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PREFACE

In Spring 1977 I gave a series of lectures at DIAS on the new
mathematical results in the theory of instantons. These lectures
covered the calculation by Atiyah, Hitchin, and Singer of the dimension
of the space of self-dual instantons by means of the Index Theorem
applied to a suitable complex. This Communication is an expanded

version of the notes for those lectures.

I have added new sections on related topiecs, which include
holonomy groups, characteristic classes, and the explicit construction
of self-dual instantons by Atiyah, Hitchin, Drinfeld, and Manin; the
last chapter is based on lectures I gave at Imperial College, London,
in February 1978, and at the Mathematical Institute, Oxford, in May

1978,
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0. INTRODUCTION

[:],]_l Finite-action solutions of the Yang-Mills field equations,
D F = 0, F = 9 A -3 A + s .
E U uv Hv TR v [Au Av] (0.1)

have been the object of intense investigation by both mathematicians and physicists since
the first solution was found by Belavin, Polyakov, Schwartz, Tyupkin {(1876). In physics
such solutions are critical points for the action of a gauge field, and so their presence
may have a contribution to Feymman path integrals over such fields. Mathematically, the
field equations (0.1) are a system of non-linear partial differential eqguations, and it is
relatively rarely that such equations can be solved explicitly. A study of the method of
solution may throw some light on the theory of non-linear equations in general.

This Communication is intended as an introduction to some of the branches of
differential geometry and global analysis which have recently been applied to the study of
the Yang-Mills equations. We shall not cover any of the physical background. Interested
readers should consult the survey article of Coleman (1978).

After the original lectures were given much more progress was made, including the
transcription by Atiyah & Ward (1977) of the self-dual solutions intoc algebraic bundles,
and the construction of these solutions (Atiyah, Hitchin, Drinfeld, Manin, 1978} using
results of Horrocks (1964) and Barth & Hulek (1978). An extra chapter (Chapter 5) which
briefly describes these results has therefore been added.

As this Communication is intended to be introductory, the more elementary theory
is described in some detail, with advanced results only sketched, or given as references.
The reader is encouraged to consult the various texts cited for further information.

0,2, Let g be the Lie algebra of a compact Lie group G. A Yang-Mills potential
(Yang & Mills, 1854]) is a smooth 4-vector of ¢ -valued fields Au[x] on 124. The

associated action S(A) is given by

4
sty = 4f , ] TelF PVl dx

where for simplicity we suppose G is a matrix group. Here

F = 3 A -3 A +[A, Al (0.2)
UV H oV AV H v

are the field strengths. If we replace Au by A’u , where



-1 -1
A' = Ag + 3 (0.3)
u g Ug g ug
. 4

with g : R - G, then

, - -1

e & b
and S(A') = S(A). These are gauge transformations, and the rule (0.3]) can be interpreted

as saying that Au is a connection form in some principal G-bundle. Fuv is the curvature
form of this connection.

Varying Au we obtain the field equations

& - JoaF +[A ,F 1=0. (0.4)
8A_(x) T oo
v
If we define an operator
D =93 +[A , -] (0.5)
U u H
then (0.4) may be written
YD F =0
[ A

(0.5) is the covariant derivative defined by Au, and Fuv satisfies Bianchi's identity

Y D (xF) = 0 (0.6)
v AY
u
where
CF) o= 4D e oFY°
H oG P

It follows that, if F = *F, then the field equations (0.4) are an automatic cocnse-
guence of Bianchi's identity. These fields are called self-dual and are the principal

objects of our interest.

0,3, At this point we should mention that we are considering the Yang-Mills equations in
Euclidean rather than Minkowski space, because in Euclidean space they are rather more
regular (elliptic instead of hyperbolic, at least in a suitable gauge). In this setting
they may be relevant to the analytic continuation of the Green's functions of the field
theory to the Euclidean region. Also, in order to avoid growth conditioqg at infinity to
make S(A) convergent, we shall work on the conformal compactification 54 of I24. As the
equations (0.6) are conformally invariant, any solution of (0.6) on 84 gives a solution on

1?4 with S(A) < o, It is not known if the converse is true.



4
On S, global topological properties come into play. There are non-trivial
. 4 . . -
principal bundles over S, and if we assume for simplicity that G = SU(2), these are
classified by the integers Z . The integer corresponding with a given bundle may be

determined from the Yang-Mills field:

kK = ~1-IZEPEF v[*F]uv] da*x.
16m2 HY Lo

k may be interpreted as the Chern class of the vector bundle associated to the standard
representation of SU(2) on Ez. See the text and the appendix for details. Care should
be taken over normalizations, since various other numerical factors appear in the litera-
ture, in front of the integral, depending on how Fuv is related to its coordinate invariant
definition F.

For any connection A one always has

S(A) = 8n? |k

’

and equality holds (for k > 0} if and only if F = xF. Thus the self-dual solutions
represent the absolute minimum of S(A) over all connections which may be defined in a fixed
principal bundie (in physical terminology, all Yang-Mills potentials with a given topologi-
cal charge]l.

The solution of Belavin et al. (1976) had charge k = 1, and 't Hooft (unpublished)
generalized their construction to obtain self-dual solutions for all k 2 1 for SU(2].
For charge k he found a 5k-parameter family which could not be obtained from each other by
gauge transformations of the form (0.3) (we call these gauge-ineguivalent]. Jackiw, Nohl,
Rebbi (1977) used conformal invariance to extend this to a 5k + 4 parameter family for
k>3 (5 for k = 1, 13 for k = 2), and it was natural to ask if this represented the largest
possible family of ineguivalent solutions.

This guestion was studied by linearizing the equations F = «F around a known

solution. If the general connection Au is written A: + au’ with A: the known solution,

then Au has self-dual curvature if and only if

(Da -Da +Tla, al = 0, (0.7)
H WV v u A

where



po
f = 1i[f -)1ie 7]
(£, I p[« oo

is the anti-self-dual part of a 2-fomm Fuv'

If the gauge is fixed covariantly by requiring

) D a, = 0, (0.8)
u H
and (0.7) is linearized to give
(Da -Da) = 0, (0.9)
H v v -

then it has been shown by Atiyah, Hitchin & Singer (1977a,b), Schwarz (1877), and Jackiw

& Rebbi (1977) that the system given by (0.8) and (0.8) is elliptic and the Index Theorem
gives 8k - 3 as the dimension of the space of solutions.

showed that these infinitesimal solutions are tangent to actual solutions, and that the
space of gauge inequivalent solutions of F = xF, for SU(2) is a smooth manifold of dimension
8k - 3. A similar result was established for every simple group under the assumption of
irreducibility of the connection (otherwise there are singularities present) (Atiyah et al.

(19776} ,Bernard, Christ, Guth, Weinberg (13877)).

O,L}, It can be seen that for kK = 1,2, 8k - 3 agrees with the number of known solutions,
5 and 13, but disagrees for k = 3. This suggests two guestions: Do the known solutions
for kK = 1,2 account for all solutions for these values of k? How do we find the missing
solutions for k 2 3°? It became possible to answer these gquestions when Atiyah & Ward
(1977) translated the problem into one of algebraic geometry. Hartshorne (1978) showed
that the known solutions for k = 1 and 2 represented all solutions for this charge, up to
gauge equivalence. Then Atiyah et al. (1978) used results of Horrocks (1964) and Barth

& Hulek [1978) to give an explicit solution for all self-dual Yang-Mills potentials in
terms of linear algebra. One consequence of their result is that any self-dual connection

is obtained by taking a suitable embedding in a trivial bundle and using the connection

induced by the trivial connection.

0,5, The contents of the Communication may be summarized as follows: Chapter 1 deals
with the elementary notions of a manifold, differential forms, exterior differentiation,

metrics, orientation, duality, and various generalizations. Chapter 2 is a short descrip-



tion of vector bundles, covariant derivatives, differential operators, and the Index
Theorem. In Chapter 3 we describe the theory of principal bundles, connections, and their
holonomy groups. Chapter 4 covers the deformation theoretical calculations leading to the
dimension 8k - 3 of the space of inequivalent self-dual SU(2) Yang-Mills fields. Chapter
5 summarizes the Atiyah & Ward (1877} transformation, and the explicit construction of
Atiyah et al. (1878).

I would like to thank Professor J. T. Lewis for his advice and encouragement in
producing this Communication. I would also like to thank my colleagues at the Dublin
Institute for Advanced Studies, especially Professor L. 0'Raifeartaigh, Dr. M. Scheunert
and Dr. D. H. Tehrakian, for fheir interest in my lectures and for many useful conversations
on Yang-Mills theory. I am grateful to Professor M. F. Atiyah and Dr. N. Hitchin for
explaining their beautiful results to me. The manuscript was edited by Miss E. R. Wills
and typed by Mrs. E. Maguire and I am very grateful to them for the speed and efficiency

with which this was done.



1. DirrerenTIAL CALcurLus oN MANIFOLDS

l,l, A manifold is a topological space consisting of pieces of Euclidean space 'glued’
together by means of differentiable coordinate changes. The formal definition goes as
follows: We say a map f between open subsets of two Euclidean spaces is smooth if all the
partial derivativés of all orders of all the components of f exist, and are continuous.
Let X be a topological space, and n an integer. An n-dimensional chart on X is a pair
(U, ¢) consisting of an open subset U of X and a homeomorphism ¢ of U onto an open subset

of R". U is called the domain of the chart (U, ¢J.

X R"

\

¢ (W)

Two n-dimensional charts (U, ¢), (V, ¢) on X are said to be compatible if

UnV=g, orifUnV=0Banddoé | : ¢UnV)+ylUnV) is smooth.

X




An n-dimensional atlas on X is a collection (& of n-dimensional charts which are
pairwise compatible, and whose domains cover X. For example, I?n itself has an atlas
consisting of U = I?n and ¢ the identity map.

An atlas is maximal if it contains every chart compatible with all of its charts.
Every atlas is contained in a unique maximal atlas. An n-dimensiocnal manifold is a
topological space X together with an n-dimensional maximal atlas on X. The atlas is
usually fixed, and one refers to X itself as the manifold, but the same topological space
can have more than one maximal atlas. However, the dimension depends only on the topology.
It is usual to require X to be Hausdorff as a topological space. Note that, by the
uniqueness of a maximal atlas containing a given atlas, it is sufficient to give one atlas
on X to give a topological space X the structure of a manifold. Thus R" becomes an n-

- n .
dimensional manifold with respect to the maximal atlas containing the chart (R, id).

1.2. A slightly less trivial example of an atlas can be constructed as follows: Denote
by s" the set of unit vectors in I?n+1. This is the n-dimensional sphere. It
1
x =[x, «uou, xn+1) € I?n+1, then x e S if
n+1i
i 2
x ox = Y (x5 o= 1.
i=1
Let N denote the point (0, ... , 0, 1) and S the point (0, ... , 0, -1J). Put
Uy = s™ - (N}, Ug = 8" - {s},and define maps
n n
¢N : UN + R . ¢S : US - R,
by
1 n 1 n
2 (x . X ) 2 (x, > X )
. (x) = ’ ? , 6. (x) = .
N 151 S 1+xn+’l

A picture of ¢N is given below:

¢N( x)




together cover Sn, whilst ¢N and ¢S map UN n U. to the non-zero vectors

Clearly UN and U S

S
. n
in R . We have

-1 4

o = y- n——
og ° by (y) Sy Ve R {0} ,

which is smooth.  Thus {(UN,¢N], (US,¢S]} is an n-dimensional atlas on S'.

1.3, Let X be an n-dimensional manifold with atlas (. . If W < X is an open subset, it
inherits an atlas consisting of pairs (U n w,¢|u n W) for each chart (U,¢) ¢ (. We call
W an open submanifold of X when it is given this atlas. The domain of each chart is thus
an open submanifold.

If Y is an m-dimensional manifold with atlas @B and f : X~ Y is a continuous map,
f is said to be smooth if ¢ o f o ¢-1 is smooth, where defined, as a map from an open sub-
set of R" into R™ for each (U,¢) ¢ @ , (V,9) e @ . F : XY is a diffeomorphism if

it is a homeomorphism and both f and F—q are smooth.

2 1

In particular, taking Y = R or €(% R"), a function f on X is smooth if f o ¢_
is a smooth function on ¢(U) for each chart (U,¢) on X. For example, the components xH
n+1 . n+1 . L s n
of x € R are smooth functions on R , and their restrictions to S are smooth
. n
functions on S .

If X is a manifold, CT(X) will denote the space of smooth functions (real- or
complex-valued according to context). It is an algebra since the result of addition,
multiplication by scalars, or multiplication of smooth functions yields smooth functions.

If X and Y are manifolds with atlases @ , ® of dimensions n and m, respectively,
the Cartesian product X x Y, which consists of pairs (x,y) with x in X, y in Y, can be given
the structure of a manifold of dimension n + m by taking the obvious product atlas

@ xB ={UxV, ¢x¥) | (U, e@ , (V,y) e® }. This we call the product mani-
fold.

As an example, a Lie group is an abstract group-G with the structure of a differen-
tiable manifold such that the map defined by

-1
(g,. 8)) ™ 8,8, - 8yr 8, €6
from G x G to G is smooth. Then taking inverses, or translation on the left or right by

elements of G, will yield diffeomorphisms of G to itself.



Let G be a Lie group and X a manifold, then a smooth (left) action of G on X is a
smooth map from G x X to X, written
(g,x) = g * x , g e B, x e X
such that
1 ¢ x = X, g, ° [g2 ¢ X) = [g1g2] < X, for all x € X, gyr By € G.

A right action is defined in the analogous fashion.

1,4, Let X be an n-dimensional manifold with atlas @ . Then the components x“,
=1, «e. , n, of a point x in I?n can be considered as functions on I?n, and as such are

smooth. For each chart a = (U,¢) in @ we define coordinate functions x?a] on U by

TR
ay = % ¢

-1 .
and X?a] is smooth on U. If f is a smooth function on X, f o ¢ is a smooth function on

$(U). We can take its uth partial derivative Bu(f ° ¢_1] and transfer this back to U to

[a]1c
u

If a = (U,¢), b = (V,9), are two charts on X, then we can apply this to f = X?b] on

obtain a function which we denocte by 9 = [Bu(f ° ¢_1]] o ¢.

Un V to obtain the Jacobian matrix J(a b):

v o_ L) u
Jab) 2 = % Xa)

The chain rule for derivatives in R" then implies

(b), _ v .(a) " ~
ot - Eau e x (1.1

for any smooth function f on U n V. In particular, if c = (W,0) is a third chart, we have
Yaer = ey T I
on U n V n W, where the operation on the right hand side of this equation is the multipli-

cation of matrices of functions.

1.5. The notation in the previous section has become cumbersome. For the rest of this
Communication, where confusion will not arise, the label a = (U,¢) will be dropped from

coordinates and derivatives, and explicit references to atlases, charts, and so on will be
avoided. When we give a formula in terms of coordinates, it is to be understood that some

chart has been chosen, and that the expression is relative to the coordinates of this chart.

1.6. Let a = (U,¢) be a chart on the n-dimensional manifold X and f a smooth function on
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X. We can arrange the functions Bia]f on U into a row vector which we denocte by df[a]'

The collection {df(a)}a ca is denoted by df, and is called the differential of f. The
transformation law (1.1) can be written in this notation as
= J
o) Fa) Jia,m

The coordinates xLl are themselves functions on U, so have differentials [dx?a]](a]’

(a)

which we write as dx?a], and

= Gu

u
(dx X

(a)]x :

Then, for any smooth function f, we have the identity

df, ., = Zaia]f dx¥

_ H
(a) (a) » OF df = Xauf dx

adopting the convention of the previous section.

We can generalize this as follows: A 1-form B on X is the assignment to each chart

a = (U,¢) of a row vector B[a] of functions on U such that
By © Bra) Yam
on U n V for each pair of charts a = (U,¢), b = (V,¥). If the components of B(a] are
Bia) , u=1% ..., n, then
(a) H
B(a] E Bu dx[a]

i
(a)

The functions on X we will also call O-forms, and denote the vector space of

Thus the differentials dx form a basis for the 1-forms on U.

functions by 2%(x). The space of 1-forms is denoted by 91[X], and the operationuof
taking the differential gives a linear map
d: 2% 2" ()
which satisfies Leibnitz’'s Rule:
d(fg) = fdg + g df

for £, g in °(X).

There is an important generalization of this structure: the exter<or calculus.
For each integer p =2 0 we have a space Qp(X] of p-forms. For p 2 2 an element B8 of
Qp[X] is an alternating covariant p-tensor. That is, to each chart a = (U,¢), we have

(a)

an array Bu y of smooth functions on U which is alternating under interchange
g o0 ree s Hy

of pairs of its suffices, and such that
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H H
(b) T (a) 1 p (1.2)

B = L B J ---J
A1, vee 5 A - Wys ove s up (a,b) X1 {a,b) Ap

on U n V for any pair of charts a = (U,¢), b = (vV,¢). p-forms may be added and multiplied
by scalars or functions in the obvious, componentwise, fashion.
The exterior derivative

(p+1)

d: oPx) » @ (X

is defined by

(1.3)

p+1 .
T N S A T
K i=1

/N
ui u1, ces s ui, eae 5 U

(dB)
u1, ces

p+1
on each chart, where ﬁ; means that the suffix ui is omitted. Since B is alternating dB
is indeed a (p+1)-form, and one may verify that d e d : Qp(X] > Qp+2(X] is the zeroc map
for all p.

Notice that oP(X) consists of the zero element if p > n, since there can be no non-
trivial alternating tensor whose degree exceeds the dimension.

A p-form B is said to be closed if dB = 0, and the closed p-forms form a subspéce
Zp(X) of Qp(X]. If p > 0, a p-form B is said to be exact if there is a (p-1)-form y with
B = dy. The exact p-forms form a subspace BP(X) of Qp[X], and, since d(dyl) = dZY = 0 for
all (p-1)-forms y, it follows BP(X) ¢ ZP(X).

The gquotient vector space HP(X) = 7P(x3/8P(X) which consists of equivalence classes
of closed p-forms, two p-forms being equivalent if their difference 1s exact, is the p-th
de Rham cohomology group of X. It is also written HP(X; R) or H”(X; ©) according as real-
or complex-valued forms have been considered in its construction. It turns out that for a

large class of manifolds {paracompact]) the cohomology groups HP (X) depend only on the

topology of X.

1,7, 1In this section we describe some further properties of differential forms and their

derivatives.

A p-form B and a g-form y may be multiplied to produce a (p+*g)-form B A Y. For
p, g =2 1 this is given by

- 1 +
(B A y)u e e 2 sign(o) Bu

Y
Tql ceey
,|; wesa 3 Up+q p'q' O-EPp+q 0[1)"."u0[p] uc(p+1]’ UO'[D"'CI]



12

for each chart, where Pk denotes the permutation group on k letters, and signl(c) = %1 is

. Some authors use a different normalization

the signature of the permutation o in PK

factor ( TE%ET!].
This multiplication is associative and graded commutative:
laAnB)YAY =aA (B AY) 3 B Ay = (-1)Pd Y A B.
A straightforward calculation also shows
d(B A y) = (d8) Ay + (-1P g A (dy).
If f is in QO(X], B in QD(XJ, we extend the above by defining

(f A B]u =f « B = (B A f) .
1’ e p p u11 > D

Then for any p-form B we have, on each chart,

u Y
- 1 p
B = < ) < Bu1, ves 5, U X A LA dx ’
Mq<e up P
H 3}
. ] 1 P
-y z BU1- o dx AdX ,
U1:- :Up p
and
H U
dg = z dB A dx 1 dx P
<. eu<p uq, can up A ..o A
Hy o

The following lemma is fundamental, and its proof is very simple:
Lemma (Poincaré). Let B ¢ Zp(X], then each point x in X has a neighbourhood U with
p-1
Y e Q (U} and B = dy on U.
Proof. Since any point x is in the domain of a chart, we can suppose a = (U,¢) is a chart

&

with x in U and ¢(U) an open unit ball centred at the origin in rR". Let Bp =

3 LA ] )}‘l
1 p
B(a) o ¢—1 define functions on the unit ball, and set Y[a) =y o ¢
Uys ose 5 W Hyse-0,H Hyrenasll
1 P 1 p 1 p
where
n 1
1 n -
Yu1, cee s up_1(x s oeee s X ) = Exu ftp ! B o (tx1, ce. , tx) dt.
u=1 o Holar eee o p-1

It is left to the reader to verify that y defined by this equation has the desired property.
Q.E.D.
IT B € Zq(X] then dg = 0, whilst

dg = 9 B -9 B
Mk
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Thus the Poincaré Lemma generalizes to p-forms the familiar result that
if and only if

for some function f.

The Poincaré Lemma allows us to compute Hp[I?n]. For R" has a single neighbour-
hood U = R" and d(x) = x/(1 + lxlz]% whose image is the open unit ball. Thus Z°(R") =
8P(R™) for all p > 0, and hence HP(R™ =0, p > 0. If ¢ isinHO(R™ = Z°(R™ then
df = 0. Thus au? = 0 for all p and hence f is a constant. Thus HO(I?D; R} = R. In
particular, if X is any manifold (of dimension n) and U is an open set diffeomorphic to I%n,
and dB8 = 0, B € aP(xy, p > 0, then B = dy on U for some vy € Qp_q(U]. In view of the
previous remark that the cohomology groups depend only on the topology, it suffices to have

U homeomorphic to R" to obtain this result.

As a second example let us consider H1(Sn]. We have s” = UN U US’ and both UN and

Ug are diffeomorphic to R" (see §1.2 for the notation). Let 8 ¢ Z (S"). Then there is
a function FN[fS) on UN[US] such that B = df, on UN ( = df. on US). Consider what happens

N S

on U, n U.. Ifn>1, U, n U, is connected, and we have

N S N S
d[FN - fs] = di - de = B -8 =0.
Thus PN - FS is constant, equal td\c say, and then we define
FN on UN
-F =

S S
and obtain a smooth function on Sn with df = B. Thus H1[Sn] =0 for n > 1. For n = 1,
H1(81) = R, which will follow from results to be described later.

A further useful operation on forms is the pull-back. If ¥ : X+ Y is a smooth
map of manifolds and B is a p-form on Y, there is a p-form f*B8 on X called the pull-back of
B by T. If we take a chart (V,¢) on Y with coordinates yu, then yu o f is a smooth
function on f_1(V]. and on F_1(V} f*B is given by

U H
g = ) 8 Lo f ol T FA...adly P o ) (1.4)
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if
u1,...,up

The sets F_1[V] cover X as (V,y) runs through an atlas on Y, and the formulae (1.4) agree
on overlaps, so giving f*B.

A particular case is given by the inclusion map i : U< X of an open subset. The
pull-back i* : @P(X) » QP(U) is the restriction map and 1*8 is often written B|U. The
pull-back is compatible with d and A:

d(f*g) = F*(dB) ’ FX(B A y) = (Ff*B) A (f*y).

1.8, A manifold X of dimension n is orientable if it has an atlas @Y such that all the

Jacobian matrices Ja a, b in @ have positive determinant. An orientation of X is a

,b’
maximal such atlas. It can be shown X is orientable if it has an n-form w which vanishes

nowhere (that is, for all charts a = (U,¢), x in U, and T LY wia] y (x) = 0).

1° ane n

If o is such a form we define @' as all charts a with wg?)._. , n(x] > 0 for all x in U.
A given connected manifold X either has no orientation or two orientations. We shall
consider only orientable manifolds, and for such manifolds we shall choose and fix an
orientation. Then the manifold is said to be oriented.

If X is oriented and paracompact we can define the integral over X of n-forms w,
written

[y u

as follows: If w has compact support conteined in the domain of a chart a = (U,¢) in ;"

then we set

jX o = | [wga] n° ¢_1] (' ee s x™ dx e ax”
N LR

For more general compactly supported forms we use a partition of unity with supports con-
tained in coordinate patches. Details may be found in Kobayashi and Nomizu (1963).
If X is compact and oriented we may integrate any n-form. If B is an n-1 form

then dB is an n-form and

This means that the map
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w P f W
X

from "(X) to R passes to the guotient to give a map
n

H(X; R)->R

This map is an isomorphism.

1.9, A Riemannian metric g on X assigns to each chart a = (U,¢) a positive-definite symm-

etric matrix gﬁai of real-valued functions on U such that, if b = (V,y) is a second chart,

172
L) gLa) Mo H2
A1X2 wu H1u2 (a,b) Aq (a,b) kz
1772
Mg (a) (a)

on Un V. As usual g[a] denotes the inverse matrix and g a the determinant of gu y
172
on U.

g defines a bilinear form g on QP (x) for each p 2 1 which takes its values in

®(x). If B, y are in @7(X),

” 1 11
B.yIU = op ) g eg”P s Yy
p! .
uq,...,up

A1,...,Ap
on a chart U. If X is oriented there is also an n-form p on X, determined by g, called the

Riemannian volume. If a = (U,4) is a chart in @ then we set

N _ Vg[al sign <1, cer s nu > _
cee s

u1l ves 5 H

It is easy to see that

(b) . (a)
O T P, L Pt
1 n 1 n

on U n V for two charts a = (U,¢), b = (V,¢y), and this is the correct transformation rule
for an n-form.
There is a unique map, the Hodge duality or star operator,
s 0P > 2" P,
such that

B(B,Y) p = B A (xy)

for any two p-forms B and vy. Explicitly
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*
(*B) y .. un—p
un—p+1""’un 1 p
A1,....Ap
An explicit calculation shows that
f(sg) = (-nPINTP g
for B in Qp(XJ.
If X is an everywhere strictly positive smooth function on X, then setting g' = Azg
gives a new metric which is said to be conformal to g. Then, if B,y € Qp[X],
28y = AP gy
and if p' is the Riemannian volume for g’
o' = A" p

This means that the star operator for g' is An-Zp* . In particular, if the dimension n of

X is even, say 2m, then * acting on Qm[X] is conformally invariant. If, further, m is

even, say n = 4k, then ** is the identity on QZKIX]. * then has *1 as its eigenvalues. We

+
let QZK[X]_ be the corresponding eigenspaces. Elements of QZK[X)+ are said to be self-

K

dual, those of 92 (X}~ anti-self-dual. If B is in QZK(X] we can split it uniquely in the

form

. + 2k +

with B~ in Q" '(X)™. Then we have
~ ~o t - -
g(B,B) = 8B ,B ) +g(B ,B)

and
~ PO ~, = -
g(B,*8) = g(B ,B) -8(B .,B) .

If X is oriented and has a metric g, we can define an inner product on compactly
supported forms by

B,y = [ EB,ylo = [ BA sy,
X X

There is a unique differential operator § : Qp(X] - Qp_1[X], the formal adjoint of d,
satisfying

(dB,y) = (B,8y) , BeeP i, yePn .
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It is easy to see that

LR 62 = 0.

§ = (-1)
Then
A = dé + &d
acting on QP (X) is called the Laplacian on p-forms, and a solution of
AB =0
is a harmonic p-form. Clearly A = (d + 6)2 so is positive and self-adjoint. Further,
AB = 0 implies
0 = (AB,B) = (dB, dB) + (88, 8RJ,
and hence
d = 0 = 68.
It H p[X) denotes the space of harmonic p-forms on X (it depends, of course, on the choice

of metric) then }tp(x) c 2P1x).

Theorem (Hodgel. Px) = d(ﬂp—q[X)] + 3tp[X) + 6(9p+q(X)) is an orthogonal direct sum.
ZP(x) = BP0 + #P(X) and hence HP(X) & #P(X) for all p = 0.

Since we already know H1(Sn) = 0, we deduce there are no harmonic 1-forms on Sn,

1,10, The notion of forms on a manifold X can be extended to include vector-valued forms.

If V is a vector-space with a basis ti’ i=1, ..., N, then a form with values in V

N . .
consists of a linear combination B = 2 Blti where each Bl is itself just an ordinary
i=1
form on X. If V has some extra structure, for example a metric or a Lie algebra bracket,
N .
this structure can be extended to the V-valued forms. A V-valued form B = Z Blti is a

=1

p-form if Bl is in Qp[X] for all 1i. Let Qp(X) ® V denote the space of V-valued p-forms.
Suppose V = ©) is a Lie algebra, then we can define an operation
<,>: P eg x 2l eg » P e9

extending simultaneously the exterior multiplication of forms and the Lie bracket of SD .

N . N
If g = ) 8't, is in P(x) 9 andy =}
i=1 j

Yth is in 29(x) e 9 we define
J=1

{B, Y=

i J
B™ A vy [ti, tj]

e~
nes-12

i=1j=1



18

This operation is neither a Lie bracket, nor an exterior multiplication, but is an example
of a graded Lie bracket.
We can extend d to V-valued forms by setting

i ~ i
d(} 87t,) = 38t .
Then, in the case V = 9 R

Boy> = --1PT Lye> , d<By) = KdBy> + (1P (Bidy)>
(1.5)
-1PT B, <85y + (-0TILs, <Baypy o+ (DY, L8807 =0,

where § is in at(x) ® ? . The last equation above is the graded Jacobi identity.
An example of a 9 -valued form occurs if 9 is the Lie algebra of the Lie group
G; then w = g—’ldg is a 9 -valued 1-form on G called the Maurer-Cartan form. It satisfies

dw + $<{w,w >y = 0.
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2. VEcTOR BuNDLES
2,]_' Let X be a smooth manifold. A real vector bundle of rank r over X is a smooth
manifold E with a smooth map m : E - X such that each fibre EX = ﬂ_1[X]. x € X, is a vector
space of dimension r, and every point of X has a neighbourhood U with a diffeomorphism
-1 r
¢ :m U->Ux R such that
(i) L ¢ = m,

(ii) ¢ = Ex +RY 1is linear for each x in U.

Here T, Ux RY > U denotes the projection on the first factor.

An elementary example is E = X x R’ with 7 = L This is the product bundle.
Bundles can be pulled back: If f : X > Y is a smooth map and E a vector bundle over Y, we

can define f*E over X such that (f*E]x = Details are left to the reader.

Erex)

Two bundles (E,m), (F,t) over X are Zsomorphic if there is a diffeomorphism
¢ : E > F such that

(i) To ¢ =,

(i1) ¢ | E. : E_+ F_ is linear for all x in X.

X X X

A bundle is said to be trivigl if it is isomorphic to the product bundle.

All the above makes sense over C, and we obtain the notion of complex vector

bundles.

A section s of a vector bundle (E,w) over X is a smooth map s .: X + E with

AN

\\\*\\\\\ s(x)
/M
-..___.____,..-/
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Sections may be added, multiplied by scalars and pointwise by smooth functions. We let
TE denote the vector-space of sections of E.
If U c X is an open subset, and (E,r) a vector bundle over X, the part ﬂ_1U lying

over U gives a vector bundle (E‘U,ﬂ] called the restriction of E to U. Thus every point

of X has a neighbourhood U with EIU trivial. It ¢ : n~1U > U x I%r is an isomorphism
with the product bundle, and e1, cae s eP is the standard basis of IQF, we obtain sections
S, cas

1 s, of E[U by

s,(x) = ¢—1(x,e.l P i=1, ... , r.
1 1

Then (81(xJ, ves s sr[x)J forms a basis for EX for each x in U. We call this a Zlocal
frame for E. Conversely, giving sections s, ¢ U-+E, i=1, ... , r, with (51(x], cer
Sr[x)] a basis for Ex for each x in U, determines in a unique way an isomorphism of EIU
with U x I?r. If we have a second local frame [t1, ces tr) on an open set V, then we

necessarily have

r
tj(x) = §=1gij[X] si[x] , xelUnyv

with
g:UnV > GLIR, r}
a smooth function.
Let (E,w) be a vector bundle over X, {Ua} an open covering of X such that on each

Ua there is a local frame (S:, ven Si], then on Ua n U, we have

B

B i o
s, = (g ).. s, (2.1)
J j=q CeBTij i
with
Eap Ua n UB + GL(R, r). (2.2}
OnU nU, nU we have
a 8 Y
1. .
EaB gBY gYa (2.3)
Also
gaB gBa = 1, €4a = 1 (2.4)

on their common domains. Conversely, given a covering {Ua} of X and maps g 8 as in (2.2)
o

satisfying (2.3) and (2.4}, it is possible to construct a vector bundle (E,m) over X having



21

local frames (s?, oo s:] on Ua satisfying (2.1) on Ua n UB. E is unique up to isomor-

phism. The maps Byg T called the transition functions of E.

2,2, As a particular example, the covering of X by charts together with the Jacobian
matrices of coordinate changes of §1.4 gives rise to a vector bundle T*X, the cotangent

1

bundle of X (there is also a tangent bundle TX obtained from tJ[ ,- but it does not

a,b)
concern us herel. Then Qq[X] = TT*X. Further, P (x) =TAPT*X for a vector bundle APT*X
whose fibre at x is the p-th exterior power Ap(T*Xx).

The tensor products E ® F of vector bundles (E,m), (F,o) over X may be defined by
means of the Kronecker product of their transition functions. There is a canonical
identification of (E @ F)X with Ex ® FX. We shall denote r(APT*e E) by QD(X,E) (and TE
by QO(X,E] for consistencyl. An element B of Qp(X,E] may be identified with an assignment
of an array B[az e, of sections of E|U for each coordinate chart a = (U,¢) on X
such that if b1= (V,y) ig a second chart the transformation law (1.2) holds. The proof
that these definitions are equivalent is left as an exercise for the reader. Using this
identification there is an operation

P x 290GE) » @PT9x,E)
which generalizes the exterior multiplication. Elements of QD[X,E] are called E-valued
p-forms.

We would like to define an operation on E-valued p-forms with properties similar to

those of the ordinary exterior derivative. A covariant derivative B in E is a linear map

D : QPOGE) + 9 (XE)

such that
D(fs) = fDs + dfAs,

for all f in QO[X], s in QO(X,E]. There is a unigue extension
p:PxE) » 2P (XE)

such that

DB Ay = dsay+ (-1P g aDy
where B8 is in QP () and Y in Qq(X,E]. On a chart we can write

u
B = ) dx A...Adx P A B
U,y eees U
1 p
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with B in 2°(U,E) and then
IJ,I- ese 5 M
p
H u
D8 = (-1P J  dx 'A...adx P A DB ) .
u u |
EREETLN
We can compute D(Dfs) for any section s and smooth function f. Then
D(Dfs) = D(fDs + df A s) = f D(Ds) + df A Ds - df A Ds + dzf A s
= f D(Ds).
Thus
D(Ds) = FAs
where F is in QZ(X, End EJ. End E is the vector bundle over X whose fibre at x is the

space End(Ex] of linear maps of E>< to itself. Hence D2 = 0 only if F = 0. F is called
the curvature of D, and if F = 0 the covariant derivative is said to be flat.

A metric in E is an inner product (‘,']X in each fibre EX, (Hermitian if E is
complex) such that, if s, t are smooth sections of E, then (s(x), t[x])x defines a smooth
function (s,t)(x) on X. If X is Riemannian and oriented then

{s, tp = f (s, t) p
makes the space PCE of compactly supported émooth sections into a pre-Hilbert space. More
generally, ApT*X ® £ has a metric derived from the Riemannian metric on T*X together with
the metric on E, and so by integration the compactly supported E-valued p-forms, QE[X; E),

become a pre-Hilbert space.

2.3, Let (E,w),(F,0) be vector bundles over X and P : TE - IF a linear map. We say P

is a differential operator (of order m) from E to F if

(Ps)(x) = ) alx), . 3% . (x) t.(x), xelU,
b ija j i
i,]
Ia <m
where
s(x) = } £.(x) s,.(x),
SN | J
J
(51, cee sN] is a local frame for E, [t1, een tM) a local frame for F,a = [uq, cee 5, Q0 ),
n
' . n a o
(n =dim X), is an n-tuple of non-negative integers, Ial = z o, 3% = (—i81] 1 ve. (-i3 ) "
u n '
u=1

and U is the domain of some chart a = (U, ¢].
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If g = (81, e En) is a vector in R" we 1let

o(P)(g,x)s(x]

£%F (x) t,(x)
j 2] J 1

i

I abay 3.0
|a|=m

where Eu = qu 622 ‘e E:n . If (£,x) is identified with a point of T*X by (&,x) <>

Z Eu dxu, then o(P) is invariantly defined as a section of Hom(w*E,n*F) where m : T*X > X
is the canonical projection. P is said to be elliptie if o(P) is an isomorphism of w*E
with m*F (in particular E and F have the same rank].

Suppose now X is compact, Riemannian,and oriented, then if metrics are chosen in E
and F we can také the pre-Hilbert space structures on TE and TF of §2.2 and complete them
to obtain Hilbert spaces, denoted by L2[E], L2(F],respectively. If P is an elliptic
differential operator from E to F, it defines an unbounded densely defined operator from
LZ[E) to L2(F), which is however Fredholm, along with the adjoint operator P* from LZ(F)
to LZ(E]. P* is the closure of a differential operator of order m (the formal adjoint of
P) and both P and P* have finite-dimensional kernels contained in TE and TF respectively.
The Zndex of P is defined to be

ind P = dim ker P - dim ker P*.

One of the most important results of 20th century mathematics is a formula for the
index of P in terms of the symbol of P and the topological invariants of E, F and X. This
is the celebrated Atiyah-Singer Index Theorem:

ind P = (-1" (chlo(P)] . tdlTX"DIT*XI. (2.5)
The right-hand side of this equation is built from characteristic classes. (See the
Appendix. We shall not go into details here, since in our application certain simplifi-
cations can be made on purely formal grounds. See Atiyah, Bott, Patodi (1873) for details

on the Index Theorem.)

An apparent generalization can be made as follows. Suppose we have a seguence

ED’ Eq, E2, cen Ek of vector bundles over X and first order differential operators
di : PEi > FEi+1, i=20, ..., k-1, with di+1 ° di = 0. Then
9 9 dn-1
E_——> TE = [E ~—> ... ——> TE (2.6)

0 1 2 Kk
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is called an elliptic complex if

old.) old,) old, ,J}
0 1 k-1
* [PU— * JR—— [ *
m EO —> E1 -+ T Ek
is an exact sequence of vector bundles on T*X\(zero section]. Equivalently, if we choose

metrics in each Ei and consider
P:+T YE, > T }E,._
5o 21 151 2i-1
*

given by d +.d,, on TE

, R ] . I
24 211 24 then P should be an elliptic operator Applylng the Index

Theorem to P gives a formula for

. *
Y (-1)7" dim Ker d, n Ker d,
1 1-

. 1
izo

*

Using Hodge theoretic results as in §1.9, Ker di n Ker di— is isomorphic to Ker di/Im di_

1 1

= Hl, which we call the i-th cohomology group of the complex (2.8). If h' = dim H® then

the Index Theorem gives a formula for |} (-1)7h".
izo

In the case of interest we shall have Ei =E® Li’ where E is a fixed vector bundle
over X, the Li are bundles built from T*X, and o(di] is the identity on 7*E (acting from
T*E ® w*Li to m*E ® w*Li+1). Then the right-hand side of (2.5) is necessarily a linear
function of ch E. For X = 84, only the components of ch E in degree 0 and 4 can be non-

zero, and so for any complex of this kind on S4 the Index formula necessarily has the form

a ch. E + a_ch_E

0 0 2 2
and c:hO E = rk E. Here the numbers aD, a2 are independent of E. For a complex of length
three (k = 2) we thus have
0 1 2 .
h - -h +h = aD ChD E + a2 Ch2 E.

We will apply this formula in §4.2. For identification of the coefficients ags 3, by

direct calculation, see Atiyah et _al. (1877,b].
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3. PrInNcIPAL BuUnNDLES AND CONNECTIONS

3,1, A fundamental and important object of study in differential geometry is the theory
of principal bundles over a manifold having a given group G as structure group. In physics,
these bundles describe how the internal spaces of a system with internal symmetry group G
'"twist around’ at different space-time points, in much the same way that coordinate trans-
formations tell us how a curved space is pieced together. The principal bundle determines
the topological structure of the gauge fields and Higgs fields of physics.

Mathematically, the definition goes as follows: Let X be a manifold and G a Lie
group. A principal G-bundle over X, denoted (P,w,G), is another manifold P together with
a smooth mapping 7 from P onto X with w* : QP (x) » QPP injective (in mathematical
language, ™ is a submersion), and a smooth abtion of G on P (which we write on the right:
p+*gl) with the properties

(i) peg = p implies g = 1 (we say the action is freel,

(ii) m({p) = w(g) if and only if g = p+g for some g in G.

This definition may seem somewhat technical, but its main effect is that P may be viewed as

a union of copies of G, one for each point of X, glued together in a smooth manner:

We think of P as lying above X, and w as the projection of P onto X. We denote
by Px the set of all points of P which are mapped by 7 ontoc a single point x in X: This
is the 'fibre' of P over x. Px and Py are disjoint for x # y and each is isomofphic
with G as a set. We do not give Px the structure of a group, and the relationship between
Px and G is the same as that between the orthonormal bases of a vector space at a point x,

and the orthogonal group. There are precisely as many bases as elements of the group, but
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‘no preferred way of identifying bases with group elements until we pick one basis and make
comparisons relative to it.

One principal G-bundle always exists, namely the Cartesian product P = X x G with
T the projection onto the first component. This is called the tr<vial or product bundle.
One consequence of our requirement that w be a submersion is that locally every principal
bundle locks like this. This justifies our claim that principal bundles are concerned
with global properties, that is, with topology.

Let U c¢ X be open and (P,7,G) be a principal bundle over X. A section s over U
is a smooth map s : U > P with 7m(s(x)} = x for all x in U. Thus s assigns to each point

in U an element of the fibre over that point. That is, it is a cross-section through the

fibres over U, hence its name; see the picture.

Pz’ le

In the part of P lying over U we now have a basepoint s{x]) in each fibre Px, S0 Px is
identified with G and ﬂ_q[U] with U x G. A section thus sets up an isomorphism between a
portion of P and the trivial bundle. This is the reason why we view sections only locally;
the only principal bundle which admits a section defined on all of X is the trivial bundle.
Let U ¢ X be open and suppose we have two sections s, t of P over U. Then t(x)
and s(x) lie in the same fibre Px' so by condition (ii) there is g(x} in G with
tix) = s(x)eg(x),

and by (i) g(x) is uniguely determined by this equation. We thus obtain a function from
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U into G. Such functions are known in physics as (non-abelian for general groups) gauge
transformations. In this context they arise as transformations which change the reference
point in a principal bundle. If we think of the principal bundle as representing bases in
some internal degrees of freedom, defined over a curved space-time, then a section is a
choice of basis at each point, and a gauge transformation arises as a change of this basis.
Most principal bundles of interest may be viewed in this way.

On certain kinds of spaces all principal bundles are trivial. These are contract-
ible spaces such as rR". Principal bundles over spaces of the form X = R" x Y are then
determined by their restriction to Y, since they are constant in the R" directions. As

n

an example, consider X = S, As we have seen, this space can be covered by two open sets,

8] 0] each of which is diffeomorphic to rR". Thus any principal bundle (P,w,G) has a

N® TS’

section SN on UN and another SS on US' On the intersection UN n US we have two sections

and hence a gauge transformation g : UN n US - G with

sN(x) = ss[x] - g(x), X € UN n US

This function g determines P completely. UN n US has the same topology as R X Sn*1, so
that the topology of P is even determined by g as a function on Sn—1- Thus each principal
bundle (P,w,G) on Sn has associated maps of Sn-1 into G. It can be shown that P is
essentially unchanged if this map is deformed continuously, so that in fact it is the
homotopy group nn_q[GJ (see Husemoller (1975) for full definitions) which determines the
distinct principal bundles on s with structure group G.

This allows us to reduce the problem of studying principal bundles with a given
structure group G on s" for n = 3 to various special cases. For instance nn_1[G) = "n—1[E
where E is a covering group of G, which means we may restrict attention to the case of G
simply connected. Also "n—1[G] = “n—q[K) where K is the maximal compact subgroup of G.
Hence we can take G compact. Finally ﬂn_1[G1 X GZJ = “n-q[Gﬂ X ﬁn_1(62) means we can
treat each simple factor of the simply-connected, compact (and hence semi-simple} Lie grour
G separately. Thus, so far as the topology of principal bundles on Sn is concerned, we
can assume G is a simply-connected, compact. simple Lie group.

The case in which we are interested is n = 4. It is known that if G is compact,

simple, nS[G] is a single copy of the integers. It follows that each principal G-bundle
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over s* determines an integer k, its topological charge, and this integer determines the
bundle (at least up to a notion of isomorphism which need not concern us here). For a
general group G, one integer will be obtained for each simple factor of its maximal compact
subgroup.

SU(2) has the topology of 83, so the gauge transformation g is essentially a map
g S3 - 83. k is its winding number or degree. In Atiyah et al. (1977b) it is shown
that every simple group G has an SU(2) subgroup such that g is determined by its restriction

to SU(2) (at least the topology of (P,w,G) is determined}, and k is the winding number of

this map. Another way of defining k is given later.

3,2, We come now to the definition of the main objects of interest in Yang-Mills theory,
the gauge potentials and gauge fields. The mathematical objects are known as connections
and curvatures, respectively. We let (P,m,G) be a given principal bundle over a manifold
X. A connection A in (P,w,B) is the assignment to each local section s : U~ P of an
element A_ of 91[U] ® 9 (that is, a Lie algebra-valued 1-form) such that, if t ; U~ P is
ancther section, related to s by t = s ¢« g with g : U > G the corresponding gauge trans-
formation, then

- -1
At = g Asg + g dg . (3.1)

In the physics literature, usually one fixed section is considered, and so the dependence of
the gauge potential on the choice of the section is not mentioned. This can be done on
Euclidean space IQn because there every bundle is trivial. On spaces such as Sn, which
cannot be covered by a single coordinate chart, it is necessary to consider local gauge
potentials and how they are related under changes of the local trivializations of the
bundles in order to take into account the global topology of the situation.

The curvature or field strength F of the connection A in (P,w,G6) is the assigrment
Fs of an element of Qz(U] ® 9] to each local section s : U+ P determined by
F, = dA_ %(AS, AS> (3.2)

s

The full expression of FS in terms of coordinates is

For = st -t 7ot oad ank (3.3)
s UV L sV vV s u 3k jk s’ u sV
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where C;K are the structure constants of the Lie algebra 2) determined by

i
. t = . .
[tj k] g cJK tl

It should be observed how economical is the expression (3.2) compared with (3.3) in terms
of writing, and, more usefully, in terms of calculation. For it follows from d2 = 0 and
the identities (1.5) that
= 14/ = 1 S o~
dF dd A, ALY = ECAA, ALD - EKA, dAD

= <dAS, /-\S> = (F, A >

S s
Thus

dF, <AS, FS> = 0.

This is known as Bianchi's Identity: it is considerably less cumbersome to establish it
thus than by using the expression (3.3).
If t : U~-»>P is another section and t = s » g with g : U~> G a gauge transformation

then it follows from (3.1) that

The field intensities are different kinds of objects from the potentials in that they do no
have the inhomogeneous term g_1dg in their transformation rule. In fact F is in QZ[X,PQy]
where P(9) is a vector bundle associated to P. This may be described as follows: If
(P,m,6) is a principal bundle over X and T : G > End V a representation of G, there is a
vector bundle P(V) over X with.fibre V obtained from P x V as the set of eguivalence
classes where (pq,qu and [pz,vz) are equivalent if and only if there is g in G with

= . . = - 1
P, = By g v, T(g )v1 . (3.4)
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