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Introduction

Supersymmetry is a new symmetry that has emerged in recent years. It has
the property that it allows rields of different spin, and, in particular, voson and
fermion fields, to anpear in the same irreducible multiplet.

The basic idea of supersymmetry was first put forward by Ramond(1) and later
developed by Gervais and Sakita, Neveu and Schwarz, Iwasaki and Kikkawa(2) in the con-
text of the dual model theory of scattering. Roughly speaking, the idea is to con-
sider the 'square-root' of the Dirac operator in much the same way that Dirac considered
the 'square-root' of the Klein-Gordon operator. liore recently, supersjyunetry was
transferred by V'ess and Zumino(j)’(#)’(E) from the context of the dual model, in which
it operated in a 1 + 1 dimension to the context of conventional field theory in 3 +.1
dimensions. Later a more compact formulation in 3 + 1 dimensions, in terms of super-

(6)

fields, was introduced by Salam and Strathdee

Supersymmetry has many remarkable properties. For example, in the renormal-
izetion of & supersymmetric Lagrengian all the quadratic divergences disappear and the
number of independent renormalization ccnstants is a minimum. Supersymmetry also
allows a fully relativistic non-trivial mixing of Lorentz invsriance and internal
symaetry. It also allows the introduction of local (Yang-Mills) internal symmetry
end improves the asymptotic freedom cof conventional Yang-Mills theory. Finally,
although supersymmetry is resistant to svontaneous symmetry breeking itself, it oleys
a role as catalyst for the spontaneous breakdown of internal symmetry.

The price that has to be paid for properties such as those just mentioned is,
howevery quite high. The difficulty is that, in their present simple form at any
rate, supersymnetric multiplets are not observed in nature. The mein reason for this
is that all the fields in a given supermultiplet, including both fermicns and bosons,
must have the same mass and the same particle number, end such groups of fermions ond
bosons have not been secn. (Having the same particle number means that cithcr the
bosons have a conscrved fermion number or the fermion number is conserved only modulo
two.) It is true that those two prodlems have been overcome in certain very sgecial

models, but nevertheless their general resolution remains the outstanding problca of



supersynmetry.

The present notes on suncrsymmetry developed out of some lectures given at
the 197, Aspen Center f'or Thysics and attcmpt to give a short and simple survey of
the principles and early developments of the theory. though the notes can do no
Justice to the originality and nower of the original papers cn the subject quoted at

the end, they have perhaps the secondary virtue of collecting the results of these

L

.

papers together and presenting them in a form which, it is hoped, is easily readable
without being too superficial.

By and lerge, the conventional develonment of the theory is followed here,
but there are a few new features. These include the introduction of weight diagrams
for the purpose of ecasy visualization, the explicit extraction of some useful sub-
symaetries of supersymmetry, and some gencralizations of earlier results on mass-—
breagking and on supcrsymmetric unified grouze theory. The range of topics covered
in the notes is perhans best summarized by the list of secticn headings given in the
list of contents.

The author should like to take this opportunity to express his deep gratitude
to tne Directors of the Asren Center for hysics and the Organizecs of the Mathematicel
Physics Group for their xind invitation to visit the Center and for generous financial
support®, In pariicular, he should like to thank Professor Arthur Jaffe for his
continual encouragement, and many of the visitors at the centre, particulariy J. Charar,
D. Foirlie, J.-L. Gorvais, D. Politzer, ¥.-S. Tsao and B, de /it for enlightening and
stimulating discussions. Scme of the vwiork was carried out at the 1974 Strobl
(Austria) Vorikshos on wWeak Interactions and the author should like to thank the
organizers of the Woriishon for their hoszitality, and to thank many of the participants.
pazticularly A. Balachandran, 2. Horveth, J. Milsson, A. Pais and BE. Stremnitzer, for
helnful discussions and comments. I would like also to acknowledge editorial assist-
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1 Supersymmetry and Superfields.

(6)

Supersymmetry is most conveniently described in terms of superfields. A
superfield is defined to be a field E(x 9] which depends not only on the speace-
time coordinates x but also on a set of real (Majorana) spinors e which anti-

commute ?
*
Re*,eq]ﬂ"‘) : 8,=9, o .

The crucial assumption here is the anti-commutativity, which characterizes the
supersymmetry. The reality condition is assumed in order to reduce the number of
conventional fields contained in the superfield §lx9\ y 88 Will be seen below.
To meke the reality condition compatible with Lorentz invariance, one uses a basis
(Majorana basis) in which the Dirac representation of the Lorentz group becomes
real. (The real representation, and a discussion of Majorana spinors which is
independent of the basis (and metric), is given in appendix A.) Since there are
only sixteen imdependent functions that one can construct with © satisfying
(1.1) each component of a superfield contains sixteen components of conventional
fields. To exhibit the conventional fields explicitly, we expand @(KG} in B

to obtain
dlxe)= Are-y v, B-[F+ Y& # sﬂ B +4(6:0)(8:%) +3;(80) > o {1.2)

where K"?Ei? -"i(,'? , C being the charge conjugation matrix (appendix A). If
the superfield is a scalar, i.e. has no external Lorentz indices, and is assumed to
have positive parity, then the fields A, F, D in (1.2) are scalars, 4 , X are
spinors, G is a pseudo-scalar and Bf‘ is a pseudo-vector.

In general, the Poincare transformation properties of Q[xg\ are
WenE) )= SWB@N, ), (D9 ), (o

where is the intrinsic parity. That is to say, they are the conventional

ones, except that B must also be transformed (according to the Dirac
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representation S). From (1.2) we see that the conventional fields (AIF"D) (H—EX)a,nd
N . intetnedo: sertis in - tively.
QG-, Bf‘) contained in @17"9) thien have the intrinsic parities "7] \7’ 't) respecti Y
The factor i for )Yy and for the intrinsic parity of the fermions is necessary on
(7)

account of the Majorana condition

That characterizes a superfield, however, is that it also satisfies a

supe:rsymmetric transformation law, namely,
(W8 = Blauakoye, o¢),

where the EJ are Majorana spinors satisfying (1.1) and anti-commuting with the g, .

(1.4)

Note that the supersyumetric transformations induce translations in coordinate space,
though not conversely. This property is perhaps most explicitly exhibited by the
infinitesimal generators of the supersymmetric transformaticns (1.4) which are

clearly

Gd = ,?9'( ¥ %[SCX,.L e (1.5)
Together with the infinitesimel generators of translations, these form the algebra

{Ci) (r‘;’k = (CX}*LK, fb/., (1.6)
{(b)‘ : (,&'S =0 'roﬂa '1}, (4.7)

Thus the C'.l generate '?f“ but ’FI‘ commutes with the Cd . It is interesting

to compare (1.5) with the Dirsc equation

P 9t gt (1.

One observes that just as y is the 'sguare-root' of the Klein-Gordon operator
X

T

sense the 'fourth-roct' of the Klein-Gordion operator.

y SO C’J is & 'square-roct' of the Direc operator C,V e s 2151 (‘r.! isin s

In the ebove derivation of (1.€) we have assumed that 9 and E are
independent of x, znd one might ask what happens when this assumption is dropped.
The answer is that if g and E are linear in x, then' the transformation

A SX yL 0y ¢ becores tilinecar and becomes, in fact, the whole conformal
| ek Xv"



group instead of the translation group. This is actually the case that was
considered in the first paver (3) on supersymmetry in four dimensions.

We have not assumed in the ebove that the superfield j)(ﬂ) is real, and
indeed that assumption would be incompatible with Lorentz invariance unless the
representation %(A) were real. In the case that ,BU\) is real, however,
(for example in the case of the vector, or Majorana-Dirac, or especially the scalar

representation) we may impose the condition

@*(ac 8) = Q(x8) (1.9)

Here it is understood that complex conjugation interchanges the order of anti-
comnuting elements, end one easily sees from (1.2) shat (1.9) then imposes reality
conditicns on the conventional fields contained in @(X 8) also. In particular,
when (1.9) is satisfied, the fermion fields L)a y X must be Majorana fields. This
result already foreshadows one of the major problems of supersymmetry, namely that
fermion number may be conserved only modulo two. If, on the other hand, we do not
impose the reality condition (1.9) then a fermion number is defined since ¢ ena X
are complex, but then since the bosons are not real, this fermion number is also a
boson number, which is equally unsatisfactory. This difficulty concerning fermion
number is surmountable in some complicated models, but its immediate occurrencz at
this early stage is somewhat disquieting, and exemplifies the problems that may ensue
from putting bosons and fermions on the same footing.

An important subsymmetry of superfields which will be used extensively in
the sequel is the following: since the coefficient of the field A in the expansion

(1.2) is unity we have the trivial identity

@(Aﬂjkp,...] = @(4,\!)...) e (1.10)

and hence if P( @ ) is any polyncmial in the superfield we have

ﬂﬁ(‘\&ﬂ = ?(E(A\Jrco] = ’PY@(A]) : (1.11)
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whero P'(%E) is a polynocmial of the same degrce but with different coefficients.

Thus a shift in the A-ficld changes a polyncmiel in the superfield into a new

polynomial of the same degree.

2. \Veirht Diagrams for Scalar Sunerfields.

In this revue we shell find it convenient to represent the expansion (1 2)

by means of a weight diagram. We shall confine ourselves for simplicity to the

case of a sceler superficld, leaving the discussion of higher spins to appendix B.

For the scalar superfield the weight diagram corresponding to the expansion (1.2 ) is

Ak
4t D
3t X
ot FOG B,
|
oL i i ity
2 2 .
Eig. 1

where the vertical quantum number p = 0, 1, 2, 3, 4 represenls the power of B in

(1.2) and the horizontal quantum nuwber m = O, £ 5 %4, ... represents the spin velug

in the representation of the Lorentz group to which the conventional field belonzs.

Note that spin multiplicities within irreducible representations of the Lerentz zroup

are suppressed. Thus the four-component spinors (P end X show only two spin
T

values % %, and the four-vector’i} shows only three spin values O, 1.

If we now return to the equations of (1.4), and let €& be infinitesimal,

we find that the supersymmetric transformations take the fora showm in Table 1

A = w30 :

Sy = E(Fays6 sy p)te - 510N %e

BF = F X0 -3 883w

8¢ = 1 X Ysbe- -3- - YePy

©6, = 1 %X ipy°0 L 80y, Y

6% = 3D % - -‘-(’iF 33 G g TP
D -1 B-YX

Table 1



where the G, are the infinitesimal generators defined in (1.5). From these
equations one sees by inspection that if one splits the generator G, into two parts
’Dhgd and —i(@’?)d s then ;g?'g acts as a step-up operator for the conventionel
fields A s ¥, ’,Br , and hence for the weights of the diagram of Fig. 1, while
éi bf# acts as a step-down operator. The only difference between the operation
of /P and %’.37 and the operation of conventional ladder operators such as

L_t = L.ii bs  in SU(2) is that the step-down is accompanied by a space-time
gradient"y . Otherwise the weight diagram of Fig. 1 behaves in exactly the same
way wWith respect to the infinitesimal generators G, as does, say, the octet
diagram of SU(3) with respect to the infinitesimal generators of that group.

Because of the nilpotency property of the © implicit in the anti-

commutation law (1.1) it is clear that the product of two scalar superfields is
again a scalar superfield. The components of the product have been evaluated in

mfﬁiﬂ(‘%ﬁ we may depict the result diagrammaticelly as follows:

D D 2AD+2F +2G+2BB ~4v¥.¥

X AX+2(F~¥sG -igtd ¥
Bx ® 8, 2 ABptiv-¥u ¥sY
e 4 ¥
A A*
Fig. 2

This diagram will be very useful for reference in the sequel. Note that the
contributions to the terms of weight p in the product come from terms in the
components corresponding to the partitions of p into two (p = Py * pz). If the

component representations are not identical then the product is to be symmetrized.



3 Lagrangian Densities.

The fact that the product of any number of scalar superfields is again a
scalar superfield and that the step-down operator is always accompanied by a space-
time divergence means that already at this point we can say what the supersymmeiric
Lagrangians must be, namely the space-time integrals of the highest weights D(x) in
Figures such as Fig. 1. For if we step D(x) up we obtain zero by definition, and if
we step it down we obtain & space-time gradient, which vanishes on integration.
Hence if we operate with the supersymmetric generator C,; on gdl’t ‘.D("‘\ we get
zero. The only exception to this rule that can occur is when one of the lower
weights such as F in Fig. 1 is such that (1) it is a Lorentz scalar and (ii) all the
weights higher thanaara themselves space-time gradients which vanish on integration.
Then clearly S.d.l+ x F(x) is a supersymmetric invariant. This situaticn actually

occurs for the chiral scalar superfields, which we shall consider in the next section.

We conclude this section on Lagrangians by noting that the subsymmetry
( 4.41) for polynomials in superfields can now be applied to Lagrangians. For
the identity (1.11) holds even if the polynomial contains other superfields, and
holds for each weight of the polynomial (which itself is a superfield) separately.
Hence it holds for Lagrangians, which are just the highest weights of such
polynomials. In other words, if flA!W\ is a supersymmetric Lagrangian density,

then

fUJfb,‘#--.\ = fl(A\‘h---] (3.1)

\
where f is a Lagrangian density of the same kind, but with different values of
the coefficients. We shall see some specific instances of the subsymmetry (3:4)

in the sequel.
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Yo Chiral Scalar Superfields.

It has been shown in refs. (3),(10) that the scalar superfields -@(xg) of
section 1 are not the smallest superfields that can be constructed. By defining
the quantities

Gy o= 2 - 56
& A Dy % oboty, (4.1)
(i.e. similar to CJ but with a minus sign), and noting that they anti-commute

with the G’& , one can define chiral scalar superfields %J‘ l)(lg) as scalar

superficlds which satisfy the subsidiary conditions

(30e6"] | &, 00 = 0, @)

and these turn out to be smaller than generel scalar superfields. In fact, if one

applies the conditions (4.2) to the expansion (1.2) one finds that (_I,_'.‘, are of the

form
OA,
-iyvye

vt
At
Fig. 3

That is to say, only the fields A, \k and F of the general superfield ere indepen-
dent. This means that we cen adopt as a shorthand diagrammatic representation of

& chiral superfield the small diagram



FIG. 6

4=

corresponding to the small dotted diagram contained in Fig. S Note that the

superfield consisting of the sum of twc chiral superfields of opposite chirality,

- Fq P
{E’ = v o= <<::::::>‘V} s ‘<:::::>)‘+L
£ . A

Fig. 5

namely,

is not a general chiral superfield. Note also that, as mentioned at the end of the
last section, F(x) is a suitable candidate for a Lagrangian density. Thus if we
use the smaller shorthend graphs of Fig. 4 and 5 in place of the full graphs such
as Fig. 3 the statement that the Lagrangian densities are just the highest weights
remains true in its original simple form.

To obtain the products of chiral scalar superfields we must first write then
in the 'large' form of Fig. 3 and then calculate the product using the product law
of Fig. 2, section 3. The result cen be written in an obvious diagremmatic notaticn,

as follows:

<>
SADA AR AR AR ¥R REA2iv, Y

Y, @ Y.

.5

+{
I
_‘b
2.
+
p=J
4+~
-
+

:F¥

As
:fi Fy
At

Thus the product of two scelar fields of opposite chirelity is a 'large' superfield,
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but one in which the highest weight is closely related to the kinetic part of e

Lagrangion density. The product of two superfields of the same chirality, on the
other hand, is again a superfield of that chirality, and with no derivatives. The
latter result is easily generalized to the product of three or more superfields of

the same chirality. For example, for the products of a chiral superfield with

itself, we obtain

FIG.7
E 3
3EA - 3pya,

3 ALY,
and, more generelly,

nF, A" - placi)y, . AN
¥ = 2 ?t\ﬂr

HeH
¥+ =
I

n A'_I'\y__t FIG. 8
A
This completes our discussion of the weight diagrams, except for higher spin
which is discussed in appendix B. Before proceeding to use them to construct the
Wess-Zumino Lagrangian, however, we wish to draw attention to two subsymmetries of
supersymmetry which are very simple when expressed in terms of the diagrams and are
of great help later in understending the properties of the WZ-Lagrangien. The

subsymmetries are

2
I ey R S oL F O (4.3)

i
A,
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This subsymmetry follows from inspection of Fig. 11. It is clearly a special case

of the identity (1.11) derived in section 1.

II Let C(m) denote elcments of the family of chiral transformations
\ -i (\u-l‘b .51 (m-:ﬂ tb\"
R R i e . (1.t

&q' % é{/,_('m-t) Yo \P) :

and similarly for A- , F— , Y- . Then under such a transformation

(a) :DLEE-» !!-) remains invariant.
4 nwld & +
(v) Fh 2 L F‘n E That is to say, F“ transforms covariantly,

remaining invarisnt only for the chiral transformations with the same integer n

Finally we note that since the Lorentz represeniztions .9(-"-1."\ and .g{bl"v‘)
interchange under complex conjugeation, so do the projection operators "1'(\‘!'. Ys')
for these two representotions. % fcllows that the comiplex conjugate field 1: of
Q+ transforias like \P_ and vice versa. It follows that chiral scalar super-

fields cannot be rezl. Heowever, they may be the complex conjugate of each other,
*
L, (x6) = P lxe) (4.5)

and, exccpt for the bezinning of the next section, we shall assume that they are

indeed complex conjugate.
\
The projections '{(lth) elso interchange under parity, and hence a natural

definiticn of the parity operator is
P2.) (19 =y B, e, —

where m is the intrinsic parity. The phase of M is actually fixed orly up to a
iid
gauge tronsformation of the form Ty =x \Et , but, as discussed in ippencix D,

the gauge cau be fixed relative to the sizn of the mass-operator.

&
These transformations can be written more compactly as the

3,010 > o', 1,e ).

superfield transformations
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5. Derivation of the Wess-Zumino Logransian.

We have seen in section 2 that the supersymmetric invariant Lagrangian must
be formed from the highest weights of the products of superfields. Let us now form
a supersymmetric Lagrangian satisfying the following three constraints:

(1) It should contain only spin O and spin 7 fields;

(ii) The kinetic terms should be conventional (linear for the spin ':3‘ fields and
quadratic for the spin O fields);

(iii) It should be renormalizable.

The first condition limits us to chiral scalar fields, since all other
fields have at least spin 1. The second condition, together with hermiticity,
limits us to the highest weights of @: %‘l (Fig. 6 ) for the kinetic term. The
third condition limits us to g: and g‘_n for n £ 3 for the mass and interaction
terms. Finally parity invariance restricts us to combinations such as “:'::+ Q"‘_:'

Thus under the conditions stated, the most general supersymmetric Lagrangian is

2

\i kinetic + \f scale + ‘imass + \f interaction

WRlgweeal 4t e 1@ @) e

where H denotes highest weight. If we now assume that q‘t are conjugate, this

Legrangian reduces to

Poaline o) ca@er gl oo

From Figs. 6 and 7 we then see by inspection that (5.2 ) is just

f= {"b)-h’brﬁ- 70 L X ' +F+F'} v %L{F”F:S (5.3)

+mi F.', A;"'F.A- "'!a'.qg'\l{ * :l.q".\}-.k ¥ %I. {HA:* "_. A‘.' "!‘ith."h A*-‘;‘_\L_- Y. A-'g .

Now defining Ay = (A2i@) Iﬁ_ 2 Fa= (\'- ni6) IVFL this becomes
- -iba)- ib,.ﬁ)‘ SAEPY +3(EE) A 0F 3 w(FAs G BMGY) ad

”"é& E(A%0Y) 4 2GAD —'@(A*{rk)\}} :
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The Wess-Zunino lagranfiian is just this Lagrangian with the scale parcmeter ) set
()

equal to zero, If we use the equations of motion to climinate the fields F and

G which have no kinetic terms, we obtain the Lagrangian in more familiar form,

£= - 6.0 1%y -¥ae -

»(3

Ty (5.5)
-9 E(A“Ksﬁ)"r *W\%Alkt"w') e b (At*e’ty.

%

6. Subsymmetries of the Wess-Zumino Lagrangian.

The WZ-Lagrangian is clearly highly symmetric, but flor the subsequent
discussion it will be convenient to formulate its symmetry properties explicitly.
This we do by extracting from the general supersymmetry three subsymmetries which
are more concrete, and at the same time will be sufficient for the discussion.

The first subsymmetry is just the second equation (1.7) of the super-

symmetric algebra

12, 6,) =0 (6.1)

One immediate consequence of this subsymmetry is that the different particles in
the same supermultiplet (which are connected by the G, ) all have the same rass.
The next two subsymmetries are concerned with maintaining this mass-—equality under
interaction.

The second subsymmetry is the symmetry of fﬁe + fh under the chiral

transformations

i g
Avit > Q,(}lMiﬂ R e el s il (6.2)

This chiral symmetry is broken by f) and fn and we easily recognize it as

the chiral symmetry C(3) of section 4. (Note that the simpler symmetry () ;



s, -

which here becomes -

: o
Avig = ~e¢(h-€!,] : PG 22 (Frie) : e P (6.3)

is preserved by Y *;P and broken by f, and f vl
fe tdw :

The last subsymmetry is obtained by first noting empirically from (5.4) that

q_‘kﬂ._ e ¢ Ny g 5 (6.4)
AL e o F B S ovidia

) FE Fi

which we easily recognize as the subsymmetry ;;R* ="M of section 4.

Since (6.4) holds only before the F and G fields are eliminated, that is to say,
with the partial derivatives taken keeping F and G fixed, it turns out to be more

convenient to express this subsymmetry as the identity

J(AS, magh , dewms —a®) « 2(A,m)) (6.5)

r

for any real parameter © . This identity, which we shall call the scaling

identity, for reasons which will become clear in the section on spontaneous symmetry
breaking, holds both before and after the elimination of the F and G fields. Note
that (0.5 ) is a specific example of the general identity (3.1) derived in section 3.

We note finally that if we define the potential of the VZ-Lagrangian to be

VIAG) = =7 (R) -wgalive) - T e (6:6)

that is to say to be the WZ-Lagrangian stripped of its fermion and kinetic ternms,
then the scaling identity holds also for V(A,8) alone

VIAS, maagh, dndeo®) = V(A,m)) (6.7)

This identity will be very useful for the discussion of spontaneous symmetry bresking.
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T The Renormalization Pronerties of thz Wess Zumino Larrangian.

At first sight the WaZ-Lagrangian loocks like an ordinary Yukawa-P( tb") type
theory with certain constraints imposed on the masses and coupling constants so that
only one mass and one coupling constant are independent. However it is much more
thaq_that. The point is that, since the constraints are dictated by an underlying
symmetry group, the correlations are expected to hold not merely in the tree
approximation but also after renormalization. In particular one should be able to

renormalize the theory without introdueing any more masses and coupling constants.

Thus, since all the masses are equal because of the subsymmetry

U} Leleae (7.1)

and the interaction is expected to maintain this equality, we expect that we should
have the same mass renormalization
'z = l = (7.2)
. L,
A wﬂﬁ v

and the same wave-function renormalization

P Tl X (7.3)

for ell particles. Similarly, given (7.2) and (7.3), the maintenance of the

scaling identity

f[k*%, ™ -8 0 “\%—Qﬁq = ;E(A,"m,\) (7.4)

which correlates the scale of A and m, leads us to expect that the mass and wave=-
function renormalizations will be correlated. Thus, if the supersymmetry is to be
maintained after renormalization we expect strong conditions on the renormalization
constants.

)

Vess and Zuminio have carried out one-loop calculations to check whether
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such strong conditions do indeed hold. They find that in fact even stronger
results hold than might be expected from the above considerations. Their results
may be summarized as follows:

For the Lagrangian with the dummy fields F and G not yet eliminated they
find that
(a) There is no divergent mass or coupling constant renormalization other than

that induced by the wave-function renormalizations;

(8) All the wave-function renormalizations are equal;
(v) The common wave-function renormalization ccnstant is logarithmically
divergent.

For the Lagrangian with F and G eliminated, these results translate into

the following:

(a) There is only one common mass renormalization and it is logarithmically
divergent;
(v) There is only one common wave-function renormalization and it is equal to

the mass renormalization;

(o) The two Yukawa vertex renormalizations are finite.

Note that result (a) implies that the quadratic and linear divergences which one
might expect for the boson self-masses vanish. This is because supersymmetry forces
the bosons to behave like fermions, which have only quadratically divergent self=-
masses. Thus we get the result we expected in eq. (7.2) above, and the only
question is how the supersymmetry arranges for this result to emerge. The answer
can be found by looking at one of the boson self-masses, the A-boson say, which is

of the form shown in Fig. 9.

-
ik / \
OISR, | -.-.--O._..._ oo 2 e e = - G

A~ B *
&ye & &y

Pig. 9
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Clearly the quadratic divergences cancel because the ¢# and Yukawa coupling
constants are the same, and this is so because the supersymmetry allows only one
coupling constant altogether, and allows it in the particular way given by the
WZ-Lagrangian. It is worth remarking in this connection that the result depends
critically on the fact that the fermion field is & Majorana field.

The result (b) asbove shows that the expectation that the scaling identity
would persist af'ter renormalization is correct up to second order at least. The
result (c) above comes from an entirely different source, however, namely from the
chiral invariance of the WZ-Lagrangian mentioned in the last section. This can be
seen by direct inspection of the third-order Yukawa vertices which one might expect
to be logarithmically divergent (first two graphs of Fig. 10) but whose divergences

actually cancel.

-]

) 2 a‘x  2(4-5)
ey 20 S _rm\ ﬂ'f
/A\ / \ / \ 57 ¢ k*-m’® (p-k)’-nz

Fig. 10
The result can also be seen from the Ward identity for chiral invariance, the second
order form of which, after the elimination of the F and G dummy fields, is showr in
Fig. 10. (Note that since there is no mass in the numerator of the integrand on
the right hand side the derivative with respect to mass makes the integral convergent.)
The Ward identity has the advantgggh:gat it can be used to establish the convergence

of the Yukawa couplings to all orders.
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8. Spontaneous Symmetry Breaking and the WZ-Lagrangian.

In order to cbtain more realistic models it would be desirable to introduce
a splitting between the fermion and boson masses in supersymmetry. At the same
time, one should like to split the masses in such a way that most of the 'good'
properties of supersymmetry (e.g. absence of linear and quadratic divergences)
would be retained. The obvious candidate fkor)a:x“c)h splitting would be spontaneous
symmetry breaking. However, it is now knowr.xltl!xat the simple WZ-Lagrangian of
section five cannot be spontaneously broken. In this section we wish to give a
simple explanation for this result, namely, that the WiZ-Lagrangian is already
spontaneously broken. Thus it is already at a potential minimum and so (for e
simple potential) cannot be shifted except to & maximum or to another supersymmetric
minimum.

To show this we proceed in a somewhat indirect way, which however we hope

is more illustrative. Let

f =i lmbrk)\" %.Qr%)t -

"!\:)10

"

T;,’.jq. +%1[g‘.\, ) - 1-\; lAHHs‘\W +°5\F[$=@')+1GA%’X (8.1)

be the chirally invariant WZ-Lagrangian with mass and scale parameters zero. low
introduce a scale term -AV (where we can take the sign of X\ negative without
loss of generality because its sign can be changed by the chiral transformation
(6.2) with 43: T\'\'L s Then eliminating the fields F and G in the usual way we

obtain

L. 0 08 - L5y - 45y - Tihe) +qe). (@

From this equation we see that the effect of the scale term & is to break the
oAt

chiral invariance by adding to the Lagrangian a term of the form )%(A'B ) .

Furthermore we see that this term is tachyonic since it gives the fieldAa. Eegative

2 A

mass . Howenm::-‘| before dismissing it for this reason we observe that the scale



term and the previous chiral-invariant potential combine in the following

interesting way

e %(K’%‘T g(A-6) = - ?;:‘[l (As %\K Qlﬁﬂ.%’%?*’ @,“3 : (8.3)
where "z 2 W

What this equation shows is that the effect of the scale term is to change the
potential of Figure 11a to that of Figure 11b, where for <n\>-_—<g,) =Q we are at

the encircled points.

(3-) - (b}

al

. k 2 >
2g

Fig. 11
Thus the scale term has provided a natural mechanism for introducing a Goldstone
potential. The Goldstone potential respects the supersymmetry but breaks the
chiral symmetry. If we now shift our fields to one of the minima of Fig. 11b by

letting

®

8 : {)=<LH =0 ' (8.4)

O OISR TCY A A TS A
(8.5)

“%q'(.a-f.‘Xg{r\q’ - %{a\%‘“(ﬁ*%\u&ﬂ] ;
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But if we expand the potential term in this Legrangian we see that it is just the
massive VWZ-Lagrangian of section 6 with m = Q\‘ \% . Thus we have the result:

The W2-Lagrengian with mass m and scale parameter zero, is the notential minimum

of a WZ-Lagrangian with mass gzero and scale parameter ™ ll—bq . Since there are
g

only two minima in the potential of Fig. 11, and both are supersymmetric, this

explains why the WZ-Lagrangian cannot be spontaneously broken. Note that this
result also justifies our calling the term -2F & scale term, since the scale-
parameter )\ introduces a mass into the theory by the above mechanism.

Before discussing the deeper reason for the above result, it is better to
generalize it as follows: Let
1\ b L S acn s —
i; S D U A2 TR S T e A [ (
>0 8.6)
Aw(FALGR) + %{ Fla-e) + 1&&?\3

be the WZ-Lagrangian with mass m and scale parameter zero. As before, introduce

a scale term -\F . On eliminating F and G we obtain this time

Ls 4N 40 - hade -5y - ¥ (Aigen)y
(8.7)

EARRIICO R EAGARY S

1
Thus in this case the eff'ect of the scale term is to introduce a term \ﬁflkm%)_at}
Form £ O this term in linear in A and produces neither a potential maximum nor
minimum. However once again we find that the scale term combines with the original

potential in a simple way, namely,
A\S}R\A*“\-& ) \ -})\tﬁﬂu-\'“\ -p ’k - % {(A#‘“M * 6}{(A* w-M\* * %1} (8.8)

"
where M - '\;\L-\-h\% . Thus in the massive case the effect of the scale term is to

keep the general form of the original potential unchanged, but to -shift it from



Fig. 12a to Fig. 12b, where for {A)=4®) =0 we are at the circled points.
Hence in 12b we are not at a turning point of the potential but cn the slope. Ir

we now shift as before to the new potential minimum by letting

A= & .+ ‘i):_‘_ﬁ s %-QJ. . 41)'-‘(!:)'-' o,
9

then (8.7) becomes
Lo 40,0 4o 450 vy -a T ey - T 1Y )

which is clearly just the WZ-Lagrangian with mass M- J'\n"-& h\ﬁ and scale parameter
zero. Thus we have the following generalization of our previous result: The

WZ-Lagrangian with mass M and scale parameter zero is the potential minimum of a

WZ-Lagrangian with mass m and scale parameter (M‘. ‘) ’L}% . The previous more

interesting result is the special case for which m = O.
Stated in this general form our result can be understood immediately in

terms of the third symmetry of section 6, namely,

ki[A*%, '“\-').%%) )-1\(0-%%‘) = iLAl‘W,)\) . (8.11)

For from (8.7) we see that if we introduce a scale term -\F into the Lagrangian,
my gt
it induces a term )«h Q+'{Q\ - Q;-_\ which moves us away from the potential minimum
(since if m # O it produces a term linear in A, and if m = O there are no other
%
mass terms present and it introduces the tachyonic term X%A for A). Hence to
return to a potential minimum we must eliminate )\ . But from (8.11) we can do
that by suitably shifting the field. Indeed if', as a special case of (8.11),wa

choose

o T % v

?



then we have
jL‘l, W, 0) = :t (A,w)) : (8.12)
where

0= A +%, L M= "“"'106(09 = J'whle\ : (8.13)

which is just the result (8.10). Thus the scaling identity (8.11) provides a

simple explanation of the results found empirically above.

(a) - (b)
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9. Snontsaneous Svmmetrv BHreckine for more than one Superfield

/e have seen in the last section that spontaneous symmetry breaking is not
possible for the VZ-Lagrangian for one superfield. However, it has been shown by
Fayet and Illiopoulos (FI) that this negative result is not necessarily a general
feature of supersymmetry. In fact, FI have constructed a counter—exnmpfﬁrusing
two chiral and one non-chiral superfields, and allowing parity to be violated after
symmetry breaking. We shall not reproduce the FI model here, as a summary would
not do the original version Jjustice. Instead we shall investigate the spontaneous
symmetry breaking situation for a system of n chiral scalar superfields. This will
help put the results of the last section in perspective, and will be useful when we
come to consider intermal symmetry. The result of the investigation will be that,
in general, spontaneous symmetry breakdown does not occur for chiral scalar super-
fields, but that it may occur in certain singular cases.

q
We consider, therefore, N chiral scalar superfields q‘* az=\...N satisfying

the conjugacy condition
E
a a
(@) =(%). (9.1)

The analogue of the WZ Lagrangisn for such a system is

=L Y IR WA AT W 2 70 A (.2)

where the g4 , C“",_ are totally symmetric « In particular the fermion mass-
matrix is given by
Rewy, $mmy,

ih""la. - RRmy, ) *

. L i z
MJ‘- FRM“’#"%‘M"‘\P

ation

where P is the Dirac metric and we have used the representation in which the rot-

group isdiagmal. There are no further conditions on A, m and g unless we assume

parity conservation. We do not assume parity conservation for the moment, partly
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for the sake of gencrality and simplicity, end partly because, even in the parity
conserving case, we have to take into account the ossibility that a svontaneous
breakdown may occur in a parity non-conserving direcction, theat is, that there may
be a spontaneous breakdown of parity.

Evaluating i in the usual way, we find

8 R 1S +{>~.ﬁh o o (AT + 9B Ry % - ROt
-\-“\.c.’i

where (‘M—)
tor RHGT k.= Aibe

and hence we find that the potential A is given by

*
AV = 11-’%0. whare ‘“%n.'-' \- "‘"M’RQ"" %ﬂgmc‘&l\&ﬁ o2 R

Wie shall consider the possibility that spontaneous symmetry breaking can occur for
any value ﬁfa_ = 'k‘ $ 0 of A" and ®, . From (9.5) we sce that any
|
subsequent shif't Pta-.—) H":&"!).. to make the vacuum expectaticn value of the fields
L] [}

zero can be absorbed in the parameters according to the identity

iuug,'m,ﬂ = ﬁfﬁ,wﬂ,)lsﬂ, (9.6a)

where

™M) = WM lg) = Ml + 20 e, (9.6v)

ME) = Nalg) = Do+ e + bl (9.5¢)
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We shall call the sets of tensors M[ﬂ, \._[3} for all complex numbers % the
orbits of "W} and )n ¢

The fact that the shift of the fields can be absorbed in the parameters,
means that in the neighbourhood of any point &a'-' ’B,, the potential (9.5) takes

the form

AV - ils\)&m + 2R N M) By, + m‘:,,(ﬂm,,m E:,z,, * AL9l) €abe,  (9.72)

where

s oo and 4= 9N 8) . (9.7)

If the point AGF % ~ is a minimum, the linear term vanishes and the quadratic

term may be written in the matrix form

(£ €) (Tmomy  dy [
* (9.8)
aly T |\ E

The matrix in (9.8) is therefore the bospn mass-matrix at the minimum. BY comparing
(9.8) with (9.3 ) one can fairly easily see that there will be a spontaneous breaking of

supersymmetry (boson and fermion masses unequal) if, and only Aif,

A = A 10) = %,Lc)t,m +0. (9.5)

Thus the matrix %l&) controls the spontaneous symmetry breaking. In particular,
if V=20 at any point -&:45 , then )\‘3’):0 , and hence Q(g:o, at that
point, and there is no spontaneous breaking.

To obtain a spontaneous breakdown of supersymmetry, we must therefore seek
interactions % 011 o such that %d'[g will not be zecro at the minimum of \T =

The results in that direction will be based on the following lemra which shows that



n
such interactions cre guite excuptional. Let us dencte by SL  and _.n_ the zero
and non-zero subspaces of "\'l\(‘g respectively (q. e SLeS T\l\aro) fnd by 'W\_I_ and %.L
the restrictions of "'M['g and %l.'.ﬂ to the non-zero subspace L)L . Then the lemea

is the following:

Lemma (a) Necessary and sufficicnt conditions for B :’8 to be a local

minimum of the potential are
¥ % : t
(1) N(g) e SL (i) QN=0  (i1) ™ ()M, l3) 2 2\%_\_(3)\.
(v) A necessary condition for :R:‘b to be an absolute minimum
is that det('mj--h)%l) be independent of W , i.e.

det('ml__\.)gl\ = det ™M, 4.-0)

where W is any complex number.

The first part of the lemma follows directly from (9.7) and is simply the recguire-
ment that the effective meson mass-matrix at ﬂ-:‘b be positive (that there be no
tachyons). The second part of the lerma is less direct, but the point is that if
©
det[ml_-bba_ﬂ depends on L) , we can solve det L‘mrb)%_ozofor some W= W ,
> 1 o \¥* : l
and then, letting ’bq: %d‘-!--'iw )'A.[:O , show that V(‘“:V“') , where the point ’s
cannot be a minimum becdause condition (a) is not satisfied.
Note that an immnediate corollary to (i) end (ii) of part (&) of the lemma

is the following:

Corollary: ir R:’B is a local minimum then

Mok, (%) \1 ) =0 A \1 (1) \:(ﬂ =0. (9.10)

Indeed from the definition (9.7b) of %[9 we see that (9.10) is simply the state-

ment that %[3\?(3):%[‘9&‘(3}:0 which is just (i) and a special case of (ii).
We shall relegate the formel proof of the lemaa to A pendix C and consider

here only its applications. The =zoin application is, of ‘course, to note that the

second part of the lemmz places vory streng resirictions on the possibilities for
p ?



spontaneous symmetry breaking, because in general a determinant of the form

det [m,_—ng\ is a polynorial in W unless By = 0, in which case there is no
spontaneous breakdown. To have det ('m,_-wgﬂ independent of W for non-zero g.L "
we must have m and glinter-related end ngegenera'te (in particulzr det & " 0). Ye
shell see later that such a situation can arise, but first we consider some general
and natural situations in which the lemma completely forbids a breskdown of super-
symmetry.

The first such situation is when the full mass-nmatrix '*mdu“) is positive
definite for at least one point %) on its orbit. This is the situation for the
case of one scalar superfield described in the last section, and for the case when
the Lagrangian is invariant with respect to an irreducible representation of an
internal symmetry group L‘\'h.l,({}:‘m[i) 84!, ) . To establish this result we
actually only need the corollary to part (a) of the lemna, as follows: From the

definition of M), (y) we have

Mg (3) = waly) + A9, (§9). . (9.11)

Hence, using the corollary we obtain
o\ Y ¥ 3 ¥ A \ ]
Mgt (2 ) N (INLE) = WM NEE) + 2% XN (39),= 0. (5.12)

°
Since '\Y\‘)‘,('ﬂ is assumed positive definite we then have

i) =0 (9.13)

Hence, in particuiar, %(‘0:0 , and there is no spontaneous bresaidown of suver-
symmetry.

There may be, of course, a svontancous bregkdown of other symmetries, such
es an internal symmeiry, Ior positive definite ’Y‘r\u{,[g) s and in that epse it is

interesting to note that (9.13) gives a quadratic vector equation for the locaticn
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of the minima, in terms of the input parameters, namely,

W (38 388 +malilay-3L) + N <R, (9.130)

°
where, in particular, if we take 4 = O we obtain

Yok 308 + WAL + Mg =0, (9.130)

The result that a spontaneous brezkdowm of supersymmetry can only happen
when ’m‘,.ls]is not positive definite at any point on the orbit is, cof course, not to
be confused with the result that"l‘\\d‘_(s} is not positive definite at the minimunm
point, which is a trivial consequence of the Goldstone theorem. What we have showm
here is that, if we are to have a spontancous breakdoim, the input mass matrix caanot
be positive definite.

The other situations which we shall consider involve parity conservation.

As explained in Appendix D, the phascs of the superfields can be chosen so tha*t the

parity operator is defined by
,
L’? ‘It) (x B) s ?1 (3'- ) ‘(oa) ” (9.14)
end the intrinsic parity of the superfields is
™ o, % (9.15)
Yo = SynMa, ™M)= Mal, = Mg Dy, . 9.15
From Appendix D , a sufficient Condition ror parity conservation is simply

* » A
)a= )"‘) %G.Lr.f' %GLO > (5.16)

that is, the criterion for parity conservation is the reality of the parameter,

Note that (5.16) is maintained only under real shifts B2 +% of the ficldas PL,
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so that (9.16) cannot be assumed for all points on the complex orbit. e shall
assume it only at particular points such as the origin ’5: O or an absolute
minimum of the potentiel.

We now show that if, at a given absolute minimum, the parity is conserved
and all the massive fields have the same intrinsic parity ('W\@L 2.0 ) there is no
spontaneous breskdown of supersymmetry. Indeed in this case the condition (b) of
the lemma is that det [m,_-— W9,) is independent of W , where M, and -
are real and therefore hermitian, and M, is positive. But in that case

) -
det (l-mv) in independent of W , where W is the hermitian matrix 'm: Qmel",
and dicgonelizing NV , we see that this is possible only for V=@ , in which case

q -~ QL:O , and there is no spontaneous breakdovm.

Finally we consider counter-examples. Still taxing the parity conserving

case A, m, g real as input, we note that the lemma and the result obtained above

suggest that in order to find a counter-example we should let

o fi®
Mot ('i) 4 (9.17)

where m, is non-singular, but indefinite, and the simplest  such possibility is

iJ
™, O ]
\ = (4] \ 3 o
o] v |o a "i : (9.18)
0 © o] )

clearly
Since it is the projection ‘id," %,J“)& of %d,c that is important for stability,

we then concentrate on this projection by letting

%d‘c - (qﬂ-‘:\c"' ou“w\& ¥ %c,)\!,) / i i (9.19)



where

Yok = 0o

oR ak (9.20)

Jode X, =0

1
Condition (a) of the lemma is then met if "m-‘i dominates 3'4 3 which is
obviously true for sufficicntly large my, @, relative to 81> Bys g3 ) To meet

condition (b) we note from (9.18) and (9.20) that

%
M[‘“r wg,)= W ‘w"%_ +wlma,-w,9,) - mm, P (9.21)
and that this expression is indepenlent of W , Af and only if

™ %
;‘1?- %; ; N %% (9.22)

Thus the ccndition cun be met, but only if ﬂdr is essentially uniquely detcrmined
by "W, , that is
0 w2 Ymm, | ©
W= W |mm  w | ® (9.25)

oolo;

which is fixed up to 2n overall constant g and the sign of the scuare-rcot. TWe
normalize the overall constant so that b\% L= % .

Thus with )\‘, M), » %,‘Lc given by (5.18), (9.19) and (9.23) the
lenne does not exclude spontaneous symmetry breaking. This cdoes not mean, however,
that a spontaneous breakdown actually occurs, because part (b) of the le:ma gives

only & neccssary conditicn for its occurrcnce. Howcver, one can show that in the
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present case a spontaneocus breakdeown actually does occur. To show this one simply
uses the expression (9.5) for the potential, with "M,|, and %0)“' as in {2.13),
(9.19) an2 (9.23) to obtain
A= Yol + b 6 + wHEes)) +q A &)+ b (AR e &) *1n%[A°lA.A¢s,s.)4%°lA.s; s,n.,\]
This potential satisfiss V2 X"l‘la for '\\6‘311\% , and attains the minimum XIL at the ;
origin, where there is clearly a spontancous breakdowm of supersymmetry since )\3#0 .
One can also verify that with suitable parity assignments, parity is conscrved both
before (A = 0) and after (A £ 0) symmetry breaking.

Another example has been constructed independently by P. Fayet, using

as interaction Lagranzian density the highest weight of the expression

A
j\.;)( = 2§, + q%,%, 0, + -S@*?th%* vhe. (9-25)

.-»
where § ; 6 and \?_ are scalars, vectors and spinors with respect to intermal
sU(2) ® U(1) symmetry, end the expression (9.25) is the most general rerormalizadle one

which is inveriant with respect to this symmetry and the R-symmetry

wd et = Wy Ly CiY-d

ﬁ(ge\-vo. Fheet™ o) BPloyae Blae $ ¢), G ix6) > Tl e £ 8), (9.26)
which is similar to the gauge symmetry c(1) of section L. One can easily checlt thnt
in this medel also V is strictly positive, that there is a spontaneous breakdown of
supersymmetry (though not at the origin), and thst parity is conserved before and cfter
the breakdowm.

Since the SU(2)® U(1) and R-invariance of this model gucrentee that the form
of the interaction is not changed after renormalizotion, it might be worthwhile to
mention that the first model also turns out to be R-invoriant. In fact, it is the most
general renormalizeble interaction which is invariant with respect to the R-group (sith

§' the R-scalar) and the trivizl internal symmetry group @o-’ §°: §'|‘1—’ -—Q‘,t z

Finally it should be mentioned that both the above medels suffer from the
peculiarity that at the potuntial minimum the vaiues of all the fields are not fixed.
For example, in the first model, one sees from (9.24) that V takes the mininmal value

%12 at
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51 = 0 for.any value of ;Lo and BO . Thus the result that the

M2*®

supersymmetry is spontaneously broken, and also that the parity is conserved, holds in



the first instance only at the classical level (tree approximation). The effective
QFT potential, which includes the radiative corrections ,,might alter the situation

quite drastically.

10. Other Possibilities for Mass-Breaking.

Since the spontaneous symmetry breeking for chiral scalar superfields demands
the use of an input mass-matrix with at least one supermultiplet of mass zero, it
might be worthwhile to consider other possibilities for splitting the boson and
fermion masses without losing the 'good' properties of supersymmetry. Two such
possibilities are:

(1) Modification of the basic supersymmetric algebra so that p\ would no longer
be an invariant.

* % = =
(2) Ad hoc insertion of mass-terms such as-.l'A)J‘ A ) ibtr % or "‘i'h'mww .

The first possibility would clearly be the most attractive of the two. However, it
turns out ratuto be feasible. In fact, the proposal runs into exactly the same
difficulties as did similar proposals in the case of Lie algebras. \That happens is
that no matter how the enlarged algebra is constructed, so long as it is finite, the
mass-operator is nilpotent with respect to commutation, and so long as the mass-
operator is nilpotent, in any unitary irreducible representation the mass-spectrum
must be continuous or consist of a single point. As this seems to be a no-go
theorem which survives the transition from commutators to anti-commutators, it might
be worthwhile to sketch the old proof in the new context: Ve start from the assump-
tion that we have a finite set of operatorshro_, a=l...n , that is,a finite super-
symmetric algebra, including the Poincareé generators 3 ) '?l" in conventional

notation, and that whatever the commutation or anti-commutation relations of the Ta.

among themselves (or even the lack of such relations), we at least have

alr L
[L’m ,T;& = "cr\, —‘1, Y_TP:Y;‘\ 34 C: Ay (10.1)
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In other words, we assume that the algebra T. forms a finite-dimensional tensor
with respect to the Poincare group. Then the consistency of (8.5) with ususl

: al
commutation relations for the Poincare algebra will mean that the C,w C

) s |
considered as matrices ("’w ’C.}‘ with indices qJQ,- , form a finite—dimensional
representation of the Poincare group. In that case the commutation properties cf

the L’w, TI" can be transferred to the CI”' C)“' and vice versa. We can

therefore maske the transfer

f L -\ ] ; [C c“.l c -\ C‘\
Ll - e \ > =
‘_ fw?v ,Tr‘\ ?v 4 peey o Wlsy F‘f ¥ (10.2)
But since the C-algebra is finite—dimensional, and the trace of a finite dimensional
"
matrix is zero, it follows from (10.2) that hk (“ is zero. It follows that the
CF' are nilpotent matrices, and, since they commute, that C’ICP is a nilpotent

N
matrix, i.e. there exists an integer N such that @’(‘,") is zero. Then transferring

this property back to the ?J“ we see that for the integer N, we have

%NU‘\T., =0, where UNX=T)x], Pty £39:3)

i.e. that the mass-operator is nilpotent with respect to commutation. If we now
assume that we have particle states with discrete masses 'mp and that the Tq. are

well-defined on these states, then sandwiching (10.3) between two such states, we get
T T N -
(’md-"m(,) <a\T.\‘s) 0. (10.4)

This shows that the T,,_ cannot connect two states with different messes, so that in
each irreducible subspace of this kind there can be only cne mass. The argument is
not rigorous becausc the T,. might not be well-defined on the states [a) .
However, if at lecast one of the masses is isolated (i.e. if there are no zero-mass

particles present) then under standard technical conditions (essentially that there
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exist an invariant dense domain on which the slgebra is well-defined and at the same
time lnrﬁ' f, can be exponentiated to f uni%ary representation of the Poincare
group) equation (9.7) itself can be used to show that the \d) do indeed lie in
the right domain, so that the simple argument given is justified. (In any case, if
the physical states \tf> did not lie in the domain of the supersymmetric operators
-T; the algebra would lose its direct physical meaning.)

The conclusion is, therefore, that a supermultiplet of particles of
different non-zero discrete masses cannot be constructed with a finite-dimensional
algebra of any kind which contains the Poincaré algebra as a subalgebra, and this
includes any supersymmetric algebra as a special case. It should be emphasized
however that this result does not apply to spontaneous symmetry breaking, for which
there are zero-mass (Goldstone) particles, and the -T;, are not operators in the
usual sense.

We now consider the second possibility, namely the insertion of ed hoc
mass terms of the form 'libff A‘; '.‘;.Bq"' &‘ or ",'_A\n\-qv\p . For this purpose we write
down a more general Lagrangian of the WZ-type, i.e. a WZ-type Lagrangian without the

WZ mass and coupling constant correlations

I fie. PR T0TE iRy + R R)y 2 SAGRE) 4 50 (MY

(10.5)
Sy SRR 1 e (-w (-9 (-4)
where, underneath each term in the Lagrangian we have alsc written its dimension,
The completely supersyametric case is then characterized by the inegualities
(10.6)

M=z 0 :zwm -g—r-wmca G=‘a H

and the crucial point to recall is that these equalities persist after renormalization.
The dimensional argument that the insertion of a term of a given dimension arfects the

renormalization of terms only of the same or higher dimension, would then indicate that
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the softest breaking wculd be through the insertion of a term of the f‘orm'i&r";#-'iu" 5.
According to the dimensional argument such an insertion would break the first equality
in (9.10), but would not affect the other two equalities, even after renormalizatiocn.

The insertion of a term of the form ikm'\'\'r‘{v would be less soft, arnd would preserve
only the last equality in (9.10) after renormalization. The preservation of this
equality would, however, still be enough to eliminate the linear and’ quadratic diver-

sences. In any case the softest mass-breaking Ansatz would appear to be

- - L -
- $he P ACE s TmBy UGy 1 maALLe) + 1 (o). (10.7)
This Ansatz is also supported by the results of section 9 where, after spontaneous
symmetry breaking, it is the fermion mass which appears in the courling constant for

the cubic boscn interaction.

The question now is whether the Ansatz (10.7) is maintained after renormaliz-
order
ation. This is certainly true in the second (eyproximation, since in this approxima-
tion the vertex, charge and wave-function renormalizations are the same as in the

symmetric limit (up to finite corrections).Furthermore, in the 2nd order approximation

and up to finite corrections, we obtain for the masses (Appendix E),

[\

k) 3
A -am) = b (e am)T Alole) = 4qlem) T (10.8)

Thus either of the mass formulae

Maetz AW prE (10.9)
or equivalently, the generel mass-formula
4}‘1* (5°'~+ 3’7: . oh W o (10.10)

can also be maintained in this approximation. The case of ad hoc mass-breaking with
the first mass formule in (10.9) has been considered in great detail by Iliopoulos and
Zumino(12), who have showm +that this formula can be maintained (up to finite corrections)

to all orders in the coupling constant .
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14 Internal Symmetry and Supersymmetry.

It is natural to wish to introduce internal symmetry into supersymmetry.
If one wishes to introduce it in the direct product form then there is very little
(10) (17) &
difficulty. For example, if we let the superfields \f,, transform according to

&isglie s
some global internel symmetry group such as SU(2), T*a sll:\}* then the free part of

the Lagrangian (5.1) generalizes at once to

T --‘én\{q:‘.q*u{fq_\ s .Q\{ﬂ;'rq_ +\fqu] -1 (11.1)

whereg\ denotes the highest weight and dagger denotes transpose in the representation
space as well as complex conjugation. Interactions are a little more restrictive
because renormalizability restricts them to being trilinear, and it is not always
possible to construct trilinear group invariants with a single representation.
However, if the representation S is real and has non-trivial trilinear coupling,

then the obvious generalization of the WZ interaction in (5.1) is
Legdp e e et @b vy
q S % oke | T, £y = ¥ ol 52 @_ ’ £ T ,(1-”-2)

where d‘l,b is the real trilinear coupling. The only simple compact Lie groups
for which this can happen are SU(n) for n 2 3, but it can alsoc happen for semi-

simple groups of the form C,@ c,- where G is a compact simple Lie group (since the
product of two totally anti-symmetric F-couplings is a totally symmetric D-coupling)
and it may happen also for finite-dimensional groups such as the cyclic group

\1?‘-3 \E\—') ?3 =2 W_‘ . On the other hand, if the representation S is not

real we can always introduce other fields @i belonging to some represemtation A A
of the group which occurs in the decomposition § @ S , adjoin to (11.1) a

similar kinetic term for @.. , and then construct an interaction of the form

i,a = %& kfa @TL ‘Ef » \PE @:L \Y" . (11.3)



For example, if S were the fundamental representation of SU(N), @ could be
the scalar or the adjoint representation. The analogy between (11.3) and the
M- N and 6“- N interaction is obvious.

One might now ask, however, whether a non-trivial mixing of internal
symmetry and supersymmetry is possible, since the usual no-go theorems which
inhibit such mixing depend heavily on the fact that the internal group is a compact
Lie grcuf, and so might not apply. It turns out that non-trivial mixing is indeed
possible, and can be introduced by assigning an internal symmetry label, not to the
superfield itself as above,but to the parameters 9 within the superfield. That

is, one lets the superfield be

§ LXJ Bk) ) b:’ 6:"‘% o e-" 78 (11.4)

where & is an internal symmetry index, and the internal representation S is assumed
to be self-conjugate in order to satisfy the Majorana condition. That is, S: ?}S 7-1
where '? is a unitary intertwining matrix. Since S is unitary it must then be
either orthogonal or symplectic, the latter case including the two-dimensional
representation of SU(2). The quantities }i-érwrﬁ where (=41 and P:Us— for
the orthogonal and symplectic cases respectively, are then real, and so the natural

generalization of the supersymmetric transformation law is simply
(U\ﬂ.‘ﬂhpﬁ) ¢ Ei(xp "‘5’16“%2 ) B+£)- (11.5)

a
If one now expands the superfield 5(1,9) in powers of Bd , one sees at once
that one obtains a non-trivial mixing of internal and spin symmetry. For example,

for real © (vlzl\ the bilinear term of (1 .2) becomes

& al oL at

L
e Y ety
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where g_'_l_r and ad.- are symmetric and anti-symmetric respectively. Thus if e
belongs to the three-dimensional representation of the internal symmetry group su(2),
the Lorentz scalar, pseudo-scelar and pseudo-vector belong to the T = 0, 2
representations, and the Lorentz vector and anti-symmetric tensor to the three-
dimensional representation.

This result is extremely interesting because the supersymmetric transform-
ation law (11.5) is completely compatible with Lorentz covariance, end hence the
Ansatz ( Il.4) represents the first fully relativistic self-consistent mixing of
internal and Lorentz symmetry. In practice the Ansatz, as presently made, runs
into the difficulty that its representations are too large. In general, if n is

the dimension of the internal representation S, then because the 'Lie' algebra

aQ | ods
{Ga ; G‘sk S U‘C?'Lf : (11.7)
n
of (11.5) reduces to a Clifford algebra in the rest-frame, it is 1 - dimensionsal.
Thus the smallest non-trivial dimension is 256. By making a parity projection
similar to the chiral projection of section 4 one can reduce the number of Dirac
indices effectively to two and hence improve Qﬁ‘ to an 3 The smallest

dimension is then 16, and for this case one has obtained the (spin-isospin) parity

correlations

G T LT VB 2 Gt (11.8)

)
Unfortunately this multiplet does not correspond to any known set of particles of
equal, or approximately equal, mass. Hence there still remains the problem of
making the Ansatz (“-\) realistic or of finding & more appropriate Ansatz.

A general investigation of this problem has been undertaken, and I am
indebted to Dr. Sohnius for informetion concerning some early results which are

already quite restrictive. What one finds is that if one tries to combine



supersymmetry non-trivially with a compact internal symmetry, one has the following

restrictions:
(1) All spinor charges commute with the momentum , L2 ,G]=O.
(ii) All spinor charges are spin £, C: Rn 4 az=\,1.

(i1i) The most general anti-commutation relations are

Bt oo ftoegigt
g e SRS T e 4 s

fagrooptr s phmiieg freinlufian o

s
where the Cs are the internal symmetry generators and the da,“m are C-G coefficients.
v
In the case that the internal symmetry is self-conjugate, we can define the Ma jorana

spinor ﬁd , and in terms of this spinor (11.9) reduces to
160 Y =7 (0eg),, + T4 Ane + ey B (11.10)
s e g s g

where

]
P
j L
9

£

A-\»l&: C

and

L6, ay = 6,8} =0.

Eq. (11.10) is clearly only a slight generalization of (11.7).
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12, Spontanecus Breakdown of Internal Symmetry.

In section 9 we saw that for chiral scalar superfields the supersymmetry
cannot be spontaneously broken if the input mass-matrix is positive definite. In
this section we shall show that although in the positive definite case the super-
symmetry itself' is not spontaneously broken, nevertheless it has the remarkable
property that it acts as a catalyst for the spontaneous breakdovm of internal
synunetry.('o‘ In fact from the results of section 9 we cen show at once that the
addition of supersymmetry to ordinary symmetry in direct product form produces a
Goldstone potential for the spontaneous breakdown of the internal symmetry. (This
may happen even if the mass-matrix is not positive definite, but we shall confine
ourselves here to the positive definite case.)

First, we recall from section 9 that if' the input mass-matrix is positive
definite the potential minima are at V = 0 , and hence 1lie at the points
where the /5‘ are given by the quadratic vector equation(q.l'i!f ),ard that 2t these
lienim-'fhe effective mass-matrix is given by{qu,\]-. This result holds for any set
. o!‘-"chﬁ?al;se-:a.i'ar superiields. Let us now consider the specisl gase where the chirel
scalar superfields belong to a real irreducible representation R of some groun with
respect to which the Lagrangian is invariant. Then the parameters )‘a. ) 'N\ﬂ_h, and
%J;c. are invariant tensors with respect to that group. For simplicity (and for
relevance) let us now suppose that G is a semi-simple compact group, or, more
generally, the product of such a group with a discrete group such as the permutation
or reflexion group, and let us assume that the completely symmetric pvart ef RxR:R

contains the trivial representation (with multiplicity one). We then have
\._':0 ) Mf, = T“%al.- ) = I %d"’«!‘- : (12.1)

where the AGL‘#O are the completely symmetric C-G coefficients. From(‘!.l'ﬂr\ vie
m
then see thet the parity-preserving potential minima are at the points Aa= 3 ?0 '&ﬂ-

where the %a are the real solutions of tho cquation
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&.1.,, {-Q,Qb . 'S'.. : (12.2)

and only at these points. At these minima we have the one-parameter mass~formula

WMol ($) = m (S, - 2dabefe) s 5)

for the effective mass. Note that the equation (12.2) is just the fixed point
equation for the marping 9\ > R . Such equations have been considered as a
symmetry breaking mechanism by a number of authors from different points of vie&?oa.)nd
an extensive mathematical investigation of the solutions has been carried out by
Michel and Radica.t!i.t.“ In general the solutions -F'ag can lie only in discrete
directions, such as the directions orthogonal to I, V and U spin in SU(3). This is
in strong contrast to the non-supersymmetric case, where the internal symmetry alone
would allow Goldstone potentials of the form - }:A&As _‘Y h.‘\.‘\‘-and hence would allow
breaking in any arbitrary direction.

If we recall that in the positive definite case the supersymmetry itself is
not broken by the above mechanism, we see that what happens is that the internsl
multiplet splits up into submultiplets, each one of which is separately supersymmetric.
The fermions and bosons in each submultiplet have the same mass, but the mass veries
from one submultiplet to another.

(22)

Let us now consider the question of Goldstone particles for the spontaneous
breaking (\1.3] . For this purpose we recall the general Goldstone result that
since the potential is group invariant ( Vlh\‘ \TlA.‘&‘A‘ where gﬁ is any generator)
the quantity TV ,\%Qﬂ\t is zero, and hence, in particular at any potential
minimum A-.«%{- » the zero-mass, or Goldstone, directions are just the directions S%{- 2
If we let %“ denote the Lie algebra of the little group* § we have, by definition,
%l\% =0 and %3&#0 : %a&{- OH , and so we see that the Goldstone direttion:s are

Just the complement of the little group directions. (Another way to say thisz is that



the Goldstone directions correspond in a one-to-one way with the cosets G/H.)

In our case therefore, the Goldstone directions are just C'rd{'o' where G'.l
are the group generators. This can also be verified directly from (12.2) and (12.3),
since if we make an infinitesimal group transformation of (1 2.2) we obtain from the

covariance of the equation and the invariance of the Aa.lu.

’laalu:. gl' (G's]o - LGQ)G " (12.5)

and hence from (12.3) we see that

o, (G4) ), =0. (12.6)

as predicted.

It is interesting to note that the mass-formula (12.3) is independent of the
normalization of 'S',_ and dge . For, from (12.2) we see that a renormalization
of 'E'.. induces the inverse renormelization for A.j“_ , and conversely; and from
(12.3) we see that any such renormalization leaves (12.3) invariant.

With a view to applications let us now consider some special cases. First,
the only compact simple groups whose adjoint representations have a non-zero totally
symmetric D-coupling of the kind required are SU(N) for N> 3. For these the d.n,,,

are defined by the equations
Y\“t,“b\ # 'i;%q, R\W,HQA = dade Me (12.7)

for the N x N trace-orthogonal matrices M‘, of the fundamental representation.
The fixed point equations (12.2) have been solved for this case by Michel and
Radicati, using the fact that for the adjoint representution the vectors ‘Eo_ may
be replaced by the matrices of the fundamental representation so that (12.2) reduces

to

M- RM v _y Mo WeM B
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Por SU(3) the-solutions of (12.8) are easily seen to be M = diag. (=1, =1, 2) (up to

conjugation) and these are just the directions with little groups SU(2) @ U(41)
mentioned esrlier. If we choose the conventional hypercharge direction, with isos»in

® hypercharge as little grcup, then we easily obtain from (12.3) the mass-formula

| 8
M%) =0 W) = QM) (12.9)

where the argument refers to isospin. In particular we note that the Goldstone par-
ticles are the I = % members, in agreement with the general result that the Goldstone

particles are just the complement of the little group particles, which here are I = 1
a'ﬂ- I = 0.

Another particular case of interest is the set of adjoint@adjoint represen-

tations of G® G, where the G are any simple compact Lie grcups. In this case the

symmetric D-coupling is given by
where the 8“‘ are the completely anti-symmetric structure constants for G. Since
%‘q&&a“ %iesh‘« > .‘u“ {, 0y " Yu = K&, (12.11)

where Q-“ is the Killing form, it is clear that in this case one solution of the
fixed point equation (12.2) is given by

S So (12.12)

The little group for this solution is clearly the diagonal group G and the mass-formula
is

M, s M s “‘(5'\58;‘. -"-f;“hﬂ). (12.13)
According to the general results discussed above, the Goldstone fields in this case
should correspond to the cosets G.x G / Diagonal G~ G. Hence there should be one
Goldstone-field for each generator of G, and indeed it is easy to verify from the
Jacobi identity that the generators ‘f‘- of G, where l 5 f‘ , are eigenvectors

Y

of the mass-operator (12.13) with eigen-value zero.

For sSU(2) ® su(2) the mass-formula (12.13) gives (10)
L *
Ml =0 ME) = b M) (t2:18)

where the argument is the spin of the diagonal SU(2).
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Finally, it may be well to ecmphasize that, since V % 0, if the points V = O are
attained they are absolute minima. This circuinstance allows us to look for gencral
(not necessarily parity-conserving) minima by setting 161=(9 « From (9.4) we then

have
>\a. * 'W\a-ﬂa &Qr + 161::- AQ)A"- . o) (12_15)

or, equivalently,

\“_.\ Wy AL ¢ %l,;,(,ﬁ!,ﬂ.g" e, 8. =0,

wal, 01 + 2l ALS. 7 O (12.16)
In particular, in the irreducible case we have
Abhe- BLbe) =- % A
dadye ( AbAC~ By <)  Aa e

ot ALl =% R

To solve these equaticns one may use the procedure of VNichel and Radicati mentioned

previously, namely, one may define the hermitian nmatrices
; ™
A%3 Ada 8:-37 G (12.10)
where Tp, are the group generatars. Then, for SU(N) for example, (12.17) reduces to
Avh- By = A
LAy 8 =0

where Q.Ave; is the anti-comiutator of A and B minus its trace.

(12.19)

Equations (12.19) can be solved by noting that A comnutes wita 82, and then

diagonalizing these two matrices. For SU(3) the most general solution turns out to be
A=- %19 + 3¢ eild)
a2 .
where ol is an arbitrary rgal parameter, and the q and fl' , i2),2 satisfy the algebre
. L 4
%AQS q’ qu‘:--’\t {‘i\/ﬂ.g - Jsl.j% (12.2!)
Here thceL are just the real solutions (B=0) of (12.19) found earlier in this section,

(12.20)

and hence they are the vectors orthosonal to U, V, ani I-spin (charge—vectors), while
the T} are the real generators of the orthogonal SU(2) group, U, V, and T respectively.

That is
e B 4 |""‘°
-l 6=t 0 e | o dad f\_=
CL~ o o 2 ! 060

up to conjugation.

-0

(12.22)

-4
g =
® 0



13. Yang-Nills Superfields.

Before inﬁfo%ucing Yang-Mills superfields, we recall the procedure for
Qb
ordinary Yang-Mills fields: Starting with a free fermion matter-field with
Lagrangian

U= Clgmy §09: SWx) |

(13.1)

which is invariant with respect to a global internal symmetry group S such as su(2),
one modifies it so as to make it invariant with respect to the corresponding local

group
ie Alx)

Y s Sw),  Styae , MkTAML,

where T, are the group generators, by writing

Ly REGE™ 4 Thgomy (13.3)

where

Dy Dysie B ) ana F - ‘If[-_bwm;\ ,8,2,8, +iel}, 8.} (13.0)

In other words, one introduces a new field ‘S%F whose transformation properties

are chosen so as to make the derivative covariant i.e. so that

3§ ¢35t (13.5)
* » :

The first term in (13.3) is then a kinetic term for the new field. The steps
(13.1) to (13.3) are summarized in the first column of table 2

o) (25)
In the supersymmetric case the fields chosen as matter-fields are the chiral

superfields Ek*_ (that is, } comes accompanied by the two scalar fields A and F)



=

and the Lagrangian corresponding to (13.1) is the globally invariant Lagrangian

“[ b+ T qi‘ls l;"{ Lﬁ : +‘f§+1]‘ (13.6)

of section 9. VWhen we now consider the analogue of the local transformations {15:2),
however, we see that if we are to preserve the supersymmetry and chirality, the gauge
fields Al‘ﬁ) must depend on O as well as X s, and must themselves have definite

chirality. Thus in the supersymmetric case we must have

: iﬁht\x 9) 2
P00 = Sh Y, (xe) | She)-e v AbO: Ao T, (s

Thus in the supersymmetric case the single gauge field f\lx) is replaced by two
independent gauge fields A,(x®) . Furthermore since the A*(x)g] cannot be

real, neither gauge transformation is unitary in itself:
¥ g 3
Ay (x6) 3 A, (x6) = §,(x6) S, (x0) 4 1. (13.8)
The most that we can require is that
¥ *
Ned) = A;n8) = S 000 SC(x6) = 1, (13.9)

and this condition we shall, in fact, assume throughout.
If we now apply the local transformations S_‘_ (XQ\ to the Lagrangian

(13.6) and use (13.9) we obtain
‘ s e aif¥ g vy
\3. \L.T( e Q \_T{ + e | i s N s R D)

Thus, as in the case of the conventional matter-field \ » the mass-term in the

Lagrangian remains inveriant under the local transformation but the kinetic term does



o

(10)(25)

not. The invariance is restored as in the ordinary case by the introductiocn of &
new field with suvitable transformation properties. This time, however, the new
field is a real (non-chiral) scalar supermultiplet @(Al\h F‘G' Q)r')‘,‘a) in which
the vector field B" plays the role of the conventional vector field. This field
is inserted in the Lagrangian in the simplest way that will restore the invariance ’
namely, by writing

Logala ety o d e} s maleeade )

(13.11)

where the new field is assumed to have the transformation law

e § eh. e§ -ieh,
e e L

Q = (13.12)

(Note that (13.12) reduces to Q.: Qaﬂ_- I\‘_ in the abelian case.) The only problem
is that one has to construct a kinetic term for the new field, and this term must be
supersymmetric, gauge-invariant (i.e. invariant with respect to (13.12) ) and contain
a term XILFP. F“ in analogy to (13.3). The gauge invariance suggests that the
tern be formed from Q:Q§ » and the supersymmetry that it be formed with the
covariant derivatives QBJ of section four. The term l-ﬂ.F’“F}N as highest
welight suggests a product .. -\-aLi\B-B)k FP“\‘-'“ » Which suggests factors of the form
J-"} BX;KPQ FP“ , and (recalling that scalar chiral fields have the terms %,B-xgy,.e B,.,)
these fectors in turn suggest vector chiral superfields @r . With all these conditions

() (29)
in mind one can then make the Ansatz

L.

"

-3 0 §: §; . Q; @j: X (13.13)

where

-+

e

e (13.14)
et )

d -ie
3R I R Uit



and this Ansatz does indeed lesd to a suitable kinetic term. Thus the full super-

symnetric Yang Milis Lagrangian is

Ldge ga)-atlhe et omfdude]

and the steps leading to its construction are summarised in the second column of
table 2.

The Lagrangian (13.1 5) is, of course, non-polynomial. However, because of
the nilpotency of the Bd it is actually only non-polynomial in the lowest weight
field A, and in fact there exists a special gauge in which the Lagrangian not only
becomes polynomial but effectively cubic. The existence of such a gauge can be seen
by first considering the abelian case for which the gauge transformation (13.12)
becomes §—'} §+L +A; and noting from this equation that the super-gauge fields
can be chosen to eliminate some of the conventional fields in @ . To see which

fields can be eliminated we recall Fig. 5 which when subtracted from Fig. 1 gives

Fig. 13
From this figure we see at once that the fields A »Y , F, G can be eliminsated.
Furthermore, we still have the conventional gauge freedom of eliminating the
longitudinal part of ’Bﬂ' with the B-field. Once the A ,4 , F, G fields are
zero, the nilpctency of the 9‘5 makes the expansion of the exponential terminate

almost immediately to give

(T gnl v :
2 4 e By - &ke-e) 8L, . (13.1€)
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As one might expect, by modifying the gauge transformation to take account of the
non-commutativity, the same result can be shown to hold in the non-sbelian case also.
Inserting the expansion (13.16) into the supersymmetric Yang-Mills Lagrangian (13.15)

(10)(15)
one Obtains

\ e e 1 \ 1 \I
O S R EN *«,A‘} - ;b,A)Tb,.A)-ztb,.ts) (9,8) -4 F¥-m)y
E(GKYSIS RS Y WS PRIV W ey 2 A B *‘-fk & =

or, on eliminating the dummy fields A, F, G
MV o= \ + 1 it VT
Pk REE Lo - ) A8 By sE W

L
£ > + 2 (13.18)
2 (AR ER) vie ) ATy o8 et +h.‘g +EAep +¢fen)

Note that if the matter-fields \h belong to the adjoint representation of the
local internal symmetry group then the gquantities XTy'l reduce to RX[’;&]

In general however only the Yang-Mills field Q itself must belong to the adjoint
representation,and the matter-field can helo:g to any representation DD containing
the adjoint representation in the product gB ® D .

Equations (13.17) (13718) represent the simplest form of the supersymmetric
Yang-Mills Lagrangian and the steps leading to them are summarized in the third
column of table 2. Of course, (13.17) and (13.18) are no longer invariant with
Tespect to the full gauge group (13.12) since we have chosen a particular gauge.

In fact the only gauge invariance left in (13.1 ) and (13.1 ) is the conventional
gauge invariance ‘Sr-? 5}_ 1-'0’.& mentioned above. Comparing (13.18) with the
conventional Yang-Mills Lagrangian (13.3) we see that it is not much more complicated.
The only essential novelty is the appearance of the Yang-Mills fermion field )\
which accompanies &f' because it is in the same supermultiplet. Note that this

\ -field itself has a conventional Yang-Mills kinetic term.
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14. Super Unified Gauge Theory.

Conventional unified gauge theory is obtained from Yang-ills theory by
] =1
adding a scalar field QJ with transformation properties ¢= §§5 to the Yang-

Mills Lagrangian (13.1) to get
f: -":."&F... B v SLP-wy - “&h}.‘mbﬁ) *‘“\E‘N' + V(9 (14.1)

where

Nax Lk
Vi) = “}"'.;_‘b + X
L] o a &\,
and then spontaneously breaking the symmetry by letting ¢-‘-‘)b + Q s Where d’ s D>
8o that ((b): O at the potential minimum. One sees that in that case the vector
meson fields "Bf‘

problems, acquire a mass-matrix of the form

s Which hitherto are massless and lead to serious infra-red

- q‘.;)*(g’.h % «»% @,.&)T(ﬁ,,:”. (14.2)

]
The potential is chosen so that d) will produce masses for all but an abelian

subset of ’B}“ fields. (The fermions also acquire a new mass-matrix '\1\-% s- which
in general does not commute with the group generators.)

From (13.18) we see that supersymmetry has the property that in the super-
symmetric Yang-Mills Lagrangian the matter-fields Y are automatically accompanied
by scalar fields A and B corresponding to the scalar field 4) which is inserted by
hand in conventional case above. However, the multiplet Q(A,B, W) is not
automatically equipped with a potential corresponding to the matter-matter potential

\T(‘) above. In fact the only potential provided by the Yang-Mills theory itself

comes from the terms



P T ¥
';'_‘id."-nelh*l!welﬂ = -‘;_d,,d, - dd=""-(’\2-.|3*$t¢ﬂ
(14.3)

in (14.1) and as we shall now see, these make no contribution to spontaneous
symmetry breaking (at least in the tree approximation). To see this, suppose that
we have a spontaneous breaking A> A-'-%f coming from either (14.3) above or a

combination of this (14.3) and some inserted potential. Then in (14.3) we have

dy = Ja*?“+ta3* G*la-ﬂ_

(14.4)

But since Ty is a Yang-Mills group generator, we know from section

that 'Cd-e is a Goldstone direction. Hence the only contribution to (14.4) comes
from the ©® particles which lie in Goldstone directions, and from Fig. 13 we see
that it is precisely these particles that can be absorbed by the longitudinal part
of the vector field, and hence vanish in the uniter?'.;auge. Thus (14.3) makes no
contribution in the unitary, or physical, gauge.

Since, as we have just seen, the Yang-Mills theory itself does not provide a
potential for spontaneous symmetry breaking, we must insert a matter-matter potential
by hand, as in (14.1). But as well as being invariant under the Yang-Mills group
(or some larger internal symmetry group containing the Yang-Mills group) such a
potential must also be supersymmetric. We have seen in previous sections that the
form of & supersymmetric potential is pre-determined and that it allows only one
overell coupling constant g to describe the Yukawa, @3 and ¢I| coupling. Thus
in the supersymmetric case the potenticl \r( lﬂ cannot be chosen at will to produce
any required mass-matrix (14.2) for the vector fields. The question therefore

arises: does the predetermined supersymmetric potentisl produce a unified gauge

theory? In other words, does the supersymmetric matter-metter potential allow



spontaneous symmetry breaxing, and if so, is the breaking such that all but an
abelian subset of the vector fields acquire mosses through the mass formula (14.2)?
We have seen in section twelve that a matter-matter supersymmetric potential
does indeed allow spontaneous symmetry breaking. %e shall now show, by considering
the two classes of groups used in that section, that, whether the breaking is such
as to provide all but an abelian set of the vector fields with masses, depends on the
choice of group, the representation, and the number of matter fields used.
SU(N): The solutions of the fixed point equation (11.5) are such that the little
group always contains an SU(2) group as subgroup. From (14.2) we see that the
vector fields corresponding to this SU(2) subgroup do not acquire masses. Hence we
cannot obtain a unified gauge theory for SU(N) using only one matter field.
With more than one matter-field, however, the situation changes. For example,
if for SU(3) we take two matter-fields and allow them to breek along different

directions (orthogonal to I-spin and U-spin, say) as in Fig. 14, then

Bl +186) B(L) +iBlY)

Pig. 1

() -i8()

B(w)-i8(5)
U-Shin

BloY-18lY)

from (14.%) we have

L

-%:“}%Y (6] + @U a+80) + (EET 51 gm)

from which we see that all but the abelian set 1& \u\ Q 3) of Yang-Mills fields

acquire masses. This result is true, of course, only in the tree approximation
and it is possible that the two directions will no longer remain different when

we go to higher oricrs,.
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GxG: Taking the diagonal solution ( Ks-‘,) of section 12 in the mass-formula (14.2) and

recalling that the Y-M group is only one of the groups G in GxG we obtain in this case
ok v/ i * \ '
20484 = - £ (6.0 (82) = & 6. (B,4);,

= - Q,: Ktttu,‘;_ﬁff)(fuxﬁf) = -e-:_‘-’:-vl gtﬁf‘ = .’ BL

,‘ .

Thus all the vector mesons acquire a mass, indeed the same mass. These results establish

(14.5)

that, in principle at eny rate, a superunified gauge theory is possible.

Finally we consider what haprens to the fermion part

.o L w 3 % 4
fi‘- =-% 3P L ¥Phimy +ie(A Yyat Syot rhe) [1L.6)
of the Lagrangian (13.17) under spontaneous symmetry brecking A A¥ £ . From

(14.6) we see that we pick up a mass term of the form

el g S ic).
(14.7)
Since )‘-_\‘.2& where T, @a«c the generators of the Yang-‘ills group we see

(by an argument similiar to that leading to (1k.L))that X§ are the Goldstone
directions. Hence (14.7) is a mass-term for the Goldstone '4'»', and, from (14.2) with
1.": & , those )\!, which partner the vector fields which acquire masses. There
are the same number, n say, of each of these fields since each )C'L,l projects out

one linear combination of W’s » and hence for these fields there is a free Lagrangiaa
('\l s ¥, ~
et b - “m sl
fF 5 éxh:’)n\ /“-'*Avtrk )A AGWE) Ala Ve By (12+.3')
’

a
where the mass-matrix Myaz Tq;§, is the same as the mass-matrix (14.2) for the

vector fields. By introducing the complex spinor fields

¢- -'i(uuw) = 5Dy s .‘—,.ti‘(f)l)"") (14.9)

this free Lagrangian reduces to the form
()

/ « 3¥
‘ff_ e #ﬁ? ‘ba e q’:‘“aa 4’“ (14.10)
Equation (14.10) shows that there is a (supersymmetric)Higg's mechanism at work for
the fermion partners ) of the massive vector fields. The latter acguire a mass
not by absorbing the Goldstone fermions but by combining with them to form complex

fermion fields. An interesting feature of this mechanism is that the full Lagrangian

ol
is then invariant under the gauge transformation 1)A-?£ ¢A’ -so that the complex

spinors PA' A=l...vw thereby acquire also a conserved fermion number.



15, A Note on Acveototic Fracdom.

()

It is now known that although renormalizable abelizn theories are not

asymptotically free, the simplést non-abelian Yang-lills theory, namely the self-

interacting theory’

\ N
ol g &l O -0 Y 15.1
s o pvhinees oo 228,28, e [,,00) (15.1)
is asymptotically free. That is to say, the effective coupling constant €()) tends
to zero as the scele paremeter \ tends to infinity. Furthermore, the asymototic

freedom can be maintained in the presence of a fermion matter field

Foo £ 0 538 Lidhem) 6, (15.2)

provided that the fermion field is notltOO exo*ic, i.e. does not belong to too lorge a

representation of the non-gbelian groué%ﬁ) On the cther hand, if scaler matter-fields
are also introduced (with a view to providing the vector-fields with mnasses by
spontaneous s;mmetry breakini) than tlie asymptotic freedom is difficult to meintain
without using exotic fermions?7) The reason is that for the scalar field, the
renormalizability requires the presence of a q) —interaction and this interaction
introduces a seconil, independent, coupling constant %()\ which must also tend to zero
es X tends to infinity.

From (13.18) we see, however, that if a conventional Yang-Mills field is part
of a Yang-liills superfield, then even though there is only one independent coupling
constant e, the Yang-l1ills field is sutomatically in interaction with both fermion and
boson fields, and that the latter already have a (»q -type coupling (with constant
proportional to ez). If we assume that the interaction is renormalizable, then the

(1) (28)

renormalization group equations epply, and it

H:

5 interesting to ask whether in this

case, with only one coupling fonﬁtant involved, the theory is asymptotically free.
(4 Go

This guestion can be answered by applying generally the Gross-Wilczek-Politzer {ormula



for the effective couvling constant e(')x), nanely, &_‘_i_t-"ﬁ_‘ﬁ\ = (ﬂﬂm s Where
(Y

ﬁ.

o = 2 t@fa- wietouel s oot (15.3)

Herc %a‘ and L'R are the numbers of fermions and bosons belonging to the

representation R of the Yang-Mills group, and W(R) is a representation constant given by
WI(R) = f.xhk Ca(®) } e Cmu')] (15.%)

where cpJS) (31(5) are the Casimir operators for the adjoint and R representcations,
and Tz y L for self-conjugate and complex representations respectively. The
criterion for asymptotic frecdom is, of course, P“ﬂ <0,

Let us now consider the supersymmetric case, and suppose that we have one
Yang-ills superfield @ interacting with “ﬂgv chiral scalar matter fields qi
belonging to each representation R of the Yang-ilills group. Then, since the Yang-lilis

superfield itself contains one fermion field, and cach matter-field contains one fermion

(4) (10}

and two scelar fields, the formula (15.3) reduces in this case to
: [ Yad "
@le) =¥ ot C,L(G) {’S - '\'\&W\?\\'IS + Ofe ) (15.5)

where \H(R) is given in (15.4). From this equation we see that if the representations
R of the matter-fields are not too large relative to the adjoint representation, the
Yeng-Mills field can interact with a number of them without losing its asymptotic
freedom.

This positive result for supersymmetric Yang-Mills fieclds may, perhaps, be
understood by recalling that supersymnectry forces bosons to behave like fermions, and,
as mentioned above, fermions do not disturb the asymptotic freedom provided that they
are not too exctic. The pesitive result alsc shows that a thcory which is not

asymptotically free when oll the coupling constants are independent, may become



asymptotically free when the coupling constants are subjected to special constraints,
Finally the positive result for supersymmetric Yang-Mills fields raises

the question as to whether it might be possible to construct a unified gauge theory

which is asymptotically free, that is, to construct a theory which is both infra-red
convergent and asymptotically free.

To consider this cuestion let us take as example the unified gauge theories of
the last section. These theories are infra-red convergent by definition, so the
question is whether they are asymptotically free. From (15.5) we see that if we

neglect the matter-matter interaction the condition for asymptotic freedom is
Mg Wk) < 3. (15.6)

If we now consider the matter fields q'\d

entation of GxG, where the Yang-Mills field belongs to the adjoint representation of G,

belonging to the adjoint @ ad joint repres-

we see that we have

W) =1 and Mg = order of G, (15.7)
)

Hence in this case (15.6) cannot be satisfied. The best we can do is take G = SU(2),
in whichut':;tae we have "'\'_\Nlﬂ=3 and ‘He\:o to order Ql (even then, it actually
turns out that ‘Sle) 70 in order e.l' ). On the other hand, if we let the Yang-lills
belong to the adjoint representation of SU(3) and take two matter fields also belonging
to the adjoint representation of SU(3) and breaking along different directions as

described in the last section, then we clearly have

WIR) = 1 and Mg, 2 (15.8)

and so condition (15.6) is satisfied. (Even if the two matter-fields interact, it can
be shown that, except for some special ratios of the coupling constants, the breaking
is still along two independent directions.)

Unfortunately, the satisfaction of (15.6) is not a sufficient condition to



—60=-

suarantee asymptotic Creedom. The reason is thut, os discussed in the last seclion, ia
order to obtain the suyontanecus syanetry brealiing that produces the masses for the Yonz-
Mi1ls fields, we have to introduce a VZ matter-matter interaction. This interaction
introduces 2t least cnz mere coupling constant g into the Lagrangian (at least iwo mere
in the SU(3) ~asc cbove). Thesc new WZ counlings ars not asymptotically free in the
absence of the Yang-ilills interaction, %ﬂﬁ\ 2 0 and the guestion, therefore, is
whether the Ysng-Mills interaction cen make the matter-matter intcraction asymptotically
free, and romain asymptotically free itself in the tresence of such an interaction.

In general, ell the questions raised above may be summarized as fdilowa: "he

matter-matter interaction has spontaneous breaxing directions Sm given by formulae
such as o
doe ELE, =B (15.9)

of section twelve. Is it now possible to choose a Yang-lills group and assign the
matter-fields to representations of it such that the folloving three conditions are

satisfied simultaneously?

(i) The spontaneocus brecking (15.9) provides masses for all but an abelian subset
of the Yang-lills fields according to the formula of section 14, namely,
\ N X D
M(® = 3 (8,0 (8,0)
(ii) The Yang-Nills interaction is asymptotically free

JORS ae' <O,

(iii) The matter-matter interaction is esymptotically free

p:tq) x ace’ + Lish 959, <o

Note that because of the form of the Lasranzian (13.18) there is no-ébborrection to
?Uﬂ . Thus, although ﬁﬂg) is affected by the presence (Yang-iills interaction) of
the matter-fields through (15.5), it is not affected by the self-interaction of these
fields,

Since the sign of ?;(g] 5" 1ike that of ‘B(Q) , depends only on the eroup, the re-
presentations and the number of matter-fields, the question as to whether we can sim-
ultaneously satisfy (i), (ii) and (iii) is a purely algebraic guestion. Since Q’ﬁ‘l>{5
as discussed above, we see that such a choice will be possible in any cese only {or

*
A; <o » and for certain scctors in @- §. -space.
1Y v

* BSee note on this question added in proof (p.76).
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Appendix A. Revwresentation-free *ajorana Spinors.

.1.
Let K where 1‘:1 be eny set of Dirac matrices. Then and
% » {BHX" %}‘“ (30) Xf

_‘(p are also Dirac matrices and so there exist unitary matrices ‘? and ( such
that

\

X: 1y % ] Yot~ ChC (1)

(The matrix C is the charge conjugation matrix, and the negative sign is taken because
of the association of Xf" with the electric current. A positive sign could be
obteined by using CK,; & Eq. (A1) corresponds to the fact that the Dirac represen-

tation is pseudo-unitary and pseudo-orthogonal
S‘\[K]?S(A§=7 X : SWC SN = C (a2)

e
From (A2) one easily sees that ’71-?}“ and C Cl are multiples of the identity. The
T+
phase of 'V) can then be chosen so that ‘f=7 (=—7'?= 1) and then the two sets of

matrix covariants

(7 A AT ), 1o '7%), P s

are hermitian and enti-hermitian respectively. In the case of C one sees at once

no
that (= @ C where ¢=%1 . For ¢=-| the two sets of matrix covariants

LC, O QY ) | f ol ey, ()

are anti-symmetric and symmetric respectively, while for €=+ the converse would
be true. However, a four-dimensional space permits only six independent anti-
symmetric matrices and hence €= -1

From (A2) we see at once that the Dirac representation is self-conjugate

W - Lﬁ"c) S(A) ﬁ"c]" ‘ (45)



o4

From the self-conjugacy and E = = C it follows that L\J¥ and ’?j C L} have
the same Lorentz transformation properties and hence that it is consistent with
Lorentz covariance to identify them. The general Majorana spinors are those spinors
for which this identification is made. That is, the general Majorana spinors are

defined to be those spinors which satisfy the Lorentz covariant reality condition
N Al oA
W e (FE) . (46)

This condition can also be written in the form

e— N
u,:\f?: $ L, (A7)
so that the Majorana spinors can also be thought of as those spinors for which the
2 o -" r e r . 4 = r
two sets of sixteen covariants Q‘? AY end VO A} coincide, where AS |, Xf‘r Xs'
X‘-X/‘\ G;“ _ Note from (A3) and (A4) that the only hermitian covariants that one can
form with anti-commuting Majorana spinors are

60 9-3;9 3 iB-Kq,.B, (a8)

2

where ©-4 : BYy= 3 CWw as in eq. (1.2).

>
If we ncw let @* be the Pauli matrices)and for the metric q

o
s

use

the special (Majorana, or pure imaginary) realization
T, o iLTIO X,(o l‘\) X_“(UBOU :
o { ° "'«.) , Lo u‘,) S5 R ol A 80 0 (49)

of the Dirac matrices, we see that e V’: Xo s, and the ebove formalism simplifies

o
to S (l\] = S(.A\ and W*:\P , as anticipated in section one. We also have

TR ) BRI L3 LS L S U
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Appendix B, Weight Diagrams for Higher Spin Superfields.

Higher spin superfields have the transformation laws

kULﬂ,A] @) (v,0) < Hln) 0 (x-ﬂ,S.'e) : (u{s)alxhoh FAURETIAS B+¢) (81)

that is, the same laws as the scalar fields except for the transformation .g(ﬂ of the
external Lorentz indices, which itself is the same as for conventional higher spin

’ fieldgo The laws (B1) imply that the momentum commutes with the supersymmetry
transformations (just as in the scalar case, in which the commutation is shown
explicitly in (1.7) ). It follows that the external components of qh'e] can be
made to correspond to a single spin by means of a conventional wave-equation, e.g.

(32)

(br Q)“(}D}: O - There are, of course, many different choices of .gfl) and
corresponding wave-equation which one can use to describe a single spin, and for
supersymmetry it turns out that one very convenient choice is to let ogll\) be the
Joos—Weinberlg“:.-\epresentation 3;5 3“°)® .ﬁ@‘\ . Then the only wave-equation is
the JW condition for definite parity. The reason that the JW representation is so
convenient is that when multiplied with spinors and four-vectors it has a very simple

Clebsch-Gordon decomposition, namely,

' % 30 03 .9, o' Vk‘- ‘0'1’1. é#l/\.
oﬁ‘a’a(é‘bﬁ"ﬂé’@a’hﬁ ®@d ® A4 (2)

(

\ AN ) °) y'\-"v) ‘.]H ‘
5‘3(‘\5(09“’@§”)é A eb (83)
where
(%, %) i)

Aoz D ® B .

)
Accordingly if we make an expansion of q h, 9) corresponding to the expansion (1.2)
™
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of the scalar field we obtain

y i ) . ' § it ongd i s
@n( x1,0) = Am(x] " B-U(m[ﬂ +3,0 { F‘:(l\ *KT({M Yo ﬁ{mlﬂ\B *rlq{B-G) B-X 15!) ¥ ;;_[B ) "Ji(x) (B4)

where the fields \.‘, e and @)ﬁ are now lineer combinations of two and three

fields

. i S .
s TRl I e (B5)

™ oA MId wad, ""‘r s L i ™
and similarly for X , where the C's and T's are the C-G coefficients for the
expansiéns (B2) and (B3) respectively.

The weight diagrams for such higher spin superfields are then clearly of the

form

Fig. 1b
where the arrowheads denote the highest and lowest spins in the Lorentz multiplets.
Thus the central weights such as w are singly, trebly and quadruply degenerate for
P=0,4,p=1, 3 and p = 2 respectively (still suppressing the multiplicity within
Lorentz multiplets).
By inspection of Fig. 15 we see that there are no Lorentz scalar weights (i.e.

no coincidence of arrcwheads pointing in opposite directions), and hence no candidates

: Ao 7 1 i 2 A
for Lagrangian densities, unless j = 0 or j = 7. The case j = 0 is the scalar case



b7

already depicted in Fig. 1 and the possible candidates are the fields A, F, G and D.

The diagram for j = % is shown in Fig. 1% :

Fig. \7

and from this diagram we see that there are two candidates, 'X.o at p = 3 and \P. at

p=i, Of these six candidates altogether, only D, the highest weight of the scalar
multiplet, is guaranteced to be a supersymmetric Lagrangian density, i.e. to have a
supersymmetric invariant space-time integral. The other candidates will be super-
symmetric Lagrangian densities if, and only if, the higher weights in their multiplets
vanish on integration. 3

To form the product of two superfields of higher spin, 6@_" and @3" say, we
note that the product is a linear combination of higher spin superfields. To determine
which superfields occur in the linear combination we then note that the higher spin

symmetry DAY commutes with the supersymmetry

[DB(A), G \=0, (26)

and that every state in a supermultiplet can be generated from the lowest weight states
by repeated application of (; 23 It follows that the decomposition of the super-
fields is completely determined by the decomposition of the lowest weight fields ,

But the lowest weight fields are conventional fields carrying the same external indices
as the 'superfields. Hence the superfields decompose in exactly the same way as

conventional fields.



B

The decomposition is not completely trivial, however, because

: : A 03, \ W U] i h
[ﬁ,u}@sg%ﬂ@{ém@ £y ={i g gt g8t )@ ghiy i

-\a i _‘_‘ ?

and hence, even for conventional f‘ields, the product of two JW fields contains not
N
only a sum of JW fields but also a &) ‘h\o ,é e

field. On the other hand, the JW
parity condition for the component fields implies that in the rest-frame they describe
single irreducible representations of the rotation group, and hence implies that the
product contains only the representations j,}i,_ 2 ; 2 l);§a) of the rotation
group, each j occurring with multiplicity one. It follows that there exists a unitary

3, 3+) 1))
transformation that eliminates the aé : (D GB i field, and provides a JW condition

o) fo3)
for each of the irreducible cﬁh @ iS) : fields. In this pencral sense we may say

that the product of two conventional JW fields Al‘ and Ah decomposes into the Ji
fields Aa where &ﬂ,_ 5y = L}I §~) » and hence that the product of two JW superfields
@'h and @‘)" decomposes into the JV superfields @3 where h* h LA J = l‘)-l-)‘_\ .

For example,

Fig. |%
Of course, since the higher weights are combinations of products of lower weights even
in the scalar case as depicted in Fig. 2, the higher weights in the products are quite
complicated. The complication is further increased by the fact that the C-G
decomposition (B5) for the inner and outer indices must be re-arranged to take account
of the unitary transformation which reproduces only JW representations in the product.

Ve shall not discuss these complications in general here, but only give the full



decomposition for the simplest possible case, namely the product of two spin & chiral
(§o)
fields, for which we can use the representations b to avoid the JW parity problem.

For this case we have

Cup(AuFpt Ay )

e G One D

Gph A

Fig. |9

where &‘:‘ and d? denote symmetrization and anti-symmetrization respectively,
v

q).g = € Y A
R o
v &
Y, = ih \*"sd A‘(' i‘“ﬂ LYNA& (= ‘»g),
q"l\h‘ is the totally symmetric part of k}«“\e AK , and
5;('&0) w0l -\“h.i: of —:_‘(B-B) Fyv o g (89)

The fields in (B8) are orthogonalized but not yet normalized.
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Appendix C. Proof of Lemma of Section 9.

We wish to esteblish here the lemma of section 9. To establish part (a) we
note from (9.7) and (S.8) that the necessary and sufficient conditions for a local

minimum are

+ ¥
x whm) ()
a1 l8) =0 Mls)- ( 2q(3) iy P s (c1)

*
The first equation in (C1) establishes that )\(3)5 SL . Suppose now that § is eny
\
vector in SL , i.e. any vector such that WM\y=0o . Then m annihilates also £ |

where © is an arbitrary phase, and hence from (C1) we have

1.0
Re (v 4900y) 20. (c2)

But for arbitrary € this is not possible unless

R (4, 9(3 ¥ =0 . (c3)

(Tl ( Ml) )U;,) £ 0 (cu)

and hence, since M|}) is positive

Ml3) u;) L b (c5)

Then using ™MW =0 again we obtain
¥
o 90)\([y
e )kv) 0o =) G@n-=o. (c6)

Thus 5\3}5\_-_0 as required. Finally the inequality (iii) in the lemma is just

But then

the inequality in (C1) restricted to .SL.L .
To establish part (b) of the lemma we suppose that det ('m_\_-—\.\ Qﬂ is not inde-
pendent of W . Then the equation
dek(wy-wa,) =0 (c7)
is a polynomial equation for W and has at least one solution W= Co . Consider
now the point R": ‘3: =‘B“i:° ): . From the corollary to the lemma of section 9

and the identity (9.6), it is easy to see that
i) = wmy) - & a(y) i
M= Ma). (c9)
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°
Equation (C7) for (O = implies that there exists a vector Y, such that
(-
k’\\L[‘s]- w%.‘.h) )W‘L:O} (c10)
and since ‘W\.\_l's] is by definition non—-singular}

™My ()% ‘#0) (c11)

and hence
qul3)4, #0 . (c12)
Then the vector W defined by = Q.L on_ﬂ-,L and =0 on S has the property that
(- &9 ) weo I 0. (©13)

But from (C9) it follows ih particular that

) = 94, (c12)
Hence from (C8) and (C14) it follows that
i)y <o, A # 0. (c15)

|
From part (a) of the lemma it then follows that the point 3 cannot be a minimum of

the potential. However, from (C9) we have in particular

Vi = Viy). (c16)

Hence the point ﬂa cannot be an absolute minimum. Thus a necessary condition for
an absolute minimum is that equation (C7) have no solutions for W , and this can

only happen if the determinant is independent of W) , which is the required result.

Appendix D. Intrinsic Parity.

We wish to motivate the definitions of parity and intrinsic parity given in
section 9. For this purpose we first diagonalize the mass matrix '\"\& by a gauge
transformation S of the form (9.3), i.e. assume that ™My, = "n\‘%.l' , and note
that there is no loss of generality in assuming that ™, 20, since the phases of
the Mg, can be absorbed in S. Then, relative to positive M, we define the
parity operator P to be

3 ‘E;(mo\ = Ya T3 0 'lx,ﬁ)) (p1)
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where ‘V?.. is the intrinsic parity. Note that T)‘ is intrinsic only relative to
positive WM, , since a gauge transformation (9.3) of the form

P, » i, (p2)
simultaneously changes the signs of "')a and Wy . This corresponds to the
situation for conventional fermion fields, for which the parity is intrinsic only
relative to the mass, because a “‘- =transformation simultaneously changes the signs
of ")‘. and M, . Indeed for the conventional fields A, B, ¥ contained in ‘{t 5

the gauge-transformation (D2) is just 3
AS-8, BIA, Y2 %Yy,

% 5 D5
and‘l'ﬂ._\t‘\}“ is the mass-term for the fermion field. Note that (D3) is just (5)

the chiral transformation C(0) of section 4 . Note also that if 'r),_ is the
intrinsic parity of the superfield, the intrinsic parities of the fields A, ¥, B
contained in it are 7, , ti"‘_ s -'?‘_ respectively.

With the definition (D1) of parity, a sufficient condition for parity con-

servation in the Lagrangian (9.2) is clearly
* ¥
My, 2 0, Y- )"’l ) a'jdu,' e 7«! Y . {Dy)
In practice, however, (D4) is not a convenient condition to use and hence for

those fields for which “,‘, is negative, we make a gauge transformation of the form

(D2). The definition (D1) of P is then replaced by

\?Q; )(x6) = €, (x*, §0), (p5)
and a sufficient condition for parity conservation is simply
¥ » »
Mgl = My, ] )u S P ﬂd.;' -M" (D6)
Thus parity conservation reduces to the reality of the parameters. The price we pay
for this simplification is that Wlg), is no longer positive. In fact it is clear

from the construction that the intrinsic parity is now given by

Equations (D5), (D6) and (D7) are those used in section 9. Iiote that the parity
conservation condition in (D6) is only sufficient because degereracies in Wy}, and%.l'1

may allow some arbitrariness in the assignnents.
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Appendix E, Second-Order Corrections to lass-Formulae.

In this appendix we compute the second order corrections to the

mass-formulae of sections 9 and 10, Ve therefore consider a Lagrangian vwith
al, R o - = v
= 2&‘ )ﬂ.!; AGAQJ- = q-LG ),l, Ba.%(, 2.'“\“"" Wﬁ. q’lr (1)
and

\g 3 = %‘qu’a (Al.'x{ 30 %4
%dm% aaq_&(Aon' &LEQ)( AjAe- %J,gﬂoj Fly A!:M %(. BQ .& . {82}

The interaction is the same as in the symmetric limit, but we must note that the nass

"“u%u,c{ Ay Ay A+ 2Ag 8,8, - Aa%.,ts;}

used in the cubic term is the fermion mass in fm . The fact that fint ix
the same as in the symmetric limit has two consequences. First in the super-

symmetric limit }g-: T = all the usual supersymmetric results hold - all mass and
wave-function renormalizations are equal and the Yukawa vertex renormalization is

finite. In particular, by considering only the two fermion self-mass diagrams, we
can compute the symmetric limit mass and coupling constant renormalizations, and in

particular the latter is found to be

v d
(A) %ﬂla' F %%n %lQn. g (23)

where

o
Q = %M&%Q.‘;A. ) T-= Kg\w - K ek Gu)

the mass "Wv Dbeing some average mass of "M\,), , whose variation clearly changes I
by only a finite amount.

The second consequence of taking its symmetric limit value is that

int
the spontaneous breaking affects only the masses in the Feynman propagetors but not
the Feynman vertices, and hence the one-loop graphs which are logarithmically

divergent, will differ from their symmetric limits by only finite amounts ( as in the
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case of the integral I above). Hence for renormalization purposes logarithmically
divergent graphs may be regarded as unchanged, and the only corrections to the mass-
formulae come from the graphs which are guadratically divergent (and cancel each other
in the symmetric limit). There are only three such graphs in the 2nd order approxi-
mation, and one of them, the fermion loop contribution to the boson self-masses,
actually remains unchanged because the fermion masses are not affected by the spon-
taneous breaking. The other two quadratically divergent graphs are easily seen from

ji int in (E2) to be

= b aed Q.ul-(_-[i-*'xw)ce
sty e

T
et V)

(=5)
il%c&m\- %J.ce (-_I-+"T'- )te 5

If we denote by % the difference between any-guantity and its symmetric limit, and

note that mass-differences vanish in the symmetric limit, we obtain from (85)

v :
A (W) 4w ~2w ),

"
1l

Wi f)
SO (F et aw) = b eadue Gihetaw) T, (9

"
"

| = \v) L
A (-l B A (pe) y, 4Fatd Qede (p=ot) T . (£7)

Equations € 3) and &7) show that the 2nd order corrections to the quantities
,}A‘% r‘ _')..m\ and }L"— ¢ are proportioned to these quaritities themselves and hence

that the mass-formulae

=

JINESE A T or M=ot (£8)

are maintained in the 2nd order approximation. Further, if the quantities %aed %Qﬂa
and %QR‘* %(de are the same, as is certainly the case in section 10 where we have

only one field, we can take an arbitrary combination of (36) and (37) and find that
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any mass formula
d‘ft*eq-“\’ KN‘L=O, ol-&-?#‘: 0, (E9)

is maintained in the one-loop approximation.

If the mass-difference comes gbout by spontaneous breaking and we have

(o) oo Qepiey, - (10)

then inserting this formula in (E7) we obtain

0] . ik
b (r-f‘)d’ = %ca,j“% )\A’T..

Thus (E10) will be maintained if there exists a renormalization of \ such thst
b @)
89,9 M1 = b (29,0) (11)
(and such that the only other condition on A, namely "N\._L \‘_':O , is not violated).

Using (E3) one sees at once that such a renormalization is given by

) Y
A, = 9 N Lo (E12)

With this renormalization the mass-formula (E10) (and the condition "Mgf. )\m_:o )

is maintained (up to finite ccrrections) after the one-loop correction.
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Note (adced in nrooﬂ) on nuestion raiscd at end of Seetion 15,

The enswer to the question raised ot the end of Section 15 (p.60) is genernlly

negative for conventional f‘i{:lds(’j) but we now show that the situction for super-
& s b

symmetry is much more hopeful., ° The main rcason for this is the following: For

(33),

conventional theories with, sa2y, onec matter-natier ccupling constant % s the

analogue of (iii) is
Blq) = A%"a- Bet + C%_ : (15.10)

where the last term arises because the Yang-liills interaction gencrates a quadrilinear
matter-matter interaction in fourth order. For (15.10), the conditions for asymptotic

(33)

freedom turn out to be
y
B<u¢ O, A?O 5 m'a') < l"AC‘ (15.11)

For supersymmeiry, however, C=0O because the quadrilinear inierzction coupling constant
Y : P 7 £ :
4% is the square of the Yulawa interaction couplin; constant % , for vhich C=Q in
both the conventional and supersymnetric theories. But for C-= an analysis similar
& o v
to that of Ref. (33) shows that in this case the conditions fer asymvtotic freedom are

LS T
exactly the seme as (15.11), except that condition Lﬂ-u) < lACis nmissing., 3But U&-A\ < LAc

—~
N
N
~—

constitutes one cf the ma2in obstacles to asymptotic freedom in the conventionzl
case. Thus the form (iii) on p. 60  already removes onc of the main obsiacles.
A further bonus from supersymnetry is that 'Q",)Q" in (iii) is avtomatically of +the

form

L
ik 99e ij‘i%s , b570, (15.12)

a7

and is even independent of the index i if the matter-matter interaction is symmetric in 211
fields. The reason is tiat since in supersymmetry the veriex rerormalization is zero,
the only contributicn teo L"b,‘" cones from the wave-functiion renormalizations of tihe
matter-fields, vhich =re all positive ( and are oqual if we havethe permutation symmetry;,
From (15.12) it follows thot the generalization of the condition A?0 in 15.11) i3

L)
automztically satistied. Thus the only cuestion for supersymnetry is vhether the

J g persym e §

analoguc of © in (15.10) is necutive wnd less than , that is wiether in (ii3) 0, ¢a<0
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The value of @, ks been cvaluzted for me by e, Seén 3rowme, and it turns
out that for a wide class of matter-matter interactions the constants l; are inceed
negative, and less than O , and that they are actually independent of the form of the
matter-metier interaction. iWlore precisely, one finds that, if the Yeng-ilills and

o L3
matter-matter intcoractions zﬂr and d'lu. are such that
ol & ol ; c
% %(e)
tﬂ.b A’Qrtl -C&E, I 'd‘de (15'15)
(for which it is sufficient that the matter-matter d,—coupling be unique), then Q; is

negative, and

il ne i ede (1
y 1-mRwr)  C,(¢) (15.1%4)

Thus the condition is satisfied provided K(R) = C,l& ) ’2. :

For the adjoint representztions of SUIN) , K =¢,(6), su the condition is indeed
satisfied,

The net result of all this discussion is that, in contrast to the conventional
case, for supersymneiry the introduction of a matter-matter interaction does not seem
to generate any new dif'ficulties, So the only problem is to satisfy the old conditions
(i) and (ii). e have seen that, in pranciple, this can be done by using two
nultiplets breaking in different directions. The only question then remaining
is whether such a configuration is stable, i.e. whether these solutions mizht collapse
to a single (possibly parity violating) direction when we go beyond the tree approximztion.
There is, however, no particular reason to believe that a collapse will take place; so
perhaps models such as this SU.[S) nodel are stable. If so (and if (15.14) is correct),
supersymmetry provides theories which are infra-red convergent and asymptotically free

in a reasonably natural way.



