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0., INTRODUCTION

The theory of random fields is concerned with the stochastic properties
of systems with large numbers of interacting components. Such systems arise
naturally in physics, bioclogy, economics and other areas of study.

The basic mathematical structures are as follows. The state of a
single component is described by a point of its phase space W. Though the
components need not be identical, it simplifies notation to use the one set W
for the phase space of each component. The components are labelled by the set
S, so that the configuration of the combined systems is described by a point of
the system phase space X = NS.

We study the case in which S is a countably infinite set. Systems
with a finite number of components arising in applications will be considered
in relation to the limiting case of infinitely-many components. Random fields
for which the label set S is continuous are not considered here. To simplify
questions of measurability we assume that the basic spaces - X and W - are
Polish spaces, Z.e. they are homeomorphic to separable complete metric spaces.
Measurability considerations are based on the Borel structure of these spaces.

The equilibrium theory of random fields, founded by Dobrushin (1588],
concerns the problem of determining which probability measures on X correspond
ta a given family of conditional probabilities. This is intimately related to
the older problem in statistical mechanics of determining the equilibrium states
of a potential. For detalls of.the equilibrium thecry see Preston (1874a,
1974b), Georgii (1872, 1974) and Spitzer (1971, 1974al.

In applications most equilibria result from dynamic balance. In the
present work we study time development in random field systems. We consider
dynamics based on stochastic rather than physical principles. Thus in appli-
cations one has the additional problem of determining which, 1f any, of the
stochastic models of time development give a good description of the observed
behaviour.

The starting point for Markovian time development is a proposed

generator G. We consider generators of the form G = L GA with the sum over all




nonempty finite subsets of S,-where G, is the infinitesimal generator of a

A
Markov jump process in WA which may depend on the configuration of the remain-

ing components. The model proposed by Glauber (1963) for time development of

the one-dimeasional Ising chein has nonzero generator terms only for A = {k},

k € S. The jumping particle models of Spitzer (1970) can be described by a

G with nonzero terms for sets {j,k}, j.k e S, j # k.

In studying Markov processes associated with a given generator G, we
interpret exp(tG) by means of a transition function or Markov kernel P(t,x,E).
In Sections 1,2 and 3 we review material from praobability theory and function-
al analysis: Markov kernels, strongly continuous linear semigroups of contrac-
tions and ergodic theory. In Section 4 we commence the study of interacting
Markov processes and give the basic existence, uniqueness and convergence
theory for functional semigroups. In Section 5 we introduce certain approxi-
mation techniques which allow us to relate the functional semigroups to Markov
kernels and also to deduce an "almost product” relationship.

After the proof of the basic existence results the investigation
proceeds in several directions. In Section 6 we relate the dynamic to the
equilibrium study by considering generators given in terms of conditional
probabilities and potentials. The generators given have the property that
they are reversible for any equilibrium state of the potential. Heuristically,
this means that fluctuations from equilibrium do not distinguish the direction
of time. In Section 7 we study reversibility in more detail. With approp-
riate assumptions we find that G is an essentially selfadjoint operator. We
consider relaxation to equilibrium in terms of the spectral properties of G.

In Section B8 we discuss two methods of comparing time development of
different systems. The first deals with finite approximations to the infinite
case. In the second two processes are compared by combining them into a
single process. In Section 9 we consider ardered spaces and generators which
preserve the order structure. Order structures occur naturally in birth-death
processes and ferromagnetic Ising models.

One difficulty in studying random fields is that the common examples



which exhibit phase transitions require rather sophisticated mathematical
techniques. In Section 10 we give a simple time dependent model with phase
transitions, which is a generalization of the Glauber (1963} model. Nearly
all of the previous results are applicable to this model.

Finally, in Section 11, we discuss free energy and the variational
principle.

This communication developed from lectures given at the Dublin
Institute for Advanced Studies in the winter of 1874 - 1975. I am grateful
to those who attended the lectures and helped clarify a number of points,
particularly the relevance of the concept of locality. I am especially
grateful to Professor J. T. Lewis for encouragement and assistance. I would
like also to acknowledge editorial assistance from E. R. Wills, and to thank

Mrs. E. Maguire for deciphering and typlng the manuscript.
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1. MARKOV KERNELS AND JENSEN'S INEQUALITY.,

The basic space is denoted X and is assumed to have the HBorel

structure of a separable, complete metric space. The space of bounded,
continuous, real valued functions on X is denoted C(X) and is equipped with

. The space of bounded, real valued, Borel functions

the supremum norm ||-
on X is denoted F(X), and it also uses the supremum norm. We use the term
measure to mean countably additive, bounded, Borsl measure. The total
variation norm for measures is denaoted ||-||m - The terms positive, negative
and tnereasing are not to be taken in the strict sense unless preceded by

"strictly”.

1.1 DEFINITION, A measure kernmel ¢(x,E) is a real valued function defined
for each x € X and Borel E € X such that for fized X, ®(x,+) is a measure on
X,and for fixed E, ¢(x,E) € F(X). The measure kernel ¢ is called a probabil-
ity kernel if o(x,+) is a probabil*ty measure for each x € X. ¢ is called
continuous 1if &(x,+) is continuous in the topology of weak convergence of

measures.

Given the measure kernel ¢ we define its norm by
fell = sup [l otx, <) ||m . “.1
X e X
When || ¢|| 1s finite and f e F(X), we construct the new function [e(x,dy)fly).
If both f and ¢ are continuous, then the resulting function is continuous.

Similarly, given the measure y, we construct the new measure fu[dx]¢(x.' ).

1.2 DEFINITION, A Markov kermel P(t,x.E) is a family of measure kernels
parametrized by t ¢ (0,%) such that

1° for fixed t, P(t.x,E) is a probability kernel;

2° [P(t.x.dy) P(s,y,E) = P(t + s,x,E).
The Markov kernel P is called continuous in x if, for each t ¢ (0,=), the
measure kernel P(t,+,+) is continuous. P is called strongly continuous in t

if for each f e C(X)

lm, || £0x) - [Pltux,dydfly) || = o . (1.2)
t-+0



Given the Markov kernel P, we associate the family of operators

{Tt: t » 0} acting on f & F(X) by T, f = f, and for £t >0

(T, FIx) = JPlt,x,dy) fly) . (1.3)

If P is continuous in x and strongly continuous in t, then Tt acts as a
strongly continuous linear semigroup on C(X). In any case, {Tt} is a semi-
group which maps positive functions to positive functions, constant functions
being fixed points of the action of P. We also consider the family of

operators {Té : t » 0} acting on the measure u by Té u=u,and fort >0
(T: WE) = [ u (dx) PlE,x.E). (1.4)

{Té} is a semigroup which maps probability measures to probability measures.

Tt and Ié are related by

feamyw) = [ (T #) du. (1.5)

The proof of the following lemma is straightforward.
1.3 LEMMA. Let u be a positive measure and let v be a measure which is
absolutely continuous with respect to u. Let T. be the action of the Markov
kernel P on measures given by (1.4). Then TL v 18 absolutely continuous with

regpect to Té He

Note that Tt f(x) is the expectation value of f with respect to the
probability measure P(t,x, *). Then by Jesnsen's inequality we have the
following lemma.

1.4 Lemma, Let y be a real convex function. Then
w(Tt f(x)) ¢ Tt(w o f)(x) {(1.6)

for each ¥ € F(X).

1.5 DEFINITION. The probability measure u is said to be reversibie for the
Markov kernel P if for each t > 0 and Borel E, F C X,

[o nldx) P(t,x,E) = feutdx) P(t,x.F). (1.7)



1.6 DEFINITION, The function f € F(X) is called invariant under the Markov

kernel P if T,f = f for each t > 0.  The measure u is called invariant under

P if Té u =u for each t > 0.

We have without difficulty the following.
1.7 LEMMA, If the probability measure u is reversible for the Markov kermel

P, then u is invariant under P.

1.8 THEOREM. The action T, on F(X) of the Markov kernel P with invariant

probability measure u extends by continuity to a positive, Linear contraction
. P . . .

semigroup on L (u) for 1 ¢ p < =, the action on t ¢ Lp(u) being given by

(1.3). -

Proof. For f € F(X), by Jensen’s inequality (1.6),

P P
|Tt F s T, [+ | . (1.8)

From the invariance of u
[T, * P aw < f T, If Paw = f1¢1%an - (1.9)

Hence Tt acts as a contraction semigroup on the bounded functions in LP(u),
which are dense in LP[u). For unbounded f € LP(u], let Fn(x] equal f(x) if
|£(x) | < n and fn(x) = 0 otherwise. From (1.9) we canclude that [P(t,x,dy)
|F(y) | is finite p-a.e.in x. By the bounded convergence theorem we have
im T, f (<) = J Plt,x,dy) fly) (1.10)
n-+w
whenever the right hand side exists and is finite. Thus the action of Tt in

LP&uJ is given by (1.3).

The function s log s is continuous and convex for 0 § s < ® with the
convention 0 log. 0 = O. The following is a version of the H-theorem of

statistical mechanics. It also results from Jensen's inequality.

1.9 THEOREM, Let P be a Markov kernmel with invariant probability measure p.

Let f be a positive function in L1(u): Then

[T, £) log (T ) du < [ ¢ log f du . (1.11)
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Let P be a Markov kernel with invariant probability measure u. By
Theorem 1.8 we can consider the action T, of P in L1(u]. We define the action
of Té in L1(u] as follows. For f e L1[u) by Lemma 1.3 we can write
Té[f[x] uldx}) as g(x) uldx}, with g € L1[u), so we set T. f = g. On the other
hand we have the action in Lq[u) which is tiie adjoint of the action Tt in LP[u)
with 1/p + 1/q = 1.  This adjoint turns out to be the same as the action of Tg
just defined. When p 1s reversible for P, the actions of Tt and T% coin-
cide. In general the two actions are distinct, but the analogs of Theorems

4.8 and 1.9 are valid for the action of T% in L1[u].




2, GENERATORS,
In this work we are concerned mainly with Markov kernels which are
obtained from generators. The simplest case is that in which the generator

is a bounded operator.

2.1 DEFINITION, A Jump generator G(x,E) is a measure kernel such that
s}
1 el < =;
2° G(X.EN{x}) 3 0 for all x e X, Barel E C X;

3° G(x, X) = 0 for all x e X.

2,2 THEOREM, Let G be a jump generator.  Then P(t,x,E) = (exp tG)(x,E),

t > 0, 28 a Markov kernel such that for each Borel EC X,

lim | PCt.x,E) - 1_ (x) || 0 (2.1

+
t=+0

E
with Ie the indicator function of E. If G zs continuous as a measure kermel,

then P(t,x,E) s continuous in x and strongly continuous in t.

Proof. By (exp tG) (x,E) we mean
(exp t6) (X,E) = T (x) + t6(x,E) + §t° [Glx,dy) G(y.E) + ... (2.2)

From 1° gbove, the limit (2.1) follows, and we can manipulate the absolutely
convergent power series to verify that (exp tG) (exp sG) = exp(t + s)G. For
sufficiently small t > 0, (exp tG)(x,* ) is a positive measure, hence for all

t > 0 by the semigroup property. Because of 30, (exp tG)(x,+ ) is a probabil-

ity measure. The proof of the continuity assertion is straightforward.

The above proof is based on the fact that a jump generator acts as a
bounded operator on the space of measures. We wish to consider Markov kernels
with unbounded generators. For this we need some results from the theory of

strongly continuous semigroups.

For the remainder of this sectian 4? denotes a complete normed vector

and 33 denotes a linear subspace of 4? . The closure

space with norm |

R of the linear operator A with domain b and values in f is defined as

follows. The graph of A is {(f, Af): f eD}. A is the closure of the graph



of A in ?? x;f . A need not be the graph of a linear operator. When it is,
we use the same symbol A to denote this operatar. A necessary and sufficient
condition that A be the graph of & linear operator is that for any sequence

{r } c:iassuch that 1im Fn = 0 and lim A fn exists, then lim A Fn = 0. If A
n

coincides with the .graph of A, then A is said to be closed.

2.3 DEFINITION. The linear operator A with domain &8 and values in £ is

called dissipative if for each A > 0 and each f eja,

| #-xafs] =|lfll . (2.3)

" One can verify that a jump generator G acting on measures is dissipa-

tive in the norm | Im . Tts action on F(X) with narm || «|| is also

dissipative.

2.4 PROPOSITION. Let A be a dissipative linear operator with domain D
and values in ¥ . Let O be dense in ¥ . Then the closure Aisa

elosed linear dissipative operator.

Proof. We need only show that A is the graph of a linear operator, as
linearity and dissipativity are preserved under claosure. Let {fn ye B,

fn + 0, A fn + g. By hypothesis we can find h eja such that Ilg - h Il <

sl nll . Then £+ An > Ah, (1 - MI(F + An) > A(h - g) - A%Ah.  For
sufficiently large n and small A we get a contradiction to the dissipativity of

A unless g = 0.

The original proof of the above, using semi-inner products, was given

by Lumer (18B1).

2.5 DEFINITION. A strangly continuous, linear, semigroup of contractions

Tt' t > 0, is a family of linear operators of ;E into itself, such that
1° ToF Il < llfll al1fe ¥, t>0;
2 T U f) =T f allfe ¥, st
° um, || T of-f|l s0 allfeF .

t—+0
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2.6 DEFINITION, The infinit.esimal generator A of the strongly continuous,

linear, semigroup of contractions Tt is the linear aperator

Af = lim [Tf f - fl/t (2.4)

+
t-+0

whose domain is the set of f ¢ ¥ for which (2.4) converges.

We give belaw two basic results from the theory of strongly continuous

semigroups. P‘roofs can be found in Yosida (19865).

2.7 HiLLE-YosIDA THEOREM, Let Teo t 2 0, be a strongly continuous, linear,

semigroup of contractions on # . Then the infinitesimal generacor A of T N
is a densely dejzined, closed, linear, dissipative operator such that the range
of (1 - AA) is aiZ of ¥ for each ) > 0. Conversely, let A be a densely
defined, linear, dissipative operator defined on a subspace Ac }o such that
B and (1 - M) B are dense in ¥ for some A > 0. Then there is a
uniquely defined, strongly continucus, linear, semigroup of contractions whose
infinitesimal generator is the closure of A.

(n]} be a sequence of strongly continuous,

2,8 TROTTER-KATO THEOREM, Let (T,
linear, semigroups of contractions with infinitesimal generators {An Yo If
there exists A > 0, and a dense subspace E < f such that
1im (1 - AAnJ_1 £F=JF (2.5)
n—+w
exists for all f e and J D is densz in 'f , then there exists a uniquely
defined, strongly continuous, linear semigroup of contractions T N whose
infinitesimal generator A satisfies Jf = (1 - a1 g for each f ¢ P . ad

for each f ¢ ¥ and each t, >0

(n)

lim sup ||Tt F-T, 0 f1 = o (2.5)

n -+« Dt g
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3. ERcobIC THEORY,

One fundamental problem posed by a Markov kernel P is to determine its
invariant probability measures. The set of invariant probability measures
is convex. This suggests studying extreme points and the related concept
of ergodicity. Roughly speaking, an invariant probability measure u of P is
ergodic if it cannot be divided into smaller invariant parts. There are
several precise formulations of this concept, and their interrelationship 1is

subtle.

3,1 DEFINITION. The Borel set E & X is said to be <nvariant under the
Markov kernel P if the set of t, for which P(t,x,E) = 1 for all x ¢ E, is

dense in (0, «J,.

3.2 DEFINITION. The Borel set E is.said to be w-almost invariant under
the Markov kernel P, with invariant probability measure u, if for each

t e (0, =)
P(t,x,E) = IE(xJ u- a.e. , (3.1)

with IE the indicator function of E.

3.3 LEMMA, Let E be u-almost invariant under the Markov kernel P with
tnvariant probability measure u. Then there is a Borel F& E such that

u(F) = u(E) and F ©s invariant under P.

Proof.  Select a countable dense set T € (0,» ). Define E, = E and, for the

1
strictly positive integer k,

EK+1 = {x e EK: P (t.x,EKJ =1 for all t e 1} . (3.2)

We then have Ek+1c: Ek’ and from (3.1}, u(Ez) = u[E1].

From the invariance of u

[ Rl x,E,NES) uldx) = 0 (3.3)

1
S0

fE P(t,x,E)) ulax) = e Plt,x,E,) uldx). (3.4)
2 =2
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We conclude that E., and also E, for each k, is p-almoast invariant. The set

2
F = nEK is invariant under P.

k

3.4 LeMMA. Let the probability measure u be invariant under the Markov
kernel P. If the action of P on L1(uJ 18 strongly continuous, and if the
Borel set E is invariant under P, then E is w~almost invariant under P.
Proof. The assumption of invariance of E amounts to the condition that for t

in a dense subset of (0,= )

Tt IE > IE N (3.5)
where IE is the indicator function of E, and Tt is given by (1.3). The
invariance of p yields Tt E = IE in L1(uJ. This result extends to all

t e (0, ) by strong continuity, which yields u-almost invariance.

3,5 DEFINITION, The probability measure u invarient under the Markov kernel

P is called ergodic if each p-almost invariant set has probability O cr 1.

3,6 DEFINITION. The probability measure u invariant under the Markov kernel

P is called extremal if the only representation u = i(p + o), where p and ¢

are invariant probability measures, is with u = p = 0.

3.7 PROPOSITION., Let u be a probability measure invariant under the Markov
kernel P.  Denote by T, the action of P in L1(ul and by T the action of P
on measures (see comments after Theorem 1.9). Let f ¢ L1(u]. Then the

following are equivalent.

1?0 T, f = n o
2° Té(f(x] uldx)) = f{x) uldx) as measures.
3° For each c € R,{x: fi{x) 2 c} Z8 u-almost invariant.
Proof. 1°=> 3%  Because constants are fixed under the action of Tt‘ it is

sufficient to prove that
E = {x: f(x) » 0} (3.8)

is p-almost invariant. Let f*(x] = (x) on E and O otherwise; f (x) = f+(x]-

flx).
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fgfau= [+ au = [ [Pltixiay) £7(y) wldx)

- IE [Pt xndy) F (y) uldx). (3.7)

The first term on the right hand side of (3.7) is ldss than or equal to
f F+du and the second term is negative. Since f is strictly positive on EC,
we conclude that IE (x]) P(t.x.EC] = 0 u-z.e., which implies the u-almost

invariance of E.

20=>30. Let f and E be as above.

fefan= [+ dg = [Fx) uldx) PlEx,ED

- Jf () uldx) P(t,x,E) . (3.8)

The first term on the right hand side of (3.8) is less than or equal to
ff+du. while the second is negative. We conclude that IEC (x) P(t,x,E} =0

u-a.e., and so E is p-almost invariant.

30=? 10 and 2°, A finite linear combination of indicator functions
of sets of the form of 3U is invariant in the sense of 1D and 29, We approx-
imate f in L1(u] by such finite linear combinations to obtain the desired

conclusion.

In connection with Choquet theory, it is not difficult to show, using
the above, that the cone of positive invariant measures is a lattice in its own

order.

3.8 THEOREM. Let u be a probability measure invariant under the Markov kernel

P. Then the following are equivalent.

1 L 28 extremal.

2° u 28 ergodic.

3° The only fixed points of T, in L1[u] are the constant functions.
4° Any invariant measure which is absolutely continucus with respect

to u 18 a constant multiple of u.
Proof. 192 29, Let £ be a u-almost invariant Borel set. Then

po= 3C(ute®y + I(x)) uldx) + (w(E) + I_e (x)) u(dx)) (3.9)

E
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gives a nontrivial representation of u as a convex combination of invariant
probability measures, unless u(E) = 0 or 1.

2° = 3°, Let f € thu] be invariant under Tt' Then condition 3° of
Proposition 3.7 and the ergodicity hypothesis imply that f is constant u- a.e.

%= 4°, A measure absolutely continuous with respect to u can be
written f(x) uldx) with f ¢ L1(u]. By Proposition 3.7, the invariance of
f(x) uldx) implies that f is a constant p- a.e.; hence f(x) uldx) is a
constant multiple of W.

4%=»1°,  Let u = i{(p + o) with p and o invariant probability
measures. Both p and o are absolutely continuous with respect to v , and

so, by 40, H=p=0.

3.9 Ercopic THEOREM, Let P be a Markov kermel with invariant probability
measure u such that the action T, of P 1s a strongly continuous semigroup on

L1(u]. Then for each f € L1(uJ.

n 1 N gt = Foo (3.10)
N-+w N
exists u-a.e. and in the B(u]—norm. The function f(x) — defined to be zero
where (3.10) does not converge —— satisfies, for all t > 0,
[ Plt,x.dy) Fly) = F(x) p-a.e. (3.11)
Jfdu = [Fdu. (3.12)

A proof of the above can be found in Dunford (1858), Ch. VIII. One
interpretation of Theorem 3.9 is as follows. If p is ergodic, then ; is
constant u-a.e., and the time average (3.10) equals the space average (3.12].

Not all Markov kernels possess invariant probability measures. Let
X = (0, 11 . The Markov kernel P with P{t,x, {x/{1 + tx)}) = 1 has no
invariant probability measures. One could take X to be compact by identifying
0 and 1. Similarly one has no invariant probability measures for the jump

generator G with G(x,{x/(1-+ x)}) = 1 and G{x, ENx{x/(1 + x]}) ¢ 0.
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3,10 THEOREM. Let X be compact, and let the Markov kernel P(t,x,E) be
continuous in x and strongly continuous in t. Then the set of invariant
probability measures of P is nonempty, convex and compact in the topology of
weak convergence.

Proof. We have already remarked on convexity. Compactness in the topology
of weak convergence follows from the compactness of X and the continuity in x.
To show that the set of invariant probability measures is nonempty, start with

a probability measure u and define Y by

J'g ( fu (dx) P(t,x,E)) dt. (3.13)

2=

uN(El =

The sequence {uN} has a weak limit point v, which standard estimates show to be

an invariant probability measure.

For the remainder of this section we restrict the discussion to the
case in which X is compact and the action Tt of P yields a strongly continuous

semigroup on C(X). We define

1 N
o (x.f) = o [o T ) dt, (3.14)
X' = { x e X: 1lim ¢N(x.f) exists for all f € C(X)}. (3.15)
N -+ o

We define the measure kernel &(x,E) such that for x ¢ X', o(x,* )= 0 and for

x e X'

[olx, dy) fly) = lim ¢y (x.f) (3.16)
N+ o

for all ¥ € C(X). The right hand side of (3.16) defines a continuous linear

functional on C(X) which corresponds uniquely to a measurs on X.

3.11 LEMMA, For any invariant probability measure u of P, u(X') = 1. If

fe thu], then in the notation (3.10),
Fix) = [ olx,dy) fly) u- a.e. (3.17)

Proof. In the definition (3.15) of X' we could have used a countable dense

subset, rather than all of C(X), to obtain the same X'. Theorem 3.9 then
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implies that u(X') = 1. If £ € C(X), (3.16) coincides with (3.10). Otherwise
select a sequence {fn} in C(X) converging to f in L1[uJ. It follows that

{?n} converges to f in L1(ul. and (3.17) obtains.

3,12 THEOREM. Let X be compact and let the Markov kernel P be continuous in
X and strongly continuous in t. If u is an invariant probability measure of

P, then for each Borel set E
p(E) = [ uldx) @(x,E) (3.18)

and the measure ¢(x,+ ) is an ergodic probability measure u-a.e. in x.
Proof. To obtain (3.18), apply (3.17) to the indicator function IE(x]. and
integrate with respect to u. Note that for each x € X', ¢ix,° ) is an invari-

ant probability measure. For f e C{X) we have
J uldx) [(fly) - £(x))%2 elx,dy) = O (3.19)
from & straightforward calculation using (3.17]). Let

X" = {x e X't [(fly) - f(x))% &(x,dy) = O,

all f e C(X) }. (3.20)

By using a countable dense set rather than all of C(X) in (3.20) we see that
u{x*) = 1. It remains to show for x € X", &(x,- ) is ergodic. Let

fe L1(¢(x.' J). Select a seqguence {Fn} in C(X) which converges to f in
L1(¢(x.- 1), But each ?n is constant ¢(x,* ) - a.e. from (3.20). So f is

constant ¢(x,* ) - a.e.
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L, GENERATORS OF INTERACTING MARKOV PROCESSES.

We commence the study of interacting Markov processes given in terms
of an infinite sum of jump generators. The system phase space X is assumed
to be of the form wS, where S is a countably infinite set and W is phase space
of the individual component. The topology of W is assumed to have a metric
in which W is separable and complete; then the product topology for X has this
property as well (Z.8. W and X are Polish spaces). We consider generators of
the form I GA where the sum is over the nonempty, finite subsets of S and GA
is a jump generator which affects the configuration of only those components
labelled by -A. GA can, however, depend on the configuration of the total
system. The first basic question is whether there is a Markov kernel on X
which corresponds in a reasonable way to I GA'

For generalized jump processes of this kind two assumptions appear
natural. One is that the jumping rate of each individual component should be
finite. The second is that the jumping behaviour of any one component should
be influenced predominantly by a finite number aof its neighbours. Assumptions
of this kind appear in the theorems below.

We introduce further notation. The symbol A, possibly primed or

subscripted, always denotes a finite subset of S. The limit

lim A + S (4.1)

is to be taken on the net of finite subsets of S ordered by inclusion. For
I cS, F(X|T) denotes the set of bounded Borel functions f such that f(x)
depends only on the values of x on T. C(XIFJ denotes C(X) n F(XIF]. Ff(X]

is the set of functions which are in F(X|A) for some A. FD(X] denotes the

closure of Ff(X] in the uniform norm || <|| . We define CF(XJ and CD(X)

similarly. If W is discrete, then CD(X] = FD[X). If W is compact, then so

is X and C(X) CD(X).

For f € F(X) we define Gif by

, X
Sup ey € l£(x1 - fLy)] . (4.2)

%=y except at i

8, f
i
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We denote by F*(X|A) the set of functions f e F(X) such that Gif = 0 unless
iedn. For F‘(X|¢] we have the special notation F_ (X). If fe FQ[X].
then f(x) = f(y) whenever the set an which x and y differ is finite.
Heuristically speaking, the star spaces allow variation at infinity. F‘f[X]
denotes those f which are in F*(X|A) for some A, and F‘D(X] is the closure of
F'f(X] in the uniform norm.

In working with the product space X we employ the Ffollowing Left
subseript notation. For ' € S, which will be specified or understood from
context,

y, if jerT

( x). = 3 (4.3)

c
x if el
5 J

The reader should recall the norm || «|| for parametrized measures (1.1).

4.1 DEFINITION, A generator G on X is a formal sum I G, with a term for
each nonempty, finite subset of S such that for each A, GA(x.' )} is a positive

measure on WA which is a Borel function of x and satisfies
o tx,e 3 I < = (4.4)

The operator of G, is the linear transformation of F(X) into itself given by

A

(BpFY(x) = JIF( x) - F(x)) Gy(x,dy), (4.5)

where the notation (4.3) is used with T = A.  The operator of G is defined

with domain the set of f € F(X]) for which

el < =, (4.5)

and, for such f,.

= . 4.
Gf = GAf (4.7)

G is called continuous if each G is continuous in the topology of weak

A

convergence of measures.

For technical reasons, we do not .define G to be a jump generator.

A
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However, it operates as one, and we shall think of it as such when convenient.

In the theory of continuous-time, countable Markov chains, the
generator is called the Q-matrix (see Chung (19671). If {Qxy: x =z y} is
uniformly bounded, then there is a space X and a generator G = L GA on X
corresponding to 9. Let W = {0, 1} and S = {1,2, ...}. The states of the
countable Markov chain are identified with the points of X = wS which have a
finite number of 1's. The Qxy' x # y, term 1s included in GA' where A is
the set on which x and y differ. Through this correspondence one can
exhibit pathological examples in random field evolutions based on ones in
Markov chain theory.

The results telow are based upon comparisons with semigroups acting on
2} spaces. For f € F(X) we define the sequence 6f on S whose terms are

{Gif}. For the sequence v = {vi} on S, the norm ||-||1 is defined by
||v||1 = I v, 1. (4.8)

Particularly important are those f for which ||6F||1 < =, For two
sequences v, w on S we write

V § w (4.9)
to mean

v, & w, alliet6, (4.10)

For GA we define

§ g = SWwx yeE X IIGA(X-' ) - Gyly.e . (4.11)

1A x=y except at i "
4,2 DEFINITION, The generator G = I Gy on X is called local if each G,

satisfies

lim sup x,y € X
A s x=yonar Bkt -Gty |l = 0. (4.12)

We can now state an existence and uniqueness theorem.
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4,3 THEOREM, Let G = Z, Gy be a generator on X and let K be a real number

such that for each j e S,

I £ K> (4.13)

I, z . 6 G, ¢ K. (4.14)

Then there is a uniquely defined, positive, linear semigroup of contractions

T

t >0, on F2(X), |

¢ , S0 that for each f € F2(X) and each real t >0 we

have

lim sup | 7.¢ - exp(tI,, _ , 6,,)f || = 0. (4.15)

A+S Dgtst
[»]

Further, if || 6 []1 < w , then

§ Itf €< exp(tC) §&F, (4.16)
where C is the matrix with elements

C = I §, G, » (4.17)

If G is local, then T, maps FD(XJ into itself. If G is continuous and local,

then T, maps CO(X) into itself.

We omit the proof of the above, for it is along the same lines as that

of the more general result below. For f e F(X), i e S, c € W, we define the

c

operator Ai

by

Ag Flx) = £(x) - £ x) , (4.18)
c

where the notation {4.3) is used with I' = {i}. For i ¢ A® we define

-

Il G (x.e ) - G,(y,* ]||m

- Sup X,y € X o _
B(i, A) x=y except at i * IGA(x.{xA}) Gy ly.ty, b | . (4.19)

A _ A
L+|:3A(x.w \x P -Gy ly, Wy, ) )|

For 1 € A we define B(i, A) = Gi GA‘ and
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IIGA(x. )+ Gyly. ) |

inf x, y e X g UCAC TR S TLI I

D(i,A) = , 3 » (4.20)
x=y except at i
+2 max {O,GA(y.{xA}]-GA[x,{xA1)}
;:2 max {O'GA(X‘{yA}]_GA[y‘{yA})i
where XA' yA represent the points of w“ whose coordinates agree with x, y.

From (4.5) we get the following:

0.4 LeMMA, Let fe F(X), 1 eS. Let xe X and c € W be such that
c
o] FIx) 3 & f - €. (4.21)

Then

GA[A: ) ¢ e |[g,ll- (4.22)

4,5 LeMMA, Let f, i, x, ¢ be as above and satisfy (4.21). Then for any

A2i

- 85 (6,f)(x) 3 Di,A) §.F - ¢ G, ll

(4.23)
- i,A F .
B(i,A) Zj e A\ (i} GJf
Proof. Let (4.21) be satisfied.
_ ,C _ A _ A
Ai (GAf)(x) = GA[x.w ) flx) GA(cx.w } f(cx)
(4.24)
- ff[yx)(GA(x.dy) - G, _x,dy) ).
There is for fixed x a constant J such that as a function of a
|[fU.x) + 3| <« L6, ¢+, (4.25)
a i
with the a, c modification of x at the i-position. Then as a function of
yEWAf
[fOx) + 3| € $6, f+1, (4.26)
y i

j e AN {1} ij .




The addition of J to f does not change (4.24) so

-05(6,F)(x) 3 38, (][ 6, (x, ) ROl | RN E PR I Gl )
(4.27)
e Gy ll- 68y 55 oy gay &5

The desired result (4.23) follows by noting that changing GA(x,{xA}J does not
change (4.24).

For two operators G, H we define the commutator bracket [G, H] by

(G, H] = GH - HG . (4.28)

4,6 LEMMA. For f e F(X), i e A°

c

| a7, 6] £0x) | < BLL.M) I, 5,F - (4.29)

e A

Proof. We have

C = - -_
(a4, 6,1 Flx) = I(f(ycx) LX) (6, x,dy) - Gy{ x,dy)), (4.30)

with the c modification of x at the i-positiaon. For fixed oX we can select a

constant J so that

1
3] ¢ % I 6jf s (4.31)
. A
and, as a function of y e W,
- 1
|f(ych F) v | s 4 e p 85F - (4.32)
The addition of J to f(ycx) - f(ch changes (4.30) by
366, Wty - 6,0 x WM. (4.33)
A Ac
Then {4.30) follows from reasoning like that in Lemma 4.5.
q,7 DEFINITION, The comparison matrix B = (BijJ of the generator G = XA GA
on X is defined
-B =z . D(i,A ), (4.34)

ii A2 i
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Bij = ZA 2 B(i,A), 1 = 3§, (4.35)

with B(i,A) and D(i,A) as given between (4.19) and (4.20).

4,8 THEOREM. Let G = I, G, be a generator on X with comparison matrix B.

Assume that there are real numbers o, K such that for all j € S

jesBij §

[s]
2 Iy s IIGAII s K.

Then the domain of the operator of G contains F;(X) and the closure of G as
defined on F;(X) is the infinitesimal generator of a uniquely defined, strongly

continuous, positive, linear semigroup of contractions T,» t 20, 0n F;[X] with

d

norm | . For each fe F!(X) and each real t >0

lim sup IIth - exp(tZA,

A~+S Oétsto

cp Bl F || = o. (4.36)

If, in addition, one has

30 a < 0,

for each § € F*(X) with || 6f ||, < = there is a function f_ e F_(X) such that
o] 1 © ©

e || T, -, |l 1is bounded int >0, (4.37)

and for any g € F;[X] there is a g_ € F_(X) such that

um || Te - g, | = o. (4.38)

t+u:|

If, in addition, G is local, then FD(X) 18 invartant under Tt and for f € FO(X]
the limit function f_ 1is a constant.
Proof. We assume 1° and 2° are satisfied with specified a and K. For

f e F2(X) with ||6f||1 < = we have
g legfll o« 2y logll 2y oy 65F
(4.39)
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so that f is in the domain of 6. For A > 0 let the function g be defined by

(1 -X6)F = g . (4.40)

We proceed to show that

(1 - AB) 6f < 6g . (4.41)

To prove this we have for i € S, c e W,

o]

_ c
A; (1 - AL, G) f = 8 g, (4.42)
c c
(1AL g 5 Bp) A7 F - ALy 5, 8] Gy ¥
. . (4.43)
=0 gt ALy (a7 LGl F

Because of (4.39) we may approximate the left hand side of (4.43) by finite

sums, so for any € > 0 one obtains from Lemmas 4.4, 4.5 and 4.6,

dif + AL (D(1, A)Gif - B(i,A )E,

A3 i 5 e {43857

< Gig + AZA* iB(i. A)ZJ. Gj‘F e (4.44)

e A

whence follows (4.41). Next define the generator on X, GA. by

A
Y O U (4.45)

whose comparison matrix is denoted BA. From 10 we conclude that B - a is a

A

bounded dissipative operator aon 21 and that B" - a- 2K is such for each A. Eor

A > 0 such that

Aa+ 2K) < 1, (4.46)

1

(1 - 2B) ' and (1 - ABAJ-1 exist as bounded linear operators on El,and we have

for v e ¢!

im0 -MHTy -t (4.47)

A—>S



_25_

Henceforth we assume A > 0 and (4.48). By power series expansion one can show

1

that all the matrix elements of (1 - AB) ' and (1 - ABA)_1 are positive.

For g e F;[X), ||6g||1 < =, set

P Rt L (4.48)

which is well defined since GA acts as a bounded linear dissipative operator on
F(X). The result for GA corresponding to (4.41) is valid, and it is not

necessary to assume that IIGfAIII < = as only finite sums are involved. Then
(1 - aMeft ¢ sg. (4.49)

This implies that ||sz||1 < @, and from the positivity of the elements of

(1 - a8M7Y,

st < (1 - a8M 7T sg. (4.50)

It follows from (4.47) and (4.39) that

1um || - &Y £ I = o. (4.51)
A+ S

From this we deduce

lim (1 -6) £ - g (4.52)

A->S

The dissipativity of (1 - AG) implies that {fA} is a Cauchy net in F;[X] so
there is an f ¢ FS(X) such that
lim || - fAII = 0. (4.53)
A+3S

It is not difficult to verify that

1

6f < (1 -1B) ' &g, (4.54)

(1 - AG)Ff = g. (4.55)

We have shown that the dissipative operator G has in its domain the set of

g E F;(X) such that ||6g“1 < = , and that the image of (1 - AG) alsn containc
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this set. That the action of'G on functions for which.”ég”1 < ® can be
obtained from the closure of the action of G on F;(X], can be proved by using
the approximations of the next section. The existence and unigueness of Tt
then follow from the Hille-Yosida Theorem 2.7. From (4.53), (4.55) and the
Trotter-Kato Theorem 2.8 we have {4.36). Let f e FS(X], ]IGfI|1< ®, th can

be evaluated by

T.f = lim (1 -t6/n " F . (4.56)

t 0w

From (4.54) we deduce

8 th < exp(tB) 6f. (4.57)

Now we assume condition 3° of the Theorem. For f € F;(XJ.fin||1 < @

and 0 <t < s,

e - 7.7l

| J§ seT_£) ar ||
s ar as__at (4681
s K || 8| lft e dr = K|| &6F|| l(e -e )a .

Thus {th} satisfies a Cauchy condition, so there is a limit function f e F;(X]
satisfying (4.37). From (4.57) we see that fo € F_(X). The 1imit (4.38)
follows by approximating g by functions for which (4.37) is applicable.

In the event of G being local, exp tGA maps FO(XJ into itself for each
A, so T, does as well. For g e FO(XJ we have g_ ¢ F_(X) n FO(X], so g_ 1is

constant. Similar considerations apply in the case that G is continuous.

The original result of this kind is due to Dobrushin (1971). The above
treatment is based on Sullivan {1974), using ideas from Lanford(1971) and
Liggett (1972). Most of these results can be generalized by making comparisons
on Eé rather than 2! (see Sullivan (1974)); for simplicity we have omitted

this generalization in the present work.
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5. APPROXIMATE EVOLUTIONS.,

From the previous section we know that a generator G = I GA on X
satisfyiné certain conditions gives rise to a semigroup Tt on F;[X). We now
show that, if G is local, then Tt on FO(X] is the evolution of a Markov kernel
P(t,x,*). In general, one has a parametrized family of Markov kernels corres-

ponding to the evolution Tt of a generator G on X.

5.1 LemMA, Let f € F;[X). Then for x e X

1im  f( x) = £7(y) (5.1)
A~>S

exists in the || -|| norm and iyl e F(X).

Proof. For € > 0 there is a A and an h e F*(X|A) such that
If-nll < e (5.2)
If z = x except on a finite set
| £C.x) - fC2)] < 28 . {5.3)
y y

The functions of vy, {f(yx) : A} form a Cauchy net in FO[X) so we have (5.1).

The modification by y is on A.

0.2 LEMMA, Let f € X, ||6f||1 < . Then f e E2(X).

Proof. We have used this result implicitly in the proof of Theorem 4.8. An
argument similar to the one above shows that the limit (5.1) exists when
IIGfIIl < o, In this notation, select a fixed z & X and consider fx(xz) €
F*(X|A’) with the modification on A'.  We then have

1im Ilfx[ z) - flx)]] = o. (5.4)
NS x

5.3 LEMMA, [Let G =% GA be a generator on X such that for each fized A

Zi €S Gi GA < ®, (5.5)

Then for each x € X there is a local génerator g - ZGXA on X with
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X
G ,ly,*) = lim  G,( x,* ), (5.6)
A At +s MY

where the modification of x is on A', and the limit exists in the || +|| norm.

The proof is as in Lemmas 5.1 and 5.2.

5.4 LEMMA, Let G and H be generators on X which satisfy the hypothesis of
Theorem 4.3 with the same K. Let the associated semigroups be Ty and u,
respectively, and let C denote the matrixz of the Theorem corresponding to G .

Then for f ¢ FS(X) we have

||th - Ul s Lijes N0 §,F (5.7)

with
D= f; exp s Cds , (5.8)

and
hy= I 5 ] ||GA - HAII € 2K. (5.9)

Proof. for £ ¢ 1), |laf]l <

- d_
TF-Uf=f) G W T) fas
(5.10)

t
= /. Up_ (6 - HIT_ F.

From (4.16), (5.10) and the result corresponding to (4.39) with G - H, one
obtains (5.7). For the general f ¢ F;(XJ we may approximate f by functions of
the type used in Lemma 5.2.

5.5 THEOREM, Let G satisfy the hypothesis of Theorem 4.3. Then for fized

A" and fized t_ > 0

lim sup sup _ g
A>S 0stst  feFrIX|A") 7y - exptez,, 6, 0% =0, (5.91)
Hell s 1

and there is a probability kermel parametrized by t, P(t,x,*), such that for

-
fe FO(X]

TR = [ Pl xdy) 7y, (5.12)
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where f° is given by (5.1). ‘If G is local, then P(t,x,*) is a Markov kernel.

Proof. The estimate (5.11) follows from (5.7) by setting H = Note

G,,.
ZA'CA A’
that each Dij is an increasing function of t. For the set E whose indicator

functiaon IE 3 F[X]A"] define
P(t,x,E) = [Tt IE](x]. (5.13)

P(t,x,*) is a positive, finitely additive, set function with P(t,x,X) = 1. " By
the Daniell Extension Thearem (see Loomis (1953)), to shaow that P(t,x,:]) is a
measure on sets whose indicator functions are in F(X|A"), it is sufficient to
show that whenever f_ + 0 in F(X]|A"), then [thn] + 0. This follows for
exp[tH]fn, as only bounded measures are involved. Then (5.11) implies that
[thnl ¢ 0. Since X is a Polish space, the Kolmogorov Extension Theorem yields
a unique probability measure on X which agrees with the above definition on sets
whose indicator functions are in F{(X]. If x and y differ at most on a finite

set, then fx[y] = f(y) and
exp (tH*) £7(y) = exp (tH) F(y). (5.14)

This and (5.11) give (5.12). In the case in which G is local, from the action

of Tt on FD(X] we get that P(t,x,+) is a Markov kernel.

5,6 COROLLARY, Assume G satisfies the hypothesis of Theorem 4.8 with a < 0.
For f e F!(X) write the limit function f_ as T_f. Then (5.11) holds with

L and for each x € X there is a probability measure P(=,x,*) such that

T_f(x) = [ Pl=,xdy)f (y). (5.15)

Henceforth, whenever G is local and satisfies the hypothesis of
Theorem 4.3, we shall consider that the associated time development Tt' t 2> 0,
is given by (1.3), wheré P is the Markov kernel of Theorem 5.5. We can then
use the adjoint action Té given by (1.4) on measures.
Theorem 5.5 can be interpreted as follows. If G is local and satisfies
the hypothesis of Theorem 4.3, then the evolutian Tt of G on FO[X] is the same

as that of a uniquely defined Markov kernel PlL,x,=). vihen G is not local, for
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each x € X there is a Markov kernel - the ane correspanding to the local gene-

rator G° - so that the evolution corresponding to Tt is given by (5.12).

let ' c S. Suppose that the generator G = EGA on X is such that

when A ¢ T , GjG = 0 unless j € I', and that when A c Fc, GjG = 0 unless j € FC,

and also that GA =0 if both A nT and A n I° are nonempty. Then if
f e F(x|T) and g & F2(X|1%), from (5.11) we deduce that T (fg) = (T fI(T g).

This property holds in an approximate sense for a wide class of generators.

We use |A[ to denote the number of elements in A.

5./ THEOREM, Let the generator G = LG, on X satisfy the hypothesis of Theorem

4.3 and also satisfy for each j e S

N TR TR (5.16)
g, (Al 8.5, <« K. (5.17)
Then for each ¥ ¢ F;(X] and each t, 20

sup c
g e F2(x[A)

M ell <1

lim
A=+S

sup

Dstet IITt(ng - AT = o (5.18)

Before proving the above we give some corollaries. A probability
measure p on X is said to be mixing, if for each Borel set E and each € = O

there is a finite set I' ¢ S such that
| WE n F) - wE) ulF)| < ¢ (5.19)

for each set F whose indication function is in F(XIFCJ.

5,8 COROLLARY, If v is a mixing probability measure and G ts a local gene-
rator satisfying the hypothesis of Theorem 5.7, then Tt s mixing for each
real t > 0.

One frequently considers systems faor which S = Zd, the points with

integer coordinates in d-dimensional Euclidean space, and the generator G is

translation invariant. In this case it is natural to consider probability
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measures which are ergodic in the sense of the Birkhoff Theorem (see Pitt(1342])].

5.9 (OROLLARY, Let s = e and let the G of Theorem 5.7 be local and trans-
lation invariant. If u is a translation invariant and Birkhoff ergodic

probability measure vn X, then so is LM for each real t > 0.

Proof of Theorem 5.7. Select a fixed element x* € X. For finite I' « S define

the generator H on X as follows:

GX[y,') if AcT withy =xonT, y=x"on r¢

HA[X’.] - GA[2,°] if A e I° with z = x on r’, z=x*onT (5.20)

0 otherwise.

It follows that H satisfies the hypothesis of Theorem 4.3. Let Ut be the
associated semigroup. For f € F'[X]F]. g € FS[XIFC]. Ut[fg] = [Utf)[Utg].

We note that Tt and Ut satisfy (5.7), and we can estimate the {hj} of (5.9) as

follows:
j : . 5.21
Jel: hysIygy ”GA”+ZKEFC Iy o 5 & Ga (5.21)
An T2 ¢
jers nh, st |G|+ D & G, . (5.22)
i A3 A kel "A3j Kk A
AnT =9
L ch,s L [A] |G|+ ¢ L. |a] & G, . (5.23)
J el 37 o e A kel “A k A
The matrix D of (5.8) satisfies, for each k € S,
t sK
- -
Lo Dy K I sPy € K [g e as. (5.24)

We proceed to prove (5.18). It is sufficient to do so when f € F‘[X|A1].

Given ¢ > 0 and A , by (5.24) we can find A = A, so that
1 2 1

L £ D, < e (5.25)

From (5.21), (4.13) and (4.14) we can select A_ = T 2 A so that
3 2
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Finally, from (5.24) we can find A > l\‘+ so that
5

From these estimates we have, for f e F*(X|A ), g € F;(X[AC],
1 5

I T.(Fe) - u k)l s 2 ¢ [[Fl] [l gll (x> + 4k,
| (e ree) - u el < 2 e flfll  [lgll (2k* + ak).
Since each DiJ is an increasing function limit (5.18) follows.

The results of this section are based on Sullivan (1975b).

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)
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6. GENERATORS FROM CONDITIONAL PROBABILITIES AND POTENTIALS.

There are many examples of interacting Markov processes which fall
within and somewhat beyond the framework of the two preceding sections. The
reader should consult in particular the works of Spitzer, Liggett, Holley and
Harris. In this section we give certain generators obtained from conditional

probabilities and from potentials.

6,1 DEFINITION., Let u be a probability measure on X and let I < S. A T-
conditional probability distribution of u is a function ur[EIXJ defined for each
Borel subset E of W and each x e X, such that for fixed E, np(Elx1 e Fex|ry,

. R r
x) is a positive measure on W , and

for fixed x, wp (e
f ( ff(yx) ur[dylx] ) uldx) = [fdu (6.1)

for each f € F(X).

Since we have assumed X to bz a Polish space, conditional probability
distributions always exist (see Doob (1953)). Condition (6.1) does not deter-
mine the conditionmel probability distribution uniquely, but only within p-a.e.
equivalence. In the results below we must select a certain representative of
Hp so that the conditions of the theorems of the previous sections can be
satisfied. When T is a single point set, I' = {j}, we use the simplified
notation “j' Gj'

6,2 DEFINITION, Let u be a probability measure on X. A type—I generator of
W is a generator G = ZGA cn X with GA = 0 unless A = {j} for some j € S, end
Gj[x,'l = uj[-lx]. (6.2)

With a type-I generator we associate the matrix M = [Mij], with Mii = 0 and

M,, = 416, u, = 36, Gj' i=3. (6.3)

The ampiguity in the conditional probability distribution resulls in a

corresponding ambiguity for the type-I1 genesratar. However, in many cases of
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interest there is a natural choice for uj in (6.2).
From Definition 4.7 we find that the comparison matrix B of the type-1I
generator G is B = M - 1, with 1 denoting the identity matrix. From Theorem

4.8 we have the following result.

6.3 THEGREM, Let u be a probability measure on X possessing a type-I
generator G = ZGj, which is local and such that the M of (6.3) satisfies for

each j € S

z (6.4)

iesMy € no>

where m 1z a fixed real number satisfying 0 € n < 1. Then the closure G is
the infinitesimal generctor of a strongly continuous, positive, linear semigroup
of contractions T,» t 20, on FD(X]. For each f ¢ FO[XJ
lim || T,¢ - [fau||= 0. (6.5)
t+m t

and, if || 6F]] < =,

| T ¢ - Jf aul| < et N ||5f||1 . (6.6)

It is interesting to see what can happen if the assumption of locality
does not obtain. Let p be a probability measure on W, and use the same symbol
p to denote the probability measure on X which is the product of p on each
factor space W. Let o be similarly defined with ¢ = p. Consider u = }

(p *+ o). There exists a Borel set E, whose indicator function IE € Fm[X], and

p(E) = 1, o(E) = 0. Use the particular uj

ple) 1f x € E,
uj['lxl = (6.7)

o(e) if x € EC .
This gives a type-I generator of u for which M is the zero matrix. th con-

verges exponentially when IIGFH . < =, but (6.5) is not satisfied.

6.4 THEOREM., Let u be a probability measure on X with a type-I generator

G = EGJ which satisfies the hypothesis of Theorem 6.3. Let {aA} be a family
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of positive numbers parametrized by the nonempty finite subsets of S such that

1 g K (6.8)

Ina g <

for each 3§ € S with K a fixzed real number. Then the closure of the generator

H = ZHA on X , with

Hy(dy) = oy 1y (dy|x), (6.9)

(The particular choice of w, is given in the proof.) is the infinitestimal
generator of a strongly continuous, positive, linear, semigroup of contractions

U, t >0, on FO(X]. For each e FO(X]

tn

1m [ UF - [fau]] = o, (6.10)

t > o

and, if || 6Fl] . < @,

luf - feaull < L Ilsflll. (6.11)
Proof. We use G as in Theorem 6.3. Write et - I, 50+ Define u, G x1
in terms of
fu @yl FOx) = lim  exp(t™) £1x) (6.12)
A y t > @

for each f € FO[XJ. Using (6.1), Theorem 5.5 and Corollary 5.6, it is not
difficult to show that the right hand side of (6.12) defines a A-conditional
probability distribution of u which is a lacal function of x. The proof now
proceeds like that of Theorem 4.8, with slightly different estimates on HA'
The terms for i € A are straightforward. If we can shaow for i € KC ,

f e F_(X),
)

l [Ag , HyJ Flx)] ¢ 7, (6.13)

§
O Iy e n B O
where [Cij] is a matrix with positive elements, and

z, c C, £ n (6.14)

for each j € A, then the proof goes as before.
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Consider the matrix M partitioned

N P
Mmo= (6.15)
O R .

so that N - 1 is the comparison matrix of GA . By the method of Lemma 5.4, we

obtain for f € FD[XJ.

UF(ny(uA[dyli - w,lay] ) g e S ujm-NJ;: 8, F. (6.16)

where the ¢ modification of x is at the i-position. The factor 3 can be
inserted because uj(wli = NJ[WICXJ. Then (6.16) implies (6.13) with the
matrix C equal to Q1 - N]_1. Let(1*, 1') be the partition of the identically

1 row vector corresponding to (6.15). Condition (6.4) can be written, in part,
1t N + 1 O < n 1‘ . (5.17]

rrom this we deduce

7901 -7 ¢ o, (6.18)

which yields (6.14). The "comparison matrix” B of H obtained by the above

method satisfies, for each j € S,

B = - I o, , (6.19)

I B,. €« -nB Zi Bi' sn-1. (6.20)

i3’ J

The rest follows as in the proof of Theorem 4.8.

Next we consider certain generators on X which come from potentials.
We assume that a- probability measure ¢ is specified for the individual component
phase space W. For spaces of the form WA we denote by oldy) the corresponding
product probability measure. For certain of the estimates below, the product
nature of o is not essential. However, in order for the relationship to
conditional probabilities to be valid, it is necessary for o to be a product

measure. The relationship between potentials and caonditional probabilities
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is discussed in Preston (1974b) and Sullivan (1973).

6.5 DEFINITION, A potential U is a family of functions {UA(XJ} parametrized
by the nonempty finite subsets of S, such that UA(xJ € F(X|AJ for each A. The

energy EU of the potential U is the family of functions {Ex(xl} given by

En(x) = (x] (6.21)

Ipvnn e g U

whenever the series converges.
Given the potential U, with a well-defined energy EU, we obtain a
generator term P, as follows:

A

U
pA(xJ = @xp - EA(x). (6.22)

PX) = pA(x]/pr[yx] o(dy). (6.23)

The generator term P, is the parame*trized probability measure PA[ny o(dy),

A
with the modification of x on A.

6.6 LEMMA. Let u be a probability measure, O a bounded Borel function on

wA . Then

D(y) )

e - 2%y [P L i« 2| o) 21 el (5.24)
Proof. The left hand side of (6.24) equals
f11-6"W 1P Liam | weay. (6.25)
By comparing power series one abtains the inequality
. | 1-¢e%| < |s] elsl. (6.26)
Then (6.24) follows from (6.25) and (6.26), since

[P yayy = €, witn |o*] < || o)) (6.27)
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6.7 PROPOSITION, Let K be a real number and U a potential which satisfies,

for each j e S,

ZAQJ lAl ” UA“ < K.

(6.28)

Let {aA} be a family of positive numbers which satisfies for each j € S

zAaj [A] a, € K.

Then the generator on X, G = L Gys with

GA(x, dy) = N PA(ny aldy) o

18 local and satisfies the hypotheses of Theorems 4.3 and 5.7.

Proof. Let x and z differ only at i ¢ A°. We have

u u ) .
[EA(yx] EA(szI LT s Un (X uA,[szl < 2K.

AM'D 1

By Lemma 6.6 this gives

4K
(Si PA £ de ZA’ nA=¢ “UAIH'
A'D i
Then
. 4K
zi €S GiPA € de EA’n A2 ¢lA'\Al |IUN”
s axe [A] .
2 4K
zieS,zABjGiGAS4Ke .
Next, for i fixed,
2y oplalzye g syl UA’” = Iyy MU dl 2y g oglal <
N i

2 &K
L, [a] 8,6, 4" e .

(6.29)

(6.30)

{(6.31)

(6.32)

(6.33)

(6.34)

2

k]

(6.35)

(6.36)

It is straightforward to verify the remaining hypotheses of Theorems 4.3 and

5.7, and to check locality.
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Next we consider a different type of generator obtained from the

potential V. Tie generator term OA is of the form OA(x) oldy), where

, (6.37)

0,(x) thx)/||qA(x)|

exp - EX(x). (6.38)

qA(x)

By technigues like those employed above, we get the following:
6.8 PrOPOSITION. Let K be a real number, and V a potential which satisfies

for each j € S

z Al ||vA|| s K. (6.39)

A3 JI

Let {aA} be a family of positive numbers satisfying (6.28). Then the generator

G=1 GA with

GA(x, dy) = aAOA(XJ ol(dy) (6.40)

18 local and satisfies the hypotheses of Theorems 4.3 and 5.7.
It is not difficult to verify

Gi(OA(xJ PA(ny oldyl)) s siOA + §.P (6.41)

in’

so we have the following:
6.9 PrOPOSITION, Let.Kbe a real number and U, V two potentials which satisfy
(6.28) and (6.39). Let {aA} be a family of positive numbers satisfying (6.29).

Then the generator H = L Hy with

HA(x. dy) = ay QA(x) PA[yx] o(dy) (6.42)

18 local and satisfies the hypotheses of Theorems 4.3 and 5.7.
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7. REVERSIBILITY AND RELAXATION,

The study of fluxuations from equilibrium forms an important class of
time dependent problems in both theory and experiment. One considers a system
which is perturbed, either externally or by internal variations, and observes
the rate and manner of return to equilibrium. It is natural to prefer models
of fluxuation from equilibrium which do not distinguish the direction of time.
This property for Markov time develaopment amounts to reversibility. Consider-
ations of raversibility have long been employed by physicists under the title
of the Principle of Detailed Balance.

Considerations of rates of relaxation (return to equilibrium) for
random field models invnlve certain subtleties. Theorem 4.8 gives one relax-
ation rate based on the "norm” ||6f||1 . This convergence is, in general,
applicable only to functions f for which ||6f||1 is finite; furthermore, the
result is strongly dependent on the specifics of the evolution. In thiis
section we consider a different type of relaxation rate based on spsctral
properties of the generator.

We recall that the probability measure u is said to be reversti He for
the Markov kernel P, if, for each t > 0, Pit,x,dylu(dx) is a symmetric measure

in x, y. An equivalent definition is that the action T_ of P be a symmetric

t
2

operator on L™ (u) for each t > O. Either of these two definitions can bs

applied to jump generators and the Markev kernels obtained from them. Con-

ditions for reversibility of a generator G on X are mors involved. Throughout

this section we shall assume that gensrators are local and satisfy conditions

of the form
z G, < o (7.1)

for each k € S, so that the domain of G will contain FF(X]' We emoloy the

notation ['.'Ju to denote

(f, @), = [fgdu. (7.2)
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7.1 DEFINITION., Let G =Z G, be a generator on X which is local and satisfies
(7.1) and let u be a probability measure on X. u is called reversible for G

if

kd = » 7-3
(GF g)u (f Gg)u ( )

for each f, g € FF(X)' u 1is called strictly reversible for G if u is

raversible for each GA'

7.2 THEOREM, Let the generator G on X be of the form G = I G - that is,

GA = 0 unless A = {k}, with k € S. If the probability measure u is
reversible for G, then u is strictly reversible for G.

Proof. We need to show that each Gk is symmetric in the [-,-)u inner product.
It is sufficient to show that the measure an W x X given by Gk(ax,db)du(axJ

is symmetric in a and b. Let f, g € F(X| {k}), and let h be the indicator

function of a set such that h e F(X|A), where k ¢ A°.  Then

Gfh, - Ggh, =
(Gfh gh)u (Ggh fh)u

(7.4)
(G f, gh + (Gh, fgh - (6 g, fh) - (Gh, h) .
KFr 8 )u g Ju ( kg " ( fg y

By hypothesis, the left hand side of (7.4) is zero. Thus (G f,gh)u= (Gkg.fh)u

k
when ¥, g and h are as above. This implies the required symmetry for
G&(ax. db) du(ax).

For the first result of the above kind, as well as for certain
generalizations, see Logan (1974).

In Sections 4 and 5 it was convenient to consider the action of G on
functions in F;(X) which are not in FO(X). Here this generalization proves
inconvenient. Sufficient assumptions will be made so that the generators

below correspond uniquely to Markov kernels. The semigroups below are those

which correspond to the action of the Markov kernels.

7.3 THEOREM. Let the generator G = L G, on X be local and satisfy the
hypothesis of Theorem 4.3. Let u be a probability measure which is reversible

for G. Let G denote the thu) closure of G as defined on FF(X)' Then G is
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self-adjoint, and its spectrum consists of negative real numbers. Let -\ be
the supremum of the strictly negative spectrum of G and ZetQE denote the pro-

Jeetion on the zero eigenspace of G. Then for each f ¢ LZ(u). t >0,

lim TF-0 f = 0, (7.5)
g T @, el
T - @pfll, o« Ne- @l (7.6)

with II'II2 denoting the norm in L°(n). Further, y is reversible for the
Markov kermel associated with G .

Proof. For G as defined on Ff[XJ in thu), the Lz(u) closure G is a densely
defined, closed, symmetric, dissipative, linear aperator. The L2(u) closure
contains the |I-|| closure, so each f € FD(XJ with ||6F|ll < e is in the
domain of G. From the proof of Theorem 4.8, we find that (1 - AE)-1 is a
symmetric bounded linear operator on Lz(u), so (1 - AEJ_1 is selfadjoint.

Then G is selfadjoint. We deduce (7.5) and (7.6) from spectral representation

af the dissipative, selfadjoint operator G. The reversibility of u for the

Markov kernel of G follows from the symmetry of Tt with respect to (','Ju .

7.4 THEOREM. Let G and H be generators on X whieh are local and satisfy the
hypothesis of Theorem 4.3. Let the corresponding evolutions be denoted T, -
u, . Let u be a probability measure on X , which is reversible and ergodic

t
for the Markov kermel associated with G by Theorem 5.5.  Assume

L4 » 7-7
(H f f)u < (G F f)u ( )

for each f ¢ Ff[x). Then u s an ergodic invariant probability measure for

the Markov kernel associated with H. If A 2 0 is such that
YT, £ - f ol (7.8)
2

128 bounded in t 2 0 for each f € Lz[u], then

e)\t” u

f - fd < f - jfd . (7.9)
Tl e Il - Seall
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Proof. From (7.7) we deduce that H is dissipative in thu). It follows
easily that u is invariant under the Markev kernel corresponding to Ut' Let

IE be the indicator function of a set which is invariant under Ut. Then

IE = 0. From (7.7) and reversibility we conclude that-IE is in the domain

of (-8)%, ard (-G]EIE =G I.=0. Hence I 1is a fixed point of Tt in

L2[u]. This implies that E is u-almost invariant under Tt' The ergodicity

I

assumption on Tt implies that p(E) is zero or one. Hence u 1is also ergodic
for Ut. Let Li[u) denote the subspace of L2[uJ consisting of those functions
whose p-integral vanishes. From the boundedness of (7.8), usimg the spectral
representation, we find that the restriction of G + A to FF(XJ n Li(u) is
dissipative. From (7.7), we have that the restriction of H + A to
FF(X) n Li(u) is dissipative. Then eAt Ut is a contraction semigroup on
Lg(u). which yields (7.9).

The inequality (7.7) is satisfied in the important case in which H can

be written H = G + G', where all three are generators an X, satisfy the

hypothesls of Theorem 4.3, and possess u as an invariant probability measure.
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8. PROJECTIONS.

It is frequently useful to compare time evolutions eof diffarent systems.
In this section we give two methods of relating interacting Markov processes
on different spaces. The first, due to Debrushin (1971), approximates

evolutions on X = wS by evolutions on wA .

8,1 DEFINITION. Let U be a probability measure en X with a specified family
{ur(°|x1} of I'-conditional probability distributions of u, where I' runs
through the cofinite subsets of S. let G =L GA be a local generator on X

such that, for each j € S,

I el < = (8.1)

For each A, the uA-projection of G, gHh , is the generator on wh with terms

GK?, for ' n A =2 ¢, so that for z € wA

uA

GA'

(z,*) = fGA,(xz.°J Mo (dx]z), (8.2)

with the modification on A°.

In working with the upA-projection of G, we employ implicitly certain
natural mappings between various functions and measure spaces. Als o, the
definition depends on the particular choice of conditional probability
distributions.

From assumption (8.1) we can regard GuA as acting as a jump generator.

on WA . We deduce easily the following:

8.2 LEMMA, In the notation of Definition 8.1 and of (7.2), for each

f, g e FIX|A)

uA ,
G f, = , . (8.3
( g]u (G f g)u 8.31]

with the natural identification of F(X|A) and Fowhy.

8.5 PROPOSITION., Let G be local and satisfy the hypothesis of Theorem 4. 3.

Let the probability measure w be trnvariant under the Markov kern.l of G .
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Then the restriction of u to wh s itnvariant under the Markov kermel of G“A.

If u is reversible for G, then its restriction is reversible for GuA.

Proof. By differentiation of thf dy, it is not difficult to show that u is

invariant under the Markov kernel of G if and only if
Jefau =0 (8.4)

for all f ¢ Ff[X). By (8.3) this carries over to GuA . Similar considerations
apply for reversibility.

The second comparison technigue we discuss is based on embedding two
Markov processes in a third Markov process. For historical details of this

method see Harris (1974).

8.4 PROPOSITION, Let P(t,x,+) be a Markov kernel on the Polish space X, and
let m: X+ X*and 1 : X* + X be Borel mappings such that w(t(z)) = z for
each z in the Polish space X* . Assume that for each Borel E c X* and each

t >0,

P(t, x, m (E)) = P(t, y, 1 (E)), (8.5)
whenever m(x) = mly), x,y € X. Then P*(t,z,E), defined by

P*(t,z,E) = P(t, t(2),7 (E)), (8.5)

18 a Markov kernel on X*.

Proof. We must show that

[ P*(t,z,dw) P*(s,w,E) = P*(t + s, z,E). (8.7)
The left hand side of (8.7) is

[ Ptt, t(z), 7 '(dw)) Pls, t(w), 1 (E)). (8.8)
By the usual change of variable formula, (8.8) equals

[ P(t, t(z), dx) P(s, tl(x(x)), = “(E)). (8.9)
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From assumption (8.5) we can then replace t(w(x)) by x in (8.9), which gives

the desired conclusion.
Now we speclalize to random field generators. We consider that we are
given Borel mappings
T W>W, T @ W > W (8.10)
m{t(b) ) = b all b e W*. (8.11)
We take the natural extensions

M X=W > X*=W*", 1 X*>X, (8.12)

using the same symbols for the extended mappings, which are alsc Borel.

8.5 ProPOSITION, Let G = & G, be a local generator on X which satisfies the
hypothesis of Theorem 4.3.  Assum:, for each A and each Borel subset E of

W‘A, that

-1 -1
GA(x. m (E)) = GA(y. T (E)) (8.13)

whenever w(x) = wly), where m and t are the natural extensions of (3.10) to the

appropriate spaces. Then G* = I G,\*s defined by

_ -1
GA‘(z, dw) = GA(T(Z]. 7 (dwl), (8.14)

s local and satisfies the hypothesis of Theorem 4.3. Let Teo T.° and P, P*

be the associated evolutiomsand Markov kermels. For f € FO(X‘) we have
* [ = )
(Tt f) ™ Tt(f ), (8.15)

while P and P* are related by (8.6).

Proof. It is straightforward to verify that G* is local and satisfies the
hypothesis of Theorem 4.3. It is sufficient to preve (8.15) for f ¢ Ff[X),
and this also implies that P and P* are related by (8.6). Further, we may

assume that G = L GA has only a finite number of terms, since the general
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result follows from finite approximations.
We consider (8.13) as a condition on the positive measure kernel
GA(x,-). It follows that the jump generator corresponding to the action of

GA satisfles the condition corresponding to (8.13). So we consider the

bourded measure kernel H(x, dy) which represents a finite sum of jump generators

corresponding to GA's. We assume H satisfies
Hix, 7 '(E)) = H(y, = (E)) (8.16)
whenever w(x) = w(y) and E is a Borel subset of X*. Define H*(z, dw) by
H*(z, dw) = H(t(z), 7 (dw)). (8.17)
Let Hn represent the n-fold composition of H with itself. We show that
H"(z, ) = H(x(z),7 (E)) . (8.18)

Assume (8.18) holds for n - 1. Then

Hh(z), 7 e = [ (x(z2), dy) HiT o my), 7 (E))

iz, 77 W) Hieta), 1 ED) (8.19)

" Nz, dw) He(w, E).
Then we obtain, for f ¢ F(X*),
{exp(t H*) f} e 7 = explt HI(f o ). (8.20)

This completes the proof.

Condition (B8.13) requires, in effect, that, whenever E is in n-1 of the
Borel field of X*, GA(x. E) must be measurable with respect to n_1 of this
field. In +this formulation, the proofs of Propositions 8.4 and 8.5 are

simply diagram chasing.
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9, EVOLUTIONS ON ORDERED SPACES,

The spaces of certain interacting random processes are intrinsically
equipped with an underlying order structure, e.g. the spaces associated with
birth-death processes and ferromagnetic, dynamic Ising models. In this
section we consider certain properties of evolutions related to partial
orderings.

We assume that the individual compcnent phase space W is equipped with

a relation ¢ which satisfies

asb,bse=> asxgec, (9.1)

ag¢<b, bga<=> a-=h, (9.2)
Further, we assume that the graph of <,

{(a, b) e Wx W: asb}, (8.3)

is a Borel set.
For certain of the results below, we assume that W has a maximum

element w and a minimum element 0, such that for each a € W
0«5 a, a g w. (9.4)
On the product space X = WS we use the product ordering
XSy <= ox 08 Yy all i ¢ S. (9.5)

When W has extremal elements, w, 0, then spaces of the form wr, I e 5, also
have extremal elements. We shall use the same symbols w, 0 for extremal

elements in different spaces, the specific meaning coming from context.

9.1 DEFINITION., The symbol i subscripted to a function space, e.g. Fog (XD

denotes those functions in the space which are increasing. Let y, v be

measures on WA. We say that v 1is inferior to u, written

o2 v, {9.6)
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if for each f € Fi[X|A],
[ fdu 2 [ fav. (9.7)

When u and v are measures on X, the requirement is that (9.7) hold for each

feF_.(X).
oi

9.2 DEFINITION. (et G = & G, be a local generator on X. G is called

A
attractive, if for each GA there is a A > 0 such that
A A i
(1 -2 GA(x, W ]]ex + A GA(x, ] > (9.8)
A A
(1 -x GA(y. W ]]ey + A GA[y, )

whenever x > y, where e: and 53 denote unit measures concentrated at the

points of WA which have the same coordinates as x and y respectively.

9,3 ProPOSITION. Let G = I G, be a local generator on X which is attractive

and satisfies the hypothesis of Theorem 4.3. Then T, maps Foi[X]inta itself.

Proof. Let the measure kernmel M(x, dz) denote the left hand side of (9.8).

For feF_.(X),
oi
fmix,dz)£(_x) » [mly,dz) Fx) 3 [Mly,dz) £y, (9.9)
so 1 +A G maps Foi[X] into itself. Next, define the operator N(A, A) by

N(A, A) =1 + AT (9.10)

Ac A GA' ’

It follows that, for sufficiently small A > 0, N(A, A) maps Foi[X] into itself.

Then

- . n
exp(t ZA,C A GA,] n1_J;mm N(t/n,A ) (9.11)

maps F_.(X]) into
oi

maps Foi[X) into itself. From (4.15) we deduce that Tt

itself,

9.4 THEOREM, Let W have extremal elements w, C satisfying (9.4). Let the

Markov kermel P have the semigroup Ty which maps Foi(x] into itself.  Asswme
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there are given a family E3 of functions in Foi[XJ, and a strictly positive,
increasing function r(t), such that for each f qu
lim r(t) (T _flw) - T_f(0}) = 0. (9.12)
t t
£t +®
Then, for each function h in the algebra generated by > 2
lim suf r(t)|T,hix) - T hiy)| =0, (9.13)
t t
t >+ x,y eX
and for each imvariant probability measure u of P,
lim ()| T.h - [ nhodull =o0. (9.14)
t >
If ¥ generates the o-field of Borel sets, then P has at most one invariant
probability measure.
Proof. Let f, g € Foi[X] both satisfy relations of the form (8.12]) and take

values in the interval (0, 1]. Then f g and f + g - fg are in Foi(X]. S0
0 s Tt[fg][w] - T, (fg)(0) s Tt[f + gllw) - T_(f + g)(0). (9.15)
[ -

Hence the product function fg satisfies (9.12]. Since each function h in the
algebra generated by ¥ can be written as a finite linear combination of such®
products, we deduce (8.13]. Limit (9.14) follows easily from (9.13]. Let E
be a real open interval. For any f € ¥ and any invariant probability
measure y of P we can find u[F-1[E]] as follows. Select a sequence of poly-
nomials of f which converges monotonically to the indicator function of f_1[EJ.
Limit (9.14) then gives p of this set. In a similar manner each invariant
probability measure has its values defined on the g~-field generated by 72

wWhen ¥' generates the Borel field, there can be et most one invariant proba-

bility measure.

In application, 'f is often chosen to be Cfi[X]' wWhen W is compact
and the graph of ¢ is closed, the algebra generated by Cfi(X] is uniformly
dense in C(X), so that Cfi[XJ generates the o-field of Borel sets (see flact%in

(1965)).
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The ordering al has been most effectively employed in the context of
random fields by Preston (1874b). For random field evolutions, another

ordering of measures has been employed, particularly by Holley and Harris.

9,5 DEFINITION. Let u and v be positive measures on X. Then u is said to

surpass v, written
o3 v, (9.16}
if there is a probability kernel N(x,dy) with
N(x, {ze X:zsx})=1 (9.17)
for each x £ X, and such that
v(E) = [ nldx) N(x, E) (9.18)

for each Borel subset E of X.

Alternatively, aone may view the relation u ;5 v as meaning that there
exists a positive measure p on X x X, concentrated on {(x,y) : x 2 vy}, whose

restriction to the first factor is u and to the second factor is v.

9,6 LEMMA., Let u 35 v . ILet f, g € F(X) be such that f(x) > gly) whenever

X *y. Then

[ £dusz[ g dv. (9.19)
Proof.
[ fadw = [ f{x)uldxIN(x,dy)
2y (9.20)
> fx >y glyluldx)IN(x,dy) = f g dv.

9,7 THEOREM, Let W be a finite partially ordered set. Let u and v be
positive measures on W. Then u 3»°v if and only if u ;i v.

Proof. Half the theorem follows from Lemma 8.6. To complete the proof, we
assume U 3; v and show p 3" V. From p ai v we deduce that u(W) = v(W),

by considering the integrals of positive and negative constant functions. We
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remark that a necessary and sufficient condition for u ;i v, when pulW) = v(Wl,

is that
u(E) > v(E) (9.21}

for each increasing subset E of W. Define
£ - {E ¢ W : E is increasing and u(E) = v(E}}. (9.22)

If E contains every increasing subset of W, then u = v, and we can let the
probability kernel N, which in this case is represented by a stochastic matrix,
be the identity matrix. Otherwise we construct a sequence w , ¥, ... , such
1 2
s i s i .
that w 27w, ¥ 27 vy uwu > u ,uza v; and so on in such a way that €’i'
1 1 2
defined as in (9.22) using Mo is strictly increasing in i. Then for some
finite n, En contains all increasing subsets of W, so Moo= V. Since the

. s
relation >,s is transitive, u 2~ v.

Let A, Be E . Then

u(A u B} 2 v(A uB), ulA n B} >v(A n Bl;

ulA v B} + u(A n B} = ulA) + u(B) = v(A} + v(B}); (9.23)

u(A v B) v(A u B), ulA nB) = v(A n B).

Thus &€ is closed under union and intersection. £ defines an equivalence
relation on W as follows. The class %X of x € W consists of those points of W

which are not separated from x by & , Z.e. y € X means that {x,y} n E is

either empty or {x,y} for each E ¢ £ . Define
E
xf=n{Eeck : Edx}, (x +) =ulEeck : ED x}. (9.24)
It follows that X = x4 n x+. If X = {x} for each x e W, then u = v. Otherwise,

select x such that '>'<‘ has more than one element. Let E be a nonempty proper
~ = ; . g o ~ . ~

subset of x such that x \ £ is increasing in X, Z.e. when z € X and z < y for

for some y € E, then z ¢ E. We have that x+ \ E is increasing: when z € xt

and z s y for some y € E, then z € x+; so z € X and hence z ¢ E. Since xt \ E
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is an increasing subset of W which is not in E , ulxt \ E) > vixt \ E), so
u(E) < v(E). This means that the restrictions ur, v' of u, v to X satisfy
r i r . o .
B 2 v in the ordering on X. Further, for each nonempty, increasing, proper
subset E of X, u(E)} > v(E). Let v be a maximal element of, %. Then u({y} ) >
v({y}). If y were also a minimal element of %, we would have ul{y}} < vi{yhH.
Thus there is some z € X with z < y. We consider the stochastic matrix [ny]
with N_ =1 for t 2 y, N =1-a, N = a, where 0 < a < 1. Select the

tt vy vz
least a in this range for which there is an increasing set E ¢ E such that
ul(E] = v(E), where ul = uN. The proof then follows the argument. given above.

0.8 C(COROLLARY, Let W be a countable partially ordered set. Let w and v

be (finite) positive measures on X = W. Then p 3% v if and only if > V.

Proof. By Lemma 9.6 we need only show that u )i v => zs V. There is no
loss in generality in assuming that W contains extremal elements w, 0 satisfying
(9.4), for these may be added to W if necessary. There exists a sequence

{Xn :n=1 2, ...} of subsets of X, such that each Xn is the product of finite

subsets of W,

{O,w} ¢ X <X all n, (9.25)
n n+1
and also
1im X \ X ) + v(X \ X ) = 0. (9.26)
n -+« n n

A
Let XQ denote the image of Xn under the natural projection of X to W .

Define the measures “Q and vﬁ an Xg by

Wh{x}) = ul{o = x on AD, x & XA\ (b, (9.27)

A A

vn[{x}] = v({w = x on A}), x € Xn \ {0}, (9.28)
while

uQ[{w}] = p({w = won A} u (X‘\XnJ]. (9.29)

vhioh = vites 0on A} U X\ X ) ). (9.30)

From the assumption u )l v, it follows that uﬁ zi vg . By theorem 9.7 we have




~54-

A S'vg, so there is a positive measure 92 concentrated on {(x,y) € XQ X XQ :

N\

¥n

x > y} which restricts appropriately to “2 and vﬁ . We consider the measures
{pg} to be defined on {(x,y) € Xn X Xn : x » y} by taking products with the unit
measures concentrated on the w-elements of Xn X Xn . As A >~ S, by compact-
ness {pg} has a weak limit point G The <equence {pn} is tight, so it has as

a weak 1imit point the measure p on {(x,y) € X x X ¢ x > y}. It is straight-

forward to check that p restricts appropriately to u and v .

9.9 THEOREM, Let G =1 G, and H = L H, be local generators on X which
satisfy the hypothesis of Theorem 4.3, with corresponding semigroups Ty and u, .

Assume, for each A, there is a A > 0 such that

A A ]
M - AGA[x. W) € * AGA[x. } 2

A

A
(1 -2 HA[Z' Wl e, * A HA[Z. ), (9.31)

whenever x » z. Then for each f, g € FD[X] such that f(x) 2 glz) whenever
X » z, we have TtF[x] 2 Utg(z] for each t > 0.
Proof. Let M(x,+) denote the measure kernel of the left hand side of (9.31);

N{z,+), the measure kernel of the right hand side. Then, for f, g as stated,
M" £(x) = N” glz) (9.32)

for each positive integer n, by Lemma 9.6. The proof is completed along the

lines of the proof of Proposition 9.3.

Variants of the above result can be found in the works of Holley and

Harris. They use a different method of proof, which goes as follows. Since

M(x,*) 2% N(x,*), there is a positive measure p on {(a.b) e W x W: a = b}A ,

whose restriction to the first variable is M(x,+}, and to the second variable

is N(z,-}. Define the generator J = & JA on {(x,z} e X x X : x 2 z} with

JA[x,z; *} = p/X. When we project J to the first variable, we get a generator

A
term on X whose operator is the same as that of GA; the projection of JA to the

second variable yields a generator term whcse operator coincides with trnat of

HA . Though we do not know whether J satisfies Theorem 4.3, finite approxima-
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tions are sufficient to provide the desired result. One must, however, show

that JA(x,z; ) is a Borel function of (x, z).

For the following result we assume that W is a subset of a vector
lattice. The expression h > 0 is meaningful within the vector lattice. The

function f on W is called convex if
f(x + h) - flx) 2 fly + h) - f(y) (9.33)

whenever x, ¥, x + h, y + he Wand x >y, h 2> 0. When - f is .convex, f is
called concave. Clearly (9.33) is meaningful when f takes values in a partially

ordered vector space.

9,10 THEOREM, Let the generator G = L G, onX be local and satisfy the
hypothesis of Theorem 4.3.  Assume for-each A\ there s a » > 0 so that the

measure kernel,
A A
Mix,*) = (1 - AG,{x, W) € + AG,(x,°), (8.34)
A X A

is an increasing concave (convex) function of x in the ordering ai on measures
on Wh.  Then for each concave (convex) functiqn f e Foi[XJ. T.f 18 inecreasing
and concave (convex) for each t > 0.

Proof. By the argument of Proposition 9.3 it suffices to show that M(x,-)

maps concave functions in Foi[X] to concave functions. We use the following

notation:
(F ) () = £, (9.35)

mof, = Jmix, dy) F[yz]. (9.36)

The modification is on A. For concave fe Foi(X],

IvIx+h +‘x-*h - fox B |v|x+h[fx+h h fx] * (Mx+h h Mx] +‘x
Mx+h[fy+h - fy) + “My+h - My] fx (9.37)
< My+h[Fy+h - fy] + [My+h - My] Fy .
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In (9.37) we use the positivity of the measure I"Ix+ with the concavity of f,

h

the concavity of M with the increasing property of fx. and the increasing
property of M with the decreasing property of (fy+h - fy] and [fx - fy].
Inequality (9.37) implies the desired property for M(x, dyJl. For the convex

case we have (9.37) with the inequalities reversed.

For further results of the type above, and some striking applications,

the reader should consult Harris (1974].
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10, THe GLAUBER MODEL WITHOUT TRANSLATION -INVARIANCE,

In this section we consider a specific example which illustrates many
previous results. The example is a generalization of the model proposed by
Glauber (1963) for time development in the one dimensiocnal Ising chain. The
original Glauber model deals with translation invariant, nearest neighbour
interactions in zero magnetic field; Felderhof (1970) gave an ingenious
solution to the associated eigenvalue problem. We generalize the model by
removing the requirement of translation invariance. This allows us to study
in some detail dynamic Ising systems with distinct phases.

We shall be considering both equilibrium and time dependent models.

An equilibrium state of the system is a probability measure on X corresponding
to the potential by the usual rules of equilibrium random fields. An zZhvariant
state i1s a probability measure on X which is fixed under the given time
development. For the generators .e consider, each equilibrium state will be
reversible and invariant. When the equilibrium state is unique, we shall show
that it is the only invariant state. Whether, in general, there are invariant

states which are not equilibrium states, is an open question.

We consider two cases: the first having S = Z = {0, 1, ...}, and the
second having S = N = {1, 2, ...}. The phase space of a single spin is
W= {+1, - 1}, The interaction is specified by a sequence of constants

{Jk : k e S}, with the interaction energy between sites k and k + 1 equal to
- .Jk X X1 for the configuration x e X.
Consider spins x

qr Xgr eee s xn . In equilibrium calculations which

X , we can replace the constants J,, ... ,J

do not involve spin x2. see e Xo g 1

n-1

by a single constant T. such that

tanh 7 = 1°7) tanh J. , (10.1)
J=1 N

and regard x, as coupled directly to X by J. In this manner we can show that

the equilibrium state is not unique when

n, . tanh J, = 0. (10.2)
J=1 J
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For S = N there are at most two extreme equilibrium states; for S = Z there are
at most four. When S = N, all equilibrium states are Markov chains; when
S = Z, this is not true in general. We omit the detailed, but elementary,
calculations.

The time development is obtained from the generator G = I GK , T.e.

GA = 0 unless A = {k} for k € S' , and

GK[x. {-xk}]= i1 - @ x x, - B ),

k *k-1 *k 7 Pk %k k+1

= 1 -
o ;(tanh [Jk_1+ Jk] + tanh [Jk—1 Jk]]‘ (10.3)

g = iltanh (JK_ + JK] - tanh [Jk— - Jk]]'

1 1

It follows that G is local and satisfies Theorem 4.3.
If v is any probability measure on X whose one point conditional

probabilities satisfy

vK(alx] = exp[ﬁlk_1 a X _q* JK a xk+1]/zkx ’ (10.4)

for each k € S, with ka chosen so that vk(wlx] = 1, then G is a type-I genera-
tor of v. in particular, v is strictly reversible for G. One such v is Lhe

Markov chain u satisfying

uiix, = a}l) = %,
(10.5)
= 1
u[xk+1|xkl = 301 + Xl Xiea tanh Jk]'
Let S, denote the element of C(X} such that sk[x] =X From (10.3)
we deduce
Gs =-5s5 *+a s + B s . (10.6)

Each element v £ 21(S) yields an element of C(X) under the correspondence

v+ L vV, S5 . (10.7)

This mapping is norm preserving, and the image of 21(S) in C(X) is a closed
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linear subspace which we denote qf . G maps 43 into itself and gives the

following differential equation for v(t) e 21(S), via (10.7):

— v(t) = B v(t), (10.8)

(B V)i = Brq Vke1 " Vk T % Vi

One verifies that B is the comparison matrix of G, so Theorems 4.8 and 7.3 give

the following:
10.1 THeoreM, et {3, : k e S) satisfy

3, ] s 3, all kes . (10.9)

Put A = 1 - tanh 2J. Then the semigroup Ty of the G of (10.3) has a unique

invariant probability measure u which is the Markov chain of (10.5). For each

g € CF[X)‘
Aty .
e""[| Ty - [g dull is bounded in t > 0, (10.10)
2
and for each + ¢ L°(q),
lim ekt||th - feaull = o. (10.11)
t 9> @ 2

We go on to the case of unbounded J's. There is no loss of generality

in assuming that J, » 0 for each k, as the spins can be relabelled to achieve

K
this. We shall assume, further, that
Jk >0, all ke S, (10.12)
leaving the case in which some J's are zero to the interested reader. We define
{uk k € S} by
-u .
g Kk = tanh J (10.13)

10,2 THEOREM, et {J, + k e 8} satisfy (10.12) and let {u, : kes}or

(10.13) satisfy
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1im uo = 0, (10.14)
k = + =™

ZK > 0 uK = + ™, (10.15)

ZK <0 UK =+ ® (10.186)

Then the Te corresponding to Gof (10.3) has a unique invariant probability
measure, the u of (10.5). The only A » 0 such that
i At
m e || T F - J£ dull =0, (10.17)
t > 2
2 ,
for all f e L"(u), ts A = 0.

Proof. Let v be an invariant probability measure of Tt' Define w € £ (8)

by

W = fsk d v. (10.18)

The invariance of v implies fG Sk dv =20, so

0=-w *ta W + B (10.19)

k- %k k-1 k Yk

Any solution of the recurrence relation (10.19) is given by a linear combina-

tion of the two solutions w' and w” with components

<=1
1/ 1 tanh J,, k > 1,
J=1 J

w' = 1, k =1, (10.20)

I, tanh Jj, k < 1.

w"” N 1/ w', . (10.21)

From (10.15) and (10.16) it folleows that no nontrivial linear combination of

' and w" is bounded, so

W

[s,dv = w = 0, allkes. (10.22)

Then Theorem 9.4 implies u = v. We now show that 0 is a limit point of the

2
spectrum of G in L (u). Note that
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(sk. sk)u = 1, (Sh' ‘I]u = 0, (10.23)

(G s, , sk) = - 14 ak(s

k , S ) o+ Bk(sk. S ) o (10.24)

k* “k=1"u k+1°u

Now as k + + = , (sk, sk_,l)u -+ 1, (sk, s .) >1, sa (Gs + 0. Since

k+1'p K Sk u
the constants are the only fixed points of Tt in Lz(u). 0 is a limit point of

the spectrum of G.

We now consider the situation in which there are distinct phases,
z u, < o, (10.25)

We could carry out the analysis for S = Z, but we consider instead the slightly
simpler case of S = N. To get G for this case, simply put Jo = sD =0 in
(10.6). Each equilibrium state in this case is a Markov chain. There are

exactly two extremal equilibrium states which will be denoted u, » u_ (recall

assumption (10.12)), with

Js, du, =-[s, du_ = T tanhJ, . (10.26)
J o+ J - . i
i=]
We specialize even further by considering the case in which {Uk} is a
geometric series, U = Ar2k B
tanh Jk = exp - Ar2k ,
(10.27)
A>0, O0<r«<1.
The correlations
fsj Sy du, - fsj du, fsk du, (10.28)

k
decay as r2 for kK > « with j fixed.

10,3 THEOREM, Consider the time development T, corresponding to (10.3) on

X={+1, - 1"

, with the 1's given by (10.27). Put A = (1 - )2/ (1 + r2).
Then

T - fra, (10.29)
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i8 bounded in t > 0 for each f e LZ(u+J.

Proof. For JK satisfying (10.27), one can verify by elementary calculus that

@, . BK in (10.3) satisfy
0 < a < /010, (10.30)
2
0 < Bk < 1/(1 + ). (10.31)

To prove (10.29), it is sufficient to show that for each f e Cf(X) with

[£ du, =0,

(GF, F)u < - A(f, f)u . (10.32)

+ +

But- this holds if, for each positive integer n, the u+{1, .e. », N}-projection

of G given by (8.2) satisfies the result corresponding to (10.32). We use

GmJ to denote this projection. For k =1, «c. , 0 -1, G(n]sk agrees with
(10.6). For s, we have
G(nJ s = -5 +0_ 5§ + B (a* s+ B*)
n n n n-1 n n :
a* = %(tanh(Jn + J*) + tanh(Jn -J*) ), (10.33)
B* = %(tanh(Jn + J*) - tanh(Jn -J*) ),
tanh J* = H? tanh J, .
i=n+1 i
We consider G(n) on the space spanned by {31, oo %n}, where
8 = s - [s_ odu_ . (10.34)
Kk K K +

In this invariant subspace G(n) has a tridiagonal matrix B[n), with

L R S R T (10.35)
nn n
glM - -, 1¢3<n; (10.36)
ij
0< 8™ - q < 201 s s (10.37)

IR R £
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(n) 2
0 < B, = B, < 1/(1 +7r7); (10.38)
J+1 ] J
Bi;) = 0 otherwise. (10.39)
B(n) is similar to a symmetric tridiagonal matrix with the same diagonal
1
elements as B(n) but with off-diagonal elemients (BJ aj+1)I , which are less

than /(1 + rz). From diagonal dominance in this matrix, one knows that the

eigenvalues of B(n) are all less than ~ A, Because of the attractive property

A

of B(n), by Theorem 9.4 this result on the subspace spanned by {31, cie sn}

‘extends to all functions in C(X| {1, ... , n} ) whose u, integral vanishes.

This implies (10.32).

Next we consider the case in which uk = A/Ks R

tanh J = exp - A/ks.
(10.40)
A>0, 0<s5s <o .

Here there is only one phase for 0 < s £ 1, but for s > 1, U, and u_ are

distinct.

10.4 PrOPOSITION, Consider the time development T, corresponding to (10.3)
on X = {+1, - 1}N, with the J's given by (10.40), For each A\ > 0 there is an

f & C(X) such that [f du, = 0 and
At
Tl > - (10.41)

as t + =,

Proof. With s, as defined in (10.34), we have

lim (G sk,sk)u+ / (s

k > «

K’ sk)u+ = 0. (10.42)

This implies that, for sufficiently large k, the spectral projection of G

corresponding to the interval (- A, 0) has a nontrivial action on §K . This

implies (10.41), with f = ek .
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11, FRee ENERGY AND THE VARIATIONAL PRINCIPLE.

In many applications the components are labelled by the points of a
geometrical lattice in Euclidean space, and the basic structures are translation
invariant. In this context the concepts of specific entropy and specific free
energy are important. In particular, for lattice gas models in statistical
mechanics, the variational principle characterizes the translation invariant
equilibrium states of the potential as exactly those translation invariant
probability measures which minimize the specific free energy (ses Preston
(1974b)).

The basic results on specific free energy for Markovian time development
in finite range interaction lattice gas systems are due to Holley (1971). In
this section we generalize some of Holley’s results. The line of proof is
similar to Holley's, but we introduce new techniques for the fundamental

estimates.

Throughout this section we assume that S = Zd, the points with integer
coordinates in d-dimensional Euclidean space. We assume that the single
component phase space W is endowed with a base probability measure 0. We also
use o to denote the probability measure on wr, I ¢ S,which is the product
measure, restricting to o on each factor space. By a cube we mean the inter-
section of Zd with a translate of a set of the form [a.b]d with a, b real.

The limit

lim* A » S (11.1)

is to be taken on the collection of cubes of even side length centred about the
origin.

The function log is the natural logarithm defined for positive argument
and taking values in the extended real numbers, with the convention 0 log QO = i

The function ¥ is defined for positive z,

¥(z) =z logz -z + 1. (11.2]

We note that ¥ is positive, convex and nonzero except for ¥(1) = 0.
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11,1 DerFINITION. letp and u be probability measures on X. The free
energy of p with respect to yu, ¢(p|u), is defined as follows. If p is abso-
lutely continuous with respect to u, p = f u, where f is a positive Borel

function, then
olp|u) = [¥(f) du; (11.3)

otherwise, ¢(p|u) =+ o , The A-free energy of p with respect to u,¢AIp|u).
is defined to be @((p|A)|u), where p|A denotes the restriction of o to wh, The
specific free energy of o with respect to u is defined to be
. A
$lolw) =  1im* o (olul/]Al. (11.4)
A+S

whenever the limit exists. The specific entropy of p is defined to be
- ¢(p|a).

When plA is absolutely continuous with respect to u, we write
ol = £y (11.5)

where fA is a positive Borel function on X which depends only on the coordin-
ates on A. It is convenient to identify plA with the right hand side of (11.5),

which we consider to be a measure on X rather than just wA.

11.2 Lemma, The function ¢A(p[u) i8 increasing in A and
. A
lim o7 (plw) = olp|w) (11.86)
A>3
as a positive number or + = , If both probability measures p and U are
translation invariant and y is the product of its single component restrictions,
then

we otolw/lal = sw eheelw . (11.7)
N

A cubic A

Proof. Assume A' > A and QA [plu) <o, Then, in the notation (11.5), fA
is obtained from fA by conditional expectation. Jensen's inequality then

yields
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A ' .
Molw < o ol (11.8)

When {¢A(p|u)} is bounded, the collection {fA} forms a uniformly integrable
Martingale with respect to u (see Doob (1953)). Limit (11.6) follows easily.
Next consider a cube A and a larger cube A* of the form A* = A1 U ...V An ,
where the union is disjoint and each AK is a translate of A. Assume

*
¢A (p]w) <= . write fk(x1 cee xk) for the Radon-Nikodym derivative of

A
pIA1 U ...U AK with respect to u, where x € Wk . Then, with f_ = 1,

fk_1(x1...xk_1] = ffktx1...xkl uld xk|x1...xk_1); (11.9)
Mol = =0, [f log (£/F ) du . (11.10)
k=1 7'k k* k=1
Next, define
g =
frx,) [ (xqeeex, ) uldx, e dx, 4 IxJ (11.11)

If u is the product of its single component restrictions, from Jensen's in-

equality we deduce

. A
Miplw > I, JECRix ) ulax) = £, @K (o] (11.12)

Then, when both u and p are translation invariant,
*
N olwsint] > oteelwizlal. (11.13)

For cubes A* which are not exact multiples of A, a slight modification of the
above technique yields an inequality slightly weaker than {(11.13) but sufficient

to imply (11.7).

We shall be computing free energies with respect to a basic equilibrium
distribution, which we denote by u. Henceforth we shall assume that u satis-
fies the following: We assume that p is a translation invariant probability
measure on X which has conditional probability distributions {uA[dylx]} of the

form
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u, (dy|x) = p,( x) oldy),
A Ay (11.14)

Py’ log Py € FD(X),

with the modification of x on A. We assume that, when A and A' are translates,
then Pa and Py, are related by translation. We also assume that for each
e > 0, there is an integer N, such that for any cube A of side > N and any

X, Z € X, ¥y € wA 5

| iog pA(yx) - log pA[yz] | <€ |A]. (11.15)

In order for u to satisfy these conditions, it is sufficient for u to be a
Gibbs' state of a translation invariant, absolutely summable potential (see

Preston (1974b)).

11.3 LEMMA, We assume uw as above and continue the notation of the proof of

emma 11.2, with A of side > N so that (11.15) holds. Then
A
[# logls, /f, _dau > ok (ofw) - ela]. (11.186)
Proof. From (11.14) we deduce that u|A = pA g with
A
Prly) = [p, () uldx). (11.17)
y
In analogy with f

we write uIAIu...u A 0.

k k - Pk

Since ¢ is a product probability measure,

ffk Py log(fK pk/ fk:1pk-1) - fk Pe log(pk/pk_1) do

\4

A
¢ k[p[o) - ffk loglp,/p, _,) du (11.18)

A A
k - - K
® (o|u] ffk [log(pk/pk_1J log p ™) dyu.

Now

P (Xq e X /By Uxgax 4) = prK(xkx1..-xk_1y]u£dy[x1...xk_1J,[11-19]

where the coordinates of a point of X are represented by (x1... ,xk,y). The

assumption (11.15) then implies (11.16).
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1.4 LeEMMA. Let u be as above and let p be a translation invariant proba-
bility measure. Then ¢(p|u) exists as a positive real number or + = .

Proof. In the notation of Lemmas 11.2 and 11.3 we deduce from (11.16)that
* A
M olw/at] » etolws|a] - e (11.20)

when the cube A* is a multiple of the cube A, and whers € + 0 as the side of A
becomes infinite. A similar argument gives a slightly more complicated
inequality if A* is not an exact multiple of A. From this we deduce the

existence of the limit (11.4).

11.5 THEOREM. Let G =1t Gy be local, translation invariant and satisfy the
hypothesis of Theorem 4.3. Let the u specified above be an invariant proba-
bility measure of the associated semigroup T .« Assume that v is a transla-
tion invariant probability measure such that v|A is absolutely continuous with
respect to u for each A.  Then, fo~ each t > 0, ¢(T£ v) exists as a positive

number or + « and

6Ty viu) & ¢lv]wd. (11.21)
Proof. From the comment following Theorem 1.9 we have

oTiv[a ) < oM ], (11.22)

We use the notation of the proof of Lemma 11.2 with p = Té(vIA']. It follows

that

ot oA [ > oM oAty

n (11.23)
= I, ffk log(f /£, _,) du.
Then there 1s at least one k with
. A*
ffk log(f, /, ;) dw/ Al s @7 (vjw/Z]as]. (11.24)
We select a sequence of increasing cubes A‘{ and a corresponding fK[J] such

(j)

K to (A‘j]c becomes inftinite

that the distance from the A corresponding to f
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(3

as j » =, For the function fk we claim an inequality of the form (11.24)

with the right hand side augmented by a positive term 6(A*), which approaches

0 as A* »+ S, We can translate A"J so that fK(J) corresponds to a fixed set,

denoted A. We assume that A is sufficiently large for (14.15) to be satisfied.

Then the modified (11.24) takes the form
J
*
i wfa] - e« oM wsard]s siasdy, (11.25)
using (11.16). Next we note that

un | melehin - aia )l = o (11.26)
jr o m

It follows that [T%v)IA is absolutely continuous with respect to p.  From

Fatou’'s Lemma we deduce

un  otmovjashw vl (11.27)

jrw
From Lemma 11.4 and inequalities (11.25), (11.27) we obtain
SRV VY PO IR I (11.28)
A second application of Lemma 11.4, noting that e in (11.28) goes to zero as

A+ S, yields (11.21).

11.6 LEMMA. Let the hypothesis of Theorem 11.5 be satisfied and write
B A
T viA = £ (E) . (11.29)
Then FA(tJ is a continuously differentiable, L1(WA,u)-vaZued function of t 3 0.

For g e F(X|A),

d A )
Jegp £ g au= [(Gg)d (191, (11.30)

Proof. Let g € F(X|A),and define G(A) by

G(A) (11.31)

ZA' nA=4¢ GA"

From Lemma 5.4 we deduce that there is a real constant C such that
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Il 7, & - exptt 6LAN) g || < ct? || gl {11.32)
for all t > 0. Then
N, e-8gi/t-6g ]l ~ 0 (11.33)

as t =+ 0, uniformly in g with I|g|[ s 1. By considering difference quotients
for ffA(t) g du, we deduce that fA[t] is differentiable in L1[WA,u] and that
(11.30) is satisfied. There exists a v € & (S) such that 6(G g) < || g|| vs the
continuity of the derivative of fA(t) follows from considerations based on
Lemma 5.4.
For positive integer k and positive r we define
-k if r<ef

klog r = k ‘if r > eK (11.34)

log r otherwise,

?k(r) = rklog r + 1 - exp(klog rl. (11.35)

Each Wk is positive, convex and differentiable; the derivative is klog. The

family {?K} is increasing in k and for positive r

lim ?K(r) = ¥(r). (11.36)

kK + o
kK, A . . 1, A .
Since ¥ (f (t)) is a continucusly differentiable, L (W ,u)-valued function of

t 2 0, the Monotone Convergence Theorem gives the following:

1.7 LeMMA. Under the hypothesis of Lemma 11.6 we have

A A t A
oM Tivlw - el = 1im [ wY (s) gs, (11.37)
K >+ » [} k
where
A A
h, (t) = J (G klog £ (t)) Ty V. (11.38)

11.8 PrOPOSITION. Let the hypothesis of Theorem 11.5 be satisfied wizh G f

the form
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G = I G,(x, z) oldz), (11.39)
Ay

where each Gy 18 a positive function in FO[X X WA) and

Iy s g IIGA[yx, z) || € K, (11.40)

and the modification of x by y is on A . Then, in the notation of Lemma 11.7,

for each A the integral
nhee) = [(6 10g #ht)) @ty (11.41)
exists as a real number or - «, and
¢A(Té viw - et < Iz hts) ds. (11.42)

Proof. We show that the positive part of the integral in (11.41) is finite.

From this we deduce that hA is the pointwise limit of {hﬁ}. Fatou's Lemma

then gives (11.42). For cenvenience, we take the K in (11.40) to be the same

as in Theorem 4.3. Consider t fixed and write p = Té v, pIA = ch ,
uIA = pAa. so that qA/pA = fA = fA(t]. In considering the GA' term, we first
examine
. A A
[oldy dx) o(dz) log(f ()7 #70,x)
A A A
= [q (x) oldy dx dz) log (q"( x)/q"( x)) (11.43)

- foldy dx) oldz) log (pA(ny/pA[zx)].

where y and z are A’ variables. From the assumption (11.14) it can be shown

that there is a constant C such that
A A '
[pldy dx) oldz)| log (p (,x)7p (Zx))l § Clana]. (11.49)

The g-integral term in (11.43) is bounded below by an integral of an expression
of the form r log r, so the g-integral is > - 1/e. We obtain the GA' term of
(11.41) by multiplying the integrand of the left hand side of (11.43) by

- GA,(yx. z). Using a slight generalization of (11.44), we deduce that

———
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the positive part of the integral in (11.41) is bounded above by

z IIGA,{I/e + ClAaTn A IIGA,o[[m s K[A] (17e + 0). (11.45)

A' nA=z¢

11.9 ProposITION, Let the hypothesis of Proposition 11.8 be satisfied.

Define h(t) by

hit) = 1lim* sup hA(t]/[A . (11.46)
A+S

Then

$Tivlu) - otvlw) s [0 n(s) ds. (11.47)
If, for some A', Gy 18 bounded away from zero, and if h(t) > - =, then the
probability measure p = TL v has a conditional probability distribution of the
form

P, dy|x) =) (X uA(dylx) (11.48)

for each A, where fA(yx) 18 a positive Borel function, and

1 - ( v
hie) € I, o | TAT Joldy dx) GA(yx,_Jo(dz) log(f, (Y fA[yx)]. (11.49)

Proof.  From (11.45) we know that hA[t]/IAI is bounded above, so (11.47)

follows from Fatou's Lemma. The g-integral term in (11.43) equals

o (o (dy dx)aldz) |pldz dx) aldy)]. (11.50)

1]
where the basic space is X x WA and A* is A augmented by the A points of

the new wA . Expression (11.50) is increasing in A. Let GA' be bounded away

from zero. It is pot difficult to show that, when (11.50) is unbounded, then
hit) = - =, Next we assume (11.50) to be uniformly bounded in A. As in the

proof of Lemma 11.2, the family of functions {qA(ny/qA(Zx]} forms a uniformly

integrable Martingale, which converges a.e. to a functicon we denote uA,(yx, z).
The function Ups satisfies
pldy dx)gl(dz) = uA,(yx,z]p(dz dxl}ol(dy). (11.51)
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From Ups and its translates it is not difficult to construct the corresponding

Radon-Nikodym derivative u, for any A. We define

A
(X = qu(yx, z) p(dzlx])/pA(yx). (11.52)

The remainder of the proof is standard convergence and counting arguments, using

the Martingale Convergence Theorem.

11.10 PrOPOSITION, We assume the hypothesis of Proposition 11.9 and the

condition of' strict reversibility,

pA(yx] GA[yx. z) = pA[Zx) GA(ZX, vl (11.53)

for each A, y, z € wA. X € X. Then, wherever ¢(T£ v] > 0, we have h(t) < 0.
Proof. By the variational principle, ¢(p) > O implies that the p(dx]uA,[dylx)
_measure of the set for which FA,(yx) # 1 is nonzero (ses Preston (1974b)). The

GA' integral in (11.49) can be written in the form
- 1 -
3 fp(dx]uA,[dy|x)uA,(dz]x) GA,(yx, z)/pA(zx]

(fA,(yx) - fA,(ZxJ) log(fA,(yx)/fA,(Zx)]. (11.54)

Expression (11.54) gives a strictly negative contribution to (11.49), the other

terms being negative.
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