat n of (8.5),
muiticsliec by an arbitrary real constant.

In order to ctudy, in physicel terms, the relationship

peztween two observers 3 and S' connected by the Lorentsz



transformation (8.7) or (8.9), we must not attempt to use a single
diagram to depict the two srpaces. We need two, as in Fig. 1.
Since the coordinates z', z are connected by the identical trans-
f'ormation, we can sup.ress the z-coordinates, and show merely the
axes Oxy and O'x'y".

We note that if S sees a photon travelling along Oy with
‘reguency v, then S' sees that photon travelling along O0'y' with
tnat same frequency v;  this follows from (8.5).

Let (HJE) be the components on Oxy of the velocity of S'
as oJoserved by S. To find these components, we write down the

invzirse of (8.7):

x' - 2k(y' - t"),

X =

vy o= y' o+ 2kx' - 2k°(y' - t'),

z = 3z',

t = t' + 2kx' -~ 2k2(y‘ - t'). (3.10)

The trensformation matrix is obtained from that of (8.7) simply by
reversing the sign of k . We now put dx' = dy' =dz' = 0, in
order to follow a point fixed in S', and obtain

2 = ax/dt = 2k(4 + QKE}Hﬁ, v = dy/dt = ok?(1 + 2k%) 7. (8.11)

The ccmponents (u',v') on 0'x'y' of the velocity of S as

dz = 0

I

observed by S' are similarly found by putting dx = dy

in (3.7):

-1

! = ax'/dt' = - 2k{1 + 2k2)“1, v' = dy'/dt' = 2k2(1 + 2k2) (8.12)

These velocities are shown in Fig. 1.
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We shell now show that tﬁe Lorentz transformation (8.7)

of singular type may be changed to the usual standard form by a

very simple operation. Let S rotate his axes to 0 x y with 0

'

F<

R

along (313)3 and let S' rotate his axes to 0
direction of (u',v') reversed. With 6 as shown in the figure,
so that

tan 0 = k,

we have then the feormulae

X =x cos O -y sin 0, x' = x'cos O + y'sin O,
y = x sin 8 4+ y cos 6, y' = -x'sin 0 + y'cos O,
Z = 3z, t = %, z' = z', t' =1t".

Substituting these expressions in {5.7) and solving for

(x', g's 2", £'), we get
x'= F(E—V-'E), -}:'z ;, z'=2z , t' = T(%—V;),
where
i 2
v = -&.S5iD 62 , I =142 tan® 6 = 1 + 2k°,
1 4+ sin ©
so that T_z = 1 —'VE. We recognize in (8.15) the usual form

(2.1) of Lorentz transformation, the relative speed of the
observers being V.
When the axes have been rotated in this way, the photon

indicated in Fig. 1 is no longer a communal photon. Its

frequency is still the same when obscrved by S and by S', but

(B

' with g'g' in the

(8.13)

(8.14)

(8.15)

(8.16)



-1,8-

it moves in different directions; for S its direction cosines
are (sin ©, cos ), but for S' its direction cosines are

(-sin 6, cos €),

. e Conway-Dirac-Eddington matrices.

In two papers Conway (1937, 1945) showed briefly the
coennection of quaternions with the Dirac-Eddington matrices.
For the sake of physicists who wish to use this notation, it is
desivable to set out the argument with logical completeness,
witn reference in particular to the five anti-commuting Dirac

matrices, which, in the notation of Pauli (1958, p. 143), are

as foliows:

‘0 ¢ O -1‘.\ 0O 0 O -1\

0 0 -i 0 o 0 1 0
Yy = i o0 0] Y>> 10 4 o of:®

\1 O O/ \—1 o 0 O/

L
-
-
-2
o
]
=t
L

.‘_'_...--'-' "—"""-—-q.-‘
o0 O

S I
I

[

7

P

—

—

-

O

B

i
|
.
I:._:'.-
_.-'H""-"..

To = 74Y N30, = {4 o o o

Let a and b be any two quaternions. Then

q—2 q'= aaqb

(9.1)

(9.2)
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is a linear transformation for the elements (q,, q,, 455 qh)’

and may be written in matrix form

q' = M('ﬂ-:b) Qs

where M is a 4 X4 matrix and q, q' are 4 %1 column matrices.
(There is no question of minquats here; all elements are
complex. ) The notation indicates that M(a,b) is determined
bty a and b.

Consider a pair of linear transformations and their

resultant:

t

qg' = agb, g" = cq'd, q"

caqgbd.
In matrix form we have
q' = M(a,b)g, q" = M(c,d)q', q" = M(c,d)¥(a,b)q.
Therefore
M(c,d) M(a,b) = M(ca, bd).
In particular,
[M(a,b)]z = M(az, bz).

If we put a = b = -1 in (9.2), we get the 4identical
transformation, and therefore M(-1, -1) = I, the unit matrix.
Hence, by (9.7), we have the following basic theorem: If

a and b are any two quaternions satisfying

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)

(9.8)



M(2,b)]° = 1; (9.9)

in fact, the matrix generated by a and b is a square root of

anitv.

Conway procosed the suggestive notation
M(a,b) = a( )b. (9.10)

Now any two of the four quaternions €45 €5, 53, 1 satisfy (9.8),
and 50 We have at once the following sixteen matrices, each a

square root of unity:

(9.11)
“3( )91 Ej( )52 33( )35 53( 1
i( )ET i( )92 i( )Ez:,J i( )i
It is easy to calculate these matrices explicitly. TFor
example, to calculate the first, we write
9y + 958, + a3 e5 + qf =e,(qe, + qe, + aze3 + q, Je,
= eq(-y ~ge5 + a8, + g, (9.12)
= - Q48 + Qe + 4383 = q)
s¢ that the transformation is
U= "% % = 94 a3 = g3 g = -q . (9.13)

Thus 51( )31 = diag(—1, 1, 1, =1).



¢ 0 0 1

51( )i

0

91( )Ej
o -1

-59 -
O

Je,
0

e, (
-1

he whole set of sixteen Conway matrices is as follows:

m
L

0

O 0 -1

-

-

-

-

o

-i 0 0 O

0

0

i
0 0 O 1
-1 0 0 O

O O

0

(>

(9.14)

0 0

0 0 0

0O 0 0 i

0 0 -i O
)i

0O 0 O

i(

0 -1
i

0
0
0
0
-

-1

O

0 0 -1
i( )53

0 O

o 0O -1
-1 0 O
i( )EE

-1 0
i( )EJE

{

{:.

'

O O -1

i

i

-’

0O O

0 -1

-

0

O 0 -1

&

0

O 0O 0 -1
The set does not

0

cC 0 -1

aring the above with (9.ﬂ), we see that they are

unit matrix but its negative.

of" each of these matrices is unity.
rig
L-OmD

.
=

the
™

]
A

ne squar
contair

a1

e



related 4o the Dirac matrices as follows:

o~

- = . _ 3 . —
_‘Y.-l S )E'I ] _*Tz = LZ( }55! T = 1 )C'E.'I T‘J_{_ = EE( )E5!

2

Yo =Y Y4, = e, 0 ey (9.15)

In multiplying these, we are to remember the rule contained in

(S.6): the ouaternions belonging to the {irst factor are to be

vlaced outside. Thus

_T5T2 = 152( )55E2 = —1E2( )EIT °
Bddington (1946, p. 142) preferred to use matrices with
square - 1. The connection petween Eddingten's matrices and
those of Conway i1s as follows:
( = i e | = -] ( = =] 1l = -
2\ )81 = 1#145 =PI )ez = 1E245 €4\ )ej 1E§h’ 51( )i 1E05!
EE{ )51 = 18,5 e, }GE = _iEOE’ e, )63 = _1E03’ ez( )i = HlEA5’
= 1K < = = - = - = =1.
33{ )ej 1By g, e )eE 1E25, ej( )ej 1E35, Ej( )i ik,
\} = - 7 = = - i =
i{ ¢, 1E25, (e 1E51, i e, lEUh’ i( )i ik, .
(9.17)

The minus signs occurring in (9.15) and (9.17) are not
perhaps of much importance, but it does seem of importance that
there should be a standard notation for the set of sixteen matrices.
Iff we write e, = i, then the whole set of Conway matrices 1is

contained in the symbol em[ )%n with m and n taking the values
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S T This ie 30 simole =nd natural that there 1s much to
oo anid for accenting the Conway matrices as standard.

wultiplication of Conway natrices is very simple, as
“nd ocated in (9.46). T+ is evident that any two of the matrices

aust either commute or antl-commute. By displaying the matrices

. che btaple
51( )E? e { )61 Eﬁ( 361 i )32 i ( )95

. 5 p ! 1
e, Je, el e, e( Je, i Jes i( e,

eﬁi 353 EE{ }EB Ej( )ej i( )31 i ( )ez
e, ()i ey i e, ()i
oy / . .
e;{ Ji e, { )i EZ( )i

Conway was able to state the commutation law very simply: If two

matrices appear in the same row or column they anti-commute;

otherwise they commute. his may be verified by inspection if we

recall that, to fina a croduct, we take the second factor and
embracs .t with the guaternions occurring in the first facter.
Note that i( )i is absent from (9.13), while esch matrix with

one i-factor appears twice.

o

e Conway matrices lend themselves tc a geometrical
representation in which the anti-commuting pentads and iriads

can be shown. We start with a tetrashedron with vertices labelled
Cq0 € T (Pig. 2). The sixteen matrices are then put into

corresponcence with the [our vertices and twelve directed edges

(9.48)



fig. 2. The elements TERLPY 53, i (= 3#) associated with

the vertices of a tetrahedron.
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L
i

Leooraing bo the fcllowing oslan. With €)= i, the matrix Em( )em

risoclated with the vertex ¢ and the matrix em( )er with the
L LN}
iirected edre running from e to e (Pig., 3).
! -

4 . --
= [ - =y r
I E’..' o e Lo 0T :'

show two {yrical anti-commuting pentads

correzronding Lo the £ir

e

row and the first column in (9.18); Figs.

O anc o show the two anti~commuting triads corresponding to the fourth
or oo row and the fourth or £ifth column in (9.18).

iknown that the choice of basic v's as in (9.15) is to

some exzent arbltrary.

The essenvial requirement is that they should be

members of" an anti-commuting pentad. Since there are six such

ventads, there are 24 possible choices, if we disregard the order in which
the suossceripts 1,2,3%3.4 are distributed., Looking at the table (9.18), we

may ask whether there is anv reason to prefer one choice to another.

in making a cholce, it is necessary to decide which of the three

coordinates %, y, 2 should be associated with t. In elementary trest-

ments ot the Lorentz transformation, the association is (E& E) as in (2.1).

But in dealing with svinors, the usual sssociation is (g, E) and this

corresponds tc the aszociation (e ).

, i Now in each of the pentads in

i

Y * | . - . = ' s ' " "
(3,18}, 1 scours twice, and in order Lo treat i symmetrically with

respect To &, and e, we “ick out the third row or the third column.

Shoul® we wish ¢o recuce the number of bzsic matrices to four, we must

Lorow away one member o a pentad, and symmetry tells us to throw away

L - . ' i i
a.{ Je.. Thus Conway's table suggests as the proper choice of besic
a® -

matrices one -f Lia

.2 fellowing sets, related to the standard y's as

-~ ndicated:



(A e, O 0,1 *
i ”'%‘ - ) _é. G
elf }91 91( )EE 32( )31 92( )62

3,  The Conway matrices em( )en associated with the

vertices and directed edges of the tetrahedron.
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33( )e1

A 5oy

e1( Je,

5 ’ ( I



Fig. 5,

An anti-commuting pentad (there are three of this type).



31( )i

Fig. 6.
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YV Ej( )i

First anti-commuting triad.



Fig.
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Second anti-commuting triad.
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of five anti-commuting Conway matrices:

e, )e5

By e
LN

—
i

i

I

|
He O O O

——
-

-

-1 ol
o -1
J C
-1 o 0

-1 0 C
o o o
0 C i
0 1 0

-1 O 9
0 C 0
C =1 O
0 U i
C 9 J

i 0 o/

—
—

Y.

o = O O

5 2

1l

(9.19)
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Second set of five anti-commuting Conway matrices:

o / _ _ — G s
c', = e )51 = 0 0 -1 0\ = ivgy,
O 0 ¢ 1
-1 0 0 O
\o 1 0 o/
CE = Ej( )52 - /O 0 0 -1\ = 1*’{11.}_}_ ]
0 -1 0
0 -1 0
\—1 0 0/
' — — - L
¢’y = e,( )i = 0 0 1\ ) (5.20)
r:‘, —
0 0
-1 O O O/
I o — - — 3¢ ; — 3
c!) = e,( )i = 0 i D\ = Iryvors = dvar
O 0 i
-1 O O
0 =i 0 O}
t — L | 1 L | f —_— pa— — —
“uT gz el = megl ey = eg = -y,

In terms of the Pauli matrices

(D 1) /O -i> 1 O)
Ty = 1 o/’ O, = ki o/ °? 53 = (O - ’ (9.21)

and the unit 2xX2 matrix I, we have

0 =I 0 iﬁé 0 ﬁrﬁ 0 -153
D1= P 122 — P Gj = ' L] CJ-F = . ’

1 O iﬁé O

-I 0
C_— = s (9"22)



and
| 0 - c:r:,:_ 1 o - »:::r1 ' o - «:.r2 ' 0 1iT
c _1 = , C 2 e . C 5 - [} c .’_|.= L
-53 0 —-ﬁﬁ 0 -5é 0 -iI O
-I 0
c! =
2 0 I (9.23)

From the standpoint of general theory it matters little
which of the six anti-commuting pentads we use, which four
members of the pentad we treat as generators, and in what order
we assign the numerical labels. But when it comes to detailed
calculations, such freedom easily leads to confusion, since one
writer may start from a different basis from another. Undoubtedly
e standard set is needed, anc the standard set actually used is as
in (9.1). But this choice is unnatural and therefore hard to
remember. On the other hand, Conway's table (9.18) has an
inevitable character and, once we have decided to associate
(e}, i), considerations of symmetry direct us inevitably to two
tetrads, Cys Cpy Czs C) 85 in (9.19) and c'1, c‘?, c'j, E'L as
in (9.20). Between the two tetrads there is little to choose.
Since the Dirac matrices in some form or other are an essential
notation in modern phvsics, and are likely to remain so for the

foreseeable future, one might ask whether it 1s too late to adopt



one >r other of the Conway tetrads as standard.

slucit of the notatiocnal velue of quateraions lies in
siced of caleulation, and it may be well to reveat in varied
'orm tre rule for the multiplication of the L X4 matrices:

To ©ind a continued product, the factors in front of ( ) are

to be arranged in natural order and the factors behind ( )

in the reverse of natural order:

al Ja'xb( Ww'x c( Je' = abe( le'v'a'. (9.24).
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