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PREFACE TO 2ND EDITION

In the decade since the first edition of this Communication
was written, differential forms have become a staple ingredient of
elementary textbooks. Nevertheless, this informal account, which
has been unavailable for some years, is still in demand. In this
new edition the original text is unchanged apart from minor corrections
and improvements, but I have added a chapter on tensor-valued forms

and Lie derivatives, and the bibliography has been brought up to date.

I should like to express my appreciation to Mrs. E. Maguire
for an excellent typing job. I owe a special debt of gratitude to
Miss Eva Wills of the Dublin Institute for Advanced Studies, but for
whose patient encouragement this Communication would never have

reappeared.

W. Israel

University of Alberta,

10 October 1978.
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INTRODUCTION

The following pages are intended as an introduction to some
modern techniques in gravitational theory which make use of differential
forms. In particular, I have tried to give a leisurely account of the
elegant complex vectorial formalism of Cahen, Debever, and DefFrise, which
is a compact eqguivalent of the better known Newman-Penrose spin coefficient
formalism. I hoped to make the subject easily accessible to anyone whose
acquaintance with relativity and its mathematical background does not
extend beyond one of the traditional texts, Accordingly, the exposition
is interlaced with many simple examples, intermediate steps of calculations
have usually been given in full and contact with classical tensor notation

is maintained at every point.

The work arose from an informal seminar given in 1868 while I had
the privilege of being a Visiting Professor at the School of Theoretical
Fhysics, Dublin Imnstitute for Adwvanced Studies. To Professor J. L. Synge
and Professor C. Lanczos I am much indebted for encouraging its expansion
into the present form and for their hospitality. Discussions with
FProfessor Synge, DOr. M. Misra and Dr. G. Ludwig helped to clarify the

exposition at many points.






CHAPTER I: Basic IDEAS

1.1. DIFFERENTIAL FoRrMS

The representation of a tensor by a multilinear function of vector arguments is

familiar. For instance, the second-order tensor TuE can be associated with the bilinear
scalar function T(u,v] = Tmsuuuﬂ. Specifying the value of T[Hﬂﬂ] for all u and v

(actually, a finite set of pairs of basis vectors obviously suffices) constitutes a

definition of the tensor, a definition which has the merit of being co-ordinate indepen-

dent.

A differential form is such a multilinear scalar function associated with a tensor
which is (effectively] completely skew. For example, if FaE is any second-order tensor,
then

o(dx,dy) = 2! Fﬂadx[udyﬂj (1)
is a differential form of degree two, or a Z-form. It 1is convenient to write the vector

arguments as differentials, for reasons which will soon appear. square brackets enclosing

a set of indices indicate anti-symmetrization, e.g.

dx[udyaj = (1/21) [dx&dyﬁ - dxﬁdyu].
(Division by the factorial is a universal but rather unfortunate convention. It is in

order to undo the effects of this that factorial coefficients have to be inserted in most

of the definitions.] The square bracket operation in (1) effectively sifts out the skew
art F of the original tensor.
o (8] E "
A 1-form
0L
B(dx] = A dx (2]
- i

corresponds to a vector. A O-form has no vector argument and is therefore simply a scalar.

Equality and addition of two p-forms, and multiplication of a form by a number are
defined in an obvious way in terms of corresponding operations on the associated skew-

symmetrized tensors.

1.2. Yepece PropucT

The exterior product, or wedge product, of a p-form and a g-form is the (p+g)-form

obtained by taking the tensor product of the associated tensors and anti-symmetrizing. As



an example, for the forms (1) and (2],

G A B

iff (dx,dy,dz) = 3! FEBAde[udyEdzT] .

L]

Multiple wedge products like a A B A vy can, of course, be defined similarly and are

associative.

If @ and 8 are forms of degrees a and b, it is easy to verify that
aAB = (-1) B A a . (3)

(The factor E-ﬂ]ab arises from pulling each of the a indices of the first factor on the

left through the b indices of the second factor, entailing ab successive interchanges.)

Thus, the wedge product anti-commutes if both factors are odd, but commutes otherwise. In
particular,
B A8 = 0 if 6 1is odd. (4)
Z
But f A £ = F° for a 0O-form [(scalar) f, and for the Z-form (1), ¢ A ¢ correspands to the

tensor F[uBF$61 , which does not vanish in general.

1.3. ExTeErIOR DIFFERENTIAL

We proceed to consider tensor fields in a Riemannian space. The associated
p-forms are then scalar fields which depend on p vector-field arguments.
The exterior differential of a p-form is the (p+1)-form obtained by taking the

: , . . : . . th
partial or covariant derivative (it is immaterial which!) of the associated p order

tensor. Thus, the exterior differential of the Z2-form ¢ = 2! Fuﬁdx[mdyﬂj is the 3-form
(o, B, v]
d¢ (dx,dy,dz = 3! 3 F_ d dy dz
¢ (dx,dy,dz) o gyd* Y
la, B, v]
= 3! F d dy dz , 5]
By|la °° 7Y [
where the stroke denotes covariant differentiation. (The additional terms involving the
affine connection (assumed symmetric) cancel out upon anti-symmetrization.) I+ f 1is a
0-form,
dfldx) = (3_flax" ,

in agreement with the elementary definition.



We shall frequently use the formula
d(fR) = F£ dfi + df A R, (B)

which holds for any form @ and scalar f. This is actually a special case of the general

identity

dla A B) = daAB + (-1)7 anAdB, a = deg.a . (7)

The factor [-ﬂla arises from pulling the differentiation index aﬂ through the a indices

of the first factor in order to operate on the second.

Applying the operator d twice in succession involves the skew part of auaﬁ ,

which wvanishes. Hence

d‘a = o (8)
for any form fl.

1.4, Co-ORDINATE DIFFERENTIALS

1 . .

If a definite co-ordinate system (x , ... , x") is singled out, the functlons X"
are scalar fields. Closely linked with them are n vector fields Efu] = grad xu ([often
called co-ordinate basis vectors). Their components (in the special co-ordinate system)
are e[u] = 6“ .

o o

The exterior differential of the 0-form x is

’ 1 o T o
dx (dy) = [Bax Jdy = ﬁu dy (9)

which is the 1-form associated with §[1]|

It will be noticed that in (9) we have used the symbol dx1 in a new and guite
distinct sense. Whereas previously it was simply a number, i.e. a component of the
vector argument dx, it now denotes a 1-form, i.e. a funetion of a vector argument. However,
if the vector argument in (9) is dx (as we shall normally assume), the distinction is
unimportant for practical purposes. This dual use of the symbol dxu is very convenient
and, once recognized, seldom leads to difficulty.

3
As a simple example, consider cartesian co-ordinates xq. xz, by in Euclidean

3-space. We construct the 3-form

1 Z 3
dx A dx A dx Edu,dg,qH]

L ]

uduﬂdw?

]

31 61 62 83 du
o B Oy

E duﬂduﬁdw? ,

aBy



which associates with each triplet of vectors the volume of the 3-cell formed by them. By
1 2 3
choosing these vectors along the co-ordinate axes with lengths dx , dx , dx , we obtaln
L 3 1
dx A dxz A dx = dx dxzdxa (10)
i.e. the standard form of the volume element. We have merely to bear in mind the implica-

tion that (10) is a numerical relation which holds for a special [but naturall) choice of

the vector arguments.

1.5. INTEGRAL THEOREMS

Let Uz be any reasonable 2-space whose boundary HUE consists of one or more

closed curves. We loosely think of V partitioned, in an arbitrary continuous fashion

2

into infinitesimal Z-cells (dx,dy), and EUE into infinitesimal straight segments dz. Then

it is easy to give a heuristic derivation of Stokes' theorem in the form

20 [f 3, ﬂudx[ldyUJ . M
v
2 2

where the sense of dz relative to dx,dy has to be suitably prescribed. (The condition 1is

that the pair (E,dz) have the same orientation as (dx,dyl), i.e.

.
e(dx) eldy) Ehdzudx‘kdy“] > 0
on HUE , where E is any vector pointing outwards from UE and E{ﬂ] = sign(A.A) = -1, +1 or

0 accordingly as A is space-like, time-like or null.)
This result, and its higher-dimensional analogues, for instance

] (11)

]

4 ffffv BEFluudx[ﬁdyhdzudt”] 3! fffau FluuduEhduudwu
4 4

(orientation of £, du, dv, dw the same as dx, dy, dz, dt on auq} can all be subsumed under

the elegant statement
[ de = [  w (12)

where w is a differential form of degree (n-1]. Equation (12) is, of course, to De
understood as a numerical relation, in which it is implied that the vector arguments of dw

and w are the cell vectors of arbitrary (compatible) partitions of V_ and BUH respectively.

N



It is well-known that this generalized Stokes theorem contains the divergence

theorem as a special case. In a four-dimensional space, for instance, let us choose

K

F ) lgli Exhuuﬂ

PNTRY
in (11), and note that (for positively oriented 4-cells) the invariant elements of

4-volume and 3-area are given by

_1
41 dx¥aytaMatVd = |g)TE KAV av, .
3 U
dgﬂ = =4 Eﬂluudu dv  dw
Then
f A“! av, = [ A ax .
V < 3V .



CHAPTER Il: RIEMANNIAN GEOMETRY
2.1, INTRODUCTION

The traditional approach to this subject makes heavy use of Christoffel symbols.
These are notoriously clumsy to work with, and have no invariant significance. Differ-
ential forms clear the way for a much more elegant and flexible approach. Basically.
this is nothing but a streamlined version of the classical theory of Ricci rotation

coetficients.

In a Riemannian n-space, 1etlﬁ[1]. “ue ,e[n] be any set of n vector fields which

ot

are linearly independent and therefore form a complete vector basis ("frame") at each

point. It will be recalled that the Ricci rotation coefficients Tabc associated with

3 .
the E[a] are a set of n~ numbers (scalars under co-ordinate transformations) which give

(a)

the components (with respect to the frame) of the covariant derivatives of the e [see
equation (26) below]. It is known that the Riemann tensor is expressible in terms of the

?ahc and their first partisal derivatiwves.

In the newer formulation we shift attention from these objects to sets of forms

(al
e

- ol

associated with them. These are: (i) the'set of 1-forms GaEdﬁl ix"  assoctated

with the basis vectors E{a]; (ii) the n2 "connection 1-forms” mab = Tahcﬂc and (iii)
" " a _ ,.8 C d a
the "curvature 2-forms ) = 3R B A 8 , where R are the frame components of
8 bcd bed

the Riemann tensor. (Notice how suppression of the indices ¢ and d saves writing without
loss of information, since the vector arguments of the forms are arbitrary.)

The essence of Riemannian geometry is then summarized in the "equations of struc-

ture”, which relate the exterior differentials dﬁa to mab , and dmah to ﬁab ;

The traditional approach is included as a special case: we have only to tie the

frame to the co-ordinate net [g[a] = grad xa1 to reduce Tahc to the Christoffel symbols.

However, the formalism will also accommodate choices of e{a] having a direct physical or

=~

geometrical significance, e.g. orthonormal tetrads propagated along materisl world-lines,
or Sachs null tetrads defined by a principal null vector of the Riemann tensor.
In addition to the conceptual gain, there are also enormous computational advan-

tages resulting from the fact that, in both of the examples just mentioned, the matrix

(a) (b)
e .e

“ak L

is constant. In this case, the connection forms have the property mab = hwba ’



so that there are only six nontrivial wa in a 4-space (as opposed to forty Christoffel

b

symbols]) which can be obtained, usually very easily, from de“. We shall see from examples

how much this can simplify computation of the Riemann tensor.

2.2, Basic 1-FORMS

We consider n linearly independent vector fields e (x") in a Riemannian n-space.

(al

Greek indices will be used throughout to refer to the co-ordinates x" and tensor compon-

ents with respect to them. Indices a,b,c, ... din the first half of the Latin alphabet
refer to the frame €a)’ and behave as scalar [(labellingl) indices under co-ordinate
transformations. (Indices m,n,pP, .. will not appear until the next chapter.) Thus,

o ,
e[a} are the contravariant components of the ue:tnrlﬁ[a]. We define the "frame compon-

ents” (tetrad components in four dimensions) of any tensor Tuﬂ by
o B
= T - 13
Tab... aB... °2(a) °(b) (13)
wWe introduce the matrix of scalar products of the basis vectors:
= . . 4
Bab ~ %(a)"%(b) (14)
Written out at length, (14]) is
_ o B
Bab ~ Bag Pra) () (15)
showing that Eah are the frame components of the metric tensor.
Since the B4) Ore linearly independent, the matrix g.h has a symmetric inverse
gah. satisfying gabgac = 62 . Defining the dual basis
(a) _ _ab |
= , 16
= & (b 116
we easily show
(a) ]
. = ’ 17
= %) % (17]
(a) B |
so that e .o are inverse matrices.
a (b)
We now introduce the 1-forms
07 - e[a]udxa (18)

associated with the dual basis vectors. Solving for dx " yields



dx® = e %% . (19)
(a)

Equations (18) and (18) may be interpreted in either of the ways indicated in Section 1.4,
i.e. as numerical relations with the vector argument dx of 6° understood, or as linear

relations between forms.

Because the E[a] form a complete vector basis, the Ba form a basis for all
1-forms. Explicitly, the expansion of any 1-form a = Hudxu as a linear combination of

the 8° 1is

Similarly,

[a, B a b
21 = A
Fuﬁdx dy Fab s 6 | (20)

showing that 0% A Eh form a basis for all Z-forms, and so on.

From (15) and (18) we obtain

ds = g 0 (21)

As a simple example, let us consider Gaussian polar co-ordinates p, ¢ on a Z-space.

The metric is

4s2 = dp? + [flp,4)1% do° .

(If f = p, these are plane polar co-ordinates; if f = sin p, spherical polars on the unit

to be unit vectors along the p, ¢ directions so that (14)

sphere.] We choose 1)’ &(2)
and (18) yield g_ = 6_., e'® - e,y + For an arbitrary displacement dx" = (dp,d¢) we
then have
2
Ell.1 = 5[1].q§ = dp , 6 = 5[2].qﬂ = f dg¢ (22)

and the metric is



2.5, CONNECTION 1-FORMS

Let the covariant differential

. o
Blay ¥ B T T g

o
denote the absolute change of the vector field E{a} in the small displacement from x to

x* + dx” . Here, E[;H[xj denotes the vector E[a][x] parallel-transferred to the point

X o+ dx. Written in terms of components,
a a Y
= . 2
[DE[E]] © () dx (23)
| Y
More generally, we shall write D@-'__ = ¢*‘_* ?de for any tensor @"__ .

Since De is a vector at xu, it can be expressed as a linear combination of the

~(b)

local base vectors:

c
= 24
P& () “h Zre) (24)
where the coefficients mch[qE] are 1-forms. If we take the scalar product of both sides
: (a) (a) _ .8 (a) (a) _ (a) _
with e ~°, and note that e 8oy © EE , and that g 'Dﬂ[h] + E[h}‘DE = D(e 'E[D]]
D[ﬁz] = 0, we find
a _ [a). o (a) [25)
wpTe DBy Sb)te
_ (a) B Y
EI"II" E[Ij} dx
Mow, the usual definition of Riccl's rotation coefficients is
a _ (al B Y
= - . 26
" b ® gly "oy %re) (26
So we have
a a C ,
W b - Y D:H , [(27)

. : . : a ) \ C
which is the decomposition of the connection 1-forms w with respect to the basis 98 .

b

From (Z5) we infer

pe® o - 2@ B (28)

This is equivalent to the expanded version
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(&) .2 ) (e 29)

8|y be 8 Y
obtained from (26).

In the equation g = 2 = , let us take the differential of both sides.
ab ~(a) ~(b)
(Notice that it is here immaterial whether we interpret "differential” as covariant,

ordinary or exterior differential, since each &6 is a scalar.) Thus

dgp T P8 T 0P8y T Sy Bra)
= =] e E.I.JD Tt B = LL'II:
S(al‘~(e)l b <(b) " =(c) a -

If we agree to raise and lower Latin indices with the aid of the matrices gab and .1

(note: this is consistent with (18)!), then this can be rewritten

= . 3
dgab w_p + W4 (30)

The symmetrized 1-forms Em[ah] are therefore the exterior differentials of the U-forms

Eab )
2.4, Co-ORDINATE FRAME

In order to see clearly how the traditional approach is contained in the present

: o
formalism we make a special choice of frame. Given a specific co-ordinate system X,

o
we select the "co-ordinate Frame"lgia} = grad x7. Then e[a]u = 5; P e[a]u = ﬁa (i.e.
the vectors E[a] are tangent to the co-ordinate curves) and dx = Eﬂ. The frame compon-

ents of any tensor are thus numerically equal to its ordinary components. From (26), we

easily find

o o
= T .
¥ By BY
so the rotation coefficients are now the Christoffel Eymhuls.
Since the numerical equality between 248 and g.b implies equality of their

ordinary (not covariant!) differentials, (30) now reduces to

) oY,

i
-

+
dEuE By TBET

or:

3

!
0
.ﬂ

&
v Eag au By Cug oy
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which is the familiar result gﬂﬂlT = 0.

2.5, EQUATIONS OF STRUCTURE

Returning to the general formalism, let us evaluate the exterior differential of

Ba = e[a]deB. By definition,
[y, Bl
402 = 21 E{a] dx 'dy
8|y
a8 (c] (b) , [y, Bl
= -21
Y .8 y e g dx 'dy by (28]
a C b
= - . 31
Y e 8- A B (31)
. a C (| .
Since vy be 0 = W b’ this can be written
de” = - mab Aed . (32)
Equations (32) have been called by Cartan the "first equations of structure”. The

information they convey is that the skew parts Ta[hg] of the rotation coefficients can be

al

easily evaluated by taking the curls of the dual basis uectnrslgi , i.e. by exterior
(partial) differentiation.

In the special case of a co-ordinate frame, the_g[a] are gradients and (32)

reduces to the trivial statement d6% = dzxu = 0. (Alternatively, this follows from (31),

upon noting that the Christoffel symbols are symmetric in their two lower indices.)
Suppose we are given the 1-forms 0% and the matrix Bp 28 functions of the
co-ordinates. We can immediately find dBa and dgab by simple differentiation. The

1—forms w°_ are then completely determined by (30) and (32). To see this, we note (i)

b

that T[ah]c are determined as the numerical coefficients in the expansion of the known

1-forms dgab in terms of the basis EE:

C
o = 2 .
gah Y[at:t]r: o *

and (ii) that ¥a[bc] can be read off as coefficients in the expansion of the known Z-forms

b C b
Eahdﬂ-h ) “Yalbe] oAt

These results fix mab uniguely:
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C

— ] + f—
“ab Yabe S [T[ab]c Y(ac)b T(bec)a
+ oy + - Y ) 8- . (33)
albcl blecal clabl
This formula is cumbersome. Fortunately, it is hardly ever necessary to use it.

Things are particularly easy if . is a constant matrix, as happens for an orthonormal
frame or a Sachs null tetrad. For (30) then asserts merely that W T T w and only
(32) remains to be solved. The answer can often be written down by simple guesswork

(this is permissible, since the solution is known to be unigue).

Let us return to our simple example of Gaussian polar co-ordinates (see (22)).

|

2
& » B =dp , 68 = flp.¢)dd. Recalling that dzﬂ = 0 and d(fQ) = fdQ + df A Q

We had gah ab

tfor any form § and scalar f, we find

l
de = dzp = [ (34)
z2 2
df = fd ¢ + df A dp = fpdm A de + F¢d¢ A dé¢
- (F /) o1 A §° (35)
where the subscripts indicate partial differentiation. Since mab = T W s we have
m11 = ng = 0, and (32) reduces to
d51 = - w1 A EE , dBE = - mz A 61 .
2 1
We compare this with (34) and (35]). It is clear that if we guess
Wl = (F/F) 8% = -4 (36)
1 o] 2
then equations (32) are all satisfied, and this is therefore the unique solution. The

Ricci rotation coefficients, if wanted, can be read off immediately from (3B6);:

2 1 a
Y 45 5 Y oo 3 other y he 0.

2.6, CURVATURE 2-FORMS

We shall next derive the simple relations ("second eguations of structure”) which

connect the curvature tensor to the exterior differentials of the connection forms mab .

By definition, the exterior differential of
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mab = - E[a]E!T E[E] dx ' (37)
is
dmab = - E[EEE]EIT E[E]]|5 dxtﬁde] (38)
Making use of the Ricci commutation relation
EE[a]5|[T5] _ E[a]u RuBYﬁ (39)
and of
E[E]]ﬁ dxﬁ = e[ij mch (40)
yields
duFb - e[:] E{E] H“E?ﬁ axYay8d - maﬂ A m“b . (41)
Thus, if we define the curvature 2-forms
e = 4R 6% A % (42)
where Habcd are the frame components of the Riemann tensor, then (41) may be written
nab - dmab + mac A m“h : (43)
These are the "second equaticns of structure” of Cartan. Notice that all components of

the curvature tensor can be recovered from the Z2-forms ﬁah by expanding them in terms of
the basis 68° A 8°.

Returning to the example of Gaussian polar co-ordinates (see (36)), we have obtained

sg far:

= 6 , o' = dp , 02 = flp,d)dd

1 2 2 2
W = W = 0 , W = - m1 = [FpKFJ B .

2 4] 2 2 p
it 1 f 2 1 D 1

il
L
E

o
E
-
E

2z 7 1 2 Z
= d[IFpKF]B 1 + w 1 AW ,  te, A w 1

- (f /£1d8° + d(f /f) A 8° .
0 0
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We have de = - mE A Ei‘1 = [fﬂff] 51 A 52 , and
2 2z
d(f /f) A BE = (f /f) dp A B = (f /f - F KFE] 91 A 52
Qo P P op (o
Hence
.1
0 = - = ¢ /810 A 8% . (44)
1 2 pp

Equating coefficients of EE A Bd in (42) and (44), we find.

2
R 112 = Fpﬂf?

is the only non-trivial component of the Riemann tensor.

2./. IDENTITIES FOR THE CURVATURE

In Cartan's formalism, the Bianchi identities arise very simply as the integra-

bility conditions of the second equations of structure (43). We take the exterior
differential of (43), and note that dzmab = [0, and that
dla A B)] = da A B - a A dB
if a, B are 1-forms. The result is
a a C = C
df = - A
5 dw . A w b w - dw b
_ a _ a d c _ a cC _ c d
(Q L T W A c] AwT T A (Q H W A h]
by a second use of (43]. The triple wedge products cancel, and we are left with
S a c a »
= A - A .
dfl b £ - w W Q 5 (45)
To verify that these really are the Bianchi identities, we specialize to a co-
ordinate frame and to Riemannian co-ordinates, so that mug = TGBdeT at some selected
point. Then (45]) reduces to
o (e, vy, 61
BER BYﬁdx dy ' dz = 0
which is equivalent to HaE[Tﬁ[E] = 0.
Another identity follows from the first equations of structure, dﬁa = - ma A Eh .

Taking exterior differentials, we find

2
0 = d%8% = - dw® A 8% ¢ u? A ge°
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i.e 5 b
. A 08 = 0, (46)
b
, . b C d _
This can be written Rabcdﬂ A B A B =0, which is nothing but the cyclic identity
Ra[bcd] = 0. It is not difficult to show that the cyclic identity together with the

skew-symmetry of the Riemann tensor in both index pairs implies the remaining algebraic

identities Rabcd = Rcdah . Thus, all symmetries of the Riemann tensor are summed up in

the two identitiea for the curvature Z-forms:

gab = = ﬂba s Q A B = 0.

2.8, AN ExampLe (Vaipya MeTRIC)

To gain some idea of the computational ease afforded by these technigues, let us

work through a typical example. We consider the non-diagonal line-element

dsz = Z2drdu + [1 - Em[u]fr‘]du2 - rzfdﬁz + Ein2 B d¢2] (47)

where m(u) is an arbitrary function. This line-element was shown by Vaidya to represent
the spherically symmetric exterior field of a radiating star, whose mass at retarded time

u is m(ul. If ml{u) is constant, it reduces to a form of the Schwarzschild metric.

(a) o

To simplify the computations as much as possible, we look for a basis 8% = e udx

such that the coefficients €.b in the expression d52 = gabﬂa Bb for the metric are

constants. A simple choice is

81 = dr + i(1 - 2m/rldu , 54 = du WH
f (48)
2 3 (
6 = r de , 8" = rsin 6 dp . )
. . . . . : . (4) 4 _
This choice is also physically significant, since it implies that e a = Eu = Huu » SO
4
that E[ ] is a null vector tied to the retarded time u. Eimilarly.‘i[1] is a null

vector associated with the direction of "advanced time"”.

The line-element (47) now appears as

gs” = 26 o - (897 - (877

»

so that the matrix €. and its inverse are given by:
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Big = B4q T T By T T B33 T 1o other g, = Us
ab _
g Eab
To arrive at the connection 1-forms mah = = mba , we first express the exterior
differentials dﬂa in terms of 6" A Ed as basis. From (48] we quickly find
1 2 2 1 4
de’ = - dl(m/rldul = (m/r )Jdr A du = (m/r} 6 A6 , (43)
- 2 - a
dBE = dr A dd = r 161 A B - i 1[1 - 2m/r)] 8 A 52 s (50)
3 :
dd = gin & dr A d¢ + r cos 6 db6 A do
= I‘_'I['EJJE - 301 - Emfrlﬂq] A 83 + F_T cot 6 Ez A 83 . (51]
4
@ = 0. (52)
We now compare these results with the eguations of structure, dea = = mab M BD 3
1
and try to guess the solution for mab . We know in advance that w q g14m4q = 0, so the

1 1 .
right side of (49) must arise from w , A B . We therefore take as the solution of (48)

mq1 = [mfr2164 s m1 = Hﬂi , m1 = 553 s m1 = 0, [(53a]

where the scalars A, B are as yet undetermined. (We could have added an arbitrary

1 .
multiple of @ to the expression for w However, we shall verify at the end that the

..1:

simple guess (53a) is correct.]

For the solution of (50), a simple guess 1s

2 1.2 2 _ 2 .3 2 1 2

w, r 6 , w 5 = 0, w q * ce , w q T Pr (1 Zm/rlo . (53b)
and for (51):

ma = r_183 . m3 = r_qcnt 8 53 , mS = 0, m3 = - % F_1E1 - EmKFJBS . [53c)

1 2 3 4
The remaining 1-forms can now be inferred from the skew-symmetry of W_, for
instance
1 ) 14 o _ 2 _ 4, . ~ Z
w ., = g Uy, T Wog = W, = s r (1 Zm/r)e
1 3 .= 3
= = - - B
W g W, P r (1 Zm/ 1)
These results are compatible with [53a) and serve to fix the coefficients A, B. Also,
2z 3

w = - W fixes C. Similarly,

3 Z
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4 _ 4 _ 2 I P 4 3 _ -1.3
wo, = 0, w 5 Fw o, F r 6 , w g TwWw, =T B8 ,
4 1 2z 4
W, = Tw, = - (m/r) 6 . (53d)
.. . 4 b . 4 . .
This implies w H A8 =0, so our expressions for w b satisfy the last equation, (52].

We have verified that our tentative expressions for ma satisfy all equations of

b

structure. Hence they furnish the unigue correct solution.

The rest is straightforward. From the second eguations of structure,

Q b dw 5 + W . A w H ot WE easily obtain
ﬂqq = quq + mqq A m11 + qu A m21 + mqa A qu
= dltm/r96%T v 0 - 1 r %01 -z A 87+ 80 A 80
= - (z/rydr A 6T = - (2m/r) 60 AT,
Comparison of this result with 911 = %R11cd 0% A Bd immediately yields the follow-
ing tetrad components of tne Riemann tensor:
H1141 = - R1114 = Emfrj H other R1ch = 0.
In similar fashion we find [ m = dm/du ]
ﬂqz = - [mIPEJ EE A Bq - [mfral 51 A EE )
R 2 I RN V2 S LA L
ﬁ21 = [mfr3] HE A Bq ,
931 = fmfrﬁ] B3 A Eq .
EEB = EEmKPB} EE A 63 .
The skew-symmetry ﬁab = = ﬁba determines the remaining ten curvature Z-forms.

By contraction we can derive the tetrad components of the Ricci tensor. For

instance,

Z 3 1
R ., = R ' = =
a4 aan " R n07 (since . ﬁqq 0]

_ : 2
= R 547 + R 147 [since 0 a o

EI
I
=

I
e
=
T
h.li

M
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The other Rah are all found to vanish. Our final result can be written covariantly

a3

R = R e[a] e[b] = R 9[4] 9{4} = EEﬁKPZ][Eﬂu][B ul) .

B
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CHAPTER I11: BivecTors, CoMPLEX 3-VECTORS AND THE RIEMANN TENSOR OF
SpAce-TIME
3.1. PRELIMINARY SURVEY

In Riemannian geometry we repeatedly encounter objects skew-symmetric in one or
more pairs of indices (for instance, the Riemann tensor or the connection 1-forms mab for
a null tetrad). Now, in space-time it happens that an interesting correspondence can De
set up between "bivectors" (skew-symmetric tenénra of order two) and the vectors of a
complex Euclidean 3-space. This correspondence is quite remarkable, because it is 1-1
and Lorentz-invariant. He shall see in this chapter the great furmal.ecunnmiea that
result from exploiting it.

We devote this introductory section to a preliminary sketch of the basic ideas,
which are very simple.

Our concern (all through the chapter) is with tensor algebra at a single point of

space-time; accordingly, we fix our attention on the local Minkowskian four-dimensional

tangent plane. Suppose, for the moment, fhat some definite Lorentz frame (local ortho-
normal tetrad) has been arbitrarily specified. Then the tetrad components Fah of any
bivector can be split into an "electric” and a "magnetic” triplet:?
Fab T > [Hm, Em] (m = 1.2,3] (54a)
where
Hy = Foq » etcus Em = F . - (54b)
In passing from F_ = to its dual
F* = 3 /-ge FC9 «—> (-E_, H)
ab abed m m

the electric and magnetic parts get interchanged.

Only two algebraically independent Lorentz scalars can be formed from Fab ;. we

T Indices a,b, ... , & in the first half of the Latin alphabet are tetrad indices
(range 1-4):; indices m,n,p ... in the second half have range 1-3. The signature
of the space-time metric is chosen so that g, °© diag (-1, -1, -1, 1) in a local

Lorentz frame.
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nay take these to be

ab . ab _ 2
Fah F Fab F. 2(H E )

. ab
Fab F

I

- 4 E.H.

Consider now the effect of changing to a new Lorentz frame. The correspondence

54) imposed in the new frame, now associates a new pair of triplets H%, E% with the same
ivector, Since H'2 - E'2 = H2 - E2 we could, if we wish, correlate each bivector
orentz-invariantly to a cartesian 6-vector [E, H) in a pseudo-Euclidean space with metric
iag (1,1,1.-1,-1,-1]. Each Lorentz transformation would then set in gear some rotation
f rectangular axes in the B-space. But this idea would not be particularly useful,
zcause it does not work backwards: not every transformation of the real orthogonal group
EEH] is the result of a Lorentz transformation - only that subset which preserves the

ilue of Ern Hm . (This is also obvious from the fact that it takes 15 parameters to

ecify a G-dimensional rotation, as against 6 for a homogeneous Lorentz transformation.)

However, there is a simple remedy for this defect. Introduce the complex
vector
|:[+:I = F - i F* < > (F - iF ) (55a)
ab ab ab m’ m
ere
F = H + 1 E . [55b])
m m m

I.
) is self-dual in the sense that

(+)* . _(+)
" ab = 1P

stead of real bivectors FEI , 1t is completely eguivalent to work with the complex self-

b

since the correspondence between them is 1-1 (F 15 recovered

11 combinations Fl
. & ab

II:] r
F[+]

m ab

by taking its real part). The following interesting results now emerge:

(1] According to (55al), the E-space of complex self-dual bivectors splits
rentz-invariantly) into two essentially identical spaces {53 of complex 3J-vectors Fm
h real bivector Fab is thus linked in 1-1 fashion to a vector of 63

(ii) The complex number
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(+) _[(+)ab ab ab
1 = 1 - *
hFab F ’[Fah F i Fah F~)
2
= [ﬂ_+ iE) [56)
= 8" F_F
m n
is essentially the only scalar which can be formed from F;;]. If we devise a Lorentz-
invariant metric Tmn for &fi such that the scalar (56) is equal to the sguared norm
?mn Fm Fn' then Tmn = ﬁmn and A%B is Euclidean. Each Lorentz frame in Minkowskl space

can now be linked to a cartesian frame 1in iﬁa , each proper Lorentz transformation to an

orthogonal transformation in 2 3

(iii) The converse i1s also true: Given any orthogonal transformation in iga s
there is exactly one proper Lorentz transformation which induces 1it. We shall verify this
in detail later, but it can be made plausible by simple counting. To specify a rotation

in 153 requires 3 complex or 6 real parameters, which is the number of parameters in the

homogeneous Lorentz group.
This fundamental result allows us to rotate axes freely in iga with the assurance
that any such rotation is actually realizable by some rotation of the space-time tetrad.

is any real bivector for which (56) does not vanish, axes can always

F , 1
(For esample if Fah

be rotated so that

e e(+) _(#)ab, 3 _ _
F, = (F_°F ¥, F, = F, =0

for the associated complex 3-vector.) Later we shall make extensive use of this freedom.

Null bivectors, characterized by any of the equivalent conditions

?mn FF = 0, (57a)
m n
ab . ab
= - 57b
FoF Fro F 0, (57b)
e2 = W, E.H = 0, (57¢)

have an especially significant role: they can be correlated to null directions in space-
time. In fact, from the electromagnetic interpretation of (57c) as a plane wave, we know
that any null bivector singles out a characteristic null direction (propagation vector).

Conversely, to any given null-direction there corresponds a c¢lase of null electromagnetic

fields all propagating along the given direction, but differing in amplitude and plane of
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polarization; this class is represented by a null ray A Frn in féS' where Fm satisfies

(57a) and A is an arbitrary complex coefficient. (To see this, note that the complex

scale transformation

when written out, gives

H* + 1 E' = H_ cos® -E_ sin® + i(H_ sin® + E_ cos8),
m m m m m m

which is just a rotation of the plane of polarization.)
Thus there is a 1-1 correspondence between null directions in space-time and null

rays in 153. We shall next sketch how this can conveniently be used to pick out charac-

teristic null vectors for the Weyl tensor C (trace-free part of the Riemann tensor).

abcd
(In what follows, the duality operation applied to a skew-symmetric index-pair will be

denoted by an asterisk placed over the pair.)

Instead of the Weyl tensor itself, it is eguivalent and convenient to consider the

complex combination

(+) _ .
Eahcd B Eab:d * Eahcd

This shares all symmetry properties of the Riemann and Weyl tensors. In addition, as will

be shown in the next section, it is self-dual in both index pairs:

(+) [+] . [ +)

L abdﬁ = C éEcd =1t

abcd

Hence, if we apply the assignment (55) to each index pair independently, we see that

C[+]ahcd (and therefore its real part, the Weyl tensor) is represented (Lorentz-covariantly)
1
by a complex symmetric tensor Emn in fﬁS . For example,
(+) () L) o
C a2 T C qads 7R L qag G L e
The cyclic identity
[ +] (+) (+) _
. 1423 . 1342 t 1234 0
yields
:T.[C11 + EEE + ESEJ = 0,
so that C is trace-free: Tmn C = 0. Thus C has 6 - 1-= 5 independent complex
mn mn ' mn -

components, matching the 10 independent real components of the Weyl tensor.
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To obtain null vectors Ha which are in some sense characteristic of the Weyl

tensor, we look for the associated null 3-vectors Fm . We could, for instance, examine
the null eigenvectors of Cmn in GEF It is somewhat more general to seek solutions F
of

c__ " ET =, - M EN - o (58)

Since a complex scale factor which remains arbitrary in each solution of (58) does not
affect the associated null direction ha, it is simplest to think of (58) as a pair of
inhomogeneous equations in a (projectivel) complex Z-space (e.g. by Tixing F3 = 1]. Now,
in a complex 2-space, two quadrics always intersect in 4 points (counting possible coin-
cidences), each of which corresponds to a null ray in 123' We thus arrive at the theorem
of Debever and Penrose, according to which a general Weyl tensor determines 4 null eigen-
directions in space-time. An examination of the various possible coincidences in the
solutions of (58) leads immediately to the Petrov-Pirani algebraic classification of the
Weyl tensors.

The following sections will fill out this preliminary sketch with a more systematic
presentation. In one inessential but noteworthy respect our detailed discussion will
deviate from the foregoing: complex null tetrads rather than real orthonormal tetrads will
be employed as basis vectors. The corresponding new bases 1in A%B will then include null
J-vectors. The imaginary unit i now enters the formalism from two quite different and

independent sources. The slightly reduced transparency of the resulting formalism 1s

more than compensated for by its greater adaptability and compactness.

3.2, BIVECTORS AND THEIR DUALS

In this section we collect a number of basic prupertieé of anti-symmetric tensors
and the duality operation which hold in 4-dimensional space-time.
" We define the alternating pseudo-tensor as

]E

Nagys - (-g €aBys (59a)
where EEBTﬁ [ = EﬂBYﬁl is the Levi-Civita permutation symbol (skew in each pair of indices
with €493a = * 1]. Raising indices with guu yields

0BYS _(gyTE RS (59b)
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If D"uB" is any tensor skew in the index pair a, B, we define its dual with

respect to this pair by

--HU--

an W =W _ 1
Q o Ng8uv . (60)
From (53) we have
uvpao uvpo  _ pa
Taguy €auv 2 ﬁuE ’
PO _ [p . 01 . .
where ﬁuﬁ = 2 ﬁu EB is a generalized Kronecker delta symbol. It follows that

applying the duality operation twice to the same index-pair reproduces the original tensor,

apart from a sign:

g t Rt = -ttt (61)

Next we consider any fourth-order tensor DﬂETﬁ , skew in each of the first and

second pairs of indices:

= = . (62])
mmBTﬁ Q[uB]Tﬁ muB[Tﬁl
Let us evaluate the "double dual”:
. YO o yépo _uv 53
QHB * /4 “aBuv € v po (63)
Now,
e A N AP LN LI L I
aBuv o Bou v
and the 24 terms on the right can be split into 6 groups of 4 according to
Yopo  _ vo po po G?ﬁ .
CaBuv  © ﬁuB Guu ﬁuB MV
. 2 Gﬂ[*r Gﬁlﬁ I EU[T ﬁﬁla _
af  uv aB uv
Substituting this into (63), we guickly obtailn
« Y6 _ Y0 4, YO TRY . 4 EET 6 Jo . 54)
muB * D af : ﬁuE v pv [o J Blo [
Two special cases of this general identity are often guoted: if FuB’ GuE are any
bivectors, then
F * GT*FJ _ .I__—_TI:’ G - - é 5T F Guu . [55]
op op o WV
F+ FY? - a4 68 FrFY (66)
ap o uwv
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The last result shows that the dual of a bivector is also (apart from a scalar factor) the

matrix inverse to it.

For our purposes, the most important application of (64) is to the four-dimensional

Riemann tensor. We find
LY6 Y6 4 Ly SG] 57
H&B* Huﬂ 6[& a] (67)
where SE is the trace-free part of the Ricci tensor:
ol o o _ M
S = R - 1/4 6 R, R = R . (68)
B B B ap aBu
In the case of the Weyl conformal tensor
Y6  _ va Ly 6 ] yé
C = R 1/6 & R 69
aB Huﬂ v+ 2 5[& 3] / a8 (69)
all contractions vanish, so we have simply
* * - - /0
EﬂETﬁ ng?ﬁ (70)
A complex temsor p o is called self-dual with respect to the skew index-pair
a, B if
* = i . 71
p..uﬂ.. * D..ﬂﬂ.. (71)
If @Q o8 = [ (o8] is a real tensor then the complex combination
0B, . . B .. . OB
is self-dual by virtue of (B61). From (70) it follows that
* — £ 3
EuBT5 Euﬁwﬁ (73)
and hence that
(+]) _ . .
= .- 74
CHEYﬁ EuETﬁ . EuBTﬁ L74)

has all the algebraic symmetries of the Weyl tensor (including zero trace) and in addition

is self-dual in both index pairs.

3.3, SiMPLE BIVECTORS AND THEIR ASSOCIATED 2-FLATS

A bivector F_ is called simple or decomposable if it can be expressed as a wedge

B

product

F = g E

o8 « 58 Ag Eu (75)
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A necessary and sufficient condition for FuB to be simple 1is

F[{IB F"f']ﬁ = 0 P

a result valid in any number of dimensions. In four dimensions, the condition reduces to

F+ F*Y = (76)
Hw

by virtue of (66).
The right side of (75) is unaffected if we add to either g or E an arbitrary

multiple of the other. Thus, FuB does not fix g, E uniquely but only the Z2-flat Ez

containing them. Since every 2-flat contains space-like vectors, we may (with no loss of
generality) assume that E is an arbitrary space-like vector of Ez (E.E < 0), and that g is

orthogonal to it. There are now three cases to be distinguished, according to whether g

—

is space-like, time-like or null.

If FuE Fm'B < 0, g is time-like and EE is a "time-like 2-flat"”, i.e. a 2-flat
containing time-like wvectors. (The xt plane in Minkowski space-time is a typical example
of such a 2-flat, and, indeed, can always be made to coincide with it by a suitable
rotation of axes.) Physically, a simple bivector of this type can be thought of as a

Maxwell field, reducible to a purely electric component by choosing a frame of reference

whose 4-velocity is g or any other time-like vector in EE .

similarly, F_. F®® > 0 makes q and I

aB q > space-like - i.e. EE contains space-like

vectors only (e.g. yz plane in Minkowski space-time]. It can be thought of as a field

reducible to a purely magnetic component.

The most interesting case is that of a null bivector, characterized by the vanish-

ing of both invariants:

FﬂB - D, F FﬂB - 0 . [?F]

F;E
In this case, E_is a null vector. The Z-flat 52 touches the null cone along a null ray
parallel (and simultaneously orthogonal!l) tnlﬂ; apart from this parallei congruence of
null rays all directions in E2 are space-like, and all urthngunai tD.E; To visualize

such a null 2-flat we may think of the plane x = ct, z = 0 in Minkowski space-time.  The

electromagnetic analogue is, of course, a plane wave with EE defining the instantaneous

plane of polarization.
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If a bivector Fu is simple, the same holds for its dual, according to (76) and

B
(6B1). Thus, F;B defines a "dual 2-flat” E% . From (75) and the definition of the dual
we see at once that F;B qB = F;E EB = 0; 4di.e. each vector in EE is orthogonal to every
vector in EE' If EB FuB z 0, EE and EE can therefore have only the zero vector in
common: they bear the same relation to each other as the xt and yz planes. If FuB is

null, the situation is different: EE must share the (self-orthogonal) null vector g with

EE , since two null vectors in space-time are orthogonal 1t and only if they are parallel.

To make this more concrete, suppose the axes rotated so that EE has the egquations z = ct,

y = 0. Then EE is given by z = ct, x = 0 and thelr intersection is the null ray z = ct,

x =y = 0. We conclude that if a bivecteor satisfies (77), it and its dual can be written

F = 2 K[ b = 2Kk (78)

£
0B ofg1 "ap (e V8]
where Kk is a null vector (uniquely defined up to a real scale factor) and x, y are a pair

of space-like vectors of equal length, orthogonal to k and to each other.

It will be useful to re-express (78] in complex form. The 1."alatzi.|:ur"|:€-‘r
F = p_+P_<==> D = F )l F - iF* (79a)
op nf of o B apf of
establish a 1-1 correspondence between real bivectors FmE and complex self-dual bivectors
) . af _ of
Peg Since FuB FL FuEF by (65), we have
! af  _ aB _ . . 0B
: DGB P FuB F 1 FHB F (78b)
showing that FuB is null if puE is, and conversely. In that case, (78) gives
= 2 ke t,o . t, = x, *+1 : 80
Pag “la "B] B Y | 160)

We thus reach the important conclusion that each complex null, self-dual bivector

defines a unigue real null direction. Conversely, any complex bivector of the form (80)

k.t Pog

with k.k = t.t = k.t = 0 1is null and satisfies DEE =+ i

3.4, NuLL BAsis FOR 1-FORMS

As basis E[a] in the Minkowski tangent space at each point it is convenient to

choose a complex null tetrad, following a procedure first extensively used by Sachs.

T The bar denotes complex conjugation.
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This is constructed as follows. We begin by selecting an arbitrary real null
vector k. To be definite, let us suppose that k is directed into the future half of the
null cone. Next, we arbitrarily choose a second future-pointing real null vector m (not
parallel tD.E], and we normalize it by the condition Kem = 1. The pair K, m span a time-
like 2-flat. To complete our tetrad we require a pair of vectors spanning the orthogonal
space-like 2-flat. These could be taken as two (real) unit space-like vectors Xy Y

!

ocrthogonal to 5. m and to each other. It is convenient to choose the equivalent linear

—

(et
I
™

L
—
=

I
o
ol
[

- i - - -
combinations t = 2 *(x + iy), Then t.t = -1, t.t = t.t = 0, so that

t, E are a conjugate pair of complex null vectors.

Tt

Our (dual) basis is now

E[Tl =k, .9[4] =m, _EFEJ -t E[B} _ E, (815)
and the fundamental matrix gab = E[EJ.EFD] has components g14 = g41 = 1, EES = ESE = -1,
ab + - (b)
other g = 0. For the inverse matrix gah and the basis vectors E[a] = Eah E WE

immediately derive

8., ° g2° - , (82)

0 -1 0 0

1 0 0 0

g = det [Eab} = + 1 ,
E[‘T] = m X Efqu = E ¥ E[z} = - tul %[3] = - J:___ L [B-‘]h]'
The corresponding basis for 1-forms, ﬂa = e[a]u dxu » satisfies fhe reality
conditions

pl = 91 , B* =%, 92 =93 (83)

Inversely, we have

dx” = e 89 = m- el + k% g% - t% g2 - % g3 | (84)
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The expression for the metric in terms of the basic 1-forms is

dEE = 2., 6° Eh = 2(els" -0203) . (85)

This can be written eqguivalently as

g © o © 8 = hu rnB + hﬂmu - tu tE - tB tDL »

BaB

in which form it is commonly known as the "completeness relation” for the tetrad.
One point is worth emphasizing. Since our basis is complex, a real vector A (or
1-form Hu dxu = Aa Ha] will have complex tetrad components Ha =-ﬂ'5[a] . The condition

for ﬂ to be real is

d =

= S = n = a = - EE
Ha 5/ Ha 5] — Hq H1 ’ ﬂq H4 ’ AE HS (86)
This extends in an obvious way to tensers of higher order: a temsor T g 18 real if
- . — o Eill - -
and only 1f 1ts tetrad components T, . ¢ ?uﬂ--. 24) (b) go over into thetir

complex conjugates on interchanging the indices 2.3.

The tetrad components of the alternating pseudo-tensor nuETﬁ = (- det guu] EuETﬁ
are
1
_ _ 3 a B Y §
Nabed - ¢ det Epu] fagys Zra) Tb) %) Tt
2 A
= (- det Euuj € _bed det [E[i] ) .
Taking determinants of both sides of
o, 0 e B
(a) Bag ®(b) &ab
we find
(det ) (det e }LJE = det = 1
SaB (L) Eab ’
=50
: 4 (87)
- = + . H
(- det Eou (det © 1) ] i

Let us make the convention that the null tetrad is always to be so oriented with respect to

the co-ordinate net that the sign in (87) is positive. Then

abcd abcd
£

_ - 88
nabcd * €abed ? 1 (88)

For future reference it will be useful to record the explicit form of the duality

d

nahcd p: . We note first the relation between the covariant and

relations p* = 1
Pab :
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contravariant tetrad components:

12 13 14
p - pq._a ] P = p42 r p - p41 » [59]
23 _ 248 34 _
P Pap » P Pgq » P Poq
We can now write down at once
* - * - Y
P12 1P » P * Pag |
* = - * = - L
P13 1 P13 » Py L Pog , (90)
.I
* = i * - I'
P23 PPy Py 1 Pa3 /
A self-dual complex bivector P is characterized by
Pig = Pog = o, Py = Pgq (91)

and therefore has three independent complex components p12, paqr p14 - DES i we find

. ab 4 ~ 2
2 Pap P = 2Py Pgq " 2Py, TPyl (92)

3.5, CompLEXx VECTORIAL BAsis FOR REAL 2-FORMS

b
The six independent 2-forms 8% A B of course span the vector space of all
[a, B] a b
bivectors (2 FEB dx~ dy = Fatl 8- A 8], but it is preferable to take as basis the three
linear combinations
21 = BS A 54 ’ 22 = 51 A E2 ’
(33a)
23 = %[51 A Eq - 52 A ES]
and their complex conjugates (cf. (83))
7V = e%aet . 72 - 9l A,
(93b)
- 4
23 = %{31 A B+ BE A 53] .
The tetrad components Zmab are:
1 3 4 2 1 2
z = =
ab ¢ ﬁ[a S bl ° L ab 2 15[a S bl
3 1 4
7 S I L R S



From (91) it follows immediately that z"

respectively:

m!l
Z ab

-
—

il
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and Zm are self-dual and anti-self-dual

_rmlli
Z ab

m
ab

— —m

-1 (94)

»

Hence every self-dual bivector is expressible as a linear combination of the

three Em alone.

a self-dual bivector and its complex conjugate.

Fah

1
2

According to (79a) any real bivector Fa

b can be written as the sum of

So there must be a relation of the form

F oz (95)
Im

+

Reference to (393) shows that (85) is indeed an identity, with the numerical coefficients

given by

Ml

I

[Compare the remarks following

By wirtue of (94), the

1

s F ¥

ab

Thus, the associated self-dual

=

with

F[+]

34 -

1
2

(+)
F13

The complex invariant associate

ab
[Fab F

1
i

12 ° 3 14 23
-~ (96)
R DR L T~
(86).)
duality operation corresponds to multiplying Fm by 1 :
02a08® = iF M -1F " . (97)
m m
: [+] .
expression Fab = Fab i Fab reduces, as expected, to
FiY e a6 - 2 (98]
ab m
(+) (+) (+)
1 = 1
J (99)
(+] (+] (+] _
F 24 P14 Foa = 0 -
d with Fah is given by (cf. (92))
1 « ~ab - 1 (+) ab
i Fah F~) 8 FEllj F[+]
- 2F, F - 1F° (100)
12 * 3
= y"F F .
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The 3 x 3 matrix Tmn and its inverse Tmn are defined by

0 1 o | 0 1 0
mn
Y = 1 0 0 ; Y oF 1 0 0 . (101)
0 0 -L 0 0 -2
. -1 _— .
At a given space-time event, we may thus relate gach real bivector to a vector 1in
a complex Euclidean 3-space E’S in which is defined a scalar product
mn 1 ~(t) _aB
= g G 1
¥ Fm Gn g FaE (+) 7 (102)
corresponding to the (complex] "inner product” of the real bivectors FuB ) GaE
Simce F = 6 when F . = ZP_ , (102) yields
m m o B ap
1 P g ap s
_ 103
z EEH.B Z Y » [ ]

showing, as usual, that the metric coefficients are the inner products of the basis

vectors Zq. ZE, 23 in ré 3

This association of real bivectors with complex 3-vectors is an invariant one: a
change of tetrad corresponds merely to a change of basis in 5:3. More explicitly, a
Lorentz transformation which carries (k, m, t, t) into another null tetrad satisfying (85)
will turn ZP into another self-dual triad satisfying (103). It will thus affect F__ and
FD ; but since the 2-form 2 Figldx[ﬂdyﬂj = Fp 7P is left invariant, Fp and Z° transform
contragrediently and there is no effect on the vector representing FHE in & 3 -

The really interesting result is the converse o+ this: an arbitrary rotation of

7P into another self-dual triad satisfying (103) can always be brought about Dy [exactly

one) Lorentz transformation of the null tetrad. (This means we can rotate axes freely in

b

3

To prove this, we have to show that the carrelation between E[a] and ZE is 1-1.
That is, any given triad of self-dual bivectors ZEE satisfying (103) should define a
(unigque) null tetrad (properly oriented - see (88]) in terms of which the 7P are given by
expressions of the form (893a).

In fact, it is easy to see that the reqguired null tetrad is already fixed by qu

2
Z alone. According to (103) and (101}, the self-dual Z-forms 21 and ZE are null; Dy



33

the remarks following (80), they define a pair of real null directlons mu and ku respec-

tively, such that

A s Am, 22 = KAt
o _ o ) o o
where s = sudx , L = tﬂdx are complex null 1-forms with 5, M = tDL k = 0. Two real
scale factors at our disposal can be put to use by reqguiring tu Eu = = 1, Hu mu = 1.

Arbitrary multiples of m, k can still be added to s, t respectively and we utilize this

freedom to arrange ka s” = mu tu = 0. Then the (real) space-like Z-flat orthogonal to k
and m'cnntains both s and E, whence 5 = AL + ﬁﬁ, From 5.5 = 0 we infer Ay = 0, while

1 Zaf . :
z o8 z = 2 yields u = - s.t = 1, Hence s = t and we thus arrive at a null tetrad

- 2
k, m, t, t, in terms of which 21 and 7 are expressed by relations of the proper form

— -t

(93al. The rest is routine.

The usefulness of this 1-1 correspondence between null tetrads and bivector bases

2P in & is clear. If, for example, we wish to single out for special attention a pair

3
_ (+) _aB
of null bivectors FﬂE , GuB (with Fug G[+]

our basis along the directions of the corresponding 3-vectors Fp, Gp in ;é 3 50 that

o). That such a simplification can actually be achieved by

2
2z 0), we can point the two null legs 21, . of

Fp = [Fq, 0,07, Gp = (0, GE'

a suitable rotation of the null tetrad k, m, t, t is a fact we have no need to verify

explicitly; 1t is guaranteed by the result just proven.
To conclude this section, we record for later reference, some remarkable formulas

for the inner products of the basic biwvectors ZE We have, for example,

B-
v 1 Z uv -
£ z = 4 t
g ap  Bv £ t[amu} h[B v]
= mu hB - tu tE
= 1 r -t ot by (85
* By " Ma hﬂl [a RI y (85)
3
- 1 -
3 EuB ZuB .
The general result is
(TRVIR iy n mn mnp
Z P z =
oy Bv ¥ gmﬂ . ZDEE
WV m -n - (104)



34

3.6, CHARACTERISTIC NurL VeEcTorRs ofF THE WeEyL TENSOR

The well-known algebraic classification of Weyl tensors initiated by Petrov can
be recovered in a simple covariant form with the aid of the complex vectorial formalism.

We recall from (74) that the complex tensor

(+) _ . . 4
Cuﬁ?ﬁ EHBTﬁ i DHBTﬁ (74]

is self-dual in both index pairs and therefore expressible in terms of the self-dual basis

[+]) m n
- i 5
EﬂﬂTﬁ Emn ZGB ZTG (105)

The coefficients Emn are the components of a complex tensor in Aﬂa. This tensor is

: _ (+] _ (+) i
symmetric [Cmn = Cnm , corresponding to Eabcd = Ccdab] and traceless:
mn _ . _
Y Emn 0o, i.e. ESS i E12 . (106)

[(108) follows directly from (104) and vanishing of all contractions of E;;ia

All information about the Weyl tensor (10 independent real components]) 1s thereby

-]

condensed into a 3 x 3 symmetric traceless matrix Emn (5 independent complex components].

To display the connection between these two objects explicitly, we take the real part of

(105):
m n - -m =N
= i z . 10
2 EaETﬁ Emn zuB ZYE ! Cmn af o (108a)
In terms of tensor products of the Z-forms EZB = 3 Ezb Ba A Eb we can write equivalently
i @ ae®etaedy = ¢c m".T 7T"Z". (108b)
abcd mn mn

We next seek the class of null 3-vectors Fm (arbitrary up to a complex scale-

factor) satisfying:

C F F = 0, (108a)

0 = iy F'E = F F° - (F)T. (109b)

(This class contains in particular all null, self-dual eigenbivectors of E;;id . Since

each null complex 3-vector defines a unigue null direction in space-time by (80), we shall
arrive in this way at a set of characteristic null directions ("Debever-Penrose null

vectors") associated with the Weyl tensor.
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Let us set

2 2
F1 = £ F ‘ , F3 = & (110)

]
—_

so that (109b) is automatically satisfied. Substituting into (108a) and eliminating C33

by (106), we find

4 3 2 2 3 4
C11 E + 2 E13 En + 6 E12 E'n + 2 EES En + sz iy = 0 . (111)

The four roots of this guartic yield (ignoring possible coincidences for the moment) four

Debever-Penrose null vectors.

We may always rotate axes in fga so that the null axis 22 is parallel to a

particular characteristic vector Fm , 1.2,

P 7" = 52 7° or FT = [EE, 0, 0) .

51 A Ez = kAt , we see

This means n = 0 is a root of (111]) and E11 = 0. Since 22
that we have effectively rotated the null tetrad so that kY is the Debever-Penrose vector
corresponding to Fm . With this special choice of basis, only four complex coefficients
appear in the tetrad expansion (108) of the Weyl tensor.

The relationship between the Weyl tensor and a principal null vector K can also be

ot

expressed without bringing in the (largely arbitrary) vectors m, t, t. We first note from

(93a) that

m b m < 1 oM

i ab k™ = 61 ta * 3 63 ha ’ (112)
and (105) then yields

(+) b c T I -
- = . 3
Eah:d K E11 ta td ' EﬂS h[a td} ) E12 Ka k'r:I (113)

This holds for an arbitrary null tetrad. The necessary and sufficient condition that the

null vector h be a Debever-Penrose vector is that E11 =0, i.e. that

(+) b ,c _
Eahcd k™ k= = Ha Py * hd P (114)
where P, is some complex vector. By (74) this complex condition, which can be written
. (+) b c _ : . .
eguivalently as h[FDa]bc[dhe]h k = 0, is equivalent to the two real conditions
b  cC b ©
k = = * .
r¢ Calbe [d Ke1 © K 0 = ke Cogpera Me1 © K (113)

Actually, it is easy to verify (take real and imaginary parts of (113)) that either one of

the real conditions (115) is a consequence of the other.
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We proceed now to consider the case ("algebraic degeneracy”) where two or more of
the Debever-Penrose vectors coincide. The characteristic equation (111) will have n = 0

as (at least) a double root if qu = qu = 0, The necessary and sufficient condition for

algebraic degeneracy is therefore that

(+) b c _
Cabﬂd k- Kk = qu ha hd . (116)

We need not enter into details of the obvious algebraic classification which can
be based on (111). However, two special cases are of interest:
(1) Eabcd is said to be Type N if ha is a quadruple Debever-Penrose vector. The

Elit' = i = = = =
con ion that n 0 be a quadruple root of (111) is that E11 qu E13 E23 0. Hence

a Type N Weyl tensor is expressible as

o 4

abcd 27 hfa tbj h[c td} ) (117)

(1i) If Eabcd has two pairs of coincident Debever-Penrose vectors it is said to be

Type D. We can then align the tetrad so that the two distinct null vectors are k, m.

2 1
The associated complex 3-vectors are 7, 7 respectively; this means n

0, £ =0 are

double roots of (111), and C i EBB is the only surviving component of Dmn' Thus,

12

every Type D tensor satisfies, in addition to (118),

(+) O - - C..m m . (117a)

Cabeg ™ M 12 Ma M4

Schwarzschild space-time provides the best-known example of algebraic type D; in this
3
case, 512 = 2m/r and k, m are the past and future directed radial null directions

——F

(cf. Section 4.6].
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CHAPTER IV: CoMpLEX VEcTORIAL CALCULUS
4,1, INTRODUCTION

In the previous chapter we saw how various relationships between null vectors,
bivectors and vacuum Riemann tensors could be most economically unravelled in the Euclidean
space ;553 of complex 3-vectors, referring as little as possible to the original space-
time. These were algebraic considerations, confined to a single space-time event. It
is now natural to ask whether this approach can be extended so as to describe the point-to-
point variation of geometrical structures in terms of objects in ﬁia

That this may lead to a rather neat formalism can be seen from the (in some ways

misleading) analogy of a rigid field of frame vectors 1 in ordinary Euclidean 3-space.

~(p)

Since a bivector in a 3-space can be correlated with a vector, we can replace

Zip) Dl T T Ygop Ao
(involving the Ricci rotation coefficlents Tqrp = - Trqp] by the simpler equivalent
relation
Loy - v) gy 77 % X La)
involving three "Darboux vectors” HED] [EIS} is the "angular velocity” of the rigid
triad, for displacements along 5{3]]. For an arbitrary displacement qﬂ = d“p.i{p] the
change DF_E[q} is
D L{q] = - 0 X E[q] (118)

where g = Efp] dxp is a vectorial symbol for a triad of 1-forms.

In a roughly similar manner, the exterior differentials of the basis 21, 22, 23 in
fé 3 can be simply expressed in terms of three complex 1-forms Up = npu dxu. Since Zp

is rigidly geared to the space-time null basis Ea , it is not surprising that there is a

close relation between oP and the connection 1-forms mab . In fact, 2 W is related to
up in precisely the way that a bivector Fab is related to its associated complex 3-vector
Fp (see (895) or (96)). The curvature Z-forms nah similarly have their counterpart Ep

in 4 g It turns out that the relationships between ZD. Up and Ep can be written wvery
simply. In this way we obtain a compact and nearly self-contained translation of Cartan’'s

calculus of moving frames into a complex vectorial formalism. By proper choice of the
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basis, objects such as Up of course acquire a direct geometrical significance in terms

of shear, rotation and expansion of principal null curves etc..

4,2, CONNECTION 1-FORMS IN ,@3

We consider a field of null tetrads EFEJ . The exterior differentials of the
1-forms 6° = e[a]u dx
de” = -u ae° (119)
c
completely define the connection 1-forms W =T Wy These six 1-forms which, though

not real, are equivalent to six real forms, can be linearly combined without loss of
information into three complex 1-forms Up and their complex conjugates in exactly the

*

fﬂ. We define Gp by

same way that the six 8% A ﬁb were combined to form zP  and

p - P
= z . 120
2 mab Up zab + ap ab ( al

In terms of tensor products of forms, this reads more briefly
w. 68ae’ = o 2P + 5 7P (120b)

The explicit relations are formally the same as (86) apart from a common factor 2, i.e.

0y = 2[m14 - m23] etc. Solving for w we find
1 4 - 2 3 _ ., -
W, =W, = s[ua + n3], W, W “[GS GS] ,
1 _ 2 1 1 _ 3 4=
T 3 U1 . w w o, = 3 U1 , (121)
4 ] 3 = ] 4 3 mE = 1. _G'-
m 2 m .1 E GE F (T} 3 ,.-l 2 2 "

Tetrad components of the 4-vector associated with the 1-form Gp are defined by the

expansion ¢ = o 62 L so thatd =3 0" . Since ©
pa P pa

3 .
8 some care is needed 1in

handling the tetrad indices 2, 3. For example,

&
The reason why this procedure works is that the 1-forms mabn “C(p) * D e[a] formally

s

satisfy the same "reality conditions” as the tetrad components of a real bivector

[ef. eq. (86)].
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1 C 1 , = .= -C

= = - s = - a8 .
Yoo ° © oo 2 9 * %c
Hence
T1 = - 10 ’ ?1 = -3¢ . (122)
22 13 23 12
a
Exactly the same scheme can be used to recast the six curvature Z2-forms @ b as
three complex Z-forms Ep :
o e@ae® = 1z ZP+3T ZP . (123)
ab P P
The explicit relations between ﬂah and Ep are the precise analogue of (121).
4,3, EQUATIONS OF STRUCTURE IN /@?3
We take exterior differentials of the basic Z2-forms
P - 3P 6@ AP (124)
ab
recalling that the coefficients zpah are constants [see (93)1]. We find
g7 = 177 (46 A 0° - 02 A de)
ab
A N
ab

b .
of zpab and the fact that the Z2-form d&  commutes with

by wvirtue of the skew-symmetry
Using (119) and (120a) to express de” in terms of Up ’

the 1-form 6° [equation (3)1].

we obtain
—_ — |:|.
. sma 5 C 9

(125)

i.e.

These relations are the transcription of Cartan's first equations of structure into ,6:3 .

Since the g_, are constant for our null tetrad, the second equations of structure

(43) may be written
(126)

ﬁal: - dmah * Yac Aoy o
and

Through the relations (123) and (120a) we can immediately express ﬁab in terms of

For the last term of (126) we have

dmah in terms of dUp .
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4 w A mc = (o Em + c.c.) A (o ch + C.C.)
ac b m ac n b

pmnp

= = A " .
3 E zpab Gm Gn + C.C

by (104). Because of the linear independence of the six bivectors Zp. ED, we may infer
I = do -te  d"aAg (127)
P P pmn

as the complex vectorial equivalent of (12B).

4.4, BiancHI IDENTITIES

The Bianchi identities express the identical vanishing of dzﬂﬂ, i.e. they are the

compatibility conditions of (127):

d Z = = g do A o .

d £ + g L A QT = 0 . (128)

One quickly checks that the compatibility conditions of (128) [c:l2 ED = 0) do not give
anything new.

An algebraic identity for the curvature Z-forms Ep (equivalent to the cyclic
identity) follows from (125) by taking the exterior differential:

pmn

0 = d° 2727 = "™ (do A Z -0 A dzZ)
m M m N
Substituting for dﬁm and dZn leads to
E. A2 = 0, (123)

which should be compared with (46).

4,5, DEcomMposITION OF THE RIEMANN TENSOR

We now come to the important question: how does the decomposition of the Riemann
tensor into its irreducible components (Weyl tensor, traceless part of the Ricci tensor
and curvature invariant) appear in _ﬁga? In particular, can we write Einstein's wvacuum

equations Rab = U conveniently as conditions on the Z2-forms ED?

Since the six ZD, fp form a basis for all 2-forms, we may expand I as
. B
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-'“I —
§f = (C -=Ry )29+e_729 , (130)
p pg B sls pq

where qu , R and EDﬁ are complex numerical coefficients whose meaning we shall elucidate.

Because of the way we have split the coefficient of Zq, we may take qu to be traceless:

PQ

C = 0,
Y pq
We next form the wedge product of (130) with Zr , and note the identities
A" = iy, 2" A Z" = 0 (131)
which can be read off directly from the defining relations (93). Here, the 4-form
oA 2 3 4 a, B, v, &
= A A = dy d 132
n i8 6 6 A 8 NuBys dx dy dz dw ( )

represents the volume of a 4-cell (cf. eg. (88)). We thus find from (129) that Eqp = qu.

(It is also easy to show, e.g. by taking real parts of (136]) below and noting the symmetry

Rabcd ) I:El:tzlah » that
E- = E_ (133)
ap pg
50 Elja is hermitian.) We have explicitly
; = - P
inE -~ = L ANZ , tinR = ¥ AL . (134)
ofs p " ‘g : p

We proceed to consider the relationship between the numbers qu, R, EDE and the

tetrad components of the curvature tensor. From the expressions (123) for ﬂah in terms

of Ep , we find immediately for the corresponding self-dual combination [cf. eq. (9811]:

_ 4 A% _ p
ﬂab i nah Ep zah . (135)

Taking tetrad components of these 2-forms and using (130) yields

1 P 0
H -iR * = - =
abcd Habcd Equ B R qu] zab z cd
5 =g (136)
* Eﬁﬁ z ab ch .
We contract this equation, bearing in mind eqg. (104), also that
bd efbd
* = 1 =

Rah = 2 Napes R U
by the cyclic identity. The result is

R = tRg . +Y9 E

- 137
ad ad pg E_ )
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where we have defined the complex scalars

pg . _cd _p  35q
Y Lo= e 7 (138)

Now, it is easy to prove [e.g. from (65)] that a self-dual and an anti-self-dual bivector

are always orthogonal. Hence

2P 79 < ¢
ab

(139])

i

and consequently gab Tpaab = 0. Contraction of [13?] then shows that the coefficient R
is real and may be identified with the cutuature invariant, as already anticipated by our
notation. We thus see that the hermitian matriz Epﬁ (involving nine independent real

numbers) corresponds to the trace-free part Rab -t g R of the Riceil tensor. For some

purposes it is useful to have the explicit relation between the two. A straightforward

calculation gives for the coefficients in (137):

o o o Fas -
Y“EHB - t g KoKg K(ate) D=2
Matg) Kata) HkeMey + t,tey) p=3

nh;=ﬂ q=2 q=3 a (140)

It is clear that ?FEHB is hermitian in p, g, svmmetric and trace-free in a, B. The same

matrix gives the inverse relations: since

yPd oy aB 5P 50 (141)
af mn m n

(as we may easily verify from (138) and (104)) we obtain

R) . (142)

The important particular result of this analysis is the form assumed by Einstein's

vacuum equations in yZ By (134),

3*
R, = 0&——> £ AZ =0 = ¢t a2z° . (143)

The remaining term qu zpah Zqﬂd in the expansion (136) has the property that all

its contractions vanish. It therefore corresponds to the Weyl temsor in the manner
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described in Section 3.6.
Finally, it is worth recording how the conditions for algebraic degeneracy (Section
3.6) appear in the present context. The Weyl tensor has hu as a characteristic null

vector iff the basis in li is oriented so that E11 =0, 1i.e.

3
2
31 AL = 0 . (144)
Eabcd is algebraically degenerate, with k* as a double (at least) characteristic null
vector, iff E11 = E13 =0, 1i.e.
51 A 22 = E1 A 23 = 0 . (145)
It is of Petrov Type D, with k%, m" as the two double null vectors, iff Cyq = Cpg = Copy =
EES = 0, qu = U0, 1.e. 1f
' { 3
= 7 -
EE A7 52 A D
L146)
1 3 '
- - A z
[E3 3 R Z.) z 0
holds in addition to (145]).
4,6, ExampLe: THE KERrR METRIC
As an illustration, we consider the Kerr metric
2z
ds2 = duz - 2 drdv - 2 a EiHEE drdd - ErE + azlsinzﬁ d¢
Z . 2 2
- F do - (2mr/Fl(dv + a sin © d¢) (147)
2 2 2 . .
with F(r,8) = r + a cos 8 . This reduces to the canonical form
d52 = 2 51 54 - 2 EE 53 (148)
in terms of the null tetrad associated with the 1-forms
V2 8" = - dv - a sin‘0 dé ™
4 1
28 = 2dr + (f/F) V2 8 1
1 r (149)
2 i -1 1 ~
V2 65 = F? (d8 +1i sin 6 d¢) -iaF *sine . V28 _J
03 = &

where f(r) = r - 2 mr + aE .
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Taking exterior differentials ylelds:

_1 1 2 - 3 1
2 % de = -a F %tsin A cos B [E2 + 8 )] A B -
2z
-iaF cos 68 (6 A 53] . (150a)
1 -
25 dﬂz = -2 1 akF % r sin 6 [51 A 54] -
-3 2 2 2 3
-F 2 [r +a)cot 8 (8 AB) -
- 2 4 -
e N 3 B e T LN S (150b)
1
- -2 2
2 2 dﬂ4 = - F 2[mr - azr Sinzﬁ - ma2 305251[51 A 54] -
- 3
-iafF 2 cos 6 [52 ABTY) ., [150c)

It is now a simple matter to write out the 3-forms dZm in terms of Ea A 7" and compare

the results with dZ" = & ¢'Pd o, A zl:I to obtain o . (Tt is easiest to start with dz°.)

In this manner we find (uniguely):

-1 , -3 1 -1_2
2z o, = - (r + 1 acos 8)(iaF 2sin 8. 8 +F 8], (151a)
1
-4 - - 4
2726, = - (r+1iacos 8)(fF 23 _ i aF % sine . oY), (151b)
-1 - 2 - 1
2 2 US = [2F 2[mr2 - azr sinzﬁ - maE cos 68) - iafF 2 cos 8] 8 -

4

1 _3_ _
2 83] - iaF ! cos 8 . B . [(151c)

- (F ? cot 8 - iarF 2 sin 8)(8

The absence of terms involving ES and Eq from (151a) is highly significant.

According to (121], o, = - 2m13 so we have
_ — . ] L B
U"lﬂr = 0 ==, 0 Y 34 K 18 tﬂ. K,
3 o (152)
B
*
i.e. the null vector k° is tangent to geodesics. Furthermore, these null geodesics are
* 3

4
This could, of course, also have been inferred from the absence of 8 A 8 in (150a).
We can strengthen this result somewhat by noting from (151c) that Oay is pure imaginary.

Hence 1 o B

= 1 + - = - =
0 i [U34 534] Y 44 k, IB ma k™,
so we actually have hulﬁ hE= 0. Since the contravariant form of kY is
= kY, k5L kY K = o, 1,0, 00 = ax®/ar

we conclude that r is an affine parameter along the null geodesics.
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"shear-free" (Section 5.1), because

g o . B

P . - _ 153
o 0 > 0 Y a3 K t ot ( )

Similarly, the absence of 51. EE from (151b) implies that mu is tangent to a second
congruence of shear-free null geodesics.

Now, according to the Goldberg-Sachs theorem (to be discussed in the next chapter),
a null vector field in empty space-time is tangent to shear-free geodesics if and only 1if
it is (at least) a double Debever-Penrose vector. Hence k, m as defined by (143) should
each be of this type, and the Kerr metric should be algebraically degenerate Type 0.

We now check this directly by computing the curvature Z-forms Em = dﬂm - 1 Empq

aF A o7 . A straightforward but rather lengthy calculation leads eventually to the

simple results

31 ~ qu L, EE = C12 Z ES = 4 E1E z (154)
with
. 3
EﬂE = 2m/(r - 1 a cos 6) . ~ (155)
Since terms in fn are absent from (154]), and Em A 7" = 0, this confirms that the Kerr space-

time is empty [cf. eq. (143)]. According to (146), the form of equations (154) guarantees
that the Weyl tensor is Type D with k, m as principal null directions.

The foregoing results and particularly the intermediate calculations would have
been very much simpler for the Schwarazschild metric (obtainable by setting a = 0 in the
preceding formulael), which would for that reason have served much better for purely illus-
trative purposes. We have chosen to be more elaborate both because of the intrinsic
importance of the Kerr solution, and because (as shown by Kinnersley) it virtually exhausts
the class of "interesting"” (i.e. asymptotically flat) vacuum metrics of Type D,

Our formulae can be used to illustrate a curious conservation law for Type D
vacuum fields discovered some years ago by Ehlers and Sachs. Its physical significance
is not at present understood.

Keeping things as simple as possible for a moment, we consider the Schwarzschild

field. From (150) with a = 0, we can read off
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de = 0, dir B ) = r Bq A B ,

||

I
L
l—!

1

0
(]
ot
D
@

dlr cot 6 . 68 )

so that
- 1 ! 2 -7 _3
dir ﬁ[ﬂ -2 cot® .87)] = r Z , (156)
which therefore has a vanishing exterior differential. Since qu = Erm"r3 for the
Schwarzschild field, our result can be written
3
u[c1§f3 72y = 0. (157)

In classical tensor language, (157) expresses the vanishing of the cyclic divergence of

the bivector C 2/3 23 , and (156) shows how this bivector can be written as the curl

12 ap

of a vector potential.

Equation (157) remains valid for the Kerr metric, as one can verify straightforward-

ly from the formulae (155) and .(151) for E12 and d23 . To appreciate its role as a

conservation law, we integrate over any regular three-dimensional region UB to obtain

[ 28 - [ ac,?P 7 = o (158)
A\ 12 v 12
3 3
2/3 .3 |

by the generalized Stokes theorem (12]. Thus f E12 7~ , taken over any regular closed
S
2

E-Epa:E-Sz , is invariant under continuous deformation of 52 . We must now distinguish

two cases, according to whether or not S, encloses the singularity of C,, at r = a,
8 = im. In the latter case, it can be contracted continuously to a point, and the

integral vanishes. On the other hand, if S does enclose the singularity, the integral

2

is a nonvanishing constant. To obtain its value, we may take a simple limiting form for

52: v = const., r = R = const., with R =+ =, We decompose 52 into cells (dx, dE]
defined by the co-ordinate net: dxﬂ = 5; de, dyu = 5: do. Fquations (148) give the

values of the 1-forms Ha for a general displacement (dv, dr, d@, d¢ls from there we can

read off

_1
Ezfdﬁl:x tu x>~ 2 * R do , 6 (dyl) = 2 i R sin 6 d¢ ,
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-2
while 63 = 8 , and 81. Eq are of order a for dx or dy as arguments. Hence
3 = o B
Z (dx, d = -t t dx d
(el dy) [o Sg] & W
P s ol .
= 3 1 R sin © d6 dé (R >> a) ,

and, by (155]),

2/3

2/3 3 . 2m)
[ ©C RS PTG, ;

2 R + = R

3 i HE sin 6 d6 d¢

3 | . (159)

2 i [Emlzf

for any S enclosing the Kerr singularity.

2

4,7. THE EHLERS-SAcHs CONSERVATION LAw

Equation (157) is a general identity for any Type D vacuum metric (the null tetrad
is supposed to be oriented so that the two degenerate characteristic null vectors are K
and E}. We shall present the proof here, as it provides a good illustration of the power
and simplicity of the complex vectorial formalism.

The Bianchi identities (128) for dE read

3
di, -, Ao, EE Aa, = 0 (160)
Now, according to (148) and (130), we have
2 1 3
Eq - qu -, Ez = E12 zZ |, E3 = 4 E12 i
for a Type D vacuum metric. Also, the equations of structure (125) yield
3 1 2
d Z = 3 Z A o, - 12N o,
Substituting into (160), we find
3 3
g = 4 d[E12 ) + 2 Eﬂz dZ
_ 1/3 2/3 .3
= B qu dEC1E Z7)
which is the required result.
The theorem can be extended to any vacuum field of "Type II" - i.e. having two (but

not three) coincident Debever-Penrose vectors - though both the statement and proof are now

a little more involved. In this case (157) holds if the tetrad is chosen so that k is the

I

double Debever-Penrose vector [(hence C11 = E13 = 0) and so that CES 0 (it is not hard to
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show that this can always be done for Type II). We now have

2 ] 2 3
E “E 2. E -': E+E ZJ- Ea _4E122|

When we substitute into (160), the only difference from the previous case is the appear-

ance of an extra term

1 2
M =
Coo £ Aoy Loy 0 M8 AB

But this vanishes for an algebraically degenerate vacuum field by the Goldberg-Sachs

theorem [513 = Oy T 0, see (153)). S0 our previous conclusion remains wvalid.
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CHAPTER V: NurLL RAaYs AND THE GOLDBERG-SACHS THEOREM
5.1, MurL Geopesic CONGRUENCES

We begin with a review (in conventional tensor notation) of the well-known "ray

optics” for a congruence of null geodesics developed by Sachs.
. . o a, 2 3
Let the congruence be characterized by the eguations x = X (v » ¥ - ¥, v], where

the y's are constant along each ray, and v is an affine parameter, arbitrary up to a

linear transformation

v =+ v' = Alylv =+ Bly) . (181)

The tangent vector kY = Bxﬁ[y,u]fau satisfies

kB - oo, sk®/sv = K% kP = 0. (162)

I
=

gmﬂ
Let
)

£ = EBHEIByE] dyE [dyS = const.)

be an infinitesimal connection wvector joining two given adjacent rays. Then

EEE Hzxa a HxB ax ) 5
—i- = [ = TB - ) dy
Sv avay Y Ay v
(163)
o B
= k |B E ,
which means that a connection vector undergoes Lie-transport along the rays. From (162)
and (163)
(8/8v) (E™ k) = 0. (164)

so that if we choose Eﬂnrthugnﬂal to k at one point, this condition will be maintained
along the whole length of the ray.

The propagation equation (163) enables us to relate deformations of the spaces
orthogonal to the rays to various derivatives of E. As an example (relevant to the
concept of a "trapped surface” in gravitational collapsel), the divergence of K may be
interpreted as a rate of dilatation of Z2-area in the following manner. At a given point

of null ray R, construct two infinitesimal space-like vectors £, n orthogonal to R1 , and

‘1

let A = 1 E n sin 6 be the area of the triangle formed by them. Suppose RZ and RE are the

null rays which pass through the tips of £ and n. As we slide E:'ﬂ forwards along R, with

2 4 1
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their tips remaining on RE and R. the area A(v) nhanges-éccnrding to

3

._-"‘[ . . .
A" dA/dv = h”iu . (165)

The proof of (165) is particularly easy if we assume that £ and n are momentarily

orthogonal. (This does not involve any real restriction of generality.) Then

(E n sin B]_1 (d/dv](E n sin 8) = 5“1 dg/dv + r|_,i dn/dv

where we have set 0 = g— on the right. From (163),

d(- EE} S dv = hﬂ|ﬂ

and thus

B

-1 a B . yay |

A dA/dv = -k (% %
u|E

where x, y are unit space-like vectors in the directions of E.,ﬂ- If we introduce a null

- St

tetrad (k, m, t, i} with t, t in the plane of x, y, then we can write

=

A~" gAa/dv _ o k. plo B
u|E

Ir

-

kM,
i
B

by virtue of (162) and the completeness relation g®t = 2 k' %n® o B

-2t
Following this line of thought, let us decompose (163) with respect to a quite

arbitrary field of null tetrads (k, m, t, t), subject only to k pointing along the rays:

“_

B U

. B
+ [K{uIB] K )

5Euf6v t £ -

h[alﬁ] - lu (o “g)

-— i'l' +
K |M t[u tB] £ . (166)

The interpretation of the last term as a dilatation has already been considered. The
first term on the right is a displacement orthogonal tn_g which does not affect scalar
prnﬂucts of connection vectors and therefore represents a rigid rotation. The second term
has a trace-free coefficient and corresponds to a shear.

Now, EE“K&U is orthogonal to % and therefore lies in the local tangent null
3-flat generated by k, i.e. it has no ﬂumpnneqt parallel to m. Its component parallel to
1& could be removed at one point of any ray by a change of parameter v =+ Alylv (i.e., we

could arrange that m':t Hulﬂ gB = 0 at the point in guestion). We shall be concerned in

the first place with invariant information that can be extracted from (166) considering
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only first derivatives of k at a single point, and for this it will be sufficient to focus

on the projection of (166) onto the 2-space of t and E.

In two dimensions a skew matrix

is completely determined by a single element, and a trace-free symmetric matrix by a peir

of real elements or a single complex element.

in the form

So we can expand the coefficients of (166)

= -2iwt. t - Ky (167a)
“lap] totrg tgr * Lrdrg g3
+ I = +_E 1 +
“talgy T2 0t Ty T Tt T T Oty g
Pl g ey (167b)
where we have set 6 = 3 k" and the vectors represented by dots are linear combinations
of t, t and k which are not of primary interest at present. The "complex shear" o 1s
given by
-1 ...B
c = Kk t t . (168a)
uIB
Also, since
-o B ' -o B
B - k t ot , i - k £t ot (168b)
(a]B) v [u|B]_
it is convenient to introduce a "complex dilatation”
oz B+iw = -k, t2tP . (168¢)
u|B .
We can then rewrite (166) as
e sy = [-20t P ot s TR
AL IO LS £ . (171)

We now have to consider

null tetrad.

to what extent the numbers p, ¢ depend on our choice of

Tetrad transformations which preserve scalar products of the tetrad vectors

and the direction of k (ray direction) are:

(1)

-1

k -+ A

ad

—

Real scale transformations

-[which can be related to (161)):

m-=Am ,

e

(172)

m L

- 1t .

According to (168) the effect of these is to multiply p and o by a nonvanishing real vector

which can be considered constant along each ray:

&

+ Ap, (173)
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-

(ii) "yull rotations', which turn the 2-flat of t, t into a different space-

like 2-flat within the null 3-flat orthogonal to k:

kK =+~ k., t > t+ ik (A complex], (174)
{Elundergnes a more complicated transformation, not needed for our present purposel. From
(162) and (168) we find that p and o are invariant under null rotations.

(iii) Spatial rotations of t, i in their own plane:
i¢
k =+ Kk, m <+ m, t = e t, (175)

where ¢ is any real scalar field. These transformations leave p invariant, but change o
by a phase factor, o + 0O E-Ei¢ .

Thus, p and o are arbitrary to the extent of multiplicative real and complex
factors A and A E-Ei¢ respectively (A = 0). 0Of course, this freedom could be reduced by
imposing further restrictions to pin down the tetrads (e.g. requiring that the tetrad
vectors be parallel-propagated along the rays). The important thing to notice is that the
vanishing of any of the numbers o, 6 or w expresses an invariant property of the rays.

This can also be seen more directly from the formulae
6 = 3§k
g ;
(1761

2 - _ 1 [E‘E] _ 2
, oo = 3 Ktu|E] k 0 )

- [a|B]
¥\ = % h[ﬂlﬂ] k.

(take squares of (167)) which involve only the vector tangent to the rays. We note in
particular that w = 0 is the necessary and sufficient condition that the rays be orthogonal

to null hypersurfaces, since it is equivalent to k[u‘ﬁ hTI = 0 by (167a).

5.2. CompLEX VECTORIAL RAY ANALYSIS

We now reintroduce our numerical notation for the tetrad vectors:

(1) (2) (3]

e =84y "k, B =~ 83 L g = -8 =t .
(4) = =
g 201 LU
The absolute change EF.E{EJ in an arbitrary displacement dx 1s
(a) _ a (b)Y _ _(b) _a c
D e = w8 = B Y e O (dx) .



For a displacement along the rays, ox = g dv, and
~ 4
EE[dEJ = g[cj.dg = Erﬂ dv = 8 dv ,
D E{a] = - E[b] TED4 dv (dx = k dv]. (177)
- . e . : (1] (1) :
The rays are geodesic if and only if D e = g , 1.e.
T e Y s 04> o, = O (178)
T 24 T 34 —TT g

by [(121). Furtner, v is an affine parameter along the geodesic rays if

- 0> g+ -0 . (179)

114 34~ Y34

The complex dilatation and shear now appear as two of the Riccl rotation

coefficients:

-a ,B il

- = - 160)
ha]B bt T 93 12 (180)

]
(XTP
ol
L

-
i

“a = 1
tCl tB = Y = -

1811
22 (18

kil
al
L]

g = Kk

u|ﬁ 13

by (122].
In Section (4.8) we considered a congruence of null rays in Kerr's space-time:
these were integral curves of one of the two distinct Depever-Fenrose vectors. We can now

easily read off the complex dilatation and shear of this congruence. we found [see (151)]

2 “G1 = = [r - 1 a cos ﬂ]_q[i a F 2 sin 5.31 + EE]

Hence the congruence is geodesic and

p = Z !

(r + i a cos 68) g =0 . (182)

Bl

Since p has an imaginary part, the congruence is not hypersurface-orthogonal unless a = 0
(Schwarzschild].
We conclude by stating our main conclusion somewnat more compactly. The 3-form
] ‘A

2 . . , . 3
0, AB A B vanishes 1t and only 1f O, = an Ea does not involve 6 or 8 . Hence:

the null congruence with tangent 5[1] is geodesic and shear—free i1ff
g = 0 = 0 <= > o, NI = 0. (183]

This condition can also be given a seemingly different geometrical interpretation.
The vector fields k, t are orthogonal to Z-spaces y = const., ¥ = const. [(i.e. k = o V ¢ +

BV x, £t=y V¢ +4 7V yx) if and only if
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K k € o, t t k o,
[alB "y 6] (a|lB "y 8]
or
d51 A 81 A EE = 0 = dBE A 51 A BE . (184)
Now,
1 3
de = - m13 A B + (terms involving A 51‘ A 52]
, 3
= -0, A8+ ditto ),
2
db = - 3 G1 A 54 + ditto ),
so that (184) is equivalent to g, A 22 = 0. Thus, (183) is the necessary and sufficient
condition that k, t be orthogonal to Z2-spaces. For the Kerr example just mentioned,
we have from (149),
Pl : 2
2° 8 = -d(v -1iacos 8) +1asin 6 dy ,
2 . -3 L -3 -3
8- +1iaF sin 0.6 = 2 F* sin © dy ,

where § = 1ln tan 36 + i¢ . In this case the orthogonal 2-spaces are the complex surfaces

Y = const., v - 1 a cos 8 = const.

5.3. RoBINsON’s THEOREM

There is yet another way of saying that space-time admits a null geodesic shear-
free congruence with tangent K. An eguivalent condition is this: space-time admits a
field of null bivectors which satisfy Maxwell's source-free equations and which have k as

propagation vector.

Let us begin by showing that the first condition is a conseqguence of the second.

We are given a real bivector field FGB satisfying
ap - _
FuE F = FuB Fop 0,
ap
= [ = 0
F[uB}T] |8

The associated self-dual bivector satisfies the equivalent conditions

(+) _aB (+)

F F = 0, F[ﬂE|Y] = 0 . (185)

af [+)
(+)
aB

2 . .
By a rotation and rescaling of axes in 1;3 we can bring £ af into coincidence with F
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(ef. p. 33), and Maxwell's equations (185) now reduce to

dZE = 0 .

According to the equations of structure (125),

2
dZ = 0, A 23 + 1 g_a 22 . (186)

. . 1
Taking wedge products of both sides with 8 and 62 to eliminate the last term, we find

U1 A BE A 33 A Eq 1 1 A Eq A 52 .

n
=
]
a
>
b

(187)

I
Q
I
o

-

lL.E. 014 13

which are the conditions that'h be tangent to shear-free null geodesics.

To prove the reverse implication, assume that (187) is given. We then obtain

from (18B),
2 1 y 2 3 2 . 4
dZ = gﬂa A (-3 8 hE]+U,]2Et AT B8 AB)
, 3 2 \ 4 2
Y30338 A7+ 505,08 A7
2z
where we have defined the 1-form ¢ = ﬁa = i(g - o, ) 93 + i(o - a,.) 54 Taking
a 33 11 34 12 "
exterior differentials of (188),
0 = dpAZZ - YA (yAZ)
Z
= dy A Z° . (189)
Now,
s &
= A
dy = dp_ A 67 + y_ de
b a a b
- A -
lpa|b ° o ¢a . b A6
- 3 4 _ = 3 _
[¢4|3 ¢314] B~ A B a ¢3[G3 03] A B
- 3 - 4
- 1 A .
3 wq o, 8 + ¢4{ﬁ3 + 63} A B +
. . 1 Z
+ (terms involving A 8, A 87) .
Hence (183) yields
- 1 - 1 - - 1 p= =
Va3 " V3)q T F ¥3logy T Oge) 2, 0p, - d W, log, Y00 = O (130)

We have written ¢|a for the directional derivative of the scalar ¢ in the tetrad

direction e
~(a)



5b

¢|a = ®la [aa AN (181)

o
¢]ab ¢]ha = 203,90 . ey ]Ib]
C
= 2 ll.‘b[’: ki [Elt'l:i . (192)
Returning now to (188]), if we can rewrite this as
- P
dle ¢ Z7) = 0
, . . ) -¢ _Z
with an appropriate scalar ¢, our proof will be complete, since the bivector e Fi oR

would then satisfy (185). All that remains is to show that a function ¢ exists satisfying
I T V3 Pla T Yy -

The integrability condition of this pair of eguations can be read off from

- (= |
Plsa T %a3 T 2 %5 Y [a3]
- _ = -1
© 95 logy —0g,) - 3 P14 94
t2 015 O o %4 o35 * 055 &

and is satisfied by virtue of (190) and (187).

5.4, PrInNcIPAL NuLL CONGRUENCE IN ALGEBRAICALLY SPecIAL VAcuuM FIELD

We proceed next to a proof of the first (and easier) half of the LGoldberg-Sachs
theorem. This states: if a (non-flat) vacuum space-time is algebraically special, with
k as the repeated principal null vector, then the null curves tangent to k are geodesic
and shear-free.

According to (145) and (130), we have

L, = C,, 7° , L, = Cg, 7° 4 C.o 77
for an algebraically special vacuum field with repeated null vector k. From the Bianchi
identity [(128) for dE1
d{C ZE] = - 30, AE_ * 3o, NI, |,

and simplifying this with the aid of expression (186) for dEE » We quickly find
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- -1
d C12 N2z 3 E12 o, A7 Z EES g, A 7 . (183)
_ 2 1 2 2 . . . . .
Since Z° A B8 =7 A 8 =0, two terms in this eguation can be eliminated by taking wedge
products with E1 or BE . This yields
2z 3 1 ~ 1 4 Z

qu 04 AR A B AH = 0 = qu g, AB A B AEB
If qu z [0, we can immediately deduce the geodesic shear-free conditilon Oqg = O4q ° .
If qu = (0, but EES z 0, we can infer 9, A ZE = [0 from (193), and this is again the
geodesic shear-free condition. The remaining case E12 = 1‘32,:s = 0, EEE z 0 is easily

dealt with by examining the Bianchi identity for dEE

5.5, SHear-fFRee NurL Rays 1IN VAcuum

Let us now suppose that a vacuum space-time admits a geodesic shear-free null

congruence with tangent k, so we are given

= = . 4
Hmﬁ o, a, A 7 0 (194)
We wish to show that C1q = C13 = 0, i.e. that space-time is algebraically special with k
as repeated principal null vector. This is the second half of the Goldberg-Sachs theorem.

From the second eguations of structure (127],

Z 2
Eq L = 9, N L
- do, AZ%) o, Ad T,
1 g
o 2
i.e. qu AR i = 0 by (188)
TFis means C =0, i.e. Kk is a principal null vector of the Weyl tensor. (S0 far, we

11

heve made no use of the vacuum condition, cf. (130) and (131).)
We consider next the Bianchili identity for E1

2 3
d{C1E z + 513 %) = - 3o, mnL + f o_ AL .

Since we wish to concentrate on E13 , we eliminate the term involving dE12 by taking

wedge products with 51 and with EE . This completely removes the term d[512 22], because
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dz°A08 =0 = dz2a g2

by virtue of (186) and (184) [cf. (184)]. 1In this way we arrive at the two equations

C13la = Gz (204, ¢ 34

==
]
L —
L]

(195a)

C13l3 E13 (2 Opq * 33} . (195b)

hal=
]

It is now a straightforward matter to show that the only solution of these

equations is the trivial one. Using (192), we can in fact reduce the compatibility

condition of (195) precisely to E13 = 0, and this completes the proof.
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CHAPTER VI: SoME FURTHER DEVELOPMENTS
6.1, TENSOR-VALUED DIFFERENTIAL FORMS

While of unrivalled compactness and elegance, Cartan's calculus is essentially
limited to skew objects and cannot altogether displace tensor analysis. However, it is
possible to create an attractive synthesis which combines the advantages of the two
systems of notation in the framework of a calculus of tensor-valued differential forms.

For example, with a tensor ¢uuu , which is (effectively) skew in its two covariant

indices, we can associate a "vector-valued Z-form”

o Q i
¢ = 21 o deu{jyu] . (196)
uv
Since B[A ¢uuu] is not a tensor, the 3-form d¢u will not transform like a vector.
We therefore introduce a "covariant differential” D¢u defined as follows. Let us adopt

a co-ordinate basis (Section 2.4) in which

o a o a ¥

8 = dx , = T d . (197)
l: By
Then we define
D ¢~ = do~ + u“s N (198)
This gives (adding a term which vanishes for a symmetric affine connexion)
D 6% = 31 (3, ¢% .1 P -
A (TR BA TRV
B o LA . pw vl
- 2
r AL v ¢ u]B] dx dy  dz
o Cx ,uw vl
= I
31 ¢ v A dx = dy dz (189)
which is plainly a vector. Similarly, the covariant differential of a covector-valued
_-F 3
n-form ¢u 15
B
= o Fil .
D ¢u d¢u w- ¢E (200)

The expressions for arbitrary tensor-valued forms are built up from these in an obvious

Y

way . A tensor-valued O-form A" is just an ordinary tensor, and DAY = A% dx  1is its

B B 8ly
absolute differential.
D is a linear differential operator which satisfies Leibnitz rules analogous to

(6) and (7). However, it differs from the exterior derivative in that D2 is not null.

i )
For a vector-valued n-form ¢ , we have



B0

0? o% = do ™) + m“B A Do’
= d2¢m + dm“ A ¢E - uﬂ M d¢ﬁ + mu A D¢E
B B B
N (201)
B
wheres
R & @ M (202)
= + Mo
Gl 8 dw 8 w y 8
L . .
is the tensor-valued curvature Z-form. Far a O0-form A , the left side of (201) is
02 a% = 20 A% - daxt ayM]
o
= R% B axt? gyt (203)
BAu

Thus (201) is an elegant generalization of the Ricci commutation relations.

Since d8® = gx®

symmetric affine connexion:

o o

Hence

which is the cyclic identity for the curvature (Section 2.7].

and dgw& =

derivable from (202] 8

0,

= 0, we see that Dﬂm represents the torsion, and vanishes fnr a

o - o gY AP - o (204)
By
8% = m“B L (205)

The Bianchi identity (45),

now takes the remarkably simole form

i

o % 0. (206)

B

Further details, including the generalization to spaces with torsion, are in Trautman’s

paner cited in the bibliography.

6.2. L1t DIFFERENTIATION

In the absence of an affine
operations which generate new forms
tiation. Lie derivatives of forms
differential ecuations, Hamiltonian
spaces. We shall begin with a few

becawse the text-book treatments do

connexion, there are just two invariant differential
from old: exterior differentiation and Lie differen-
play a central role in the theory of systems of
mechanics and the geometry of congruences and null

words about the definition of the Lie derivative,

not always bring out the simple geometrical meaning of
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this concept.

Let us cﬁnsidar any "geometrical object” ¢(x) (indices suppressed], for example a
(relative) tensor, a (tensor-valued] differential form or an affine connexion. The
defining property of a geometrical object is that, under each co-ordinate transformation

x + x' it transforms linearly (this could be generalized, cf. ref. 31):

¢'(x') = Lix',x) &(x) (207)
and the transformations L form a group:

1 . (208)

Li{x",x') L{x",x) = L(x",x); Lix",x) L{x,x")
Although it is not actually necessary, let us suppose, to be perfectly definite,
that a single co-ordinate chart x covers the domain of interest to us, and let us fix this
chart. Let a smooth transformation x =+ x(x) be given which associsates with each point x
in a domain D a new point X in a domain D. With each geometrical object ¢ at x we can
associate a new object ® at x by the rule
?(x) = L(x,x) &(x) (209)
The essential property of ® is that it transforms in the same way as ¢ under co-ordinate
transformations.
[To prove this, we simply note that the rule for forming % in a new co-ordinate
system x' is
' (x') = LIX',x') &' (x’) . (210)
Using the transformation law (207) of the original object &, and then (208), (208), we
obtain at once
o' (x') = L(x',%X) &(x) (211)
as the transformation law of the new object.]

Since ®(x) and ®(X) are objects of the same type (relative tensors, tensor-valued

differential forms or affine connexions) their difference, evaluated at the game point,

A B(x) = ®(x) - &(x) (212)
(ralled the Lie difference) has tensorial character.
If ¢ is a scalar then L = 1 and E[E] = ¢(x), i.e. the new scalar ¢ inherits at x
the value ¢ had at x. The Lie difference A ¢(x) = ¢(x) - ¢(x) is just the increment of the

original scalar field in the displacement x -+ X.
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. s o , . .
The infinitesimal vector dx connecting two points x and x + dx transforms into

o

dx = [ai“faxal de = d(xh (213)

¥

S —

which is the vector connecting the transformed points X and x + dx.

If the definition of the original object ¢ is extended from x to x in such a way
that ®(X) = ®(x), i.e. A & = 0, then & is said to have been Lie-transported from x to X.
Thus, a vector which connects x and x + dx will, if Lie-transported to x, connect the
transformed points x and x + dx. (As the mathematician would put it, every point trans-

formation induces a natural mapping of tangent vectors.)

Suppose a vector field £u[x] is given. Then translations along the integral
CUrves
o
dx o
hubAd 4
3t E (214)
generate a continuous group of point transformations xu[t1] +—x“[t2]. We define the Lie

=

derivative of a field ¢ with respect to £ by

.LE d(x) = 1lim A ®(x)/At (215)
At + O

where

O = %o, xX* o= X%t o+ oat) . (216)

If &(x) is an affine connexion or a (relative) tensor, then LE-¢ is a tensor or

relative tensor of the same weight. The Lie operator L is a "derivation”, i.e. a

£

linear operator which satisfies Leibnitz's rule. For a scalar (or scalar-wvalued form) ¢,

Lg is just the ordinary derivative along the curves:
A
Lg ¢ = E9,¢ = d¢/dt . (217)
If LE & = 0, ¢ is Lie-transported along the congruence. A Lie-transported scalar

stays constant on each curve. A Lie-transported connecting wvector dx” slides along two
neighbouring curves of the congruence as if on rails, its two end-points moving equal
parameter-distances along the two curves. A co-vector Hu is Lie-transported if Hudxu stays
constant for all Lie-transported connecting vectors dx® . And so on.

For a relative tensor (or tensor-valued form) ¢EB of weight w, the transformation

law

(218)
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yields
- - o (TR o LM o .U :
(x) = ] + At , - ’ - W » ) (219])
¢E‘;H ¢E[H [¢BEH ¢ugﬁ ¢Egu
for the infinitesimal transformation ;u = x“ + Euﬂt, where the commas denote partial
differentiation. Hence
o o ¥ [T o U a _u
La = E = .t y oW T (220)
2o g b g 0 Bl t 0 Eig PLIN

The expression on the right-hand side must be a relative tensor, although that is not
obvious from its appearance. If the manifold has a symmetric affine connexion, the

partial derivatives can be replaced by covariant derivatives. (This plainly makes no
difference at the origin of a geodesic co-ordinate system, and must therefore be valld

generally, since the objects concerned are tensors. ) From (220), the general rule for

constructing Lie derivatives will be apparent. Note the particular results
Lot =0, Leg . =2E , L2 E = 2°E 5. (221)
3 E “aB (a]g) * - 7E "a [a|B]
For a connexion, the transformation law
I:I C -"i:,._-':t- 2#11 h
i, (%)= 3"‘6 ox N o X (222)
¥ % 3%’ . ax ax 9X /
yields, after some work (assuming T symmetric),
o o U0
LaT = + R
E By > ey & R By
o (223)
-6 | (By) .

For any vector field gu{= dx"/dt we can always find "adapted” or "co-moving”

. o 1

co-ordinates (x , x , ...) such that xn = + and the remaining co-ordinates are constant
: : A :

along each integral curve, i.e. & Elxu = GE . In these co-ordinates the components

Eu = ﬁE are numerical constants and the Lie derivative of any relative tensor reduces to

its partial derivative along the curves:

Lpe - 30 | 9x" it g =8 - (224)

The Lie derivative of a relative tensor is in fact completely defined by the two statements
(i) that it is a relative tensor of the same type and weight, and (ii) that it reduces to

(224) in adapted co-ordinates.

We finally mention some simple illustrations of these ideas.
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Let us express the condition that a metric EUE is conformally invariant along a

congruence (e.g. the Robertson-Walker metrics). This means that the sqguared length

B

guE dx“dx" of a Lie-transported connecting vector changes by a factor (1 + A(x)At) (inde-

pendent of the direction of dxu} under a displacement At along the curves, i.e.

a . B, _ o B
Lg-fguﬂ dx dx ] = A guB dx dx
if Ip (dx*) = 0. Hence
Ip 8yg = ) Byq (225a)
or
E[ﬂ[B] = 3 A gﬂﬁ . (225b]

A vector Eu satisfying (225) is called a conformal Killing vector.
The condition that a hydrodynamical flow with 4-velocity u* be rigid is that

the orthogonal distance {guB - u u.J dxudxs between adjacent world-lines stays constant.

a B
This yields

Lu fguB - uuuBJ = 0 | (226a)
or

U{G|E] - u[u UE] = 0 (226hH)
where ﬂu = uﬂ|u u]'i is the acceleration vector. This is the familiar condition for a

Born-type rigid motion.
In an n-dimensional manifold, let V be an n-dimensional region whose points are
carried by Lie transport along a congruence with tangent'f (e.g. Hamiltonian evolution of

a set of points in phase space]. Let

w = Yy dx' A ... Adx (227)

be a volume measure on V. The condition that the flow be volume preserving is
Lgrf‘; = 0, (228a)
or, by (220), since #;‘ is a scaelar density (w = 1),

auMF My = 0. (228b)
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6.3. DIFFERENTIAL ForMs, ExTERIOR DERIVATIVES AND LIE DERIVATIVES

We consider a general manifold (without affine connexion]. The interaction of
the operations of Lie and exterior differentiation with inner and exterior multiplicatinn
leads to a number of general identities which have found wide application in mechanics,

gauge theories and general relativity.

e

=
We begin by defining the imner product E.e (also written £ _Ja) of a contravariant

vector El and a differential form wo. If o is the m-form

l1 hm
a = m! o dx s (229)
l [ I l
1 m
_—
associated with the completely skew tensor ul \ , then £.a is the (m-1) form
1 " B ¥ m
. A1 [12 lm]
E.a = ml £ o dy .e. dz (230)
A wea A
1 m
11
which is m times the (m-1) form associated with the skew tensor g oy X"
1 [ N B m
Since
(m + n) o R = ma B +
[1"1"'1m I..I1i-iur||j }L"]{lzi"}lm u"]_...u ]
m
+ n(=-1) o B
[Ajeed u, A, fugeeen ] (231)

(the bars around 11 indicate that it is excluded from the skew-symmetrization) we see at
once that
- - m Y
E, la A B) = (E.a) AB + (-1) oA [E.B) . (232)
In particular, if f is a O0-form (scalar) then E:df is again a scalar, given by

= A

E.df = £ BAF‘ (233)
so that
—
LE*F = E.df . (234)

The extension of (234) to a form of degree =2 1 is the very important "Cartan

identity”

Lg*u = E;du + dfg.u] ; - (235)

Here, and in future, it is to be understood that the vector arguments of the forms are

Lie-transported.
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[To prove this result, we note that, in adapted co-ordinates (&' = ﬁ;J

A, A
oy Wy Tz (236)

277" m

1 2 : ,
EE!E - m_-]]. 8]

The exterior derivative of this [(m - 1] form is the m-form

A A
T dE) = m! 3. a dx | dz ™ (237)
mo B 1P Wl F<7 D VRS Wi T '
1 2 m
On the other hand,
gdu‘. = [(m+ 1)1 3 o Elx}tll L‘.Iz}lm
* ' (o "A....2x ] "t
1 m
l”i lrn
= i -
m! {HE o m 3[1 u|D{l o ]} dx ... dz i (238)
1 m 1 Z m

The first term is L_ o in adapted co-ordinates; the second term cancels with (237).]

g

It is easy to check in adapted co-ordinates that Lie differentiation and exterior

differentiation commute:

Lg (dal) = d[LE’u] . (239)

Further results easily proved along similar lines are

Lg-[u A Bl = [Lglu] AR+ oo A [Lg'ﬁ} : (240)
LFg-a = f LE a + df A (E.a) (241)
Lg—ﬁhul = [E,n] . a+1n - (Lga) . (242)

Here, the Lie bracket [E,ﬁ] is the contravariant vector
[E,n1% = P 5 % -n® 5. ¢

o “ . (243)

I
n
b
3
I
i
=
!
Y

Finally, we note the simple commutation property: the commutator of two Lie

derivatives Lﬁ’ L= (operating on any geometrical object) is equal to the Lie derivative

£
with respect to [E,R]:

L= L= = L L= = [L_a.a. - (244)

—
This is easily established for scalars and for vectors £, where it merely
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expresses the Jacobi identity for the Lie bracket:

= 0 . (245)

= = =Y —_ - _
(£, [7,231 + (A, (2,811 + (%, [E.n]]
Its validity for more general objects then follows by Leibnitz’'s rule. The geometrical

meaning of (244) can be understood from the diagram in which the extra little displacement

'ﬁ needed to close the four-sided figure is

4 = [E.n] At BT . (246)
AT
)VR\ g
%,
E(x)At E(x+nAT) At
¢ >
x nix)AT

6.4, SyMPLECTIC MECHANICS

As a simple illustration of how the preceding formulas are applied, we give a

quick sketch of Hamiltonian mechanics from the geometrical point of view.

Hamilton's equations are

o - F *
dg. * @H o de, __Eﬂé (@=1, «o. , n) . (247)
dt 3p dt aq

adorned with a star.) We relabel the

(Equations valid only in canonical co-ordinates are

[q L] p1 i L » q 2 pn:

*

,_,,I
=
-
=
x
-
||

Then (Z47) can be rewritten

8]
ED‘- = _ij_.._. - {IB ais [{1; E. = 1! e En] [249]
dt 9X

where the skew matrix ¢ has the form (in canonical co-ordinates]) of a diagonal seqguence

of 2 x 2 matrices
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i.e. the only nonvanishing components are

- - ' *
I PR A U L (250)
Hamilton's equations in the form (249) are evidently valid in arbitrary co-ordin-

o . af |
ates x provided € is considered to transform as a tensor.

The Poisson bracket of two functions f(g.p), glg.p) is defined to be
[f,gl = EUE{BEF] [BB g (251)

This is manifestly invariant under arbitrary co-ordinate transformations. The normally
tedious problem of proving invariance of [f,g] under canonical transformations 1s here

reduced to a triviality. In any set of canonical co-ordinates, (251) of course assumes

the standard form

[f.g]l = = - | (252)

Define - € as the skew matrix inverse to Eﬂﬁ:

af
oy V]
£ £ = § . (253)
By B
In canonical co-ordinates,
e - %R (254)
af
The Z-form EHB dxﬂ A de has a vanishing exterior derivative, a result immediately
]
evident in canonical co-ordinates, where dEEE = 0. Hence it can be written as the

exterior differential of a 1-form w:

dw = € dxu A dxﬂ . [255])
of

The forms dw and w are called the symplectic 2-form and presymplectic 1-form of the
dynamical system. In canonical co-ordinates (255) is immediately integrable:

E 3
o = e x*axP+ af (256 )

aB

where f is an arbitrary scalar.
Hamilton's equations (249) can be re-expressed as

% e = aH/axt (257)

ap

which is equivalent to

dH . (258)

L
L]
(m
E

N
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From [234) and (257),

dH = -~ — ‘3 —
3t Lg H £ .dH 0 (2539)

With the aid of the Cartan identity (235]), we find

£.d% + d(E.dw)
H = 0. (260)

Lg duw

1l

Tt should be noted that this result (unlike (253)) is not immediately obvious, since

arbitrary canonical co-ordinates, in which € 8 are constants, do not necessarily coinclde
L

with adapted co-ordinates, 1in which.LE reduces to 3/9t.

From (260) it follows that the various integral invariants of Poincaré,

L
1, = 3 de = | da” A dp_ (261)
£
I, = & IE dw A duw (262)
4
]
I, = - IE (A dw]
2
* 1 r
= dg A dp, A ... Adg A dp (263)

are not only invariant under canonical transformations, but also constants of the motion:

dqT
_2k . 1. = 0. (264)

dt
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SUMMARY OF BAsic FORMULAE

WEDGE PRODUCT AND EXTERIOR DIFFERENTIAL

H

If 8 = Audxu, 6= 21 F . dxt® ayBl

af
then
[a B, v]
AB = 3! F A dx d dz .
¢ aB Ny y

[a B vl

= |
d¢ = 3! au FB? dx dy dz

If a, B are forms of degree a, b:

a A B = [-1) B A o , (3)
dlaAaB) = danpg+(-1N%andpg . (7)
For any form 2, dzﬂ = 0. (8)
RIEMANNIAN GEOMETRY
Basis E{a} , gah = E[a] . th] . (14)
Ricci rotation coefficients:
a - _ _[(a) B Y B (a) Y
Ybe = "% gly ") %) T "%y © B S(o)
Basic 1-forms: a _ [a) o (18)
E - E d}i M
o
Connection 1-forms: w> = Ya 0% . (27]
b bc
Covariant differentials of basis vectors:
(a) _ a _[b) _ a
D e = n D-E , D E[h} = B4 @, (28)
Riemann tensor defined by
iy )
A - A = A R
B|ys B|8y a  BYS
Ricei tensor
T
R = R .
af aBu
Curvature Z2-forms:
a - 1 a C o
) H = 3 = bed 8 A B . (42)
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Cartan's equations;

2 a ,.b
ds” = g 6" o , (21)
d E.p T W, tow_ (30)
d 8% = - mab Ae (32)
d i = C
0 h T d w A (43)
. . a8 b
Cyclic identity: Q b A B = 0 . (46)
Bianchi identity:
a o C d C
= - M .
.d £ 5 £ - AW b w i 5 [45)
CoMPLEX VECTORIAL FORMALISM
Conventions: Greek indices (range 1-4) are co-ordinate indices;
Latin a,b, ... & [(range 1-4) are tetrad indices;
Latin m,n,p, ... (range 1-3) are complex vectorial indices.
Signature of space-time metric (-,-,-,+) .
Null tetrad:
(1) _ (4] _ (2) _
L TSy TR B Tegy TR, 2 =Ty Tt
(3) _ I _ T -
e = "B(g £; K «om=-¢t .t =1 (other products zero).
de’ = g . 82 67 = 208l g% - 82 §3) , (85)
0 0 0 1
0 0 - 0
b
(g3 = [g71 - (82)
0 -1 0 0
1 0 0 0
N.B. If Tab are tetrad components of any (real or complex]) tensor, then -Tah
means: take complex conjugates and interchange tetrad indices 2, 3.
Alternating pseudo-tensor n = [-g]% £ ; tetrad components n = nabcd =
aByd aByd abed
’ * = 1 cd
Y Eapeg - Duals PR, E i g F
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Self-dual basis for Z-forms:

3 .4 14 3,0
o3 aet . 2ot ae?, Pzt aat -e” )
(93)
= s = 3
51 a2 a0t 2 el ae’, 72300 At s 6 ) )
so that ZE = 2 k t etc
"7 B (a 81 * 777
Metric tensor of complex 3-space:
N — e ~y
i 1 U .0 1 0 i
|
mn i
¥ . 1 0 0 ; Yoo " 1 0 0 i (101)
0 0 -3 0 o -2 1
| L .
CoMPLEX VECTORIAL ALGEBRA
, oM nag mn m  =nap
1 = = 03
i o8 7 ¥ s 7 af 7 o, (103)
TRV | M mn mnp
z i = + z ’ (104]
z QL Bv M guE © pof
Uv _m  =n _.mn
P = . 138
& : oy Bv Y ap ( )
where Tmnﬂﬁ is hermitian in m, n, symmetric and trace-free in o, B [see (140) and (141)1].
™Az = i, maAZ" = 0, (131)
where
3 a, B, vy, & o 2 3 4
= - = B A 2
n (-g] € 48YS dx dy dz dw i 6 A B (132)
Expansion of arbitrary real bivector Fab in terms of basis Zm:
1 09 a0? = F M ETT, (95)
ab I m
where F = 3 F__ Z ab explicitly:
m “ ab m ’ '
™y
Fe ™ Faa 2 7 T2 P = Tag 3 )
_ _ _ 5 (S6)
" 7 Tog Fo = Faz - Fa 7 Fag 7 Toa ;
mn ; () 0B 1 af . B
. = 1 - 1iFE 102
Y Fm Gn & Fﬂﬁ G{+] [FuE B i 48 G ] ( ]
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If F <> F then F* <> i F . (37)
ab m ab m
CompLEX VEcTorRIAL CALCULUS
. a1 . ,g,
Connection 1-forms o = ﬂpa B and curvature Z-farms t in 3 H
= b P - SP
W B A B =0 2V +ag 1 (120)
ab P P
a 62a0° =3¢ zP.T 7P (123)
ab P p
.. ab ab
Explicit formulase o = w Vi » L =R Fi are the same as (96) apart from a factor
p ab p p ab p
2, 1.e. nq = 2 mgq . EE = 2 ﬂ12 etc. The inverse relations are
_ 1 _ 4 _ — _ Zz _ 3 _ =
W, w , Z [53 + Ua] , W, T owa, = & [53 UH} ,
1 = 13 = o '1 = ‘ = -}
o T wy 9 Y3 Y 4 2 9
4 = 3 = 1 4 = 2 = 1 =
L 2 {u 1 2 CFE ] Y} 3 - ( ‘1 - 2 UE Kl
1 4 Z 3
W o, W g TWwgTw, = o , (121)
with analogous expressions for ﬁab in terms of ED .
N.B.: © is defined by ¢ = 0__ 89 (see (122)).
il P Pa
Decompaosition of ED into Weyl tensor, trace-free Ricci tensor and curvature
invariant:
1 g ={u|
L = (C - — R ) 77 + E = 7 s 130
s pg B pg s[s [ )
where
m n
C ~ * =
abecd . Cahcd |:I‘nr‘l z ah £ cd (105)
. _ 5 -m =N
Eahcd - Eabﬂd mn z ab £ cd
_ 1 _ pa
Rah P By R Y ab El:rEI , (137)
= ab
E - = E - = ¥ _ R - 3
0 ap oa ( ab m gah R) (142)
P
C = r—— = .
¥ o 0 <> EEH 4 C.5 (106)
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First equations of structure:

dzP = 1 P Az
m n
explicitly:
1 ; 1 3 2
dZ = % US AL 52 N Lo 3
1 2
dZ = i g, Az -3 GE A
Second equations of structure:
X = dao - 3 € o A G
P P pmn
explicitly:
= - 1 = 1
E1 dc1 5 GB A u1 : EE du? + 3 ﬂ3
E,j = daﬂ + U1 A 52
Bianchi identities:
d E = £ nm A En :
P pmn
explicitly:
| -1
dE1 3 53 A F1 3 51 ALy s
_ 1 1
dEE = 3 G? A E3 = GH A 5
dEB = UE A E1 - uq A LE
Cyclic identity:
L A Z = L A7 .
m n n m
Commutation rule for directional derivatives
_ o
¢ia ) E[a][au¢]'
o), - ¢ 2 61 ¥
|lab ~ ®|ba e ¥ [ab] -~
CompLEXx VECTORIAL DICTIONARY
The null curves with tangent k are geodesics iff
o B _
k. t k = 0 L= o = 0 .

u|E 14

(125)

(127)

(128)

(129)

(192)

(178)
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The parameter v defined by k* = ax%/av is an affine parameter along the EngDdEEiEE iff

m hE = 0 <—> o + 0 = 0 . (179)

ofB 34 34

The tetrad vectors are parallel-transported along the k-geodesics iff

(a) B
e k = [0 $=—= a = 0
alB < pd
Complex shear:
- T O -B - _ 1
Complex dilatation:
= - T B - 1=
p = hu|E t t 2 0,5 (180)
. 1 U 2 [ulﬁ]
= = L , = 3 Kk k. . (176)
Tetrad vector k is a principal null vector of the Riemann tensor iff
Z
[211 = 0 {=> 31 AL = 0 . (144)

The Weyl tensor is algebraically special, with k as repeated principal null vector

iff
Z 3
E11 =C,, =0 e Ly A 27 = I, a0 = 0 . (145)
Vacuum field equations:
aq - s _ _ 8
= s = E z e E A Z = [:I = E A 2 ¥ [143}
Rag = 0 =2 Iy " g T <2 L P
RELATIONSHIP TO NEWMAN-PENROSE FORMALISM
Newman-Penrose spin coefficients:
- MoV . - TH V  _
- = 5 = - = |‘§ = 35
K = hu1u t7 k 3 a14 : ™ mu]u t 3 U?ﬂ 3
= 1 u _ + W - - 1
e = 3(k !H m tUl tT Ik L 534 H
_ T Y s _ TH TV _ 1
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Note: p, o as defined by Newman and Penrose are the conjugates of the definitions (180),
(181).

Physical components of Weyl tensor (Newman-Penrose components ?A in terms of Emn]:
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