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Preface

Concern with the class of problems investigated in this monograph began for me
as a graduate student at MIT (1958-62) when serving as research assistant to Professor
Eric Reissner who initiated me into the subject and whose influence — whether directly
or dialectically — is probably discernible in the contours of the work. My first attempt
at a systematic derivation of the equations of shell theory was made while on a summer
assistantship with Professor Norman Levinson in 1960. Beyond gaining a sobering
realization of the complexities involved I made little progress at that time.

In 1962-64 while a Temporary Member at the Courant Institute of Mathematical
Sciences (NYU) I made a fresh start, while benefiting from association and discus-
sions with Professor Fritz John. With the conviction that the full integration of the
equations with respect to the thickness coordinate, by means of the Legendre represen-
tations, must lead to a clarification of the position of the two-dimensional theory
in its three-demensional context, the necessary computations were completed during
that period. Several years passed while I became reconciled with the thought that
the material needed to be organized as a monograph. This was done during 1969-70
while at the NASA Electronics Research Center in Cambridge, MA.

The enthusiastic response of both Professors Louis Howard and William Shack
who reviewed the script was appreciated all the more as it proved impossible to in-
terest either an academic or a commercial publisher. Their endorsements together
with the interest shown by Professor John Lewis encouraged me to undertake the
typesetting by private contract.

Special acknowledgement is due to Ms. Andrea Barth-Goldstein who typed the
entire script and whose courage in the face of the equations of shell theory sustained
the project at times when 1 felt inclined to waver. The typesetting was performed
at Arts and Letters, Inc., Brookline, MA., and fitting such unmanageable material
into an attractive format is due to the combined gifts of Ann Kostant, Debra Rattet
and Steven Sagas. Finally the production and distribution by the School of Theoretical
Physics, Dublin Institute for Advanced Studies is warmly appreciated.

Diarmuid O Mathiina

Trinity College, Colaiste na Triondide,
Dublin Ath Cliath

Lunasa 1983.
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Summary - Abstract

In spite of the long history of the theory of elastic plates and shells, many features
of the contraction from a three- to a two-dimensional theory remain obscure. The linger-
ing ambivalence, as to what physical interpretation should be given to the displace-
ment functions proper to a two-dimensional description, is due to the fact that it has
not been established in what sense, if any, the elements determined by the contracted
formulation approximate the corresponding quantities of the three-dimensional theory.
The present work is aimed at clarifying for the static case, within the framework of
the linearized theory of elasticity, the precise significance of the simpler theory, by
means of an equally precise formulation of the complementary problem. This will be
effected through a complete and systematic integration, with respect to the thickness
coordinate, of the full three-dimensional equations.

The recursion relations associated with the Legendre polynomials facilitates the in-
tegration with respect to the thickness coordinate of the system of three-dimensional
equations. The repeated application of these formulae leads ultimately to Legendre
representations for all field quantities; while the recognition of the orthogonal character
of these series in the integrated form of the equations, and also in the edge conditions,
yields an equivalent two-dimensional description of the full three-dimensional problem.
This alternate formulation reveals how the simpler theory appears in the dominant

_terms, and a closer inspection shows that the full problem resolves into two uncoupled
problems — one coinciding with the simpler theory involving only the dominant effects,
the other consisting of the complementary problem, describing the residual effects,
also formulated in two-dimensional terms.

The integration of the field equations for the elastic strip is effected in Chapter 1.
In the case of beams of constant thickness, the formulation of the complementary pro-
blem yields an infinite set of ordinary differential equations with constant coefficients
with an appropriate set of two-point boundary conditions. The clarification of the
underlying function space structure in this simplest case, provides a model for the more
complex problems formulated later.

In the analysis of plate theory treated in Chapter 2, we suppress most secondary
features. On effecting the uncoupling of the integrated formulation, we find that the
principal effects of bending and stretching are exactly described by slightly modified
forms of the generalized theory of plane stress and Reissner’s theory of plate bending,
respectively. For the corresponding complementary problems, the formulation is
followed by the reduction of the governing equations to a relatively compact form.

In the treatment of shell theory in Chapter 3, where we are forced to adopt an ap-
proximate method of integration, we do not aim for a comparably complete analysis
of the respective problems. Beyond formulating the boundary value problem for the
residual effects, we do not make any further reduction. In the case of the system of
equations governing the principal effects, we perform a partial reduction. However,
our main aim in this case is the derivation of a first-order system of asymptotically
valid constitutive relations, giving an adequate description of the dominant effects in
the interior. This is achieved in the final section and completes our analysis.



“Mathematical physics and pure analysis are not merely adjacent
powers, maintaining good neighborly relations, they mutually
interpenetrate and their spirit is the same.”

Henri Poincaré

General Introduction

The theory of elastic plates and shells deals with a class of problems in Solid Mechanics
icharacterized by the restriction that the structures concerned are thin, signifying that,
in the typical geometric representation, the particular diameter measuring the thickness
is substantially smaller than the other length scales of the configuration. There is a
direct correlation between this common mensural feature and certain mechanical prop-
erties shared by such structures, namely an enhanced flexibility in the thickness direc-
and the occurrence of boundary layer phenomena reflecting the fact that the in-
fluenee of some of the conditions applied to the edge surface is confined to a relatively
narrow neighborhood of their area of application.

Although these problems are three-dimensional in nature, it has long been recog-
nized that, in the majority of cases of practical interest, the main patterns of stress
and deformation are adequately described by a comparatively simple two-dimensional
system of equations with an appropriately contracted form of the boundary condi-
tions. In this two-dimensional formulation there is no recognition, either explicit or
implicit, of the thickness coordinate. This contraction is intimately connected with the
Principle of Saint Venant [14], implications of which have been proved for certain classes
of problems by Toupin [16] and Knowles [7].

In spite of the long history of the theory, many features of this contraction from
a three- to a two-dimensional theory remain obscure. The lingering ambivalence, as
to what physical interpretation should be given to the displacement functions proper
to & two-dimensional description, is due to the fact that it has not been established
in what sense, if any, the elements determinéd by the contracted formulation approx-
imate the corresponding quantities of the three-dimensional theory. These and other
related issues can be resolved only in a context that includes a precise formulation of
the complementary problem describing the effects suppressed in the simpler theory.
The present work is aimed at clarifying for the static case, within the framework of
the linearized theory of elasticity, the precise significance of the simpler theory, by
means of an equally precise formulation of the complementary problem. This will be
effected through a complete and systematic integration, with respect to the thickness
coordinate, of the full three-dimensional equations.
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Part of the original motivation for the contracted formulation arose from the fact
that, in many cases of practical interest, the specification of the stress distribution of
the edge-segment of the bounding surface is limited to a knowledge of the stress-
resultants and stress-couples, which, in terms of the distribution through the thickness,
correspond to the zero-th and first moments taken with respect to the thickness coor-
dinate. Guided by this indication in selecting a basis for exhibiting the dependence on
the thickness coordinate, we consider only those representations in which the leading
pair of coefficients coincide with the zero-th and first moments. Adding the require-
ment that the basis be orthogonal leads to the adoption of a resolution in terms of
Legendre polynomials. It is then consistent with physical intuition to expect that the
pursuit of such an expansion procedure lead to a formulation, from the leading terms
of which the simpler theory should emerge.

The recursion relations associated with the Legendre polynomials facilitates the in-
tegration with respect to the thickness coordinate of the system of three-dimensional
equations. The repeated application of these formulae leads ultimately to Legendre
representations for all field quantities, while the recognition of the orthogonal character
of these series in the integrated form of the equations, and also in the edge conditions,
yield an equivalent two-dimensional description of the full three-dimensional problem.
This alternate formulation reveals how the simpler theory appears in the dominant
terms, and a closer inspection shows that by making the proper distinction between
principal and residual effects, the full problem resolves into two uncoupled problems —
one coinciding with the simpler theory involving only the dominant effects, the other
consisting of the complementary problem, describing the residual effects, also formu-
lated in two-dimensional terms. It is also evident that for the analysis of the latter
problem the natural context is an infinite-dimensional linear function space. The
demonstration of the boundary layer nature of the influence of the edge conditions
in the solution of the complementary problem would then be equivalent to the valida-
tion of Saint Venant’s Principle for the configuration concerned.

Rather than immediately launch into the full ramifications of the theory of plates
and shells, we start by considering the model problem of the elastic strip which, while
admittedly artificial, nevertheless plays the role of the “hydrogen atom” in the theory.
The question then is that of relating the one-dimensional equations of classical beam
theory to the two-dimensional field equations of a planar elastic medium. Although
beam theory should strictly be related to a three-dimensional medium — since it is con-
cerned with a specialized form of the flat plate—it is more instructive to begin with
a detailed examination of the less ambitious problem and thereby observe how the
transformation of the two-dimensional field equations into an equivalent one-dimen-
sional formulation yields the simplest manifestation of the phenomena we wish to
analyze. Certain aspects of the finer points of beam theory may perhaps be more
realistically discussed within the semi-inverse procedure proposed by Saint-Venant [14],
and subsequently treated in the book by Clebsch [3], and also in the lectures of
Poincaré [12]: however, this method, which has been further developed in the work
of Pearson [11], Voigt {18], Michel [10], Almansi [1], Love [9], Timoshenko {15} and
Goodier [4], does not apply itself to the questions investigated here.

The integration of the field equations for the elastic strip is effected in Chapter 1
and the relative simplicity permits, without obscuring the main goal, the simultaneous
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investigation of certain secondary features, the most tedious of which are the effects
due to thickness variation. In the case of beams of constant thickness, the formulation
of the complementary problem yields an infinite set of ordinary differential equations
with constant coefficients with an appropriate set of two-point boundary conditions.
The clarification of the underlying function space structure in this simplest case, pro-
vides a model for the more complex problems formulated later.

In the analysis of plate theory treated in Chapter 2, we suppress most secondary
teatures. On effecting the uncoupling of the integrated-formulation, we find that the
principal effects of bending and stretching are exactly described by slightly modified
forms of the generalized theory of plane stress and Reissner’s theory of plate bending,
respectively. For the corresponding complementary problems, the formulation is
followed by the reduction of the governing equations to their relatively compact final
form.

In the treatment of shell theory in Chapter 3, where we are forced to adopt an
approximate method of integration, we do not aim for a comparably complete analysis
of the respective problems. Beyond formulating the boundary value problem for the
residual effects, we do not make any further reduction. In the case of the system of
equations governing the principal effects, we perform a partial reduction. However,
our main aim in this case is the derivation of the first-order system of asymptotically
valid constitutive relations, giving an adequate description of the dominant effects in
the interior corresponding to the Kirchhoff moment-curvature relations of plate bend-
ing. This is achieved in the final section and completes our analysis.

The use of Legendre representations has appeared in the work of a number of authors
dealing with various aspects of these problems, e.g. Horvay [5] in dealing with the
elastic strip, Cicala [2], Poniatovskii [13] and Krenk [8], in their respective treatments
of plate theory, and the analysis of shell theory by Hu [6] and Vekua {17]. However,
the procedure followed here, which does not appear to have been exploited heretofore,
makes evident the advantages of the Legendre polynomial representations in a man-
ner that shows them particularly tailored for the problems considered.
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“The language of truth is simple.”
Euripedes

Chapter One

Beam Theory and the Residual Effects
in the Elastic Strip

Introduction

In order to treat the problem of the straight elastic beam within the framework of
a two-dimensional formulation, we consider the boundary value problem for the plane
figure defined by the side-view projection of the three-dimensional body. Correspond-
ing to the midplane of the beam the figure has an axis of symmetry, called the
centerline or axis, which immediately defines a pair of reference directions in the plane;
namely, the axial and transverse directions respectively parallel and normal to the
centerline.

Bounding the figure is a simple closed curve which falls naturally into four segments
— a pair of edges alternating with a pair of faces. The edges are transverse rectilinear
segments, one at each end of the axis: thus the centerline bisects the edges perpen-
dicularly and does not meet the boundary at any other point. The complementary
segments, each of which joins a pair of edge endpoints on the same side of the sym-
metry axis, are called the faces of the beam; these are mirror reflections of each other
in the centerline. The metrical characteristics of the beam are the length measured
parallel to the axis and the thickness measuring the transverse intercept which may
vary along the axial length.
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The figure which has a prescribed mass per unit area is composed of a material
whose mechanical behavior is in accordance with the Cauchy-Green law for a two
dimensional isotropic elastic medium. In addition to the constraining action of the
boundary conditions applied along the respective segments of the bounding curve
the material is also subject to an interior body force distribution induced by the force
field in which it lies. The only restriction, namely that the applied forces be consis-
tent with overall static equilibrium, will follow as a consequence of the microscopic
equilibrium equations and need not be considered as an extraneous condition.

The boundary conditions may take various forms which can be classified under
three main headings:

1. Stress boundary conditions wherein the stress vector is prescribed at each point

on the bounding curve.

2. Displacement boundary conditions wherein the displacement vector is prescribed
at each point on the bounding curve.

3. Mixed boundary conditions wherein the prescription of displacements com-
plements the prescription of stresses in the specification of conditions on the
bounding curve: thus the stress vector may be prescribed over part of the bound-
ary and the displacement vector is then prescribed over the complement; alter-
natively, at any point of the bounding curve may be prescribed one component
of the stress vector together with the complementary component of the displace-

ment vector. )
In the course of our analysis, we shall obtain a Legendre series representation for

each of the stress and displacement components: the coefficients appearing in the
representations for the displacements components are expressed in terms of the coef-
ficients occurring in the series for the stress components. From this it will be evident
that the treatment of problems associated with either the displacement or the mixed
boundary conditions is a straightforward extension of the procedure developed for
the problem associated with the stress boundary conditions. These extensions would
involve some modifications of the algebra leading to the final determination of the
arbitrary constants that arise. Hence, without loss of generality, we confine our at-
tention to a consideration of the stress boundary value problem.

From the standpoint of beam theory, the primary concern is the investigation of
the effects in the interior resulting from the conditions applied at the edges: we shall,
therefore, give priority to a detailed consideration of the influence of the applied
edge stresses. Hence, in our designation of the problem the primary specification con-
sists of the prescription of the stresses along the edges: the prescription of the stresses
along the faces together with the geometrical and physcial features of the problem
are the secondary specifications. In keeping with the priority stated above, it is ap-
propriate to allow the most general form in the primary specifications.

If one were to aim for maximum generality in every detail, one would also admit
the most general form for the secondary features. The retention of such generality
would not involve any essential difficulty for the method of analysis: however, it
would make the algebra unjustifiably cumbersome and tend to obscure the primary
aim, namely, the manifestation of the interior effects due to the applied edge stresses.
Accordingly, in the course of the development we shall contain the algebra within
the limits necessary for clarity by restricting to relatively simple cases some of the
secondary specifications. These restrictions are introduced in successive stages.
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In the equilibrium equations of elasticity the material density and the field inten-
sity appear only in the combination formed from the multiplication of the intensity
vector by the scalar density; this vector is therefore the body force per unit volume
and we refer to it as the body force density. In dealing with the equilibrium equa-
tions, we shall restrict ourselves to the case in which the body force density has no
axial component and whose transverse component has no transverse variation: (this
includes the standard case of a horizontal beam, whose density does not vary through
the thickness, subject to a vertical gravity field). In the representation for the stress
components, which we then derive from the equilibrium equations, there is no restric-
tion on the axial variation of the transverse body force density. The analysis for a
completely arbitrary body force density follows the same pattern and for that case
the formulae for the stress components are given without derivation.

When we come to an analysis of the constitutive relations, some further secon-
dary features appear — namely, the elastic parameters characterizing the material
behavior. With a view to moderating the length of the ensuing algebraic expressions,
it is convenient at that point to introduce some further modifications in the secon-
dary specifications. We therefore confine our attention to those cases where both
elastic parameters — namely, Young’s modulus and Poisson’s ratio — as well as the
body force density are constant, but we retain the variability of the beam thickness.
Although the subsequent analysis is carried out only for this restricted class of prob-
lems, the consideration of any excluded effects could be incorporated by an ap-
propriate extension of the procedure.

Consistent with admitting full generality in the primary specifications we allow
an arbitrary distribution of the applied stresses along the edges, assuming only that
the distributions are analytic functions of the transverse coordinate. These applied
edge stress distributions can be separated into two distinct parts — a principal part
characterized by the fact that it contributes to the net edge stress resultants and stress
couples, and a subsidiary part consisting of self-equilibrating stress distributions. The
principal part is responsible for the principal effects in the interior, the analysis of
which is the aim of classical beam theory: on the other hand the latter theory is in-
sensitive to the residual effects induced by the subsidiary part of the edge stress
distributions. We further recall that classical beam theory consists of the indepen-
dent problems of stretching and bending: the corresponding distinction in the general
problem appears in the uncoupling of the effects associated respectively with the even
and odd parts of the axial normal stress in its dependence on the transverse coordinate.

While physical considerations indicate unambiguously what the principal and
residual stress effects should be there is no explicit suggestion for the corresponding
displacement effects. The particular method of series expansion employed leads to
a formulation of the governing equations in a form in which the mean displacements
are the only displacement quantities that appear explicitly. Moreover, there is a par-
tial uncoupling in that the equations for the principal stresses can be immediately
integrated, which in turn admits the separated formulation of the equations for the
residual stresses. There then remains the equations for the mean displacements: an
inspection of the latter equations suggests the manner in which the principal and
residual components of the mean displacements should be defined. This resolution
completes the uncoupling and this leads to two independent systems of equations
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respectively describing the principal and residual effects. Each system has associated
with it its own particular set of terminal conditions thus permitting either problem
(the problem for the principal effects or the problem for the residual effects) to be
solved without reference to the other.

The objectives of the treatment may now be stated under three main headings:

1. The clarification of the distinction between the principal and residual effects.

2. A systematic derivation of the boundary value problems of classical beam theory

(principal effects).

3. The formulation and analysis of the boundary value problems for the residual

effects.

The first two sections consist of a statement of the problem together with its refor-
mulation in terms of a new coordinate system, transformed so as to make the region
rectangular, and thus facilitating the subsequent variable separation. The third sec-
tion is concerned with the partial integration of the equilibrium equations leading
to Legendre series representations for the stress components. These representations
require that the boundary conditions be restated in terms of the coefficients appear-
ing in these series. This is done, for the face boundary conditions, in section four
and for the edge boundary conditions in section five. From the reformulation of the
conditions on the faces there emerges the stress equilibrium equations of classical
beam theory, which are integrated prior to the application of the edge boundary con-
ditions. This leads to the solution of the stress problem of classical beam theory as
well as to the conditions for overall static equilibrium.

The content of sections six and seven is an analysis of the constitutive relations
which yields the Legendre series representations for the displacement components
and also leads to the system of equations to be satisfied by the residual stresses and
the mean displacements. By an appropriate separation of the principal and residual
effects each of the equations for the mean displacements can be decomposed into
an equation for the principal part associated with classical beam theory, and an equa-
tion for the residual mean displacement associated with the equations for the residual
stresses: this is done in section eight.

There remains the problem of solving for the residual effects. In order to clarify
the procedure to be followed, we thereafter restrict our discussion to the case of con-
stant thickness, which results in a considerable simplification. The problem of stretch-
ing for this restricted case is considered in section nine and we find that the calcula-
tion of the residual mean displacement follows immediately once the residual stresses
are known. For the determination of the latter, we have an infinite set of fourth order
ordinary differential equations with constant coefficients. In its vector space formula-
tion the solution of such a system amounts to specifying the prescription for the con-
struction of the fundamental matrices. This interesting application of the theory of
linear operators in functions space concludes the analysis of the stretching problem.

The corresponding treatment for the problem of bending is developed in section ten.

In the typical beam, the characteristic feature is the fact that the axial length is
significantly greater than the maximum transverse thickness. The subsequent analysis
is carried out without any reference to this mensural characteristic and its validity
is not confined to a restricted range of the length-thickness ratio. However, in the
analysis of the residual stresses the parameter representing the latter ratio emerges
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naturally in the solution. Inspection of the solution in its dependence on this parameter
then puts the essential features in focus. It will be evident how this ratio effects the
rapidity with which the residual effects decay away from the edges and also the ex-
tent to which these latter effects are dominated by the principal effects throughout
the medium.

We refer to the transverse straightline through the midpoint of the axis as the midsec-
tion; the centerline together with the midsection constitute the obvious set of coor-
dinate axis for the problem. The idealized case of a semi-infinite beam having but
one edge requires special attention: for this case the centerline together with the edge
would be the natural coordinate system. This special case can therefore be conven-
iently handled as a limiting case of a finite beam after first making appropriate transla-
tion of the origin. In previous treatments of the residual problem this idealized case
has received the most attention. At the end of the chapter there is a section devoted
to a brief discussion of some of the prior work, together with citations to the literature
relevant to the problems treated.

1. The Boundary Value Problem

Referred to the orthogonal Cartesian x — z coordinates system in which the Xx-axis
is the centerline and the z-axis is the midsection, the region ® occupied by the figure
is defined by

. —as<sx=a
@: —h(x) =z =< h(x) - a.1

Hence, the length is given by the constant 2a while the thickness, denoted by 22 (x),
may vary with the axial coordinate. The bounding curve consists of the pair of edges

X = Fa (1.2a)
together with the pair of faces
z = Fh(x) (1.2b)

Employing the notation of ordered pairs for two-component vectors, we let
[7.(x,2), 7,(x,2)] and [7,,(x,2), 7, (X,2)] denote the stress vectors on elements
normal to the x and z axes, respectively. We suppose the medium subject to a
transverse body force density, denoted vectorially by [0, f, (x)], where as indicated,
Jf, does not vary through the thickness. Then, using the comma notation for partial
differentiation the Cauchy equilibrium conditions consist of the pair of differential
equations

L I =0 (1.3a)
Tox t T T Jo =0 (1.3b)

——

—————————————————
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together with the symmetry relation
Ty = Tox (1.3C)
If we denote the displacement vector by [v,(x,z2), v,(x,2)], then, for an isotropic

medium, the system of Cauchy-Green constitutive relations, with linearized strain
measures, may be written

1

Yex = Upx = E[Txx - l'Tzz] (1.4a)
1 1

Yz = E(Ux,z + vz.x) = E(l + ) Txz (1.4b)
1

Y2z = Vs,z = E[Tzz = 17yl (1.4c)

The above relations define the linearized strain measures, Yoexs Yz a0d 7v,,, in terms
of the displacement components, and also give the relationships between the strain
measures and the stress components. The coefficients E and » are Young’s modulus
and Poisson’s ratio, respectively, for the medium.

Also associated with the displacement quantities is the infinitesimal rotation w,
defined by

w = 2y, — ) (1.5)

The introduction of the formula for v, . from (1.4b) into (1.5) gives an alternative
form for the rotation quantity, namely

1
w=%(l+97, —v,, (1.6)

We consider the lower and upper faces of the beam subject to arbitrary applied
surface stress vectors which we denote by [p,(x), p;(x)] and [p](x), pi(x)],
respectively: in these we have used the x-coordinate as the face parameter. If we denote
dh/dx by h’, the boundary conditions on the lower face take the form

1

V1 +h'2

[r (X, —h) + h'7 (x,—h)] = p_ (1.7a)

;2 (7,06, —h) + h'r, (x, —h)] = p, (1.7b)

V1+hn

while the corresponding conditions on the upper face read
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—L (k) - W (] = ) (1.88)
V1+hn
z=h: <
\/iz [, (6, k) = K7 (x,h)] = p; (1.8b)
1+ A

Along the left and right edges there are applied the stress vectors [7,,(2), 75, (2)]
and [7},(z), 74, (2)], respectively, where the four functions 77, (z) and 77, (z) are
arbitrary functions of z: hence for the edge boundary conditions, we have

x=—a 1,.(~-a,2) = 71,(2), 7,,(—a,2) = 7,(2) (1.93)

X

+a: 7,.(a,2) = 715(2), 1,(a,2) =717(2) (1.9b)

The stress boundary value problem for a two-dimensional elastic medium is that
of determining the unknown field quantities, namely the stress and displacement com-
ponents, throughout the region ® . This consists in solving, explicitly in terms of x
and z, the system of partial differential equations (1.3) and (1.4) subject to the boun-
dary conditions (1.7) to (1.9).

2. Normalization of the Transverse Coordinate

We introduce a coordinate transformation that leaves the x coordinate unchanged
and replaces the z coordinate by the normalized transverse variable #, defined by

. r4
t = 7 (x) 2.1
from which it immediately follows that
o _ _ k', ot _1
ax — h ' dz A 2.2)

Under the transformation (2.1), the region & in the x — z plane defined by (1.1)
becomes the rectangle ®, in the x— ¢ plane defined by

®Ry: (2.3)

The rectilinear boundary now consists of the pair of edges

X = Fa (2.48)
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together with the pair of faces

t=T1 (2.4b)

In reformulating the boundary value problem for the region R, all field

quantities are to be considered as functions of x and ¢. To emphasize the transformed

dependence, we introduce new notation that reflects the effect of the transformation
(2.1). For the stress quantities, we set

0, (xt) = 7,.(x2), o(xt) =1,(x2) (2.5a)
T(Xt) = 7,,(x,2) = 7,.(x,2) (2.5b)
and for the edge distributions, we write
ol (t) =17(2), 77 (1) = 75.(2) (2.5¢)
Similarly for the displacement vector, we define the components # and w by
ulx,t) = v,(x,2), wxt) = v,(xz) (2.6)

Applying the rules for partial differentiation and using relations (2.2), it follows that

_ h' _ 1
Txx,x = Oxx ™ h— t Op,tr Txz,z = Z Tsy
2.7
_ h' _ 1
Texx = Tox — n [Ty Togr = h 05y
and furthermore
h' _ 1
Uy x U,y h— tu,, Uz & H u,,
(2.8)
! 1
Uy = Wox = 7 EWops U = 2 W,,

Relations (2.7) and (2.8) are now to be introduced into the equations of Section 1.
Under the above transformations, the equilibrium equations (1.3) take the form

hax_x — h't o, + 7, =0 (2.9a)

ht,, ~h't7,, + 0, + hfy =0 (2.9b)

while the stress-displacement relations (1.4) become
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U+ R, = R W, = 201+ )7

hu,, — h'tu,, = i[ax — vo]

and the rotation formula (1.6) reads

1
w—E(1+v)-r—w

E

h
w,, = ’E[U-— VOX]
hl
e T W
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(2.10a)
(2.10b)

(2.10¢)

(2.11)

Corresponding to conditions (1.7) to (1.9), we now have the transformed face

conditions

r
t= —1 <
and
=1 <

1
\/1+h’2
1
\/1+h'2
.
\/1+h’2

1
\/1+h’2

together with the transformed edge conditions

X =

X =

—-a:

+a:

Ux( _a:t)

o.(a,t)

U_(t), T(_axt)

o (1), 7(a,t)

[7(x,1) - o (x,1)] = p;

[o(x,1) — 't (x,1)] = p;

[T(xx_l) + hlax(x:_l)] =p;

[U(x)_l) + h'7T (xx_l)] = pz_

T (1)

(1)

(2.12a)

(2.12b)

(2.13a)

(2.13b)

(2.14a)

(2.14b)

The transformed boundary value problem consists of determining the solution to
the system of equations (2.9) to (2.11), valid in the region R, and satisfying the set
of boundary conditions (2.12) to (2.14).
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3. Representations for the Stress Components

In obtaining representations for the stress components, our procedure involves taking
an explicit form for the dependence on ¢ leaving the implicit dependence on x to be
determined later. Assuming only that the stress components depend analytically on
the normalized transverse coordinate, we start by expanding the axial normal stress
in a series of Legendre polynomials in ¢ where the coefficients are unknown func-
tions of x: then, by integration of the equilibrium equations, we derive the correspond-
ing Legendre expansions for the other two stress components.

This procedure yields representations for the stresses in separated form; namely,
the dependence appears in the form of linear combinations of terms, each of which
is the product of a function of x by a function of ¢. In that form, derivatives appear
only as total derivatives for which it is convenient to have an abbreviated notation:
we shall use a dot to denote d/d¢ and, as before, a prime to denote d/dx.

The integration of the Legendre series is facilitated by the use of the recurrence
relations for Legendre polynomials. Letting P, (¢) denote the Legendre polynomial
of degree n, we have*

(2n+1) P, (1) =P, (1) —P,_ (1) (3.1)

from which it follows that apart from an additive term independent of ¢, we may write

1
2n+1

SPn(I)dlz [P, (1) — P,_ (1)] 3.2)

A second recurrence relation, namely
(P,(t) = nP,(t) + P, (1) (3.3)

expedites the integration of those terms arising from the inclusion of effects due to
variation in the thickness.
We write the expansion for ¢, in the form
-]
o, = E s, (x) P,(t) 3.4)
n=0
in which the coefficients s, are undetermined functions of x: it immediately follows
that
(=] o« -
Oy = ) Sp(X) P (1), o, = Y 5,(x)P, (1) 3.5

n=0 n=|1

where, in the second relation, we have noted that150 = 0. If we introduce relations
(3.5) into the first equilibrium equation (2.9a), we obtain the equation for 7, namely

T,=~h Y s;P,+h Y s, 1P, (3.6)
n=0 n=1

* For a derivation of the recurrence formulae (3.1), (3.3) and (6.9) for the Legendre polynomials, we
refer to § 15.21 of “Modern Analysis’’ by E. T. Whittaker and G. N. Watson, C.U.P., Cambridge, 1952.
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where we no longer write the dependence on x and ¢ explicitly. Applying the recur-
rence relation (3.3) to the terms in the second summation on the right of (3.6), we have

r=—h Y 5P, +h Y s,(nP, +P,_)) (3.7)

n=0 n=1

which on rearrangement reads

[--] [--]
r,,=— Y (hs, = nh's)P, + h" ) s, P, (3.8)
n=0 . n=1
where again we have noted that P, = 0.

The integration of the above equation with respect to ¢ yields the Legendre series
representation for 7. The integration of the second summation is straightforward:
to integrate the first summation, we use formula (3.2) and rearrange the terms.
We obtain

[--]
r=Y, 7,(x) P,(1) (3.9)
n=0
in which 7, is an undetermined function of x introduced by the integration, and the
higher coefficients are given by

s! Sp_ +1 n—1
) B n+l _ Sn=1 | _pe | P s s, _ + h's, . nz1
" [2n+3 2n—1 m+s ! fa -

’

mp | Sner o Snon | gy | B2 e Pl L nzl (Bl10%)
2n+3  2n-1 2n+3 2n—1

The corresponding representation for the transverse normal stress is obtained in
an identical manner from the second equilibrium equation. Introducing the expan-
sion (3.9) into (2.9b) and using the recurrence relation (3.3), we rearrange the terms
to obtain

6, = = % (hry = nh't) P, + B % 1, By = hfy (D)
n=0

n=0
the integration of which gives the Legendre series representation for o: we find

o=~ Y 0,(x) P,(1) = h(x) folx) P (1) (3.12)

n=0

in which ¢, is an undetermined function of x introduced by the integration and the

e
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higher coefficients are given by

(3.13)

=p | Tn+1 _ Tnon +h | A2 Tntr T e Ta-1 | » nZ1. (3.13%)
2n+3 2n-1 2n+3 2n-1

In fact, if we substitute for the 7, in terms of the s,, from (3.10), and rearrange, we
obtain for n=2.

2
UH = h

—hh'

”
S,,_z

”
2s;

(2n-3)2n-1)

2(n-2)s,_,

(2n-1)2n+3)

’
65,

Spea J
@2n+3)(2n+5)

(2n—-3)(2n-1)

2n—-1)2n+3)

2n+3)s,,, }

@2n+3)(2n+5)

o [ (n-2»-1s, _, @n’ +2n-3s, (n+2)(n+3)s,,, }
@n=3)2n—1) (2n=1)(2n +3) @n+3)(2n+5)

| n=2)s5,_, | 3s, (n+3)s,,, J

Ll @n-3)@n-1 (2n—1)(2n +3) @n+3)2n+5) |’

n=2, (3.14)

The expansions (3.4), (3.9) and (3.12), together with formulae (3.10) and (3.13),
give the Legendre expansions for the three stress components: besides the original
unknown functions, (s, (x):n= 0], they also involve the undetermined quantities
79(x) and o, (x). As the stress field is thus entirely represented, so the solution of
the boundary value problem lies in the determination of these coefficients.

We shall see presently that the satisfaction of the face boundary conditions leads
to the equations to be satisfied by the quantities Sps S1» 7g and o,: the equations for
the remaining unknowns, [s,(x), n=2], will follow from the utilization of the
stress-displacement relations. The edge boundary conditions then give the side con-
ditions determining the unique solution of these equations.
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Addendum: We conclude this section with a statement of the corresponding results
for the case of a general body force densny Instead of the vector [0, f,] we envi-
sion the general form [ £, f1, where both f and f are arbitrary analytic functions
of x and ¢, and write the Legendre expansions of f* and f in the form

[-=]

= Y /u(x) P (1), f=Y f,(x)P(1)
n=0

If we use a tilde to distinguish the coefficients in this case, then, corresponding to
(3.4), we assume an expansion for the axial normal stress in the form

kq
i
(Nok

5,(x) P,(1)

n=0

and the expansions corresponding to (3.9) and (3.12) for the other two stress com-
ponents take the form

-]

F(x) P,(1), o= Y 6,(x)P,(1)

~
I
10

I

where 7, and G, are undetermined and the remaining coefficients are given by

F, =h Spr1 _ Su- +h n+2 L+ n-1g¢ 1
=1 " —
2n+3 2n—1 2n+3 2n—1

x x
+h fn+l — fn—l s
2n+3 2n—1

G, =h l: Tntt . Tn-i i| +h' |:2’;_:-237’n+1 + Znn_llT"_I:|

+h fn+l — fn-—]
2n+3 2n—1

The above are listed merely to indicate how the effects of the general body force den-
sity can be incorporated: we shall not refer to them further in the sequel.
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4. The Face Boundary Conditions

The application of the two pairs of boundary conditions for the lower and upper faces
leads to four relations between the coefficients appearing in the representations for
the stresses. By appropriate combinations of these relations, we arrive at a simpler
but equivalent set which are respectively

1) the differential equation to be satisfied by s,,

2) the differential equation to be satisfied by Sis

3) the formula for 7, in terms of s,

4) the formula for g, in terms of s, and s, .
In fact we shall see that, ignoring the last relation, the remaining three can be inter-
preted as the equilibrium equations of classical beam theory.

Recalling that for Legendre polynomials,

P,(-1)=(=-1" P (1)=1 (4.1)

it immediately follows that

o (=D =5+ 3 (-D)'s, o (x,+1) =5+ ¥ s, (4.2)
n=1 n=1

=D =1+ L (-7, ri,+) =7+ ¥ 7, 4.3)
n=1 n=1

a(x,~) =0+ 3, (-D"0,, o(x,+) =0, + ¥ 0, (4.4)
n=1 n=1

We next insert formula (3.10) for the 7, into relations (4.3): if we note the cancella-
tions resulting from the recursive features of (3.10), we obtain

T, =1) =7+ hsg — ghs{ + gh's + b0 L (-1 's, (450)

3 n=2
T(x,+1) =70~ hsg — 3 hs{ + sh's + h' L s, (4.5b)
n=2

Similarly by introducing formula (3.13) for the o, into (4.4), and again making the
obvious cancellations, there results

o0 = 1) = oy + hrg — hri + $h'r + B0 L (=1 7, + A

3 n=2
) (4.62)
a(x,+1)=00—hré—%hr,’+%h’1, +h Y 1, - hfy (4.6b)

n=2
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An appropriate combination of (4.2) with (4.5) gives

1 2

r(x = 1) + Ko, (x,=1) = 7o + hs§ + h'sy = 2 hs{ = 2 h's,

(4.72)
(54 1) = o (x,+1) = 7~ hsg — h'sy — ks = 2 h's,

(4.7b)

while a similar combination of (4.3) with (4.6) yields

a(x,—1) + h'r(x,=1) = gy + hrg + h'my = T hr{ = 2’7, + hfy
(4.82)

o(x, +1) = h'7(x,=1) = 0 ~ hry — h'7o ~ 3 hr{ = 2’7 = hf,
(4.8b)

By means of relations (4.7), the boundary conditions (2.12a) and (2.13a) become,

respectively
7o+ (%) = 55 (H's)" = J1+h7p; (4.92)

70— (hs)' = 55 (H's))" = J1+n7p] (4.9b)

while the use of relations (4.8) renders the boundary conditions (2.12b) and (2.13b),
respectively, in the form

0 + (h7g)" = 5 (K7)" = 1+ 02 p] - nf, (4.10a)
0 — (hg)’ = 5 (h'1)" = 1+ 87 p!+ h, (4.10b)
If we introduce the notation
+ - . + -
P+ by =ph Py - Py =D, (4.112)
p+pl=p" Pi-pP, =P (4.11b)

then subtraction and addition of equations (4.9) yield, respectively

(2hsy)’ + 41 + h'ip, =0 (4.12)
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and

G H's)’ = 2k + hJ1 + w7 pr =0 (4.13)

while similar operations on equations (4.10) give

(k1) + 1 + k'’ p + 2hf, = 0 (4.14)

and
G W’1)* = 2h0y + hJ1 + hP pr =0 (4.15)

respectively. Substituting for 7, from (4.13) into (4.14), we obtain

(% Ks)” + J1+ hip+2nfy+ (hfl+ hPp) =0 (4.16)

Relations (4.12) and (4.16) are the differential equations to be satisfied by s, and
s,, respectively, while 7, must satisfy (4.14).
We may rewrite equation (4.13) in the form

T = a5 ('s)’ +%‘/1 + nt pe (4.17)

If we recall the system (3.10*), it is clear that formula (4.17) is the relation required
for the excluded case n = 0. The system (3.10*) complemented by (4.17) is the com-
plete set of relations giving the 7, in terms of the s,.

Similarly, if we write equation (4.15) in the form

0 = 3 (K1) + 31+ 0 pe (4.18a)

we have the relation required for the excluded case n = 0 in (3.13*). It is convenient
for our purpose to note also the corresponding formula for o,, namely

o, = 3 (h7} + 3h'7,) — hrg (4.18b)

obtained by setting n = 1 in (3.13*).

An appropriate substitution transforms relations (4.18) into formulae expressing
o, and o, in terms of the s, thus providing for the cases excluded from (3.14). For
this we note the formulae for 7, and 7, implied by (3.10*), namely

1

T =

(hsy + 3h's,) — hsg (4.192)

ry =2 (hs) + 4R's) = 3 (hs{ = h's)) (4.19b)
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We introduce (4.19a) into (4.18a) and use relations (4.17) and (4.19b) in (4.18b): after
some rearrangement, we obtain

— L 3 ”n —_ _l_ 3 AN l /2 *
0 = 137 (H's)" = 35 (h's)) +2,[1 +h’p (4.20a)
o = 315 [R’s) + 8hh's] + 4(hh” + 3h"%)s,]

2
- %[2/1 st + 6hh's) +(3hh" — h'hys, + 3 (1 + ' py]

2
(4.20b)

The system (3.14) complemented by relations (4.20) constitute the complete set of
relations expressing the o, in terms of the s,. We can obtain an alternative form for
(4.20a) if we use (4.12) to express sj in terms of s,: explicitly, we obtain the
equivalent expression

N S FR RS FONN ERPRS 2
0 = 157 (h'$)" + 35 (hh'sp) +7,’1+h P+ g5 lh Ji+nlpy

: (4.202*)
if we note from (4.12) that

hsg= —h'sy = 21+ k' p,. (4.21)

An inspection of the above relations reveals the immediate effects of the surface
and body forces on the various stress components. The body force and three of the
surface resultants directly induce axial stresses. Equation (4.12) shows the effect of
p, on the coefficient s, while equation (4.16) indicates the influence of the quantities
Jo» p and p?on the coefficient s,. Consistent with the classification introduced later,
the surface resultant p, is a stretching effect while the body force f,, and the net
transverse pressure p are bending effects as is also the quantity p;. The appearance
of the latter term in formula (4.17) for 7, shows that it also directly induces a
transverse shear stress: its related effect on the transverse normal stress is seen in
formula (4.20b) for o,. In formulae (4.18a) and (4.20a) for g, there occurs the
remaining surface quantity p*, also associated with the stretching effects: if we note

that p* measures the ‘‘pinching”’ tendency of the surface forces, we see that this direct

influence on the transverse normal stress is to be expected.
For future reference we also note here the explicit form for o, and o, given by
(3.14), namely

—_ 2 l //_i " _1_ ” — ’ E I_lg ’
o, = h {3% 2152+63S4] hh {7s2 6354}

ala, 20 ] e [2s -5
+h [7S2+63 54:| hh [752 63 54:| (4.22a)

=r—r
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: ]
+h? [is,+ls3+ﬂss] —hhe | Ls o+ L o 2 s [(4.220)

Finally, we note that in classical beam theory the stress resultants and couple are
defined by

z 1
N = S 7., dz = h o, dt = 2hs, (4.23a)
“z -1
z 1 2
M= zr daz=n] o ar= <L) (4.23b)
-z —1
z !
0= S 17..dz=h S 7 dt = 2h7, (4.23¢)

With this notation, equations (4.12) to (4.14) take the familiar form

N+ 1+ hp, =0 (4.24)
M —Q+ h{l+n’pr=0 (4.25)
O+ 1+ hPp+2nf=0 (4.26)

Thus equations (4.12) to (4.14) are the equilibrium conditions for elementary cross
sections of the beam.

5. The Edge Boundary Conditions

Having expressed the face conditions in terms of the coefficients appearing in the
Legendre series for the stresses, we now effect a corresponding reformulation of the
edge boundary conditions. The edge conditions on the axial normal stress are
equivalent to a pair of point boundary conditions on each of the coefficients s,:
similarly the edge conditions on the shear stress are equivalent to a pair of point boun-
dary conditions on each of the coefficients 7,. Anticipating the later formulation of
the equations to be satisfied by the yet undetermined coefficients s,, n= 2, we shall
transform these latter conditions on the 7, into a second set of conditions on the s,.
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The face conditions led to the differential equations to be satisfied by s;, 5, and
7,: the determination of these quantities will follow from the integration of the equa-

tions together with the application of the edge conditions, from which will also emerge '

the requirement that certain relations hold between the lower coefficients in the
Legendre expansions for the prescribed edge stresses. These latter relations express
the constraints necessary for overall static equilibrium.

Considering the right hand sides of relations (2.14), we expand the prescribed stress
distributions ¢ (¢) and 77 (¢) in the series of Legendre polynomials as follows

@

oF (1) = Y sFP(1), 77(t) = ¥ 1FP,(1) (5.1)

n=0 n=0

where the coefficients s and the 7,7 are constant: noting the expansions (3.4) and
(3.9), the conditions (2.14) may now be written

s,(Fa) =sF, 7,(Fa) =17 nz0 (5.2)

In particular we have the conditions

So(—a) =54, s(+a) =s, (5.3a)
si(—a) =s,, s(+a)= s,+ (5.3b)
o(—a) = 75, To(+a) =71, (5.3¢)

associated respectively with equations (4.12), (4.13) and (4.14): the remaining condi-
tions in (5.2) are associated with the system of equations for the remaining s,, n=2
to be formulated later.

In order to transform the second set of conditions in (5.2), namely those on the
7,, into a form expressing requirements on the s,, we use relations (3.10) together
with relation (4.17) for 7,. If we write successively the expressions for the 7, of even
index, we obtain

Ty =%hs,’ + %h’s, +%J1 + h'zp;

72=h(%s3’—% s)) - h(—s3—%-sl)+h’s3
Sak+1 2k—| 2k-1 ,
=Mkys T w—) (4k+352k+l T ak—1 Sk-1) TR S

The addmon of the above gives, for k=0,
BSikey  2k+1 d L 28
272'=m_4k+3h52k+1+h Eszj+:+§ L+ h"py (5.4)

j=0

—————

=
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from which there follows

k
hs3i oy = (4k+3) Y 7+ Qk+ D)h'sy
j=0

k
— @k Y s+ %/1 + h2p2], k=0. (5.5)

j=0

We can write the expressions for 7, of odd index and perform a similar summation:
if we also use (4.21) to substitute for Asg, we obtain for k=1.

ko) hs3y 2 « 1 2
Eo T = TR T der T St A j§s2j+3./l +h"p, (5.6)

from which we have

k=1
hsy = (4k+1) Y3 15, +2kh" sy,
j=0

k
—@kAD Y s+ 21+ B p 1 k=1L (5)

J=0

Equations (5.5) may be considered the generalization to higher indices of relation
(4.13): the corresponding analog to relation (4.12) is given by equations (5.7). We
shall use these relations only at their terminal values to determine edge conditions
on the s;. We see that if we set

k=1
dye = (4k+1) ¥ 73, + 2kh'(Fa) 55
J=u
kw1 2
—(4k+1)[h’(=Fa)Es2j+5‘/l+h’ (Fa) p(Fa)], k=1 .

J=0
(5.82a)

k
F F F
dyey = (4k+3) Y 7+ QK+ DA (Fa) sy
i=0

k
2
~ @+ (F0) sy + 31 +h (R ) pi(Fal, k20 .

ji=0
(5.8b)
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then the edge conditions (5.2) may be replaced by
s,(Fa) =s:,n20: hs,(Fa) =d:,n21. (5.9)

which, for convenience in later reference, we separate into the three sets

So(Fa) = s: (5.92)

_ ¥ I ¥
s (Fa) =s,, hs|(Fa) = d, (5.9b)
s,,(:Fa)=s:, hs, (Fa) =d:,n22. (5.9¢)

The set (5.9a) which is identical with conditions (5.3a) is associated with differential
equations (4.12). The second group, namely (5.9b), equivalent to conditions (5.3b)
and (5.3c) combined, gives the set of conditions to be assigned to the differential
equation (4.16). The third set, (5.9¢), constitutes the system of boundary conditions
complementing the system of differential equations for the {s,,n>2} to be for-
mulated in Section Seven.

Since the two conditions (5.9a) are associated with a first order differential equa-
tion, they must satisfy a compatibility relation: similarly the four conditions (5 .9b)
associated with a second order differential equation must satisfy two compatibility
relations. These compatibility requirements, giving the conditions for overall static
equilibrium, follow from the integration of the differential equations.

Starting with equation (4.12), we integrate over the beam length: if we use the
notation

h™ = h(—a), h' =h(+a) (5.10)

and note the edge conditions (5.3a), we are led to the constraint
a
2htsi—h sy =~ ) Jrn?pdx (5.11)
—a

to be satisfied by the coefficients s:. The indefinite integration of equation (4.12)
together with the application of the edge conditions and the use of condition (5.11)
yields the following alternate forms for the coefficient s,, namely

X
2hs, = 2h " s, — 1+h'% p_dx (5.12)
0 0 X

—-a

a X
2hsy = h' sy + h-so_+—é- g J1+h’2pxdx— S 1}1+h’2pxdx (5.12%)
~a —a

A corresponding procedure for equation (4.16) with the conditions (5.9b) yields
the solution for s, and the constraints to be satisfied by the edge quantities s, and
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d f Rather than perform the double integration of equation (4.16), it is more con-
venient to integrate successively the equivalent system (4.14) and (4.13) and apply
the conditions (5.3b) and (5.3c). Integrating equation (4.14) over the beam length,
we note the edge conditions (5.3c): setting

s = = tfien? o+ 2mldx (5.13)

we obtain the constraints on 7 in the form
2071y — h 1) = —fia) (5.14)

The indefinite integral of (4.14) together with (5.14) then gives the alternative forms
for the coefficient 7,

2h1y = 2h 1y — f3(x) (5.15)
2y = h' 1y + h g+ L2 :
To—h TO+h To+5f0((1)—f0(X) (5.15*)

We may now deal in a similar manner with equation (4.13). If we substitute for
7o from (5.15*) into (4.13) and, after integrating over the beamlength, we apply the
edge conditions (5.3b), we obtain the constraining relation

%[(h*’)zsf— (h )51 =2alh 10+ h 14+ %f(;(a)] —S_a (A J1+n% p* + £300)1dx
(5.16)

on the coefficients s;” . The corresponding indefinite integration together with the
application of the first of conditions (5.3b) yields the solution

X
§h2s1=§(h Vs, 4+ [h rg+h 7o+ f5@) )0+ a) - S_a (hJ1+h" prtf3(0)ldx
(5.17)

for the coefficient s,: this latter formula could also be put in a more symmetric form
by utilizing relation (5.16).

Relations (5.12), (5.15) and (5.17) are the complete solutions for the coefficients
Sos To and s, respectively: these are the principal stresses considered in classical beam
theory. The conditions (5.11), (5.14) and (5.16) on the coefficients appearing in the
edge distributions ensure overall static equilibrium.
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6. Representation for the Displacement Components

As the Legendre series for the stresses were derived from the equilibrium equations
(2.9), so shall the corresponding representations for the displacements be obtained
from the second and third of the constitutive relations (2.10). We shall confine our
analysis to homogeneous media and shall assume that the body force density has no
axial variation. This restriction, to the case where the elastic parameters E and » are
constant, results in a considerable moderation in the algebraic manipulation, while
the minor assumption that f, is constant permits some simplification in the notation.

If the expansion (3.4) for ¢, and the representation (3.12) for o are introduced
into the third constitutive relation (2.10c), there results the Legendre series for w, ,
namely

l'x'1|=~

@ 2
): — )P, = & 1P, (6.1)

which, with the aid of (3.2), can be immediately integrated to give

- 2

h ( Op4 _ Op-) ) _ ( Sn+1 _ Sp—1 ) _h
Eng [ 2n+3  2n—1 2n+3 2n—1 P, = 35 /oP2
(6.2)

where w, is an unknown function of x introduced by the integration. With the
notation

r (6.3)
__h On+1 -1} _ n—1
Wn ¥ EI:(2n+3 2n—1) ( + 2n—1):|’
n=z1,n#2
the expansion (6.2) takes the form
w = E w,(x) P,(1) (6.4)

n=0

With a view to obtaining expansions for w and u, we next compute the derivatives
of w appearing in (2.11) and in the second constitutive relation (2.10b). From (6.2)
we have that

w., = ,_li ( Onti hn—l)l_v(hsn+l_hsn—])’ P — 2hh’ 2k o p
’x E =~ 2n+3 2n-1 2n+3 2n-—1 n~3g 70
- (6.5)

e ——
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Referring to relation (3.10*), it can be easily checked that

hsn+l hsn—l ) ! ( n+1 n )
- -7~k _n_ ,n=1(6.6
(2n+3 2n—1 T~ W\ Gy g net ¥ 151 ) 12 1(6.6)

which, when inserted into (6.5), gives

,  2hh’
Wiy = Wy — 3E foPZ

oo ha I3
1 +1 -1 , n+1 n )
"E E [(Zn"+3 T ) vk (2n+3s"+‘ MR TES R ’""} Pa
(6.7)
Next from (6.1) we note that

=Y 2
): ~ vs,) tP, = & sy, (6.8)

h1|>

in which we now use the recurrence relation*

n+1 n
P = 2nat Prer ¥ gy Pams (6.9

to express the right hand side as a Legendre series: a rearrangement then gives

==

[--]
_1 ,(n+l n )
’W’I‘Enzz:o {h n+3 0+t T 2 o1 %

] n+1 n hh'
—vh (—2n+3s"+l+—-2n—ls"_l) P”—ﬁf0(2P2+PO)

(6.10)

Combining relations (6.7) and (6.10) and noting the cancellations, we rearrange and
find

Z—!W,, - W, = [f;hf (o, — vs; — hfo)—w(;]

r

[~-] ’
1 < nel Tp-1 ) , ( n+2 n—1 )
1 - e ol - P
E"z_:l " \2nx3 T 2n-1 th Int1 ¥ In-1/) =¥ | Fn

2n+3 "+l 2p—1

(6.11)

* See footnote on page 10.
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If we introduce the expansion (6.11), together with the representation (3.9) for
7, into the right hand side of (2.11), we obtain

w=LI(1 + u)ro+%(a, — 5 = hf)] — w,
1 v+ Tpne1  Inoy L n+2 n—1
+E”§ [T"+h(2n+3 - 2n—l) *h (2n+3""+' * 2n—1""-1)]Pn
(6.12)
which may be written in the form
w=Y w,(x)P,(1) (6.13)
n=0
with the notation
wy = % (1 + ») 74 + hT(”’ -5 = hfl - wg (6.14a)

1 ( Tns1  In-i ) , ( n+2 n~1 )
“n E[T"’Lh 3 o=t/ M\ et Y gy O ) | oL
(6.14b)

If we introduce 7, from (4.17) and r,, n= 1 from (3.10*) into (6.14), we obtain the
alternate form

2 .,
wo = 5z (1 +9)[hs] + %/1 + B Pt w R U@+ 0)s, + o) — hfpli—wi (6.1da%)
- St ¥ Ongr Spo1 0y
“n = E 2n+3 2n—1

, n+2 n-—1
+h [m(5n+l+0"+])+m(sn_l+0”_]):| ,n=z1 .
(6.14b %)

giving the w, directly in terms of the s, and o,,.
In a similar manner, if we insert the expansions (6.11) and (3.9) into the second
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constitutive relation (2.10b), we find

h, I3
u,, = [%[2(1+u) 7o+ (o = vsy = hI) — hwg

h (Ullx+l_arll—l) , (n+2 n—1
*E El [(“")T"”' an+3 no1/ ! 2n+3""+l+2n—1""-1) Pr
n=
(6.15)
which integrates to give the Legendre series for u, namely
u = E u,(x) P,(1) (6.16)

n=0
where u, is an unknown function of x introduced by the integration and the higher
coefficients are given as follows

u = —hw6+%{2(l+u)'ro—%(2+v)rz—ﬂ(————)

it (2o, ] 6.17a)
—1[3(7—?)+§(051+hf0)] (- a

h Tn—1 Tn+l
"~ E (2+V){2n—1 2n+3]

h ‘ ) B 20, . L)
| Gr=h@n-1)  @n-Den+3) T @n+hen+s)
, (n—2)o,_, 3a, (n+3)a, .,
8 [(2n—3)(2n—1) Y en-D@n ) @n+3Hen+s) 2.

(6.17b)

If, in the above formulae, we introduce 7 from (4.17) and the remaining T,(n = 1)
from (3.10*), we obtain expressions for the u,, directly in terms of the s, and a,,
namely

h (12+11v)s{ + 0 2+ v)sy+o0y 1\/——2
= —hw/ = - - . *
u Wy + £ h l: G 35 + 2 1+ 4 p;

o { 209+ 7v)s| + 40, 4(2+v)sy + 4oy hfy ]

15 35 3

(6.17a %)
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and for n=2,

u, =

o [(2+u)s,;_2+a,;_2 2+ v)s,+a, (2+V)s,’1+2+a,’,+2:|
n E

Gn—3h@n=1 (@n=D@n+3) T @nenants)

2n-3)2n-1) * 2n—-1)(2n+3) (2n+3)(2n+5)

, [(n—Z)[(2+u)s"_2+o,,_2] 3(2+ »)s, + 0,1 (n+3)[(2+u)s"+2+a”+2]]

. n=2. (6.17b*)

The expansions (6.4) and (6.16) with the coefficients given respectively by (6.3)
and (6.17) are the Legendre series for the displacements: the corresponding represen-
tation for the rotation is given by (6.13) with the coefficients determined by relations
(6.14). We note that, except for the two undetermined functions u, and w,, all the
coefficients in the above Legendre series have been determined in terms of the co-
efficients appearing in the series for the stresses. From the relations

1

h 1 h 1
T " vdz =L war = u, . [ vaz =11 war=w, (3
—h 1

2'l —h 2_

we see that u, and w, measure the average through the thickness of the axial and
transverse displacement components respectively and so we may refer to them as the
mean displacements: similarly w, measures the mean rotation.

Hence, we have that the displacement quantities are completely determined in terms
of the mean displacements and the coefficients in the representations for the stresses.
Once the stresses have been determined, the completion of the solution lies in the
determination of the mean displacements; in fact, the latter are the only displace-
ment quantities that appear explicitly in the analysis.

7. The Equations for the Unknown Function

The equations to be satisfied by the undetermined functions (namely «,, w, and
s,, n=2) will follow from the introduction of the Legendre expansions for the
stresses and displacements into the first constitutive relation (2.10a). The orthogonality
of the Legendre polynomials then requires that this equation be satisfied term by
term, leading to an infinite sequence of equations to be satisfied by the coefficients.
The first two are the equations for the determination of the mean displacements i,
and w,, respectively, while the remainder constitute the set of equations to be
satisfied by the sequence of coefficients {s,, n=2].

We start with the calculation of the factors on the left of equation (2.10a). For

B e —



34 MECHANICS, BOUNDARY LAYERS AND FUNCTION SPACES

the first factor we have from (6.16) that

(-]

U, = Y, u;(x) P,(t) (1.1)

n=0

in which we may substitute for the u; from the formulae resulting from the differen-
tiation of relations (6.17): after some rearrangement, we find that

hu,, = hugP,

2 ' ’ ’ ’ '
81y 2y (B e [ (5 5) L8
+E v(hry) +(2+v) (A1 ghTz) + 5\ 7 + hh 5 \3 + 7 u3
" 2 14(% % 51 1 " /2 P
+ (hh” + h )[g(?—7) ‘—V?] —E(hh +2h )hfo—E(hW0+h WO) Pl
s hr ht
h n—1 n+1
tE L 2 [Zn—l - 2n+3:|
n=2
i 02 B 20, + 9542
2n-3)2n—~1) @2n-1)(2n+3) (2n+3)(2n+5)
- hh (n—4)o,_, N 7o, B (n+5)a,; .,
2n-3)2n—-1) (2n-1)2n+3) (2n+3)(2n+5)
2 (n-2)0n_2 3a, (n+3)o,,, l
+(hh" + h’ — nt
( ) [(2n—3)(2n - 1) * 2n—~1)(2n+3) 2n+3)(2n+35) P,

It can be readily checked from (3.13*) that

th—l th+l n n+1
[2n—1_2n+3 =h i1t 33T | T nzl (13)
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which, when introduced into (7.2), gives

hu,x = hugP,
2 hz o_l UII
+ ll(h‘l'o)'+(2+V)h'(TO+§'T2)—(2+V)0]+T —3——7)

6 (91 03') 5|
Y N e B
[5 37 ”3]

|~

ag
+ (hh” + h’ ){%(—— 3)—11 :l—%(hh”+2h’2)hfo E(hwi+h'wg) b P,

h v , +1
EE (2+V)h ,:T’-’—IT"_‘+2'11TT'I+I:I_(2+”)U”

n=2

_p n-2 h 20, ] N2
(2n—-3)(2n~-1) (@2a-1)2n+3) (2n+3)(2n+5)

, n—4)a, , 70, (n+5)0, .,
R G THan—1)  GreDanTd) T GnsHants)
hh” , (H—Z)U"__Z 30" ("+3)U,,+2
R AR G hEa =) T an D @n T3~ anihents | [ P
(7.4)

For the calculation of the second factor on the left of (2.10a), we observe that,
when multiplied by ¢, equation (6.15) gives

= B2 +9)70 + 3 (0, = s, ~ hfy) =~ EwglP,

> g’ o/
_ n—1 n+l) ,(n—l n+2 )
)» [(2”)7" h(Zn—l Tnr3/ T\ T Tt 33 e ]'P"

n=2
(7.5)

ml&
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Applying the recurrence relation (6.9), we rearrange and find

htu,, = _%{(u s = ghsi = 3h's)+ (hag - haj - %h’oz)}Po

o]

hl ., , 1 2,,.,(% 03’)
+—{Vh T0+(2+l')h (T0+§T2)—§hh (T—7
7o 8¢ vs
+h'2( Ly 2 ‘)__l.hh’zfo—Eh’w(;}P,

15 T3 3/ 3

“+

>

-]
Sl ntl
L @0k {Zn—lT”"+2n+3T"+'j|

n=2

no,_, a, (n+1)o,,,
—hh' _ _
2n—-3)2n-1) @Cn-1)2n+3) (2n+3)(2n+5)
+h’2 n(n-2)a,_, N 2n(n+l)o, . (n+1)(n+3)o,,, P
(2n-3)2n—-1)  @r-1)(2n+3) (2n+3)(2n+5) n
(7.6)

where we have introduced the formula for 7, from (4.19) into the coefficient of P,.

The subtraction of equation (7.6) from equation (7.4) will yield the Legendre series
for the left hand side of equation (2.10a): after the subtraction, we introduce for-
mula (4.17) for 7, into the coefficient of P, and make some rearrangements. If we set

1

tho - %h’oz)] (7.72)

bo

I

h’ , 1, ., 3, ;
—T[(2+u)(hso—§hsz—§h 5,) + (hog —

By = —SIK's{+ 2hh's] + hh" s, + P+ v pp 1+ Banr 4 0,

B D N i (R P V. L G
53 7 5 ! 3

o - K 9,2 B 20, . 9,42
n 2n-3)(2n—-1) 2n-1)(2n+3) (2n+3)(2n+5)
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wh 2(n-2)o,_, 60, 2(n+3)0,,,
- 2n-3)2n-1) +(2n—-1)(2n+3)_ (2n+3)(2n+5)

2[(n=D(n-Do,_, @n'+2n-3)a, (n+2)(n+3)a,, ,
@n-3)@n-1) T @n=D@ertd) * T erehents)

" (n=2)o, _, 30, (n+3)a, .,
o @n=3)@n—1) ' @n-Den+3)  @rrden+s  |"=E

(7.7¢)

then the Legendre series for the left hand side of (2.10a) is given by

hu,,—h'tu,, = %[(Eué— $)Py~ [Ehwi + 2+ v)o +8,1P — Y [(2+9)0,+6,1P,)]

n=2

(7.8)

We note the formal similarity between relations (7.7c) expressing the ¢, in terms of
the ¢, and relation (3.14) giving the o, in terms of the s,,.

We can now write equation (2.10a) in series form by introducing the expansions
(3.4) and (3.12) into the right hand side and the series (7.8) into the left; if we make
some rearrangements and ignore the common multiplying factor #/E, we find

[Eug — (59— vay+ ) 1Py~ [Ehwj+s, + 20+ ¢, +vh fi1 P,
- Y [5,+20,+9¢,]P, =0 (7.9)
n=2

and we note that the terms with Poisson’s ratio cancel in all coefficients beyond the
first i.e. for n= 2. The orthogonality of Legendre polynomials now requires that each
coefficient on the left of (7.9) vanish independently so that we have

Eug = sy — vay + ¢ (7.10a)
—Ehwy =5 + 20 + ¢, + vhf, (7.10b)
0=s,+ 20, + ¢, n=2 (7.10c)

As will be made clear in the next Section, the system of equation (7.10c) is self-
contained and is to be solved subject to the boundary conditions (5.9¢) to give the
unique solution for the unknown coefficients {s,, n=2}. The unknown mean
displacements u, and w, are to be determined from the integration of equations
(7.10a) and (7.10b) respectively: for uniqueness in the solution of this latter pair,

—_————
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it is necessary to state a set of conditions on the displacements.

Generally, such conditions follow from the physical requirement that a point
together with an element through the point be fixed in the body. Taking this point
at the origin and choosing the transverse element through the origin as the fixed ele-
ment would require that

u(0,0) =0, w(0,0) =0, «(0,0)=0 (7.11a,b,c)

The conditions (7.11) could be replaced by the conditions on the coefficients

(-] o (-]

Y, 4y, (0)P,,(0) = 0, Y Wy (0)P,,(0) = 0, Y @y (0)Py,(0) = 0
k=0 k=0 k=0
(7.11a,b,c*)
since, for the Legendre polynomials of odd order, we have
Py (0) =0 (1.12)
If we also note the values at the origin
_ Kk (2k—1)N
Py(0) = (-1 —ann (7.13)

for the polynomials of even order, we may write conditions (7.11*) in the form

-]

uy(0) = — ¥ (—1)"% 14,,(0) (1.14)
k=1

wy(0) = — ¥ (- 1)"% W, (0) (1.152)
P2 T

W@ = - % (—1)"—(2("2—;)1,—3”— w3 (0) (7.15b)
P "

If we recall formula (6.14a*) for w,, we see that condition (7.15b) may be replaced
by a second condition on w,, namely

Wi(0) = 2= (1 + N A ()5{(0) + 31 + h(0) p3(O)]

¢ (k=D

+ B (0)[(2 + )5,(0) + 6,(0) — h(0) fy] + 2i (—1) oY

k=1

©24(0)
(7.15b %)

which may prove more convenient in later use.
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8. The Uncoupling of Effects: Principal and Residual Parts

An inspection of equations (7.10) together with relations (3.14a), (4.20) and (7.7)
shows that the general problem uncouples into the two distinct problems of stretch-
ing and bending which may be characterized as follows:

1. The Problem of Stretching is concerned with the quantities with even index in
the sequences {s,}, {0,} and (¢,] together with the mean axial displacement u,:
also involved are the coefficients with even index in the sequence {,] and the
quantities with odd index in the sequences {7,}, {w,} and [w,].

2. The Problem of Bending is concerned with the quantities with odd index in
the sequences [s,}, {g,} and [¢,] together with the mean transverse displace-
ment w, and the mean rotation w: also involved are the coefficients with even
index in the sequences {7,], {w,], {v,] together with the quantities with odd
index in the sequence {u,}:

In particular, the pair of equations (7.10a,b), with their respective boundary condi-
tions (5.9a,b) do not interact.

It has been remarked in Section Seven that there is a further partial uncoupling
in the system (7.10): namely, the system (7.10c) is independent of both equations
(7.10a,b). This is evident from the following observations:

1. the set of quantities {¢,, n=2] are expressed entirely in terms of the

{a,, n=0]; this is evident in the definitions (7.7c):

2. the latter set {og,, n=0] are expressed in terms of the original coefficients
{s,, n=0]; this has been shown in relations (3.14) and (4.20):

3. the quantities s, and s, have already been determined from relations (4.12) and
(4.16) respectively leading to formulae (5.12) and (5.17).

Hence, the system (7.10c) constitutes a self-contained system of equations subject
to the boundary conditions (5.9¢c), for the determination of the set of coefficients
{s,, n=2].

The coefficients s, and s, measuring respectively the axial stress resultant and
stress couple (c.f. relations (4.23a,b)) are the principal axial stress effects. The co-
efficients {s,, n = 2] have no direct influence on either the axial stress resultant or
stress couple: for this reason they shall be called the residual axial stress effects. We
have seen in Section 5 that the principal axial stress effects can be determined without
reference to the constitutive relations. A direct consequence of this is the self-contained
independence of the system (7.10c) which, in turn, means that the residual axial stresses
can be determined without reference to the equations for the mean displacements.

There remains a one-way dependence in our derived system of equations (7.10);
namely, the present form of the equations for the mean displacements (7.10a,b) in-
volve the residual stress effects as well as the principal stress effects. We shall see
presently how this partial coupling may be resolved so that each of the problems of
stretching and bending can in turn be separated into two independent problems —
one purely for the principal effects, the other involving only the residual effects. This
will be accomplished by making an appropriate decomposition of the mean dis-
placements into their principal and residual parts. A necessary preliminary to such
a decomposition is the clarification of the manner in which the remaining two stress
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components — namely, the transverse shear and normal stresses — are to be resolved
into principal and residual effects. This latter resolution is most conveniently pre-
formed in the context of the linear vector space induced by our expansion procedure.
As all three stress quantities fit this pattern, it is in the interest of consistency of pro-
cedure to start by restating the decomposition of the axial stress in this context.

The Legendre series expansion induces on the stress quantities a resolution into
their component representations in an infinite dimensional linear vector space. The
sequence of Legendre polynomials constitute an orthogonal basis spanning the space
and each component in the resolution is defined by the corresponding coefficient in
the expansion. Using the notation of vector spaces, we may write

o, =[5,:0 = n =< o] = [5),5,5,...5, ... (8.1a)
T =[{1,:0=<n =< o] =157, Ty Ty -] (8.1b)
o = [og, (6 = hfy), [0,:2 = n < ]|

= {oy, (0, = A fy), 05, 05, ... Oy, .| (8.1¢)

In this notation the resolution of o, into its principal and residual parts takes the
form

g, = af + af (8.2)
where
P o
g, = ;SO’ Sy 0, 0, 0, e d (8.3a)
of = (0,0, 5, S5, ... S ... (8.3b)

In the vector afrepresenting the principal part, all components of index greater than
1 are zero, while the zero-th and first components coincide with the zero-th and first
components of o, respectively. The vector of representing the residual part com-
plements af so that zero-ith and first components are zero while for n= 2 the nth
component is s,.

In making a corresponding decomposition for the other quantities, it is necessary
that their principal and residual effects be defined unambiguously. If we take the
definitions, X

1. any effect induced, exclusively, by the residual axial stress component o, is

a Residual Effect,

2. all other effects are to be considered Principal Effects;
then we have that all residual effects must be expressed exclusively in terms of the
set of coefficients {s,: n = 2].

In applying the above definitions to the transverse shear stress {r,, 0 < n < oo},
we first note from (3.10*) that for 3 < n < oo the 7, are purely residual effects:
moreover, from (4.17), 7, is a principal effect. Hence to perform the resolution, it
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suffices to decompose the mixed components r, and 7, given explicitly by relations
(4.19). We set

= —hsg, 7y = 3 (hs] + 3h'sy) (8.4a,b)

Ty = =k (hs{ = h's), 13 = T (hs] + 4h'sy) (8.5a,b)
so that

=y = T (8.6a,b)

and the resolution of 7 takes the form

T=7 + 'rR

where
= {1y, 71 725 0,0 ... 0, ...] (8.7a)
= {0, Tf, af, Tys Tg oee Tpyooe) (8.7b)

The quantity 7 is the principal part of the transverse shear stress: in its vector space
representation all components with index greater than 2 are zero while the zero-th
components is 7,. The residual transverse shear effect 7 has vanishing zero-th com-
ponent in the vector space representation while the components with index greater
than 2 coincide with those of 7.

In making a corresponding resolution of the transverse normal stress, we note from
(3.14) that for 4 < n < oo the o, are purely residual effects; the remaining com-
ponents g,, 0, d,, and o, are mixed effects as is evident from the explicit relations
(4.20) and (4.22): an inspection of the latter shows how the resolution is to be made.
Noting relations (4.20), we write

oh = —3Lh (Ksy)’ + %/1 + h'pr (8.8a)
1 2., ’ 1 /2 * 1 2 12 ®] /
ﬁ(hhso) +7Jl +hp +ﬁ[h Jl + h'" p*]’ (8.8a%)

1 3
- " .8b
% = 37 (h'sy) (8.8b)

for the decomposition of ¢, and

o = —%[thsl”+ 6hh's! + (3hh" — h'%)s, + iz’l( 1+ h?pt'] (8.92)
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o = ;—5[h2s5’+ 8hh's] + 4(hh" + 3h'%)s;] (8.9b)

for the decomposition of o,: similarly formulae (4.22) requires that we set

o = % H'sg (8.102)
2
R W2 .1, g2 .0 10,
0'2—_- —T[752—ﬁs4’]—hh [752—554]
/2 20 — ” l — _§_
+h [7 S5 + ﬁs‘,] hh [7 Sy 7 4] (8.10b)
and
of = % [W’sy — 2hh’s] + (2h'* = hh")s,) (8.11a)
2
R K2, . hh 4
5=-gl3 3_115_ [553_ﬁ55]
h’ 10 hh' 2
[ S+ 97 Ssh-—=— 3 [ 3 = 97 ! (8.11b)

for the decomposition of o, and o, respectively. The resolution of ¢ may then be
written

s=20d +d° (8.12)

where
o = o af, 00 05, 0,0...0, .....] (8.13a)
o = [ag, oy, af, af, 045 O5y oo. O, ...] (8.13b)

The quantity o is the principal part of the transverse normal stress: in its vector
space representation, the components with index greater than 3 are zero. In the cor-
responding representation of the residual transverse normal stress aR, the com-
ponents with index greater than 3 coincide with those of ¢.

We could now make a similar decomposition on the quantity ¢ = {¢,, n=0]:
however, in the sequel we shall have occasion to use the principal and residual parts
of merely the zero-th and first components and so we limit ourselves to listing these.
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Referring to the formula (7.7a), we set

43

r h' , P P, ,
by = -3 [(2+V)h50 + h(o() < %02) _%h Uf] (8.14a)
R _h' (2+ , , R R
oy = 5 152 (hsy + 3h's)—h(og - Fo3)’ + Inat 8aam)
so that
P R
by = g + b (8.15)
Similarly, guided by formula (7.7b) we write
P 2 2 2
B = —SUis{+ 2hh's] + hh"s + 2 (J1+ 02 pn1e B+ 0y g,
2 p P ” P ’ 2 P
_h_(ﬂ_ﬁ) _M(ﬂ_ﬁ) "_’(0P+£a”) -ﬂi(ﬂ_ﬁ)
s \3 7 5 307 5 g3 3 3y T
(8.16a)
s R R, R R, 5 R R
pho (DY mw (0 DY (6 2 8) aman (710
! 5 3 7 5 3 7 5 1 73 5 3 7
(8.16b)
so that
P R
¢| b ¢| + ¢, (8.17)

A similar decomposition can be made in the representations for the displacement

components. For the higher coefficients, namely those with suffix n =
tion follows from observing the formulae of Section Six. Writing

P R oo
w, + w, nz=

n

u +

P R
n u, + U,, W

w

P R
= w, +w,n=l

we note, in particular, that

and the decomposition of the {u,, 1=<n=<6], {w,, I=n=35] and (v

1, the resolu-

(8.18a,b)

(8.18¢)

(8.19a)
(8.19b,¢)

e 1 =n<3]
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follow from the inspection of formulae (6.17*), (6.3) and (6.14*), respectively. As
we shall not need these resolved formulae explicitly in the sequel, we do not exhibit
them here.*

The way is now clear for the resolution of the zero-th coefficients representing
the mean displacements and the mean rotation into their principal and residual parts
in accordance with the definitions given earlier. Starting with the axial displacement,
we set

u, = U + Uy (8.20)

where noting (7.10a) and (7.14) the residual component U, must satisfy

EUj = —vag + ¢5, (8.21a)

Ur(0)

_E (_1)/" (2(1‘2;)1'?” ufk(()) (8.21b)
= 1

The equation to be satisfied by the complementary principal component U follows
from the subtraction of equation (8.21a) from equation (7.10a); the associated initial
condition is obtained by subtracting (8.21b) from (7.14): we find

EU'= s, — vay + ¢y (8.22a)

5 : —_
v = - Y (- (—2("2,()—1,?”— u® (0) (8.22b)
P2 N

where in the, latter, we have noted relations (8.19a). We recall that these initial value
problems (8.21) and (8.22) are associated with problems of stretching.

The mean transverse displacement and mean rotation, associated with the prob-
lem of bending will be decomposed by referring to equations (7.10b), (6.14a*) and
conditions (7.15). Starting with formula (6.14a*) for w,, we set

wp = O + O (8.23)

and the principal and residual components are given respectively by

o =-Lia hs! + 301+ B p R 12 P hfy - W
—3—E[( +v) [hs] + 51 + P +h{( +v)s, + 0, — hfll—

2 (8.24a)

* In the corresponding treatment of the displacement and mixed boundary value problems, it would be
necessary to resolve the boundary conditions into the two sets to be associated, respectively, with the prin-
cipal and residual problems: this decomposition would follow from an inspection of these formulae for
the resolutions of the displacement coefficients.
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h’ R ,
O =359 - Wi (8.24b)

where, by addition, we clearly have (recalling (6.14a*))
wy = W+ W, (8.25)
In the above W and W, are respectively the principal and residual components of
the mean axial displacement: for the determination of these quantities, we have from
(7.10b) and (7.15) that W, must satisfy
—~ERW] = 20} + &5 (8.26a)

subject to

W@ = - 5 (-0 LE wl0), 2,0 = - ¥ R ()
o) ¥ P T

(8.26b,c)

and, from (8.24b), we note the alternate form for the condition on Qp,

W5(0) = "3(1?) a0 + ¥ (—1)k(2(';;—)1,3”wfk(0) (8.26¢ * )
~ 0

By subtracting relations (8.26) respectively from the corresponding relations (7.10b)
and (7.15), we obtain, for the principal components,

—ERW" = s, + 20] + ¢ + vhf, (8.27a)

5
W) = - 2 - L w0, 20 = -z (-0 L W)
(8.27b,¢)

where we have noted relations (8.19b,c): from (8.24a), the latter condition on Q may
be replaced by

w(0) = —((1+V)[h(0)s 0) + —Jl + 10 p0)]

5
+h (O)[2+1)5,(0) + 0,(0) k() fp1}+ T (- 1)

k=1

kK (2k=1!

P
e “n®

(8.27c*)
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The systems (8.26) and (8.27) lead to the unique determination of the principal and
residual components of the transverse displacement.

This concludes the analysis in the general case. One feature of the resulting equa-
tions is immediately evident, namely, the elastic parameters appear only in the equa-
tions for the displacements. Specifically, the constants E and » appear neither in the
formulae for the principal stresses of Section Four nor in the equations for the residual
stresses (7.10c); although the latter system was derived from the constitutives rela-
tions, the constant E disappeared as a common factor and the terms with » cancelled
out. Hence, we have that the equations for the residual stresses are invariant for all
homogeneous isotropic materials. Moreover, the solution of the stress boundary value
problem is independent of the elastic constants. This latter remark does not apply
either to the displacement or to the mixed boundary value problems.

We now proceed to an examination of the problem of bending and stretching in-
dividually. In order to emphasize the main points of the procedure, we shall confine
our attention to the restricted case of the beam with constant thickness so that

h =0 (8.28)
If we note relations (3.14) and (7.7c), we see that this unessential restriction results

in a considerable reduction in the algebra, and thus helps to clarify the essential
features of the problem.

9. The Problem of Stretching: Restricted Case

In the problem of stretching, the surface stresses are so distributed that
p=0,p:=0 (9.1a,b)
and, in the absence of a mean transverse body force, we have
fo=0 9.1c)
The specification of the edge stress vectors is such that, in their dependence on the
thickness coordinate, the normal components are even, while the shear components
are odd: hence
Sher =0, 5 =0, k=0 9.2)
which, combined with (9.1b) and (5.8b), is equivalent to

sE. =0, df,, =0, k=0 (9.3)

From the above relations, it follows that the coefficients associated with the bending
effects satisfy homogeneous differential equations with homogeneous boundary con-
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ditions and therefore vanish identically: explicitly, we have

Spp41(X) =0, 0,1 (x) =0, Uy 1 (x) =0, k=0 (9.4a)
Tu(X) =0, wy(x) =0, w,(x)=0, k=0 (9.4b)
by (X)) =0, k=0 (9.4¢)

Accordingly, the expansions for the stress components take the form

0. = Y S (x) Py (1) (9.5a)
k=0

T = E Tok s 1 () Py, (1) (9.5b)
k=0

0 =Y 0y (X) Py (1) (9.5¢)
k=0

The zero-th components in these expansions satisfy the pair of equations.
2hsg +p, =0 (9.6)

Zhri =20+ p* =0 9.7)

which follow from the introduction of the restriction
h" =0 (9.8)

into equations (4.12) and (4.15), respectively. Relation (9.6) is the equation for the
determination of the principal axial stress coefficient s,: the equation satisfied by
the residual axial stress coefficients {s,,, k= 1] in expansions (9.5a) will be stated
later.

The shear stress coefficients in the expansion (9.5b) are given in terms of the axial
stress coefficients by the system of relations

Sik+2  Sa
Tl"'+‘—h[4k+5_4k+lJ =0 e

which follows from the introduction of (9.8) into relations (3.10) with n = 2k + 1.
In terms of the shear stress coefficients, the transverse normal stress coefficients
in the expansions (9.5c) are given by
1

gy = %m; + 5 (9.102)
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D Thker Ti—n |
T v v B e (9.10b)

where the latter follows from the introduction of (9.8) into relations (3.13) with
n = 2k, while the former is a rearrangement of equation (9.7). The introduction
of (9.9) into (9.10) gives the corresponding expressions in terms of the axial stress
coefficients: relation (9.10a) yields the restricted form (A" = 0) of (4.20a) while the
set (9.10b) becomes the restricted form of relations (3.14) with even index: written
explicitly, we have

a1 1 Lo
ay = h —356’ + "[—5 Szﬂ + Ep' (9.113)
L i
o o i S3k-2 - 253% . Sik+2 ' o
2k (Ak—3)(dk—1) (4k—T1)(4k+3) (4k+3)(4k+5)J| e
(9.11b)

We may write the sequence of equations (9.9) explicitly for successive values of
k and perform the summation: noting the cancellations and substituting for hAs; from
(9.6), we obtain the analog, for the restricted case, of relations (5.7), namely, the
sequence

k=1
hsy = (4k+1) )] 7,0, = 5P k=1 (9.12)
=0

for which relation (9.6) is the representative for k = 0. Thereby, the quantities df,‘.,
defined by

k=1
d5, = (4k+1D) ¥ 15, - g (Fa), k=1 (9.13)

=0

enable us to transform the edge conditions
Sy (Fa) =55, Ty (Fa) =754 k=0 (9.14)
into the equivalent system
so(Fa) = s¢ (9.15)

sy (Fa) =s§, hs;(Fa) =df, k=1 (9.16)

where we have separated conditions (9.15) on the principal stress from conditions
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(9.16) on the residual stresses.
The integration of equation (9.6) subject to condition (9.15) yields the compatibility
conditions

a
2h(sy — Sp) = — S p,dx (9.17)

—-a

necessary for overall static equilibrium, together with the solution

+ B 1 a X
2hsy = h(sy + s55) + 5 S pdx — S p.dx (9.18)
~a

-a

for the principal stress. Relations (9.17) and (9.18) correspond respectively to rela-
tions (5.11) and (5.12*) in the general case.

With the determination of the principal stress thus completed, the next step in the
general case would be the introduction of this explicit form for s, into the formulae
for the stress coefficients. However, in the restricted case, we can proceed more direct-
ly. We use the differential equation (9.6) to eliminate s from relations (9.11) and
thereby obtain for the transverse normal stress coefficients {o,, K = 1}, expressions
that involve only the residual axial stress coefficients {s,,, k = 1] and the applied
forces: separating the formula for o, from the expressions for the higher coefficients,
we find ’

1 2 " l » l ’
O =5 hsi+ 3P+ ¢ hpy (9.19)
and
22 ., .1,
o, = h l: a7 52 + & s4} g hp, (9.20a)
] Jx: S3k—2 N 255, Sik+2 o
2k (k=3)@k—1) ~ @k—D@Ek+3)  (@dk+H@k+5) | "=

(9.20b)

In passing, we note that, in the sequence of relations (9.20), inhomogeneous terms
appear only in the first relation, namely in the expression for g,: their absence in
the expressions for the coefficients of higher index is due to the fact that we have
neglected all body force effects associated with the problem of stretching.

An inspection of relations (9.19) and (9.20a) immediately gives the resolution of
0, and o, into their principal and residual components: in accordance with (8.8) and
(8.10), we have

P R P R
0y = 0y + 0, 0, =0, + 0, (9.21a,b)
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where

o =2+ ghpl 0= T iy (9.22a,b)
and

oy = — % hp}s of = ~ZHsi+ g sy (9.2ab)

In the notation of the infinite dimensional linear vector space, induced by the expan-
sion (9.5¢) in terms of Legendre polynomials of even index, we write

s=d +d° (9.24)
where

o = logr 05, 0,0, ..., 0, ] (9.252)

aR = :og, af, T4y Ogs +evs Oyps I (9.25b)

This decomposition corresponds to that made in (8.12) and (8.13).
We next consider the representations for the displacement quantities. For the
transverse displacement and the rotation, we have the respective expansions

wo= 3 Wy (X) Py (1) (9.26a)
k=0

w = E Wy g1 (X) Poy iy (1) (9.26b)
k=0

whose coefficients are determined in terms of the stress coefficients. The transverse
displacement coefficients in the expansion (9.26a) are given by

r = |
Cho| MSuke2 T w2 PR T Oum
\;2k+l——E- |l s - k1 |, k=0 (9.27)

which follows from (6.3) by setting n = 2k + 1: the corresponding expressions for
the rotation coefficients in the expansion (9.26b) are contained in the restricted form
of (6.14b*) with n = 2k + 1, namely

Sike2 * Otker  Sik * O |

| —
I 4k +5 dk+1 |

crar = F k=1 (9.28)
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Similarly the higher coefficients in the expansion for the axial displacement

o

u = E Uy (X) Py, (1) (9.29)
k=0

are given by the restricted form of relations (6.17b*) with even index, namely

o = —

B[ Q+v)sy_y+03,_, CHu)sytoy  Q+v)sy, 403,
E | @k=3)@k-1) ‘@k-D@k+3 T @kIn@ETs |

k=1 (9.30)

while the zero-th coefficient, representing the mean axial displacement, satisfies the
restricted form of equation (7.10a). If we note the restriction (9.8) in connection with
formula (7.7a), we see that

$ = 0 (9.31)

The latter, together with formula (.19) for g,, when introduced into (7.10a) gives
the equation satisfied by Uy in the restricted case, namely

1

’ 1 2 "
g hp! + 5 h's)] (9.32a)

Euyj =5y — u[—é—p* +

which is to be solved subject to the condition (7.14), namely

u(0) = = ¥ (- 1)/*%112,((0) (9.32b)
= n

Following the resolution of 0, made in (9.22), we now make the corresponding
decomposition of U, in accordance with the procedure prescribed in (8.20) to (8.22).
Setting

uy =U + U, (9.33)

we have for the determination of the residual component

EU, = — % thsz,,, Un(0) = Ugo (9.34a,b)
where*
it —I!1t R
Up = ~ 3 (—1)"% uk (0) (9.34c)
k=1 -

The decomposition of the higher coefficients u,, in the form Uy, = ufk + ufk has been outlined in

iection Eight for the general case: for the restricted case, the resolution follows the simpler pattern given
bove for the coefficients Oy
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while the principal component satisfies

EU = s, ~ v(3p" + £hp)) (9.35a)
subject to
U = U, (9.35b)
in which
6 —nn
Uy = - ¥ (-0 B L (9.36)
= ..

where we recall relations (8.19a). Substituting for s, from (9.18) into (9.35a), we in-
tegrate, and noting (9.35b), we obtain for the principal component of the mean axial
displacement

] + _ l Sa l SX S,\'
U= U0+2—E {[so+s0 + e ) p_\.dx]x—i \ [ ), pdxldx

X
—v S prdx-— ;— vhip,(x) —p,(0})] ‘|‘ 9.37)
0

From (9.34), we have for the residual component of the mean axial displacement

Ug = Ugo — %% K s5(x) — s5(0)] (9.38)

The expression for the mean displacement i, then follows from the addition of for-
mulae (9.37) and (5.38).

It remains to investigate the residual axial stresses.

The non-vanishing elements in the sequence {¢,] are given, in terms of the
transverse normal stress coefficients, by the restriced form of (7.7¢) with even index,
namely

[ O3k—2 B 205, . 03k+2
{(4/(—3)(4/(—1) Ak—D@k+3) © @k+3)(ak+5)

by = ] Lk=1 (9.39)

In this system of relations, the quantity g, occurs only in the case k=1, namely in
the expression for ¢,: writing this case separately and substituting for g, from (9.19),
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we have the alternative form

2 2”1"l4"".12~"_1_3",
TR AN bl LI Y (9.402)
’ T3k =2 293k T2k +2
s [(4k—3)<4k—1) T @k=n@Ey m] k=2

(9.40b)
With the quantities {®,4» k= 1] given by (9-40) and the quantities {0y, k= 1] given
by (9.20), it is now evident that relations (7.10c) with even index, namely,

Gk + 20 + 5y, = 0, k=] (9.41)

constitute a self-contained system of differential equations for the residual axial
Stresses, to be solved subject to the boundary conditions (9.16).

The next step is the introduction of notation that allows relations (9.20), (9.40)
and (9.41), together with the boundary conditions (9.16), to be written in compact
vector form.

The infinite dimensjonal vector, whose components are the residual axial stress
coefficients with even index is denoted by §,: the k-th element of S, being s,,, we
have

S, = [splshkso) = (82,545563 00, 540...) (9.42)
Similarly L, represents the vector whose components are the corresponding normal
stress coefficients, namely

L =loplsksw) = {02,04,06,...,02k,...] (9.43)
If we let ®, designate the vector consisting of the corresponding elements in the
sequence {¢,,] so that

¢ = [pylSks o) = [¢2,¢4,¢6,...,¢2k,...] (9.44)
then the system of equations (9.41) takes the vector form
¢+ 25, +S5, =0 (9.45)
If, in addition, we introduce the vectors SFand D Jby setting

§F=[sf, lsksow] = [sz",sf,sg‘,...,sfk,...] (9.46a)
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DF={dF 1 <k=o) = (d}, df, dg‘,...,d;‘k,...] (9.46b)
then the boundary conditions (9.16) may be written
x=Fa: S, =85 hS;= D} (9.47)

complementing the vector differential equation (9.45).

We may view relations (9.20) and (9.40) as linear transformations of the sequence
space into itself. In the vector formulation of these transformations the in-
homogeneous terms, due t0 the applied axial and transverse forces, will be furnished
respectively by the vectors

(4) (N
F = (hp}, 0,0, Fe = (p*,0,0,..] (9.48)

in each of which only the first element is nonzero. The linear operator of the transfor-

mation (9.20) relating S,to L, which also occurs in the system (9.40) relating z,
to &, may be defined in terms of the one-sided infinite tridiagonal matrix M, where*

(e) o

M, = [m; ], (9.49)

in which both suffices & and j range from one to infinity. The non-zero elements
are given by

m(c) _ 2 m(e) ________1___— l<k<o (9.50a,b)
Kk T @E=D@k+3) " Rk @k+n@k+s) T o

(e)

S E—
Mik-1 = T @E=3H@EE-1 2gk=so (9.50¢)

while all other elements vanish, namely

o l<j<k-2, k=3
m; = 0 (9.50d)
k+2<jso, k=1

From the matrix M,, we form the matrix function L,(M) by scalar multiplication

* In a more general context M, is a one-sided infinite band matrix of order one.
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by the parameter \,

LN =M, = [m| NI} (9.51)

from which we shall form the differential operator by direct substitution. In the system
(9.40) there occurs a second factor which is most conveniently given in terms of a
second matrix function J(\) formed from the basis element matrix* E,, by scalar
multiplication by X. Thus with

E\y = [8,,8,], (9.52)
the matrix function J(\) is given by
J(N) = NEy; = [8,,8,A]; (9.53)
where §,, and §;, are the Kronecker deltas.

We now introduce the thickness scaled variable £ and the associated parameter
a measuring the length-thickness ratio by setting

g=%, o = (9.54)

=8

so that in terms of these dimensionless quantities the edges are specified by
t = Fa (9.55)

and the vector S, representing the residual axial stresses is to be considered an
unknown vector function of £ to be determined over the interval

—a<fisa (9.56)
If, in terms of the derivative element for the independent variable £, namely

4

D=d£

_ g d
= h ax (9.57)

we construct the matrix differential operators Le(Dz) and J (Dz) by appropriate
substitution in the matrix functions of (9.51) and (9.53), namely

(e) o o
L(DY)= [m,,D'1;, J(D)= [6,6,D"], (9.58)
then, in vector form, the transformations (9.20) reads

A)
L= ~L(D)S,~ L F, (9.59)

* The basis element Ekj has entry 1 in the k —j position and zeros elsewhere.
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while the system (9.40) takes the form

1 (A

2 1 2.2 (7
®, = —-L, (D)L, +E[J(D )] S‘,+%D2 [F, +§‘F¢- ] (9.60)

To obtain the expression for &, directly in terms of S, we introduce I, from (9.59)
into (9.60): noting that

2 (1) 2 (A)
L(DHF = 2 D'F, (9.61)

we find

(T)

e

(A4)

8, = L, (DN + 4 (D) S, + DL F + i F (9.62)

1
14

The explicit form for the vector differential equation satisfied by S, now follows
from the introduction of I, from (9.59) and &, from (9.62) into (9.45): if we also
rewrite the boundary conditions (9.47) in the normalized notation of (9.54) to (9.57),
then the boundary value problem for the residual stresses may be stated as

R I
~D[-F, + —F

(4)
e 6 € 14 4

HL(DY) + 45D - 2L (D) +11S, = 3 F
(9.63a)

S,(¥a) = S,, DSH¥a)=DF (9.63b)

in which we have used I to denote the one-sided infinite unit matrix.

The solution of the inhomogeneous system (9.63a) can, by the standard variation-
of-constants procedure, by generated from the solution of the associated homogeneous
system: it suffices therefore to make a detailed analysis of the latter. Moreover, the
vanishing of the forcing terms is associated with a constant axial traction p, and a
“pinching’’ force p* that has a linear axial variation. Accordingly, we take

p.=0, p*" =0 (9.64)

so that

(A)
e

2 ()
=0, DF, =0 (9.65)

and equation (9.63a) assumes the homogeneous form

(L, (DY) - 1* + %[J(DZ)]zl S,=0 (9.66)
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where we have rearranged the terms in the differential operator.

Although we have not succeeded in determining the factors explicitly, it should
be possible to effect a decomposition of the above operator in the form of a product
of a pair of mutually conjugate Hermitian operators. The system of equations (9.66)
could then be formally written as

[£,(DY) — 1[&XD°) = 1S, =0 (9.67)

so that the problem would reduce to the determination of the general solution for
either of the systems

[£e(D2) - I1X =0, [£;(D2) -11X=0 (9.68a,b)
An inversion would transform these to the equivalent form
X" =AX, X" = A*X (9.69a,b)

for which the formal construction of the four independent fundamental matrices
would be straightforward. If we were to postmultiply each of the fundamental matrices
associated with (9.69a) by an arbitrary vector and form the sum, we could then com-
plete the general solution by adding these to the pair of conjugate vectors. The real
and imaginary parts of the arbitrary vectors would then constitute the four unknown
vectors to be determined from the four boundary conditions (9.63b).

The validity of such a formal solution is made evident if we observe that in the
matrix M,, the nonvanishing elements in the kth, row or column are of order l/kz.
This guarantees complete continuity for the operator in (9.66) from which it follows
that the associated spectrum is discrete. In fact, the matrices constructed from the
associated eigenvectors give an alternative construction for the general solution.
Moreover, from the spectral equation

2

det{[L,(\) - I + 41—5[1()\2)]2] =0 (9.70)

it is evident that the characteristic values occur in groups of four in.the form

FNy FN lsisoo 9.71)
In the case of the semi-infinite strip, the regularity conditions immediately exclude
those roots with positive real part and we find that the roots with negative real part
then directly reflect the exponents of decay for the residual stresses.

The form (9.71) for the spectrum would tend to confirm the conjectured decom-
position (9.67) for the operator.
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10. The Problem of Bending: Restricted Case

In the problem of bending, the surface forces are distributed so that
p*=0, p,=0 (10.1a,b)

while the specification of the edge stress vectors is such that, in their dependence
on the thickness coordinate, the normal components are odd while the shear com-
ponents are even: hence,

s5F =0, 75,,=0, k=0 (10.2)

which, when combined with (10.1b) and (5.8a), is equivalent to
s5H =0, k=0: d5; =0, k=1 (10.3)
Thus, the coefficients associated with the stretching effects satisfy homogeneous dif-

ferential equations with homogeneous boundary conditions and therefore, vanish iden-
tically: explicitly, we have

Sy (x) =0, 05 (x) = 0, Uy (x) =0, k=0 . (10.4a)
Tk 1) =0, wy () =0, wy (x) =0, k=0 . (10.4b)
6y (X) =0, k=0. (10.4c)

Accordingly, the expansions for the stress components take the form

0 = )5 S 1(X) Py (1) (10.5a)
k=0

T = Y 73 (x) Py(1) (10.5b)
k=0

0 = )] 01 (X) Py (1) (10.5¢)
k=0

The zero-th coefficients in the first two expansions, namely the principal stresses s,
and 7,, satisfy the pair of equations

2 K’s{ = 2h7y + hp;

il
=

(10.6)

It
=]

2nTg + p + 2h ), (10.7)
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which follows from the introduction of the restriction
h =0 (10.8)

into equations (4.13) and (4.14); respectively. The factor 7, may be eliminated by
the introduction of 7 from (10.7) into the differentiated form of (10.6) yielding the
equation

Iilst+ p+ sy + hpy =0 (10.6")

for the determination of the principal axial stress coefficients s,: the equations
satisfied by the residual axial stress coefficients {s,,,,, k=1} in the expansion
(10.5a) will be stated later.

The shear stress coefficients in the expansions (10.5b) are given in terms of the
axial stress coefficients by the relations

ro =3 hs{ + 3P} (10.9a)
Sie+t Suo
TZk—h [m— 4k—1} N k=1 (10.9b)

The latter follows from the introduction of (10.8) into relations (3.10) with n = 2k,
while the former is a rearrangement of (10.6).

We may write the transverse normal stress coefficients in the expression (10.5¢)
both in terms of the axial stress coefficients and in terms of the shear stress coeffi-
cients. For the latter, we have the restricted form (h’ = 0) of relation (3.13) with
n = 2k+ 1, namely

Tok+2 Tk
02k+l—h[m—4k+l] , k=0 (10.10)

The corresponding expressions in terms of the axial coefficients follow from the in-
troduction of relations (10.9) into relations (10.10): thus for k = 0, the latter yields
the restricted form of (4.20b), while for k= 1, it becomes the restricted form of rela-
tions (3.14) with odd index: we obtain

20 2 ., 0 1,
g = h [— gsl + ESJ]_ Ehpx (10.118)

, . ”
2 S3k-1 25541 Sk 43

21 = h (4k—-1)(4k+1) T @Bk+1)(4k+5) - (dk+5)(4k+7) |’ k=l

(10.11b)
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Writing relation (10.9) for successive values of k, we sum the series, and, noting
the cancellations, we obtain the restricted form of (5.5), namely

k
hsjo = 4K+ Y 7 — 2 p2l, k20 (10.12)
j=0

from which, if we set &k = 0, we retrieve relation (10.6). Thereby, the quantities
d3, ., defined by

k
1
Ay = A+ Y 15— S pU(Fa)l, k=0 (10.13)
j=0

enables us to transform the edge conditions
Sy1 (Fa) =55, 1 (Fa) =715, k=0 (10.14)
to the equivalent system
si(Fa) =57, 19(Fa) = 1§ (10.15a,b)
S+ 1 (F@) =550y, hsy(Fa) =df ), k=1 (10.16)
where we have separated conditions (10.15) on the principal stresses from conditions
(10.16) on the residual stresses.

Since both / and f; are constant, the quantity J3(x), corresponding to that de-
fined in (5.13), takes the simpler form

o(x) = 2h(x+a)fy, + S pdx (10.17a)

—a

so that

a
dahfy + S p dx (10.17b)

—a

JSo(a)

Then the integration of equation (10.7), subject to conditions (10.15b), yields the
first compatibility condition

a

2h(7y — 75) = —fia) = —dahf, - S p dx (10.18)
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necessary for overall static equilibrium, together with the solution

2h7y = h(rg + 74) + %fg(a) — f3x)

+ _ 1 a X
h(To+To)—2tho+§S pdx — S pdx (10.19)
—a a

for the pripcipal shear stress. With 7, thus determined, the integration of equation
(10.6) subject to conditions (10.15a) gives the second static equilibrium condition

a a
%—hz(sr— 5) = ZhS Todx — hS prdx

—-a —-a

a

2alh (s} + 70) + S s3an = | U300 + hpi(oldx

(10.20)

together with the solution

b3 _ X X
%—hsl =%h251+2hg rodx—hS_ prdx

—-a a

= 2is 4 ()l + ) Lz - |7 g0 + rpzeoldx

(10.21)

for the principal axial stress. Relations (10.18) to (10.21) correspond to relations (5.14)
to (5.17) in the general case.

We now use equation (10.6°) to substitute for s/'in relations (10.11) and thereby,
for the transverse normal stress coefficients (o, ,, k= 0], we obtain expressions
that involve only the residual axial stress coefficients {s,; ., K =0] and the applied
forces: separating the formula for ¢, from the expressions for the higher coefficients,
we find

2
o =g h'si+ Iw+2nfy) + &= hpy’ (10.22)
and
- Lgry Lgmo L _ Loy
0y = K- gz 5 + g5 5§l g + 2hfo) = g hPs (10.23a)
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” ”
2 STk -1 253541 52k 43

Iok+1 = H Gk=D@k+1) (@Gk+1D)@k+5) @Bk+50@k+T7) | k=2

(10.23b)

An inspection of relations (10.22) and (10.23a) immediately gives the resolution
of ¢, and g, into their principal and residual components: in accordance with (8.9)
and (8.11), we have

g = af + af, oy = a; + af (10.24)
where
P 3 1 , R 1,2 ,
‘71 — g(p+2hf0) + ﬁ hp; s al = ﬁ h 53 (10.25a,b)
and
P 1 .t R_ ;2 2 . 1 .
0y = — 15 (P+2hf+pY), o;—h[—Es3+®-55](10-269,b)

In the notation of the infinite dimensional linear vector space induced by the expan-
sion (10.5¢) in terms of Legendre polynomials of odd index, we write

o=d + o (10.27)
where d = (o}, 03, 0,0,..,0,..] (10.28a)
o = [0?,05,05,07,...,02k+1,...] (10.28b)

This composition corresponds to that made in (8.9) and (8.11).
In noting the form taken by the representations for the displacement quantities,
we start with the transverse displacement: the zero-th coefficient in the expansion

w= Y Wy (X) Py (1) (10.29)
k=0

will be determined presently while the higher coefficients are given by relations (6.3)
with n = 2k, namely

_ﬁ V53—03 B VSI—(Tl _ lﬁz_f
Y2 TE 7 3 3 EJ0
(10.30)
h | YS2k+1 7 %%+1 VS2k—1 7 %2k
= — = > —2
Wi = F { 4k +3 k-1 k=
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The coefficients in the corresponding representation for the rotation

=]

w =Y, wy (X) Py (1) (10.31)
k=0

are given by the restricted form of either (6.14) or (6.14*) with n = 2k, namely

wp = L2 7y - wg = A2) (Lasi + 2 p31- g (10.32a)
Ch [ Skt Oiken  Stk-1tO2k-n
oy = 2 [ T el k=1 (10.32b)

For the axial displacement, we have the expansion
u= Yty (X) Pyyy (1) (10.33)
k=0

where the coefficients are given by the formulae

. I [(12+11u)s,’+a{ (2+v)s5+ay
| = e -

] + LA px — hwg (10.342)

E 15 35
y K [@H syt o 2+ 9S54t O3psr (2H VIS5 3% 0243
2k+1 T F (4k — 1)(4k + 1) (4k + 1)(4k +5) (4k+ 5)(4k+17)

, k=1 (10.34b)

obtained from taking relations (6.17*) with even index and introducing the restric-
tion (10.8).

The zero-th coefficient in (10.29) representing the mean transverse displacement
satisfies the restricted form of (7.10b). If we note the restriction (10.8) in connection
with (7.7b), we see that

- DBy (10.35)

In relation (10.35), we now substitute for s, from (10.6") and also introduce o, and
o, from relations (10.22) and (10.23a) respectively: if we rearrange and recall that
we have already assumed that f; is constant, we find

_1 32 2, LA L e
¢, = 32 (P+2hf)= S5 H (P + 5 o) sk 63— 759 (10.36)
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so that in accordance with (8.16) and (8.17), we may set

¢ = b) + o (10.37)

where
b1 = 3 0(p+2Rf)+ 25 M + S hpy)” (10.38a)
oF = — % H(sy - 1_11. 59" (10.38b)

The equation for the determination of w, now follows from the introduction of a,
from (10.22) and ¢, from (10.36) into (7.10b), yielding the restricted form of the
latter equation, which, after some rearrangement, reads

_ v 6 1 6 L, . 3,2 2, aiyn
Ehwo = Sl+(-§ + 5u)p+2(§+v)hf0+§hpi = %h (p+—9- hp_\_ )

2

*35

W lsy= g H(s{ =1 5D1" (10.39)

This equation is to be solved subject to the conditions (7.15), namely

o

k (2k— 1)1

Wy(0) = — E (-0 quw), (10.40)
= 1

w(® = - 1 (—1)"%%“0) (10.41)
= 1

whence, if we note relation (10.32a) in connection with the latter condition (10.41),
we have the alternate form

i — 1N
wo(0) = @y + Y (—I)k%wzk(m (10.41%)
= 1"
where, noting (10.19)
(1+9) (L+v), + 1 [ o
—_ 14 14
wy = 5 7(0) = 3E [ro+ro+ﬁ(§ pdx — S_apdx)]

(10.42)
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Following the resolution of ¢, in (10.22) and of ¢, in (10.38), we now make a cor-
responding decomposition of w, in accordance with the procedure prescribed in
(8.24) and (8.25). Setting

wy = W+ Wy (10.43)

we have for the determination of the residual component

"o 2 2 - 1 2 " __ L ”
—-EhWg = £ h[s, 18 h (54 i 5] (10.44a)
with
We(0) = Wgo Wi(0) = Wiy (10.44b)
where*
= k (2k—1)!! R (10.44c)
Weo® = = ¥ (=D L2550 wi (0,
k=1
Wio(0) = + Y (—1)"9(’27’)1'?—”-0,;(0) (10.4dc %)
= T

Hence, the principal component satisfies

1 . 3 2 2, iy
—ERW" = s, +(% + %v)p+2(% +0hfo + 5 hpY - o e+ 5hpt) (10.452a)
subject to the conditions
W) = W,, W'(0)= W, (10.45b)
in which
3 — 1"
Wo0) = — (—1)"% Wiy (0), (10.45¢)
e "
5 i
Wi = G, + 1 (—1)"‘2(+k‘)1,3iwfk(0) (10.45d)
=, n

* The decomposition of the higher coefficients, namely

R P R
Wap = Wop F Wypo g = @y + 0y

follows the pattern given explicitly for the coefficients o,, above.
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where we recall relations (8.19b,¢).
If we introduce s, from (10.21) into (10.45a), the integration of the latter is then
a repeated quadrature introducing two arbitrary constants: these are then determined
from (10.45b) yielding the unique solution for the principal component of the mean
displacement. We omit this calculation and consider the boundary value problem
"(10.45) solved.
From (10.44), we obtain for the residual component

Wgp = Wge + xWpg

2
35

h , 1,2 " .
“ 35 E ] S - xsj(0) ~ o [ss(x) = xs7(0) - - Is3(x) —xs;'(O)]}

(10.46)

which, when added to the solution of (10.45), gives the combined expression for the
mean displacement.

We may also decompose the mean rotation in accordance with the prescription
(8.21) and (8.22). For the principal and residual components, we have, respectively,

@=L Thsie Ipr- W, 9= -wi  (10.47a,b)
the combination of which, on noting (10.43), adds up to formula (10.32a) for the
mean rotation.

The remainder of this section is concerned with the analysis of the residual axial
stress coefficients.

For the system of equations (7.10c) the relevant elements in the sequence {¢,] are
given, in terms of the transverse normal stress coefficients, by the restricted form
of (7.7c) with odd index, namely

5 62”/\’ 1 202”/‘._'_] aZ”l\‘+3
bok 1 = h [(4k—1)(4k+l) T @k+D@k+5) (4k+5)(4"+7)J =t

(10.48)
In this system of relations, the quantity o, appears only in the case ¥ = 1, namely

in the expression for ¢,: writing this case separately and substituting for g, from
(10.22), we have the alternate form

2 2 I 1,4 l I
= . ” ”w " ” L X 1 .
¢y = h - 505+ g5 osl+ oo hsyi+ 55 PH2h1) " + 15 hp} (10.49a)
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O3k —1 2054 41 O3k +3

2
o4 = A [(4k—1)(4k+1) T (4k+ 1)(4k+5) (4k+5)(4k+7) |’ kee

(10.49b)

From (10.23) and (10.49), it is now evident that relations (7.7¢) with odd index, namely
Goprr F 20064 + Sy = 0, k21 (10.50)

constitute a self-contained system of differential equations for the residual axial stresses
to be solved subject to the boundary conditions (10.16).

As with the problem of stretching, we now introduce notation that allows the
transformations (10.23) and (10.49) together with the boundary value problem con-
sisting of (10.50) and (10.16) to be written in vector form. We define the infinite dimen-
sional vector functions S,, L, and ¢, by setting

S, = [Sypp 1] Sk 0] = [55,55,57,00: 834410000 (10.51a)
L, =0y | Sksoo| = [03,05,07,000s Ogp 4 15eer] (10.51b)
®, =[Oy, ] Sks00) = [03,05,07,.Ppp 41000 ) (10.51¢)

in each of which the k-th element has suffix (2k + 1). For the specified edge quan-
tities, we introduce the vectors S : and D:where

ST = (55, 1Sk 0] = (55,5587 S5 410} (10.52a)

D= (di, <ksw) = (dy,d5.d7, iy o] (10.52b)

so that the system of equations (10.50) with the edge conditions (10.16) become
® +2L +S5,=0 (10.53a)
x=%a, S,=8), hS!=D] (10.53b)

The system (10.53) is the vector formulation of the boundary value problem for the
residual stresses.

In the vector form of the transformation (10.23) and (10.49) the inhomogeneous
terms due, respectively, to the applied axial and transverse forces will be written by
means of the vectors

A
F' = (hp,0,0,...], F,

o

= ((p+2h£),0,0,...]  (10.54a,b)

in each of which only the first terms is nonzero. The operator for the transformation
(10.23), which also occurs in (10.49), will be constructed from the one-sided infinite
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tridiagonal matrix M, where
(o)} -]
M, =|m,, 1 (10.55)
with both suffices ranging from one to infinity. The nonzero elements are given by

(o) 1 (o) 1

Mk = GETD@E TS Tkl T T Grrn@ks T | =k=e= (10.563,b)

(o) _ 1
m,‘./‘._l = m, 2=k=s oo (10-56(:)

while all other elements vanish, namely

(o) lsj<k-2, k=3
mg, =0 (10.56d)
k+2<j<o, k=1

From the above matrix M,and the basis element matrix E,,, we form the matrix
functions L, (A) and J(\), respectively by scalar multiplication by the factor \: thus

)
J

L,(A) =AM, = [my A (10.57a)

JON) = NEy, = [8,,8;N] (10.57b)
where, in the latter, we have used the Knocker delta notation.

Again, it is convenient to use the scaled coordinates ¢ and the mensural ratio «,
namely

=X -4
E=7%, a=g (10.58a,b,)
and we use D to denote the associated derivative element so that
= d _,d
D= i h 5 (10.59)

If we now construct the operators LO(DZ) and J (Dz) by setting

L(DY) = [m}y D', J(DY) = [8,8,D'; (10.60a,b)
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hen, in vector form, the transformation (10.23) reads

(A T
L, = —L(D)S, - 4R+ £ (10.61)

o

while the system (10.49) takes the form

UDIS, + 2 DIE, + ¢ F, (10.62)

o

. 2 e
&, = —L, (DI, + 533

o [

o\ —

For the formula giving &, directly in terms of S,, we introduce L, from (10.61) into
(10.62): if we use the fact that

(A T A
LoF" + F = 2D+ ) (10.63)
we obtain
w 2. .2 1 2 2 2. (D 1 (A4
®, = [[L, (DN + w5 J(DINS, + zz DI+ 7K =2 (10.64)

The explicit form for the differential equation satisfied by S, follows from the
introduction of L, from (10.61) and &, from (10.64) into (10.53a): we also write the
edge conditions (10.53b) in terms of the normalized notation (10.58) so that the state-
ment (10.53) of the boundary value problem assumes the form

(L, (DY) + 3 (DI = 2L, (D) + 115,

(A4)

i (A) _2_ 2 (T l
= +FD 1+ 45D[Fo +4F0 ] (10.65a)

i
(F."

| —

S,(¥a) = S, DS,(¥a) =D, (10.65b)

in which we again use / to denote the one-sided infinite unit matrix.
As in the problem of stretching, it is appropriate to focus attention on the
homogeneous equations: we take

py =0, p= 0, f, =0 (10.66)
so that

0 (10.67)
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and the inhomogeneous terms in (10.65a) vanish. Replacing the right hand side of
(10.65a) by zero, we have

2+ L ohls, = o (10.68)

2
(IL(DY) = 11" + <52

where we have rearranged the terms in the differential operator.
The subsequent analysis now follows the same pattern as was outlined for the prob-
lem of stretching.

Background Survey

The history of beam theory begins with the publication in 1638 of the inquiry of Galileo
[12] on the determination of the axis about which a cantilever beam tends to turn under
loading. In the absence of a formula relating deformation to force, the question had
to remain unanswered until the enunciation of the stress-strain law of Hooke [23] in
1678. Some years later Mariotte [28], who had independently formulated Hooke’s Law,
applied it to Galileo’s problem: assuming that the resistance to flexure arises from the
straining of the fibers, he concluded that the axis of flexure lies along the midline of
the beam-section. In its application to the problem of the elastica, the method was later
extended by James Bernoulli [4], for the determination of the curve assumed by the
centerline. From the latter result Euler [10] deduced the moment-curvature relation, which
he then took as the basis for his subsequent analysis.

In the later more systematic treatment by Coulomb [7], published in 1776, account
is taken of the finite dimension of the beam section. Considering the resistance to flex-
ure as induced by the extension and contraction of the longitudinal fibers, in accord-
ance with Hooke’s Law, Coulomb formulated the hypothesis that the deformation occurs
in such a manner that normal sections are displaced into normal sections: he thereby
deduced classical beam theory. His analysis preceded, by three decades, the definition
of the modulus of elasticity and the introduction of the concept of shear strain by Young
[38] in 1807.

The formulation of the general equations of elasticity by Cauchy {5] in 1827 provided
the framework for the possible refinement of the clasical theory. This motivation led
to the celebrated papers of Saint Venant [34] in 1855. This work has already been cited
in the General Introduction, where also may be found references to the later developments
by other investigators who followed the semi-inverse procedure of Saint Venant in their
treatment of beam theory.

Recognizing the potential for obtaining insight on the validity of Saint Venant’s Prin-
ciple, Papkovitch [31], in 1940, formulated and anlayzed the problem of the elastic strip
within the framework of a two-dimensional theory of elasticity: this was closely fol-
lowed by the related work of Fadle [11]. A decade later there appeared the further study
by Smith {35] and the discussion and extension of Papkovitch’s method by Greenberg
[13]. There followed the intensive investigations of Horvay [24] and Horvay and Born
[25]. The subsequent papers of Bentham [2], Gusein-Zade [16] and Johnson and Little
[26], include references to other related literature, while the more recent studies of Gregory
[14a,b] and Gregory and Wan [15] attest to the continuing interest in the problem.
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We have seen that the method of reduction followed here leads to an infinite system
of linear fourth order ordinary differential equations with constant coefficients. Infinite
systems first attracted attention following the occurrence of such a system in the Lunar
Theory of Hill [20], published in 1877, which led to the subsequent investigations of
Poincaré [32] and von Koch [27]. In the years 1904-1910, there appeared the series of
monumental papers of Hilbert later collected in book form [17]. Therein the concept
of complete continuity is introduced as the requirement appropriate for a discrete spec-
trum: Hilbert also formulated the conditions on the matrix elements sufficient to guarantee
complete continuity for the associated operator. The book by Hellinger and Toeplitz
[17] record the results over the next decade including the investigations of spectral theory
by Courant and Weyl. The later books of Wintner [37], Stone [36], Cooke [6], Riesz
and Nagy [33] and Hille and Phillips [22] treat various aspects of the theory. Of the
more recent results on spectral theory we mention the work of Newburgh [30] on the
variation of spectra and the analysis of tridiagnonal operrators by Duren [9].

For a full discussion of the development of the theory, we refer to the excellent historical
surveys of Bernkoff [3]. Of the works dealing specifically with systems of ordinary dif-
ferential equations with infinitely many unknowns, we note the papers of Helly [18],
Doob [8], Hille [21a], and the more recent investigation by Agmon and Nirenberg [1].
Other features of the theory are treated at greater length in the book by Massera and
Schaffer [29], where further references may be found. Certain aspects of such systems
are also briefly discussed in the Lectures of Hille [21(b)].
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“Learning creates difficulties.”

Quintilian

Chapter Two

Plate Theory and the Edge Effects

Introduction

In its general form, a plate is a three-dimensional right cylindrical body having a plane
of symmetry called the midplane. The bounding surface, in three distinct parts, consists
of a cylindrical component known as the edge-surface, normal to the midplane, together
with a pair of faces which, symmetrically placed with respect to the midplane, close
the ends of the cylinder. We shall refer to the intersection of the edge-surface with the
midplane as the edge-curve: for a finite plate this consists of one or more simple closed
curves. The distance between the faces, taken along the normal to the midplane at a
given point, measures the thickness of the plate at that point.

The plate configuration will be related to a right cylindrical coordinate system erected
on the midplane. The reference system then consists of the system of laminar planes
parallel to the midplane together with the family of transversals normal thereto. Those
elements of the field quantities lying in the laminar planes will be called the laminar
components while those associated with the normal to the midplane will be termed the
transverse effects.

The body is composed of a material whose mechanical response to the action of applied
forces is in accordance with the Cauchy-Green law for a three-dimensional elastic medium.
By considering a material for which the transverse direction is mechanically distinguished,
we facilitate the detection of the influence of the transverse stresses on the other field
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quantities — a feature of particular interest in the theory of elastic plates. With this
characterization of the material, it remains to define the underlying force field and the
designation of the boundary value problem is then completed by the specification of
appropriate conditions at each point of the bounding surface. As both the displacement
and the mixed boundary value problems can be treated by making appropriate modifica-
tions in the procedure developed for the stress boundary value problems, we shall con-
fine our analysis to the latter.

The primary concern of plate theory is the investigation of the effects in the interior
due to the conditions applied along the edge-surface. In giving priority to the features
of primary interest, we shall consider the stress distribution, applied along the edge-
surface, in its most general form, but shall suppress most secondary features of the
problem by restricting our consideration to homogeneous plates of constant thickness,
subject to a purely normal pressure on the faces, in the absence of a force field. Within
the proposed method of reduction, the inclusion of the additional terms due to varia-
tion in the plate thickness, could be achieved in the manner already followed in the treat-
ment of beam theory, where the procedure for incorporating the more general form
of the forces applied to the faces, as well as the body force effects, has also been indicated.

The stress distribution applied to the edge-surface may be considered a linear com-
bination of two distinct parts: the principal part is characterized by the fact that it
contributes to the thickness-integrated stress resultants and stress-couples, while the com-
plementary subsidiary part is a self-equilibrating distribution along any generator of the
edge-surface. This resolution, facilitated by the Legendre series representation for the
stresses, is then reflected in the interior. The principal part is responsible for the prin-
cipal effects in the interior, the determination of which is the concern of the principal
problems of plate theory: the corresponding residual problems deal with the investiga-
tion of the residual effects induced by the subsidiary part of the edge-surface stress
distribution.

The plate configuration admits the mutual uncoupling of the problems of stretching
and bending, respectively associated with the even and odd parts of the laminar stresses
in their dependence on the thickness coordinate. In each problem, when the three-
dimensional equations have been integrated with respect to the thickness coordinate
by the aid of the Legendre series, we are led to a two-dimensional form of the governing
equations in terms of the laminar coordinates, in which the thickness-averaged dis-
placements are the only displacement quantities that appear explicitly. By making an
appropriate resolution of these mean displacements into their principal and residual parts,
we effect the further uncoupling of the derived form of the governing equations into
a set involving the principal effects and a system describing the residual effects. A cor-
responding separation in the boundary conditions then yields the separate formulation
of the principal and residual boundary value problems in both the cases of stretching
and of bending.

The residual effects are mainly confined to the narrow boundary layers, whose extent
is typically of the order of the plate-thickness. The principal problems are concerned
mainly, but not exclusively, with effects that persist at a considerable distance from the
edge. In particular, we note that, in the principal bending problem, besides the so-called
“interior” effects, there also arises the Reissner “edge” effect due to the resultant transverse
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shear. From the final formulation it will be evident that the nature of this latter effect
is substantially different from the boundary layer phenomena associated with the residual
problem.

The objectives of the analysis may now be stated under three main headings:

1. the clarification of the distinction between principal and residual effects in plate

theory.

2. the formulation of the principal boundary value problems for both stretching and

bending;

3. the formulation of the corresponding residual boundary value problems.

In section One we describe the coordinate system and derive the relevant tensor relations
to be used in the sequel. The three-dimensional boundary value problem is formulated
in Section Two, followed by a normalized reformulation in Section Three. From the
transverse integration of the equilibrium equations, we derive, in Section Four, the
Legendre series representations for the stress components: the application of the face
conditions then yields the equations satisfied by the leading coefficients. A further con-
sequence of these operations is that all elements in the representations for the transverse
stresses are expressed in terms of the coefficients appearing in the series for the laminar
stresses. By making the corresponding expansions for the stress distributions applied
to the edge-surface, we can then reformulate the edge conditions in terms of the laminar
stress coefficients: this is completed in Section Five.

Through the transverse integration of the constitutive equations relating the
displacements to the stresses, we obtain, in Section Six, the associated Legendre represen-
tations for the displacement components, followed, in Section Seven, by the final two-
dimensional formulation of the equations in a form involving the laminar stress coeffi-
cients and the mean displacements. Having discussed the uncoupling features of this
new formulation in Section Eight, we then proceed to the separate consideration of the
problem of stretching and bending. Section Nine is devoted exclusively to the problem
of stretching. Having recapitulated the relevant formulae, we then resolve the mean
displacements into their principal and residual components and thereby obtain the
separated formulations of the principal and residual boundary value problems, followed,
in each case, by some further reduction leading to the final form of the system of equa-
tions describing each problem. The corresponding analysis and reduction of the systems,
describing the principal and residual effects in the problem of bending, are treated in
Section Ten.

We conclude with a brief historical review together with references.

1. The Coordinate System

Referred to a general planar coordinate system [x”,a = 1,2], the position vector to
an arbitrary point on the midplane may be written

r =r(x)=r (xl,xz). (1.1)

Using the comma notation for partial differentiation, we have for the associated base
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vectors g,

Q

r
8o =Lig=—"3 =12 (1.2)
ax

from which, by scalar composition, we form the symmetric covariant metric tensor
&, Of the coordinate system, namely

“gg o8 =1,2 (1.3)
whose determinant g is clearly given by

2 2
g = det[gaﬁll =&118n ~ 812 (1.4)

The base vectors and metric tensor so defined induce the related dual systems.
Following the convention that summation is implied over repeated (dummy) indices,
and using the Kronecker symbol to denote the unit matrix, we have the system of
equations

A 3
88 =06, B\ =12 (1.5)

for the definition of the components of the contravariant metric tensor gaﬁ from
which we find

n - &» 2 & 12 &2
=—, =—, = - — (1.6)
£ g & g & g

The conjugate base vectors are then formed by setting
g =5"g, (1.7)

from which it follows that

A 68_ B8
EyaTEnE + 848 =9, (1.8a,b)

These reciprocal relations between the two systems of base vectors expedite the mutual
conversion of the dual-representations, namely the contravariant and covariant forms:
such transformations are then reflected in the lowering or raising of the tensor in-
dices as the context requires.

With the metric g, there is associated the two dimensional covariant permuta-
tion tensor e,, with components

er =€ =0, ey= —¢ =Vg 1.9)
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where g is given by (1.4). The corresponding contravariant tensor is defined by

=g, (1.10)
which, in explicit form, gives
LI N _ oL .11
\
By means of the permutation tensor, relations (1.6) may be written
=, (1.12)

as can be readily verified by introducing the components from (1.11).
For the two dimensional space with metric g5, the Christoffel symbols of the first
and second kinds are respectively written

lo,B:0] = % (8ap.8 + Bopa — Bap.ul (1.13a)

{a)\B} = th[a,B:u] = %g’\“[g,,“'ﬂ + 8gua ~ gaﬂ,“] (1.13b)

The occurrence of the latter symbol in the formula for the covariant derivative will
follow from the fact that for the base vectors we have

5a.ﬂ={a)\6}§)\' g% = - {)\“B}E“ (1.14a,b)

The former can be immediately verified by partial differentiation of formulae (1.3)
and forming appropriate combinations: the latter then follows as a corollary from
differentiation of relation (1.8b). From (1.13b) we further note that, in the case of
coincidence of the upper index with either one of the lower indices, we have

2
A
(5} =1L s
n=1

where we have written the summation over p explicitly since no summation over A
is implied. If, in the matrix [846]s We denote the cofactor of the element g g4 by gi
so that, (ef. (1.6)), in fact,

e’ = gg™ (1.16)
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then for relation (1.15), we have the alternate form

2
N Y
{a )\} - 2g “Z::] Ev Bua (1.17)

Applying the rule for the differentiation of a determinant by the elements of any
row, then irrespective of the value of A\, we see that formula (1.17) is equivalent to

A P B 3

giving the important relation

_aa\/;g:\/g{)‘} (1.19)
ax a N

which we shall use in our derivation of the equilibrium equations.

In a planar vector field, referred either to the base vectors g , or to the conjugate
system g°, the operation of partial differentiation with respgct to one of the coor-
dinate variables yields a second order tensor, whose components are the covariant
derivatives of the components of the original vector. Thus in the case of the vector

ga=dg =ag (1.20)

we have for the partial derivative
4, = [a)\,a + { A }a“] g (1.21a)
ro ~

= [ay , - {)\“a} alg" (1.21b)

We shall use a single vertical stroke to denote covariant differentiation in the two
dimensional space with metric 8,° hence, for the contravariant components of the
vector, we have as defining formula for the covariant derivative

A, =d,, + { A } a (1.22a)
uao
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while for the covariant components the corresponding relations read

a)\lcx = a)\,a = {)\I»"a } a“ (1.22b)

and expressions (1.21, for the partial derivative of a vector take the compact form

_ )\l _ A
4., =4a u,g)\_a)\hxg

(1.23)

For the components of tensors of higher order, the definition of the covariant
derivative is a direct extension of the formula for that of the components of a vector:
thus, for a second order tensor a"’ contravariant in both indices and defined in the
space with metric g_g, the covariant derivative has the form

Pl =a {:‘x} '+ {#ﬁ)\} at (1.24)

generalizing relation (1.22a) for the covariant derivative of tensors of first order.
In the three dimensional Euclidean space, we first consider the general coordinate
system [x,: =1,2,3] and write for the position vector to an arbitrary point

= R(x) = R(x' x"x) (1.25)
Associated with the coordinate system [xi,i =1,2,3], we have the base vectors

AR
=R, =—,i=1.2,3 (1.26)

=i = i

ax

in terms of which we define the covariant metric tensor G;; by setting
G;=G;Gj iJj=123 (1.27)
with determinant
3
G = det[G), (1.28)

The components of the contravariant metric tensor G constitute the inverse matrix
determined by

Gy G = 4] (1.29)
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wﬁere the Kronecker delta on the right denotes the unit matrix: the relations
¢'=6¢"g, (1.30)
then give the conjugate system of base vectors, and we further note that
k J

G, =G6GxG ., @G

' =i

(1.31)

Using the letter T" to distinguish the symbols in the three dimensional space, we write

I‘,:'/c:i

210Gy« + Gy y = Gy ] (1.32a)

il 1 1
Ty =G T,y= 3G 1G4 + Gy j = Gy ] (1.32b)

respectively for the Christoffel symbols of the first and second kinds associated with
the metric GU, and, as in the two dimensional case, it can be easily checked that,
for the derivatives of the base vectors, we have

Gix=TyG, (1.33)

Hence, for an arbitrary vector field 4, for which we have the component
representations

A=dG.=aG' (1.34)

G (1.35)

where we have used a double vertical stroke to distinguish covariant differentiation
in the three dimensional space with metric G,.j: that is, we have set

i i i k k
aII.:a,j+I‘j-A_a, a4, =9 -T

. = T (1.36a,b)

. . iy . . . .
while for a second order tensor with components g, contravariant in both indices,
we would write

] if il Jooil
l,=a,, +Tya +T,a

a (1.37)

as the defining formula for the covariant derivative.
For a plate configuration, the natural frame of reference is the general cylindrical
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coordinate system consisting of the planar system [x*,a =1,2] augmented by the
transverse coordinate z measured normal to the midplane. We, therefore, specialize
the general system [x',i=1,2,3] by identifying the first two coordinates with those
of the planar system [x”,a=1,2] and equating the third with the transverse co-
ordinate z: explicitly, we have

= a=1,2,% =2 (1.38)

so that, in place of (1.25), we write for the position vector to an arbitrary point

R=R()=R(&"2) (1.39)

which may now be considered the resultant of adding the transverse segment to the

position vector of the corresponding point on the midplane: noting that, for the latter
point, we have

r(x") =Ry =R(",0) (1.40)

and letting # denote the constant unit vector normal to the midplane, we see that
the position vector (1.39) has the resolved form

R=R(&)=R(:"0) =r(:") +zn (1.41)
which enables us to relate the elements of the spatial reference system to those of
the associated planar system.

With the defining relations (1.26), it follows from (1.41) and (1.2) that for the
cylindrical coordinate system, the base vectors are

G, =8, a=12,Gy=n (1.42a,b)

and hence, the components of the metric tensor Gij are given by

Gaﬂ 8agr a,f =1,2, (1.43a)

Gyy =0, =12 Gy =1 (1.43b,¢)

so that the determinant of the metric G; is identical with that of the metric g.4,
namely

G=¢g (1.44)

Using relations (1.43) and (1.44) in our consideration of the defining equations (1.29)
and (1.30), it is evident that the contravariant components of the spatial metric tensor
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are reducible to those of the planar metric tensor, namely

™ =g a8 =1, (1.452)

G =0 ,a=1,226"=0 (1.45b,¢)

while for the conjugate base vectors, we have
o a 3
G =g,a=12:G =n (1.46a:b)

_Applying relations (1.43) and (1.45) to formulae (1.32) for the Christoffel symbols,
we see that those symbols with index three in any position vanish: in particular, for
the Christoffel symbols of the second kind, we have

3 ] i Lo
T =0Ty =0,T;=0,ijk=123 (1.47)

while the nonvanishing elements coincide with the corresponding symbols associated
with the two-dimensional metric 8qp 88 given in (1.13b), namely

A A
T = {aﬁ} s N, B =12, (1.48)

From these relations, we see that, in the cylindrical coordinate system
[x*,z; & = 1,2], covariant differentiation with respect to either of the laminar coor-
dinates x” is unaffected by the presence of the transverse dimension, while for the
transverse coordinate covariant differentiation is identical with partial differentia-
tion. In particular, for the vector field 4 of (1.34), whose covariant representation
may now be written

A=a,8"+an (1.49)
we have, for the covariant derivatives of the normal and laminar components
respectively

3 = 93,2 Bja T B34 (1.50a,b)
a3 = 9,3 %8 = %8 (1.50¢,d)

which, as we shall see, will result in a considerable simplication in our expressions
for the strain measures.

For the description of the plate we first note that referred to the planar coor-
dinate system [x", @ = 1,2], the equation of the edge curve, along which the
bounding surface intersects the midplane, may be written in the parametric form
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e: X = xa(r;), a=1,20=<9=s1. (1.51)

where the x* are given functions of the appropriately chosen normalized running
parameter 5 on the curve. The nonparametric form

C: YOS = Yx' ) =0 (1.52)

follows from the elimination of 4 from (1.51) and hence, the connected set

(€A Y(x")=0 (1.53)

defines the region occupied by the projection of the plate on the midplane. Accord-
ingly, if we denote the half-thickness of the plate by 4, then, in cylindrical coordinates,
the boundary consists of the cylindrical edge surface

®: & =x(), a=1,2,0s9<1; —h<z=<h (1.54a)

together with the pair of faces 7
1= Fh, Y(x)=<0 (1.54b)

and hence, the region

®R: Y(x")<0, lzl<h (1.55)
defines the interior of the plate.

We shall use a bar to indicate when quantities are evaluated on the edge so that
on the curve (1.51) we write for the base vectors

L =E. =[ga(x‘)] (1.568)

g% =g%m = [gu(xk)] (1.56b)
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and for the metric and permutation tensors

Bap = Bap (1) = [Eap(x)] (1.57a)
X =2t
ap = Cap () = |og(8)] (1.57b)
g=g(n)
where in the latter we have noted (1.9) and set
— — 2
g(n) = detlg,g(m], (1.58)

For the curve (1.51), the contravariant components of the tangent vector are

X () = LX) (1.59)
n

and hence, the covariant quantities

Yo () = e (mx (1) (1.60)

constitute the corresponding normal vector. Defining the associated normalized com-
ponents by

Yo (1)
Ila("l) = :}\ (].6])
\/yx(n)y (n)
we have the resolution
no=n, g (1.62)

o

for the unit vector n normal to the edge curve.

Since the part of the boundary defined by (1.54a) is a right cylinder erected on
the edge curve (1.51), the unit normal at an arbitrary point (5, z) of the edge surface
is independent of z and is given by formula (1.62) evaluated at the corresponding
point of projection (5,0) on the edge curve. On the remainder of the boundary con-
sisting of the lower and upper faces defined in (1.54b), the unit normal is constant
on each face and coincides with the unit transverse vector n, except for a change
of sign on the lower face only.

As in the above, so in the subsequent notation, Greek indices will consistently have
the range (1,2), while Latin indices will range over (1,2,3).
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2. The Boundary Value Problem

In a three-dimensional medium referred to a general coordinate system [x', i=1,2,3],
in which the position vector is denoted by R (x') as in (1.25), and the associated base
vectors G; and metric tensor G;; are given by (1.26) and (1.27) respectively, if we repre-
sent the stress tensor by 7/ and write {’ for the contravariant components of the body
force density, then the equilibrium of a material element requires* both the symmetry
of the stress tensor

A= ij=1,2,3 2.1)

and the satisfaction of the vector equation

2 VGgr+VG g, =0 (2.2)
ax

wherein G is the determinant of the metric tensor as given by (1.28), and we again
follow the convention of summation over repeated indices. The latter equation is
equivalent to the system of tensor equations

i+ f =0 2.3)

where, as previously stated, the double vertical stroke indicates covariant differen-
tiation defined for the metric G,.j by (1.37) and (1.32). These equations may now be
specialized for the cylindrical coordinate system natural to the plate configuration
in accordance with relations (1.41) to (1.50).

An alternative — and possibly more direct — procedure would introduce the
specialization directly into equation (2.2).** Giving explicit preference to the third coor-
dinate and omitting the body force terms, equation (2.2) reads

2 WG (PG, e+ LG G e GI=0 Q)
axa ax

where, as before the Greek indices have the range (1,2). If we now identify the first
two coordinates (x*, « =1,2) with the Laminar coordinates [x*, «=1,2] and
equate x3 with the transverse coordinate z, then recalling relations (1.42) and (1 .44)
we see that, for the cylindrical coordinate system, equation (2.4) becomes

R A TRtV R AU PR AR 2.5)
ax

* For the derivation of these and other basic equations of the general theory of elasticity use refer to the
standard treatises, e.g. ‘“‘Theoretical Elasticity’’ by A. E. Green and W. Zerma. Oxford 1954.

** Here the procedure is followed primarily for consistency with our later analysis of equilibrium in a shell
where the advantages are more obvious. Actually from our observations in (1.47) and (1.48), it is obvious
that equations (2.3) specialize to the system (2.7) in the cylindrical coordinate system.
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Performing the differentiation we utilize formulae (1.14a) and (1.19) and rearrange:
omitting the common factor Vg we obtain

8 A .)\ 8 38
[Ta 1o T {)\6&} T+ {a)\} T4 T ’Z].gﬁ

+ [T“B,a + { A 1 ‘rm3 + 733, ln=0 (2.6)
a)\J z

We may now use the notation of covariant differentiation for the coordinate system
(x*, @=1,2] with metric g,p as defined in relations (1.22a) and (1.24) so that the
vector equation (2.6) written in component form becomes the system of tensor
equations

By 4 F o (2.7)

T a ’z
P+, =0 (2.7b)

If we also give preference to the transverse coordinate in the statement of the sym-
metric character of the stress tensor, then in place of (2.1) we write

raﬁ = ‘rﬁa TOI3 = 1'30{ (2.8a,b)

as the conditions supplementing equations (2.7) for the equilibrium requirements for-
mulated in the cylindrical coordinate system.
When the displacement vector field V is referred to the base vectors G' giving
the resolution
¥ =uG (2.9)
the linearized strain measures constituting the symmetric linear strain tensor v, ; are
defined in terms of the displacement components by

I ..
Yy = E(Ui|1j + vj||:) , ij=1,2,3. (2.10)

in which the covariant differentiation indicated by the double vertical stroke is in
accordance with (1.36) and (1.32). For the cylindrical coordinate system, the resolu-
tion (2.9) becomes

>3
V=v,8 +tuvn
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and relations (1.50) now give the defining formulae (2.10) a simpler form: the exten-
sional and shear strains associated with the transverse direction are given respec-
tively by

33 = U3 (2.12a)

and

Va3 = % (Voo ¥ V34) s @=1,2 (2.12b)
while for the laminar strains we have

Tag = 3 Wagp * U510 @B = 1,2 (2.12¢)

in which the covariant differentiation, indicated by the single vertical stroke, is now
in accordance with (1.22b).

For a homogeneous material with linear stress strain law, the Cauchy-Green con-
stitutive relations have the form

ki
Yy = Eijki T (2.13)

in which the elastic parameters E,, are constant. Since the coefficient tensor E,;,
shares the symmetry properties of both the stress and strain tensors there can be at
most thirty-six independent elements: the existence of a strain energy function im-
plies a further symmetry condition leaving twenty-one independent constants in the
coefficient tensor. If we impose the further restriction that the plate material be
laminarly isotropic, that is, we require invariance in the mechanical characteristics
under changes of direction in laminae parallel to the midplane but admit a distin-
guished response for the transverse direction, then, the number of independent elastic
parameters reduces to five and, when related to the cylindrical coordinate system,

the constitutive relations (2.13) take the special form

m—%m—%& (2.14a)
Tas = Ta3 (2.14b)
Yapg = a E") Taf — guﬂ : ']E[VT;\\ + vs 733] (2.140)

in which the covariant components of the stress tensor appearing on the right hand
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side are in accordance with metric relations (1.43), namely

A 3 33
Tug = Bar8guT » T =Ty =T (2.15a,b)

A A3
T3 = BanT3 = & T (2.15¢)

. . . A . .
while the invariant 7, is the trace of the laminar part of the stress tensor defined by

=g, (2.15d)

The moduli E, and B reflect the transverse extensibility and transverse shear deform-
ability respectively while the dimensionless ratio », measures the effect of the
transverse stress on the laminar strains: the coefficients £ and v are respectively, the
Young’s modulus and Poisson’s ratio associated with the laminar effects. We note
that a transversely inextensible material is characterized by the conditions

=0, » =0 (2.16)

while the independent property of transverse shear rigidity is expressed by

1 _
5= 0 (2.17)

In the case of complete isotropy, we would have

_ -~ o E
E.=E, v, =y, B_—(I+u) (2.18)

the number of independent coefficients being then reduced to two.

Besides the strain components (2.12) there are also associated with the displace-
ment quantities the three components of infinitesimal rotation. In the cylindrical coor-
dinate system, the laminar rotation y is defined in terms of the laminar displacements
by

v = %(UHZ - vy) = %(UI,Z — Uy) (2.19)

while the transverse components of infinitesimal rotation w, are given by

1
Yo =75 (v, ;

— vy (2.20)
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The latter may be put in the alternate form
(2.20%)

if we first use relation (2.12b) to eliminate v, , and then substitute for v, from the
constitutive relation (2.14b).

On the boundary we consider each face subject to a purely normal pressure while
on the cylindrical edge we admit the application of a general stress vector field
distributed in an arbitrary manner over the surface. If we let p and p denote the
pressures on the lower and upper faces respectively, then recalling the description
(1.54b) for these planar segments we have for the conditions on the lower face

= —h YD) =0: PO —h) =0, (X, —h) = p (X)) (2.21a,b)
while the corresponding form for the conditions on the upper face reads
2= +h YD) =0: 2O 4 h) =0, (L +h) = pT () (2.22a,b)

At an arbitrary point (7,z) of the cylindrical surface (l.54a), we let
[Z'(n,z), i = 1,2,3] represent the components of the applied stress vector, so that
the boundary conditions on the edge take the form

P2 1g(m = 28 2) (2.23a)
—h=z=< xh, x)\ = x)\(n):
m,2) nym = Z°(1,2) (2.23b)

in which the n_ are the components of the unit normal vector (1.62) and where we
have used the notation

“no) = [T"B(x*,z)] , P2 = [r‘”(x*,z)] (2.24a,b)
A A A A
x =x (n) x =x(n)

to signify the edge values of the relevant stress components.

The combination of relations (2.12) with (2.14) gives the system of stress-
displacement relations complementing the equilibrium conditions (2.7) and (2.8): the
determination of the solution to this combined system of partial differential equa-
tions valid in the region ® defined in (1.55), and satisfying the boundary conditions
(2.21), (2.22) and (2.23) constitutes the stress boundary value problem of plate theory.
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3. The Normalized Formulation

To obtain a normalized formulation we make a coordinate transformation that leaves
the laminar coordinates unchanged and replaces the transverse coordinate by its nor-
malized dimensionless transform. Introducing the thickness variable ¢ by setting

=2
t = A 3.1)
then, since # is constant, we have
at at 1
9L _ g, QLo 3.2a,
ax” 9z & (3:25,0)

so that only the z-differentiation is affected by the transformation. The plate interior
® defined in (1.55) corresponds in the transformed coordinate system (x”,¢) to the
region.

CRO: ~I=st=+1, Y(x)=0 (3.3)

whose boundary is now described by the pair of faces
t=F1, Y=o 3.4)

together with the edge surface

—1=t=s+1, 5% = () 3.5)
In the region R, all stress and displacement quantities are now to be considered
functions of the x” and ¢ and we accordingly introduce notation reflecting the effect

of the transformation (3.1). Starting with the stress tensor, we write for the laminar
components

oaﬁ(x)‘,t) = raﬁ(x)‘,z) (3.6a)
and, while for the transverse normal stress we set
a(xXn) = () (3.6b)
the transformed form of the transverse shear components are distinguished by
S = = 20 (3.6¢)

In the transformed displacement quantities, we separate the transverse component
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from the laminar components by setting
A A A
u (X0 = 0 (2, a= 120w = vy (x2) (3.7a:b)

The relevant edge values become

P n1) = [”aﬁ(x)\,t) =7 (1,2) (3.8a)
Y
x =x (n)
« a, A\ a3
T (1) = [T (x,0)] =7 (9,2) (3.8b)
| .
X =x"(n)

and if, for the associated applied stress vector, we write
o a 3
T (n,t) =Z (9,2), T(n,t) =2 (n,2) (3.9a,b)

we have the notation necessary for the statement of the transformed boundary value
problem.

Corresponding to the equilibrium conditions (2.7) and (2.8), we have the pair of
differential equations

Bo

ho “lg+ 7, =0 (3.10a)
hl, + 0, =0 (3.10b)

together with the single symmetry condition
of = P (3.11)

We have achieved a more consistent appearance by a permutation of the indices in
the first equation.

If we combine the strain-displacement relations (2.12) with the constitutive equa-
tions (2.14) then, in the transformed notation, we obtain the system of stress-
displacement relations

h h A
W, = Fz g — v, =0y (3.12a)
h
u,, + hw, = ZETD{ (3.12b)
A
%(”a lg + Ug |a) = (l—z.y)auﬁ - gaﬁé [vay + v 0] (3.12¢)

e —
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Recalling relations (2.19) and (2.10%), the formulae for the rotation components
v =1 =1 (3.13a,b)
= E(u._2 — Uy ) w, = BTa W, & -15a,

follow directly from the transformation (3.7).
In place of the boundary conditions (2.21) and (2.22), we have for the lower and
upper faces, respectively,

L= o1 Y=00 S5 = =0, 0 - =p () (3.14a,b)
and

A o, o A + A
f= 41, Y(3¥)<0: 7 (x,+1)=0,0(x,+1)=p (x) (3.15a,b)

which, together with the transformed edge conditions,

-

XY nglm) = T(n,1) (3.162)

', 0) ng(n) = T(n, 1) (3.16b)

corresponding to (2.23), complete the statement in normalized form.

The boundary value problem now consists of the determination of the solution
to the system of equations (3.10) to (3.12) valid in the region ®, of (3.3), and satis-
fying the conditions (3.14) to (3.16).

4. Stress Representations: The Face Conditions

The first step towards recasting the problem in a two dimensional form involves the
integration of the equilibrium equations with respect to the normalized transverse
variable. Concurrent with the performance of this integration, we derive representa-
tions for the stress quantities in which the transverse variation is explicitly separated
from the implied dependence on the laminar coordinates. The imposition of bound-
ary conditions on the faces then leads to the equations to be satisfied by the lower
coefficients in these representations.

We introduce an expansion for the second order laminar stress tensor a"ﬁ, in
terms of Legendre polynomial functions of the thickness coordinate, into the
equilibrium equations (3.10a) and (3.11). The latter gives the symmetry conditions
on the coefficients while in the former the application of a recursion formula for
Legendre polynomials effects the t-integration yielding the Legendre representations
for the first order tensor of transverse shear stresses. By repeating the operation for
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(3.10b), we obtain the corresponding Legendre series for the transverse normal stress.
For these derived series the procedure yields expressions for all coefficients, except
the zero-th, in terms of derivatives of the coefficients in the primary expansion for
the laminar stress tensor. The unspecified zero-th coefficients are the unknown func-
tions introduced by the successive integrations: those appearing at the first step con-
stitute a first order tensor while the second integration adds a single unknown func-
tion of the laminar coordinates. The fulfillment of the requirements on the faces leads
to the set of relations linking these quantities to the leading coefficients in the primary
expansions.
We shall see that the relations representing the satisfaction of the face conditions,
when combined in an appropriate manner, yield respectively
(1) The system of partial differential equations to be satisfied by the components
of the zero-th laminar stress coefficient tensor.
(2) The partial differential equation to be satisfied by the components of the first
laminar stress coefficients tensor.
(3) A tensor relation expressing the zero-th transverse shear stress coefficient tensor
in terms of the derivative of the first laminar stress coefficient tensor.
(4) An expression for the zero-th transverse normal stress coefficient in terms of
derivatives of the second laminar stress coefficient tensor.
In fact the first three can be interpreted as the equlibrium conditions of the classical
two-dimensional theories. Observing that the zero-th and first laminar stress coeffi-
cient tensors correspond respectively to the stress resultant and stress couple tensors,
and further noting the relations between the tensor of transverse shear resultants and
the zero-th transverse shear coefficient tensor, it will be evident that the first system
consists of the classical equilibrium conditions for generalized plane stress while the
system composed of the second and third combined is equivalent to the equilibrium
conditions of plate bending.
For the integration of the Legendre series we shall make repeated use of a recur-
sion formula for Legendre polynomials. Letting P, (t) denote the Legendre
polynomial in ¢ of degree n and using a dot to denote d/dt we recall that*

@+ D) P,(1) = P, (1) = P,_,(1) (4.1)

The integrated form of this relation which, apart from an additive term independent
of ¢, reads

1
jP"(f)dt=m[P"+l(f)—P"_](f)] (4.2)
will be used repeatedly in our development
We write the expansion for the laminar stress tensor in the form

w (1)
o = 1 50N P (4.3)

n=0

* See e.g. §15.21 of Modern Analysis by E. T. Whittaker and G. N. Watson, C.U.P., Cambridge, 1952.
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(n)
in which)\the coefficients Suﬁ are undetermined functions of the two laminar coor-
dinates x". The symmetry condition (3.10) implies the symmetry of each coefficient,
namely

(n)ﬁ (n&a
s¥ =5"" @B=12n=0,12. . (4.4)

If we introduce the expansion (4.3) into the first equilibrium equation (3.10a) and
make a transposition, we have

w (n)
= —n Y s, P, (4.5)
n=0

in which we no longer exhibit explicitly the respective dependence on the coordinates.
The integration of equation (4.5) follows from the application of formula (4.2): after
a rearrangement of terms, we obtain the expansion

o n)
a

A= ¥ ) P (4.6)

© e

in which 7 is an undetermined first order tensor introduced by the integration, and
the higher coefficients are given by

(n+13 (n—-lﬁ)
( ) o o
T"a o S lﬂ B S Iﬂ
2n+3 2n-1

,n=1 4.7)

Proceeding to the second equilibrium equation, we introduce the expansion (4.6) into
(3.10b) and, transposing, we obtain

- ("L
o= —h Y 1P, (4.8)
n=0

Performing the integration in the same manner as before with the aid of formula
(4.2), we find for the transverse normal stress

o= Y G Pm 4.9)

n=0

()] . a . . .
in which ¢ is an unknown function introduced by the integration and, the higher
coefficients are given by

(n+1) (n-1)
o [+1

{n) ’V 7 g 7 gy
o =h L2n+3 T 2n-1

,nzl (4.10)
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(n)
o, el . (n)
By substituting for the 7 from (4.7) into (4.10), we see that, for n=2, the g are
(n)

related to the laminar coefficients S*° by

(n-2) (n) (n+2)
m S 251, S
g =~h — + , n=2 (4.11)
(2n-3)2n-1) 2n-1)(2n+3) (2n+3)(2n+5)
. (n .

while the excluded formula for ¢ may be written

m 5 1 3 s 1 (93] s ©)

o (+1 o
g =h ES lﬂﬁ-—l—SS lﬂﬂ —h T, (4.12)

()
in which 7% is still undetermined.
Turning now to the application of the face conditions, we recall that, for Legen-
dre polynomials, we have the terminal values

P(-1)=(-1", P(1)=1 (4.13)

which, when used in the expressions (4.6) and (4.9), give respectively

© ) . © e
T I B T | S Yy (4.14a,b)
n=1 n=|
and
(@) © (n) \ 0) w ()
o D=0+ N (-0, otih=o+ T o (4.15a,b)
n=1 n=1

(n)
If we insert formulae (4.7) for the 7° into (4.14), and note the cancellations resulting
from the recursive feature of (4.7), we find

\ ) (0) 1 (1
A e R P VI ) (4.16a)

\ ©) 0) 1 “;i
A R N VI ) (4.16b)
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Similarly, by introducing (4.10) into (4.15) and making the corresponding cancella-
tions, we obtain

1 (0) ) ] 43]
o
a(x,—l)=a+hrla—§hruiu (4.17a)
" 0) @) 1 (1)
a
o(x,+)=0-hr g}-shr“l(x (4.17b)

The above relations enable us to write the boundary conditions on the faces in terms
of the coefficients appearing on the right of (4.16) and (4.17). The face conditions
(3.14a) and (3.15a) then become

©) 0) 1 (1)

P h S s, =0 (4.182)
and

) 0) n

P h Sy - g S =0 (4.18b)

respectively; correspondingly, the conditions (3.14b) and (3.15b) take the respective
forms

(0) ) I (1) B

o +hTl, - é-h'rulﬂ=p (4.192)
and

0) ©) 1)

o ~hrl -shl =p" (4.19b)

The addition and subtraction of relations (4.18) yield, respectively,
0)

a

=0 (4.20)

and

©0) [§}]
= 1n s, (4.21)

3
while similar combinations of relations (4.19) give

©
205l +p=0 (4.22)
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and
()] ) ()
o =Ll e (4.23)
respectively, where we have used the notation
+ + -
p*=p +p , p=p —P (4.24)

for the pinching and bending effects of( 0the surface pressures.
)

Relation (4.21) expressing the tensor 7% in terms of the first laminar coefficient
tensor furnishes the for(om)ula for the completion of the set of relations (4.7): similar-
ly, formula (4.23) for ¢ provides the missing member of the set (4.10).

©

As the components of the tensor +~ must satisfy equation (4.22), we may
substitute from (4.21) and obtain the equivalent condition in terms of the first laminar
stress coefficient tensor, namely

(1)
2
%h sl 4+p=0 (4.25)

Thus, in relations (4.20) and (4.25), we have the equations to be satisfied by the zero-

th and first coefficients in the expansion for the laminar stress tensor.
(O]
Besides the expression (4.21) for +~, we also list explicitly the formulae for the
next two coefficients in the expansion for the transverse shear stress. Noting equa-

tion (4.20), we see that (4.7) with n = 1 gives

M) (2)
h S, (4.26)

[*4
T =

wf—

while the case n = 2 has the standard form

(2) ) (3) 1 (N
[+ 4 x a
R AT aEE P (4.27)
(n)a
and it is evident from (4.7) that the formulae for the 7 with n greater than two
involve only those laminar stress coefficients with index n at least two.
For the relations excluded from (4.11), we first introduce relation (4.26) into for-

mula (4.23) and obtain

o =LK s+ 1p (4.28)
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while the use of relations (4.22) and (4.25) in formula (4.12) yields

(¢)] (3)
3

1 ,2 LaB
g =3—5-h S laﬁ+§p (4.29)

For later convenience, we also list explicitly the next two coefficients as given by (4.11):
in the case n = 2, if we note relation (4.20), we have

) 5 ) 2) s I 4) 5
. (o3 s 4
g = h = 71- S laﬁ + 6—3- S Iaﬁ (4.30)
. . . . 3
while using equation (4.25) in the formula for (a) gives
@ 2 2 N B 1 e 8 1
o, (s 4
o=nh —ES 'aﬂ+ﬁs lﬂfﬁ —Ep (4-31)

and we note that the formulae for the higher coefficients (n = 4) involve only those
laminar coefficients with index »n at least two.

In deriving Legendre series for the transverse shear and normal stresses, in which
the coefficients are expressed as derivatives of the coefficients appearing in the original
expansion for the laminar stresses, we have also extracted the equations to be satisfied
by the zero-th and first [aminar stress coefficients: the equations for the determina-
tion of the higher coefficients in the original expansion will be deduced at a later
stage. Here we merely observe that in relations (4.28) to (4.31) and in the general
formula (4.11), we have expressions for the transverse normal stress coefficients in
which there occurs only those coefficients with index at least two in the original laminar
stress expansion, together with the applied surface forces.

Equations (4.20) and (4.21) for the zero-th and first laminar stress coefficients and
equation (4.22) for the zero-th transverse shear coefficient are the integrated
equilibrium equations of the classical theories. If we define the stress resultants N *Band
Q% and stress couple M*? by

(0)

h 1

N S Paz = S Par  =2n 5" (4.32a)
—h -1
g 8 2 ! 8 2 2(”/5

M“5=S 27 dz=h S todt =5h S (4.32b)
- -1
" ! ©)

0% = S o dz =h S 7 dt =2h 7" (4.32¢)
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then, in this alternative notation, equation (4.20) takes the more familiar form
N lg=0 (4.33)

describing equilibrium in the generalized plane stress version of the stretching prob-
lem, while equations (4.21) and (4.22) become the classical equilibrium condition for
plate bending, namely

0% =M1 Q%I +p=0 (4.34a,b)

a

The elimination of O from the latter system yields the alternate form

M1+ p=0 (4.35)

equivalent to equation (4.25).

5. The Edge Boundary Conditions

Having derived the Legendre representations for the stress components, we€ now ef-
fect an appropriate reformulation of the conditions on the edge surface. The edge

conditions (3.16a) on the laminar stresses are equivalent to a sequence of conditions
(n)

on the laminar coefficients S"ﬁ. Similarly, the conditions (3.16b) on the shear
stresses are transformed into a corresponding set of conditions on the shear coeffi-
n
cients (r)a
We have already noted that the application of the face conditions to the stress

representation led to the explicit equations (4.20), (4.21) and (4.22) for the initial
(0)

coefficients. The conditions we derive on the coefficients S” 8 are associated with the

system of equations (4.20) describing the stretching problem, while the conditions
(1) 0)

we deduce for the coefficients S and 7~ complement equations (4.21) and (4.22)

for the problem of bending. By relating the edge conditions to their respective equa-

tions, we can infer the constraints on the initial coefficients of the applied edge stress

distributions necessary to ensure overall static equilibrium.
(n) (n)

The conditions on the remaining coefficients { S°°, n=2: 7, n=1] will be
associated with the system of equations for the higher stress coefficients to be de-
rived later. As these latter equations will be formulated entirely in terms of the laminar
coefficients, it is desirable to have all edge conditions described in the same terms.

(n)
Accordingly, we transform the set of conditions on the 7% into an equivalent set ex-

(n)
pressing a further series of conditions on the 5%
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Writing for the edge values of the coefficients

(")ﬂ ("),3 \ (n) ()

5 = l‘S“ )] . %) = [T“(X)\)] (5.1a,b)
A A A A
x =x () x =x (n)

the edge values (3.8) of the stress components have the representations

« (1) w (7)

=Y sP@prm. “an =Y P (5.2ab)

n=0 n=0

Hence, if we expand the components of the applied edge stress distribution in the form

w () w (1)

(1) = Y T*(m) P,(1), T(mt) =Y T(n)P,(1) (53a,b)

n=0 n=0

it follows from the orthogonality of the Legendre polynomials that the edge condi-
tions (3.16) are equivalent to the double sequence of conditions on the coefficients

(”)B (n) 5.42)
s (1) ng(m) = T (1), n=0 (5.4a
A )
x =x (9
(n)a (n) 5.4b)
() () =T (1), n=0 -
In particular we have the conditions
(0)’3 0)
S () ng(m) = T%(9) (5.5)
associated with set of equations (4.20), while the edge requirements
“),3 ) [())] )
S ng(n) = T(0), 7%(9) ny(n) = T(q) (5.6a,b)

complement the system of equations (4.21) and (4.22) combined. )
In order to transform conditions (5.4b) on the tensor coefficients 7% into
(n)
equivalent sequence of conditions on the coefficients S “B, we use relations (4.7) and

note the particular formulae (4.21) and (4.26). Starting with expression (4.21) for

0) (n)

7%, we then use (4.7) to write successively the formulae for the 7% with even index
(2k)

n: thus, we obtain the sequence of relations for the 7°
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©) (n

@ 1 Bo
@ ;o 0
[+ 4
T =gk S - 3k S
@ | )
a o
= hs 2k 5%,
(2k) i (2k+ﬂ!) | (Zk—é)
« o a
TS S et ST

which, when added, give for k=0,

& (z:) 2k +1)

—_— ﬁu
2 " 4k+3h 85" g, k=0 (5.7
or alternatively,
2k +1) K 2D
ho 8%, = (4k+3) Y 7% k=0 (5.8)

=0

(1)
Similarly, we may start with expression (4.26) for 7" and then use (4.7) to list suc-

cessively the formulae for the 7% with odd index n: performing a corresponding
(2k+1)

summation on these relations for the 7, we find for k> 1.

(k=1) (2i+l) (2k)
. 4k+1h sf I k=1 (5.9)
i=0
or alternatively,
(Zk)ﬂ (k—=1) (2i+ 1)
h S = (4k+1) Y k=1 (5.10)

i=0

The system of relations (5.7) is the generalization for the higher coefficients of for-
mula (4.21), while relations (4.20) correspond to the case & = 0 of (5.9).
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We shall use relations (5.8) and (5.10) only at their edge values for which we have

(2k+1) 2k +1) k (20)
o s g = [ s ] = @k+3) Y T(n) (5.11a)
A A i=0
x =x (n)
(Zk)ﬂ (2k)ﬂ (k=1) 2i+1)
o a o
ho§7lg=[h STl =@k+1) Y, 7 (1) (5.11b)
A A i=0
x =x (1)
If we set
2k +1) k(2D
D (n) = (4k+3) ), T(a), k=0 (5.12a)
=0
(2k) (k=1) Qi+1)
D () = (4k+1) T (9), k=1 (5.12b)

i=0

we see that the system of edge conditions (5.4) is equivalent to

(n) n)

SB"' ng = T%%), n=0 (5.13a)
)
x =x (9):
(")B (n) 3
o
hS lﬁna= D (g),n=1 (5.13b)
which, for convenience in later reference, we separate into the three sets
(0)‘i ©)
5% ng = T"(n) (5.143)
(l)ﬂ 1) (1)ﬂ )
S“nﬂ=T°" hS°‘|ﬂna=D(,7) (5.14b)
(")ﬂ (n) (n)B (n)
S a“ﬂ=Tav h'S a'ﬁ“,,:D(ﬂ),”EZ (5.14¢)

The set (5.14a), identical with (5.5) is associated with the system of equations (4.20).
The second group (5.14b), equivalent to conditions (5.6), gives the set of conditions
to be assigned to the differential equation (4.25). The sequence (5.14c) constitute the
set of edge conditions complementing the system of differential equations for the
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(n)
highest laminar coefficients { S “ﬂ, n =2} to be formulated later.
By considering the integral over the edge surface of the applied edge laminar
stresses, and integrating through the thickness, we find

() 0)
| Zad(B=2h(§)Tud(‘3=2h§)Sﬂangde (5.15)
® e ¢

in which the latter integrals are taken over the bounding curve and where we have
used (5.14a). If we now apply Gauss’ Theorem, we can express the line integral on
the right as an integral over the area occupied by the planar projection of the plate;
we then have

zh(f)(;)“de:zh H (;‘)’“uﬁda (5.16)
e Q

which vanishes by virtue of (4.20), so that we have the constraint

(§)<0>
T de =0 (5.17)
e

on the zero-th coefficient of the applied edge stress. Similarly, considering the second
of relations (5.14b), and again using Gauss’ Theorem, we have

) 1) 1)
2 2,2 Ba 2,2 Ba
§h D(n)d€=§h @ S Iﬁnﬂd(?:-i-h SS S Iﬂad(i (5.18)
c c Q
which, by virtue of (4.25), gives

2 O]
;h D de + SSpd(i=0 (5.19)
c Qa

as a further constraint necessary for overall static equilibrium.

6. Representations for the Displacement Components

As the integration of the equilibrium equations (3.10) led to the Legendre series for
the stresses, so shall the integration of the constitutive relations (3.12a,b) yield the
corresponding representations for the displacement components. Recalling our restric-
tion to elastically homogeneous media, implying constancy for the elastic parameters,
we introduce the fixed dimensionless ratios A, and A, respectively associated with
the extensibility and shear deformability in the transverse direction, and defined by

A, = (6.1a,b)

y A(l+p) =

Nollc
ol
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so that relations (3.12a,b) may now be written

Wi = EA,0 - voonl (6.22)
Uy = 2B AL +9) 7, = bW, (6.2b)

where, in the latter, we have transposed the transverse displacement term. In terms
of the new parameters isotropy is characterized by

A =A=1,v, =v (6.3)

A, =»,=0 (6.4)

Formula (3.13b) for the transverse components of infinitesimal rotation now reads

b = p ALY T, = W (6.53)

a

while formula (3.13a) is unaffected so that we still have
(u) 5 - uy 1) (6.5b)

for the laminar rotation.
If the expansion (4.3) for oF together with the related representation (4.9) for
o are introduced into (6.2a), there follows the series form of the latter equation, namely

oo (n) (n))\
Y o -v, SOP, (6.6)
n=0

=

W,’=

The application of the integration formula (4.2) immediately yields the Legendre series
for the transverse displacement in the form

o (M) \
w= Y, w(x) P, (1) (6.7)
n=0
(0)
where wis an unknown function introduced by the integration and the higher coef-
ficients are given by

(nt+l) (n+l))\ (n—1) ("—1))\
(n) A, 0 —v, S A o —-v, S
h . * A * * A -
-2 — ,n=1 6.8
v E n+3 2n—1 " (68)
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We next write the expansions for the laminar derivative of the transverse displace-
ment which appears both in equation (6.2b) and in formula (6.5a). Since, for invariant
Quantities, cdvétiant differentiation is indistinguishable from partial differentiation,
we shall use a stroke rather than a comma in writing the partial derivatives of the
terms in the coefficients (6.8): this avoids the necessity of making an adjustment when
we come to taking second derivatives later: we obtain

(n+1) (n+l) (n—1) (n-1)

A
B a2 | A aly— v, SMa A, al, -, S)\Iu
Mg = Wlo =5 1 n+3 - 2n—1 B, (6.9

Moreover, recalling relations (4.21), (4.26), (4.27) and the general form (4.7) in con-
nection with the series (4.6) for the transverse shear stress, and relabelling the dummy
index, we have the explicit expansion for 7,

(n+1) (n-1)
() ) o S s
_ 1 A 1 A a [N oA
Ta—ghSﬂl)\+§hSal)\Pl+hE 3 - ot | P (6.10)
n=2

If we combine the series (6.9) and (6.10) in accordance with formula (6.5a), we obtain
the Legendre representations for the transverse rotations in the form

co (n) N
wy = Y, @ (x)P(1) (6.11)
n=0
with the notation
(0) 5 : (l))\ (0)
wDr:EA(l-'-”)?h Sal)‘_ Wla (6.128)
(1) n —l (2))\ (2))\ 2) (0))‘ 0)
Wy = % LE(A(l+u) Sal)\—u‘ S)\lu+A‘ ola) - (—V‘ S)\IQ+A. orla):| (6.12b)
r (n+l))\ (n+i) (n+1)
(n) _h A(l+v) Salk_ v, S)‘l'-“ + v, ol (6.12¢)
“a T E 2n+3

(n—1) (n=1) (n=1)

A A
_A(l+v) Sa])\_"‘ S’\I"+A‘ al, X,
2n—1 ahal

In a similar manner, we can obtain the series form of equation (6.2b) by inserting
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the expansions (6.9) and (6.10) into the right hand side: we find

h2 2(1;\ (0)
Uy, = [_E_A(l+y)§ Sa|)\ - hwlu] P,

h 1 (2))\ (2))\ ) (0))\ 0)
-+ T {g‘ (2A(1+V) Su|)\_yt S)\|ct+At Ula) = ( 2 S)\|Q+A‘ 0|a> ] Pl
(n+l{ (n+l>)\ (n+1)
LB | ) Sep v Syt A, o, (6.13)
E 2n+3
n=2
(n—-1) (n-1) (n=1) 1

A A
_AU4Y) Sap-n Syt A ol |
2n—1 J A

the integration of which can be effected by again applying formula (4.2): after a rear-
rangement, we obtain the Legendre representations for the laminar displacements

in the form

o (1) N
u, = E u (x) P,(t) (6.14)
n=0
(0)
in which the «_ are the undetermined components introduced by the integration and

the higher coefficients are given as follows

u, = —hwl, + % %(121\(1“) Suy = ¥e Shja t AL ol

0) ()] 2 ()} (&) (1) )
E [

1 (3))\ (3))‘ 3)
_E(ZA(I'{'V) Sain = Vs Shja t AL ala)] (6.15a)
(2) hz | (0))\ 0) ) (2))\ (2))\ 2)
Uy = 3(——1/‘ S)\'a+A_o|a) 3 (2A(l+u)Sa|)\—v‘ S)\|Q+A“’|a>

1 (4))\ (4))\ 4)
+a(2A(l+v) Sal)\ -, S)\Ia + A, ala> ]

(6.15b)
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(n-2))\ (n-2) (n—2)
2A(1+v) Sul)\ -, Skla + A, ol

h2
Y« = T F @n-3)2n-1)

(n))\ (n))\ (n)
2A(1+») Sal)\ -, S)\|a + A, al,
2n—-1)(2n+3)

(n +2))\ (n +2))\ (n+2)
2A(1 +») Sﬂl)\ -, S)\|a + A, ol

. 2n+3)n+5)

, n=3 .(6.15¢)

The Legendre series for the laminar rotation follows from the introduction of the
expansions (6.14) into formula (6.5b): noting the form of the displacement coeffi-
cients (6.15), we see that we may write

w (n)
b= Y v P (6.16)

n=0

in which the coefficients are given by

()] (0) (0)

v = %(ul_z - u2’|) (6.17a)
n hz » (l))\ (l))‘ i 3) (3))\

1/1=f A(l+v) [g(S, a2~ SZI)\l)_ES)l\p\Z_ SZ|)\1):| (6.17b)
(2) hz ) (2))\ (2))\ 1 (4;\ (4))\

¢ =E A(1+V) [Z—I(Sl |)‘2 - SZI)\I) —a(sl I)\Z b SZI)\])] (6.17(:)

(n-1) (n—1) (n) (n)
(n) 2

\b:—h—A(l+u) S||)\2_ Szm_ S||)\2_52|)\1
E (2n-3)(2n-1) (2n—-1)(2n+3)
(n+2) (n+2)
S - S
Lir2 21 w , n=3 (6.17d)

(2n+3)(2n+5) |

For the undetermined quantities introduced by the integration of the constitutive
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relations, we note that

1 S h 1 S 1 (0) 1 h 1 1 (0)

), vadz=5 S dt = u,, 2,,5 U3dZ=ESl wdr = w (6.18)
) ) (0)

Hence, since 4, and w measure the average through the plate thickness of the com-

ponents of the displacement distribution, we refer to them as the mean laminar and
© ©)

mean transverse displacements, respectively. Similarly ¥ and w,, respectively, repre-
sent the mean values of the laminar and transverse components of infinitesimal
rotation.

In the representations (6.7) and (6.14) for the displacement components, except
for the undetermined mean values, all higher coefficients are given, by the systems
of formulae (6.8) and (6.15), in terms of the elements appearing in the series for the
stresses: in fact, recalling formulae (4.28) to (4.31) together with the general form
(4.11), we see that all coefficients have, in fact, been determined in terms of the laminar
stress coefficients of the original expansion (4.3). Thus all field quantities have been
determined in terms of the unknown laminar stress coefficients and the undetermined
mean displacements, the latter being the only displacement quantities to appear ex-
plicitly in the analysis.

7. The Equations for the Unknown Functions

The equations for the first two laminar stress coefficients have already been derived,
namely equations (4.20) and (4.25). The system of equations for the higher laminar
stress coefficients together with the equations for the determination of the mean
displacements will follow from the third constitutive relation. If we introduce the
representation (6.14) for the displacements together with the expansions (4.3) and
(4.9) for the stress quantities into the constitutive relation (3.12c), the orthogonality
of the Legendre polynomials requires that the resulting equation be satisfied term-
by-term, yielding an infinite sequence of equations to be satisfied by the coefficients.
Considering the equations in order, the first two in the sequence are for the deter-

mination of the mean displacements while the remainder constitute the system
(n

of equations to be satisfied by the higher laminar stress coefficients | S , n=2].
Utilizing the expansion (6.14) with the coefficients given by (6.15), the left hand
side of (3.12c) may be put in the series form
(0] (0)

1 1
5(1‘”‘ I5+uﬁlﬂ) = f(ualﬁ + “ﬁ|u) Py

h

(0) 27 m SN a )
+ —h W|aﬂ+_[ —5(6(1+u)(5 et Sﬁlm) v, S)\|aﬁ+Ata|aﬁ)

E

I (3))\ (3))\ (3))\ (3) .
= E(A( 1+v) S, s+ Sg |)\a)—v‘ Sy |aa,+A* a1a6)] [ P,
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2T © () s @@ @) @
1
. [—(-". Shjaa AL 0|m3)‘—<“(1+”)( Sapgt Saped ¥ Shjast Al ”'aﬁ)

E |3 21
4 4) (4) (4)
1 < A A A )
+a A(l+u)(Sa|)\ﬁ+ Sal)\a)——u. S)\Im3+A*a|aB P,
(n —2))\ (n —2))\ n=2) (n-2)
_h_li AL+n) CSopngt Sape) 2 SxjagtA, @ fas
E”=3 2n—-3)(2n—-1)
(n))\ (n))\ (n))\ (n)
=y A(l+») (S, A8 + S,3 I)\,3) -, S)\|a5+At g Iaﬁ
2n-1)(2n+3)
(n+2))\ (n +2))\ (n+2) (n+2)
. A(T+»)( Salm + SBIM) -, S)\|uﬂ+A~ am s
(2n+3)(2n+5) "
1.1)

where we have used the fact that, in the plane, the order of covariant differentiation
is immaterial. Similarly, employing the expansions (4.3) and (4.9), we obtain the
Legendre series for the right hand side of (3.12c), namely

1+ 1 A
(_-E_V)"aﬁ 8 [voy + v, 0]
(n) (n) (n)

Y [(1+9) Sop — Eaglv Sy + v, )1 P, (1.2)
n=0

1
E

Equating the series (7.1) with (7.2) yields the equations to be satisfied by the unknown

functions.
The mean laminar displacements are to be determined from the equations resulting

from the identification of the coefficients of Py, namely

| 0) 0) 0) (0))\ 0)
EE( Ug g + "ﬁla)= (1+v) S5 ~8,5(r Sy +v, 0) (7.3)

while the corresponding identification of the coefficients of P, relates the mean
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transverse displacement to the stress coefficients in the form

0) 1) (l))\ ()]
—Eh wlmﬁ = (1+») S,5 - 8ap¥ S, + v, 0)

5 ) (l))\ (l))\ (1))\ ()
—h [ E(6A(l+”)(sa|)\ﬂ+ Sﬁ|)\a)_"~ S)\!aﬁ+A‘ alaﬁ)

1 (3))‘ (3))‘ (3))\ 3) 1
‘E(A( 1+v)(S, s+ Sg |M)—u‘ S, |03+A~61aﬁ) J (1.4)

The system of equations satisfied by the higher laminar stress coefficients follows
from the identification of the coefficients of the higher Legendre polynomials in the
series (7.1) and (7.2): omitting the common factor 1/E, we find

(2) (z))‘ )
(I+v) S5 - gaﬁ(v S, + v, 0)

(0) 0) 5 (2))\ (2))\ (2))\ )
2|1 A
+h E(_V' S)\|aﬂ+Aa U'aﬁ)_ﬁ(A(] +v)( Sa|)\ﬂ+ SB|)\a)_”t S)\|¢IB+A* a|aﬂ)

. “@ “) “) (G
) (A(l+u)(Sa|m+ Sgne) =V Shjast Al a|uﬁ) } =0

(7.5a)
(n) ("))\ (n)
(1+») Saﬂ - guﬂ(uSa + v, 0)
(n-2) (n-2) (n-2) (n-2)
A A A
+h2 A(l+v)( Sa})\ﬁ+ SB|)\u)_". SMGE+A‘ °|aB
(2n—3)(2n—1)
(n) (n) (n) (n)
A A A
A(H")(sana + SBL)\a) - v, S)\|cxﬁ+At a|aﬂ
2n—1)(2n+3)
(n+2))‘ (n+2)2 (n+2))\ (n+2)
+A(l+u)(8a|)\5+ Sﬁ|)\a)_". S)\|06+A~ alaﬂ 0
2n+3)(2n+5) o

n=3. (7.5b)
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We have now derived the full consequences of executing the integration with respect
to the thickness coordinate. The system of equations consisting of (4.20), (4.25), (7.3),
(7.4) and (7.5), when complemented by the edge conditions (5.14), constitute the two
dimensional formulation of the boundary value problem previously posed in three
dimensional terms by equations (3.10) to (3.12) with the boundary conditions (3.14)
to (3.16). Prior to any further analysis of the above equations, we first observe some
features of the problem brought into focus by the two dimensional formulation.

8. The Uncoupling of Effects: Principal and Residual Parts

An inspection of the two dimensional equations (4.20), (4.25), (7.3), (7.4) and (7.5)
with the associated formulae for the transverse normal stress coefficients given by
(4.11) and (4.12) and for the transverse shear stress coefficients by (4.21), (4.26), (4.27)
and the general form (4.7), together with the edge conditions (5.14) shows that the
general problem uncouples to yield the two distinct problems of stretching and bend-
ing characterized as follows

1. The problem of stretching is concerned with the quantities with even index n
(n) (n)

in the sequences { S "ﬂ] and { o | together with the mean laminar displacem:an)ts
(0) n

u,: also involved are the elements with even index # in the se(ql)lencc(:s)[ u,l
(n) n n

and [ ¢ ] and the quantities with odd index n in the sequences { 7%}, {w] and
(n)
(w].

2. The problem of bending is concerned with the quantities with odd index # in
(n) (n)
the sequences { Saﬁ] and { o | together with the mean transverse displacement
(0) ©)
w and mean transverse rotations »": also involved are the elements with even

(n) (n) (n)
index 7 in the sequences { 7%}, {w] and {w,] together with the quantities with
(n) (n)

odd index # in the sequences [« } and [y ].

In particular equations (7.3) is associated with equations (4.20) while equations (7.4)

bear a corresponding relation to equation (4.25).
(n) (0) (1
In the sequence | S aﬁ] the coefficients S** and Saﬁ, respectively measuring the

laminar stress resultants and stress couples, are the principal laminar stress effects;

(n)
the higher coefficients { Saﬁ, n =2}, having no effect on either the stress resultants

or stress couples, are termed the residual laminar stress effects. The components of
(0)

the principal stretching coefficients tensor 5*® must satisfy the system of equations

(4.20) while equation (4.25) furnishes the corresponding equation satisfied by the prin-
(1

cipal bending coefficient tensor N However, neither the system (4.20) nor equa-

tion (4.25) is determinate so that neither can be solved without reference to the

equations for the displacement quantities.
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In addition to the principal elements, equations (7.3) and (7.4) for the mean
displacements also involve some of the residual stress coefficients. Inspection of these
equations, therefore, clarifies how the principdl and residual components of the meail
displacements are to be defined so as to yield an uncoupled formulation of the equa-
tions for the principal effects in both the stretching and bending problems. A necessary
preliminary to this uncoupling is the appropriate resolution of the transverse normal
stress into the principal and residual parts: this is most conveniently done in the con-
text of the linear vector space induced by the Legendre expansion of the field
quantities.

There, then, remains the residual problems involving the equations for the residual
mean displacements combined with equations (7.5) for the residual stress coefficients.
These latter still involve some of the principal stress coefficients so that the analysis
of the residual problem presupposes the prior solution of the equations for the prin-
cipal effects. These principal stress coefficients then appear as inhomogeneous terms
in the equations for the residual stresses.

The manner of effecting this general resolution, leading to the partial uncoupling
of the principal and residual problems, is best illustrated by considering the stretching
and bending problems individually.

9. The Problem of Stretching
In the problem of stretching, the surface forces are applied symmetrically, that is

p =p ==p,p=0 9.1)

while the specification of the stress vectors on the edge surface is such that, in their
dependence on the thickness coordinate, the laminar components are even while the
transverse shear components are odd: hence,

(2k+1) 2k +1)
T(n) =0, D(q) =0, k=0 . (9.2)

The Legendre representations for the stress components, therefore, take the form

« (2K)

= SN Py (9.32)
k=0
w (2k+1) N
= Y X)) Py (1) (9.3b)
k=0
- @0
o= Y o(x) Py(t) (9.3¢)

k=0
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in which the zero-th coefficients satisfy the pair of equations

©
s™ ;=0 (9.4)

(0) ()]

hl, + = p (9.5)

g =

[FEY N
N —

reproduced respectively from (4.20) and (4.23). Equations (9.4) are clearly for the
determination of the principal laminar stretching coefficients.

We shall, presently formulate the equations for the higher laminar stress coeffi-
cients in the expansion (9.3a) in terms of which, recalling (4.26) and the general form
(4.7), the shear stress coefficients in the expansion (9.3b) are given by

) (2)
o

1
= sh s (9.62)
(2k +2) (2k)
(2k+°l!) s Ba Iﬁ Sﬁu '5 ]
L By ety e ol IS (L2(0)

while, from (4.28), (4.30) and the general form (4.11), the corresponding formulae
for the transverse normal stress coefficients appearing in (9.3c) have the form

(0 (2)

b2 v 1 9.7a
a—lsh S“)\+2p (9.7a)
(2) 5 5 (2))\ I (4))\

= _ - H A H
g=nh [ 57 Sulh + g sﬂ] (9.7b)

(2/:-)%) k) (2% +2)

(2k) » [ ©
Ay, S#|)\ 2 S, S

(4k=3)(dk~1) (4k~1)(4k+3) * (4k+3)(4k+5)J k=2 9.70)

where, in the invariant quantities on the right, we have altered the indexing to a form
more convenient for later use.

Corresponding to the representations (9.3) the Legendre series for the displace-
ment components are written

o (2K)

Uy = Y ug(x") Py (r) (9.8a)
k=0
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o (2k+1) \
w= Y, w(x)Py(n) (9.8b)
k=0 '
. . (0)
in which only the u_ remain to be determined, since, with the transverse normal
stress coefficients given by (9.7), relations (6.15b,¢) render the higher laminar displace-
ment coefficients in terms of the laminar stress coefficients according to the formulae

o) 20 ON © 5 @ @ @
Uy =~ F [ 3-(—11‘ SyatA. al,) - E(ZA(I-*—V) San— 7. S)\la+A~ a|a)
. @, @, @)
+ —6—3(2A(l +v) Sa|)\_". SyatA, 0|u) }(9.93)
(2k—)%) (2k -i) (2k-2)
‘2:’ | 2+ Sgn-v. SyetA, dl
«” E (4k —3)(4k—1)

(2k))‘ (2k))‘ (2k)
20(1+v) Sp—v. S,atA, o|a
@k—1)(4k+3)

(2k +i) 2k +)%) (2k+2)
2A(1 +v) Sul)\“". S atA, 0|y
+ @k +3)(4k+ 5) k=2 (9.9b)

while for the transverse displacement coefficients in the series (9.8b), we have the
corresponding form

(2k+2) @k +)2\) (2k) (2k))\
(2k+ 1)
A o — v S A, o—-v, S
_ _ﬂ * . A _ . A
w="FE ak+5 Ak +1 k=0 (910)
as follows from the general relation (6.8).
For the rotation components, we have the expansions
@ (2k) \
v=Y ¥ (x)Py(1) (9.11a)
k=0
o kD
we = Y, @a(X) Py (1) (9.11b)

k=0
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in which, from (6.17), the laminar elements are given by

0) 0) (0)

1
V=5, - uy) (9.12a)
@ 2 ) (2) 4 “
h 2 A A 1 A A
‘b =fA(1+V) l:'z—l(sll)\z il Szl)‘l)—a(sll)\z— SZI)\I) :l (9.12b)
2 (2k-2) (2k-2) (2k) (2k))\
v = ——ZA(1+V) Sip2 = Sam_, Sipa = S
E Bk=3)dk-1) 4k —1)(dk +3)
2k +2) 2k +2)

Sz = Sam
@k+)@kss) | 0 k=2 0120

and the coefficients in the expansion (9.11b), for the components of transverse rota-
tion, are

W @ @ @ N ©)
w, = E ,:;(A(l+u) Sal)\_". S)\|a+A‘a|u) - (—u. SyatA, a|a)jl
(9.13a)
(2k+§) (2k+§) (2k+2)
‘”‘*”_i A(l+v) Son—», Sy,+4, ol
Ya T F ak+5
(2k))\ (2k) (2k)
A(l+v) S n—v, S,,+A, ©
- ofh 2% Mo LY (9.13b)

4k+1

as derived in (6.12).
Equations (7.3) for the determina(toi)on of the mean laminar displacements, on the

introduction of formula (9.7a) for ¢ , take the form

i 0) 0) @ (0))\ 1 1 2(2))\
2E g+ tga) = (149) S g = goglv Sy +0,(50" + Toh S, (9.14)

From (7.5) with even index, we have the system of equations for the residual laminar
(0)

stress coefficients: if, in (7.5a), we again use formula (9.7a) for o , then the system
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of equations may be written

2) (Z)A 2) 1 4(2)k
N
(1+")Sa[3_guﬂ(”s)\+".°)+EA-” Sp')\uﬁ

5 5 @, @ @ @
+h [—E(A(l +) (S gt Sanad 7 Shast AL alaﬂ)

| @ @ @, @
+-63(A(1+u)( Seng® Sgna) = ¥s Shiag* A o'|aﬂ)]

[0}
I, 2 A 1, .2,
=§v‘h S \ag ~ gA‘h p luﬂ (9.15a)
(2k) (2k))‘ 2k)
(I+v) Saﬂ - gaﬂ(v S, +v, o)

k-2 @k-D) @k-2) (2k-2)
2| A+ Sgpgt Sgpad =¥ Snast A lag
(4k —3)(4k —1)

+h

(2k))‘ (2k))‘ (2k))\ (2k)
AQ+9) (C Songt Spnad—¥e SnastAs lag
(@k—-1)(4k+3)

2k +2) 2k +2) (2k +2) (2k +2)
AL Shagt  Shaad =¥ SyaptA. 0log o kes
(4k +3)(4k+5) T
(9.15b)

For each of the field quantities, the expansion in terms of Legendre functions yields

a component representation in an infinite dimensional linear function space. Defin-

ing the residual effects as those induced exclusively by the residual laminar stress co-

efficients, the resolution of the stress and displacement fields into their principal and

residual parts follows from an inspection of these component representations. Thus,
for the transverse normal stress, we have
(2k)

g=1{ 0,0sk=< o] (9.16)

(2k)
in which each component may be considered the sum of a principal effect o
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@2k,
and a residual effect ¢ so that
(2k) (2/:;3 (2/%
g = 0 + ¢ 9.17)
From (9.7) we see that
(Oiv 1 (O)R 1,2 mx
1 . _ 1 K
o =3p o = 13 h S (9.18a,b)
(2k) (2k)  (2k)
P R
¢ =0, g = o, k21 (9.18¢,d)
Hence, if we write
(2k) (2k)
o = " 0skso), o = | oF, 0=kxoo) (9.19)

then, with the standard convention for vector summation, we have

o = a'P + gR (9.20)

The corresponding resolution of the other quagtities follows the same pattern.
(R)

Returning now to equation (9.14), if we let U o denote the residual components
of the mean laminar displacements, then for their determination, we have the system
of equations

i (R) (R) | 2(2))\
n
EE( Uyg + Ugy) = —gaﬁﬁu*h S“|)\ (9.21)
(0))\
Presuming that the principal quantities S Mag have already been calculated, the set
of equations (9.15), combined with equations (9.21), when complemented by the edge
conditions (5.14c) with even index n, namely

(2k) (2k) (2k) (2k)

" g = T% h $™4n, = D, k=1 (9.22)
constitute the boundary value problem for the residual effects.
Writing U_ for the principal components of the mean laminar displacements so
that
(0) (R)
U,=U, + U, (9.23)

then by subtracting equation (9.21) from (9.14), we have

) 0)
1 Aol
3 EWap + Uga) = (149) Syp = £o5(r Sy + 5 9,5°) (9.24)
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which, when combined with the system of equations (9.4) and the edge conditions
(5.14a), namely

(0)‘3 0)

§ng=1" (9.25)

constitute the boundary value problem for the principal effects.

9P. The Principal Stretching Problem: (Generalized Plane Stress)

The principal stretching problem, described by equations (9.4) and (9.14), is the
classical problem of generalized plane stress. We follow the standard method of reduc-
tion by observing that equations (9.4) are identically satisfied if we represent the stress
components in the form

(0)

Suﬁ — Ea)\ GB“Fl)\“ (9P.l)

where F is the Airy stress function to be determined from a compatibility equation
implied by the constitutive relations (9.24).

The trace of the system of tensor equations (9.24) yields the relation

0
EU%|, = (1-») S, - »,p° (9P.2)

We next consider the contravariant form of (9.24) and take a repeated covariant
derivative, first with respect to the variable x* and then with respect to the variable
x"+ after summing over the repeated indices, we utilize equations (9.4) and find

p (0))\ )
o o
EU |aﬁ = —vS8,|y Ev.p‘|

o

v (9P.3)
By applying the Laplacian operator to equation (9P.2), we obtain a second form of
the above relation, namely

0
B B
BV, = (1-9) S3f ~ vup*lg (9P.4)

The consistency of the two forms (9P.3) and (9P.4) requires the satisfaction of the
compatibility condition
@ ] 1
o § o
Scrlﬁ = E V‘p‘la

(9P.5)
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Recalling relation (1.12), it follows from (SP.1) that

S =F| (9P.6)
so that in terms of the stress function equation (9P.5) reads

8
Flog = 5 ».0°1% (9P.7)

which, in the absence of surface pressure becomes the well known biharmonic equa-
tion for the determination of the Airy function. In terms of the latter, the associated
edge conditions (9.25) read

)
em\en”Fl)\M ng = T° (9P.8)

complementing the above equation.

9R. The Residual Stretching Problem

In the further reduction of the equations for the residual problem, we develop the
treatment along the lines followed for the equations for the principal effects. Taking
the trace of the tensor equation (9.21), we have
(R) (2)
2

A
EU®|, = - 5% S, (9R.1)

Next we consider the contravariant form of (9.21) and, having taken the repeated
covariant derivative with respect to the variables x* and x » We sum over the repeated
indices to obtain

(R) (2)
8

1 A
EUl = - 15 % S e (9R.2)
For the consistency of relations (9R.1) and (9R.2), we must have

(2)

Apa
S,";a =0 (9R.3)
and hence also
(R)
vli=o (9R.4)

Turning to equations (9. 15), we derive the relations resulting from taking the trace
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of each tensor equation, namely

@ @
(1-v) Sg—2v, @

, 5 @ @, @
+h [—ﬁ(ZA(l-f-v) ShS -y, SylatA, alZ)
| @, @, @ L ,
o o
+E(2A(l+v) Salx— 7. Shla+ AL ol, ] =g - AR P
(9R.52)
k) (2k)
(1-v) SZ -2, ©
(2k —)2\) 2k --i) (2k-2)
i A +v)  Shlr—v. SilatA, als
(4k-3)(@k—1)
@k @k (2k)
(1 +v) ShS—v, Sya+A, ol
- (4k—1)(4k +3)
(2k +)2\) 2k +)2\) (2k+2)
IA(1+9) SHi-v. Syla +A, ol
=0,k=z .
- 4k + 3)(4k +5) 0. k=0 (9R.5b)
om (9P.5) on

where in (9R.5a) we have noted relation (9R.3) and have substituted fr
the right.

We next consider the contrav
covariant derivative with respect
repeated indices: if we again subs

ariant form of (9.15a) and taking the repeated
to the variables x* and x~, we sum over the
titute from (9R.3) and (9P.5), we find

(2) (2) (2)

i} A
(+9) Shle—» Sila— 7. ol

5 5 (2))\ § (2) 1 (4))\ 5 (4)‘\ 4 4) 5
a o a o a
+h {—'2—1'(—V‘S)\|aﬂ+A. a|cxﬁ) +€3—(2A Sa||)\ﬂ—l"s)\|aﬁ+/\‘ 0|a5)]

(b} — AH P |5 (9R.6a)
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A similar operation on each of the tensor equations (9.15b) yields

(2k) 5 (2/\-)}\ (2k)
(I +v) Sglu - S)\iZ—v‘ aI:
- (2/\'—)%) 5 (2/\'—}%) p (2k-2)
o a af
W2 20(1+») S [\g— 7. Shalag+ A, 0lyg

(4k=3)(4k-T)

(2/\')}\ g (2/\‘))\ a (2k) p

o o [+

221\(l+u) Salag = v.=S)lag+ A, L
(4k—=1)(4k +3)

@+ 2k +2) @k+2)
20(1+9) S 5, 5x|:g)“\' ”lgg 0, k=2 (9R.6b)
= = .
+ (4k +3)(4k + 5) "

The requirement that relations (9R.6) be consistent respectively with the associated
relations in (9R.5) leads to a set of compatibility conditions. We first apply the Lapla-
cian operator to equations (9R.5) and utilize relation (9R.3) in the formula resulting
from (9R.5a): if we then subtract these derived relations respectively from the cor-
responding equations in (9R.6), we obtain the sequence of relations

(2k) (2k) (2k)
(T+0) Sgl = SNE 4w, o5 =0, k=1 (9R.7)
(2k)
With the o, k=1, given by (9.7b,¢), and also noting (9R.3), we see that the sets

(9R.5) and (9R.7) constitute two systems of equations for the simultaneous deter-
(2k) (2k)

N . . A A
mination of the two sequences of invariants S,, k=1 and Suli k=1.

The equations for the determination of the individual components will follow from
a little modification of equations (9.15). For this we shall use the identities

(2k) (k) (2k) (2/.'))\ (Zk))\ (Zk)}\
A ® u
Sapgt Sgna = Sagn* SNag + &ap S,h- S)‘ly), k=1 (9R.8)

whose validity can be established by direct verification. If we introduce (9R.8) into
(9.15) and rearrange, we obtain

2) ) (2) 0 4) N (2))\ 2) I 4(2)}\
2 3
) Sag+ A (=37 Sap+ g3 Sap)h] —8apl? Sy + v, 0 )+ 2 AR S [0

SIS e
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(2) (2))\ (2))\ )
hN s
+h2[——22T([A(l+v)—-v‘] S)\,ua-f-A(l-f-v)gaa( S”'&—- S)\|“)+A‘ a|a5)

4) (4))\ (4))\ 4)
A ® 3
+ _613 ([A(l +v)=v ) S\ast A(l+ ")gad( S“|)\ - S)\I“) +A, o|aﬂ) ]

(0)

2 A 1 2,
= Lo SNag G AP s (9R.92)
r 2k -2) (2k) 2k +2) .
‘ . 2 Su[i 2 Scxﬂ Smﬁ ‘)\
(1+v) S ﬁ+Ah - + I@akT S
| " GE-D@k=D)  @k-D(@Ek+3) T (4k+3)(4k+3)

(Zk))\ (2k)
—gaﬁ[u Sy + . ol

2k -2) (k-2 (2k -2) (2k-2)
| IACT+0) =21 Syapt ALL+) 80 Sah- Sa+AL olag
(4k —3)(4k—1)

+ h

k) @k ek (2k)
2[A(l+v)—u‘] Syiag + A(1+¥)8eg¢ Sih— SaL) AL oleg
(4k—1)(4k +3)

(2k+)2\) (2k+)7\.) (2k +2) (2k+2)
A

[A(1+v)=v,]  Syapt AC1+2)84 SN - S A, 0las
4k +3)(4k+5)

+

=0, k=2 (9R.9b)

Equations (9R.3), (9R.5), OR.7) and (9R.9) constitute the system of equations
for the determination of the residual effects: they are to be solved subject to the edge
conditions (9.22), with even index n = 2k.

In particular we note that the system of equations takes a considerably simplified
form in the case of transverse inextensibility when A, = », = 0.

10. The Problem of Bending

1n the problem of bending the surface forces are applied anti-symmetrically, so that

p =-p =%p, p =0 (10.1)
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vhile the specification of the stress vectors on the edge surface is such that, in their
lependence on the thickness coordinate, the laminar components are odd while the
ransverse shear components are even, namely
(2k) (2k)
T(y) =0, D(y) =0,k=0. (10.2)

The Legendre representation for the stress components have the form

w (2k+1) N

=Y s Py () (10.3a)
k=0
« (2k)

= Y M Py (10.3b)
k=0
w (k+1) .

g = E o (x) Py (1) (10.3¢)
k=0

in which the zero-th coefficients satisfy the pair of equations

©) | (l)ﬁ

= 3hS T (10.4)
©)

27, +p=0 (10.5)

©)
reproduced respectively from (4.21) and (4.22). The introduction of 7~ from (10.4)

into (10.5) leads to the equation satisfied by the principal laminar bending coeffi-
(1)
cients S°°, namely

(H
2,2 ANy
-3—h S“|)\ +p=0 (10.6)

already derived with different dummy indices as equation (4.25).

Before formulating the system of equations for the higher laminar coefficients in
the expansion (10.3a), we first express the remaining coefficients in terms of them.
Since relation (4.27) follows the general pattern expressed by formulae (4.7), we have
for the higher coefficients in the expansion (10.3b)

(2k+ﬂ!) (Zk—,-l?)
(2k) o o
s% s
a B _ B .
™= | s | k=l (10.7)

for which the case k = 0 is covered by (10.4). Making a familiar change in the in-
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dexing on the right hand sides of relations (4.29), (4.31) and the general form (4.11)
with odd index n, we have the system of formulae

(1) (3)

_ b2 e 3
g = fh Sht 3P (10.8a)
3) , 5 (3))\ 1 (5))\ 1
_ _“ » A I3 _
o =h [ Z sk + 995n] P (10.8b)
2k )l\) (2k +)l\) (2k +i)
2k+1) n n u
S 2 S S
o =h ux un AN Jk=2  (10.8¢)

@k—D(@k+1) @k+D(@k+35) @K+ 5)@k+7)

for the transverse normal stress coefficients in the expansion (10.3c).
For the displacement components, we have the Legendre representations

w (2k+1)

Uy = Y u o (xX) Pyy (D) (10.92)
k=0
« (2k)

w= Y w (") Py (1) (10.9b)
k=0

(0)
in which only w remains to be determined. With the transverse normal stress co-

efficients given by (10.8), relations (6.15a,c) render the laminar displacement coeffi-
cients in terms of the laminar stress coefficients, according to the formulae

H 0) hz I (l))\ (l))\ m
up= —hw,+ 2 [1—5<12A(1+u) San= e Sia + A, a|a)
1 (3))\ (3))\ 3
_E(ZA(l+u) S =, Shat A, a|a)} (10.102)
(Zk—)l\) 2k - 1) (2k-1)
@D 21280+ Son-v Syat A, g
o= TF @k — )4k + 1)
2k + 1) (2k+1) (2k+1)

2M0(1+) Shpa-v. SyatA, ol (10.10b)

(4k +1)(4k +5)

(2k +3) (2k+i) 2k +3)
A
2A(1+w) S n-v, SyatA, dl, k=1
@k +5) 4k +7)
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while relation (6.8) with even index n yields the higher transverse displacement co-
>fficients in the expansion (10.9b) in the form

(2k+1) (2k+}l\) (2k-1) (2k-1)
2k) h A, o —v, S, A, o -, S:
w o= - Yy — Y. , k=1 (10.11)

The corresponding series for the associated rotation components are

w (2k+1)

v=Y ¥ )Py, (10.123)
k=0
w (2k)

we= 1w (x") Py (n) (10.12b)
k=0

in which, from (6.17) the laminar elements are given by

M 2 LIN NN
Vo= A0+ | 508 Sop) —35¢ Sip2 - SZIM)] (10.13a)
k-1 @k-1) @k+1) @k+D)
(2k +1)
v = —h—ZA([+u) Sipe— Samt o SipeT S
E 4k—T1)(dk+1) (4k +1)(4k+5)

2k +3) (2k +3)

Sinz— San

(4k +5)(dk +7) , k=1 (10.13b)

while for the transverse coefficients in the expansion (10.12b), we have, from (6.12),

(0) (n )

h A
G = RA(L+9) ThS Yy = W, (10.14a)
(2k+)l\) (2k+)l\) (2k+1)
2:)_ﬁ A(T+v) S -v, SMa+A‘ 0y
« " F 4k+73
(2k-1) (2k-1) (2k-1)

A A
A(l+v) S,p—v, SyatA, o
~ al)\4k—l Na o L k=1 (10.14b)
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(n 3
The introduction of expressions (10.8a,b) for ¢ and o into (7.4) leads to the
following form of the equations for the determination of the mean displacement

©) ) I
_ 2 N
—Eh wlog = (1+9) S .5~ 8oglv Sy +7, (5P + 35k 5,101
(1 (n (1 3)
1,2 A A A 3 1,2 . A
~75h AL +9) (Sang+ Sgaa) =% Siiap + ALGP+35h S0 ]

12 (3))\ (3))\ (3))\
+ 35 AL+ 9) (Sopg+ Sgnad =% Shjas
(3) (5)

1 An

2
AP+ SN = ggh S el (10.15)

The equations for the residual laminar stress coefficients follow from the system (7.5)

(n
with odd index: writing the case n = 3 separately, we substitute for ¢ from (10.18a)
so that the system of equations takes the form

) NN KGN
n
(1+9) S 15— 8op(r Sy +v, 0)+ 5251\ S s

s 5 3 SN EIN 3
+h'|: 45(A(1+u)(SaM,+ S“u) V,S)\,m]-f-A‘alaﬁ)
| o) ) o) )
+ 39 (A(l+v)( Sangt Sgnad Syapt AL a|aﬁ)]

(n ) (l)
A A 1 2
= ——A(l+u)h 2(Shas* Sang) + 157.h Shag - 5-A kPl (10.168)

2k +1) (2k + 1) (2k+ 1)
A
(1+v») Saﬁ_gaﬂ(" Sy+v, o)

(Zk—)l\) (Zk—)l\) 2k - 1) Q2k-1)
A
2| AL+2) O S gt Sgpa) =% SaestA. °|aﬁ

*

+h
@k—D(dk+1)

(2k +)l\) (2k+)l\) Qk+1) (2k+ 1)
A(l+r)( Su')\ﬁ+ Sal)\u)_",
(4k+1)(4k+5)

SyegtA, o Iuﬁ
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(2k +i) 2k +i) 2k +i) (2k +3)
AT+ S pgt  Saped =% Siast Al alaﬂ
+ @k T 5@k 7) =0, k=1 (10.16b)

We define the residual effects as those induced exclusively by the residual laminar
2k + 1)

stress coefficients [ S aﬁ, k = 1}. The resolution of the field quantities into their
principal and residual parts then follows from an inspection of the component repre-
sentations in the infinite dimensional linear vector space induced by the expansion
in terms of Legendre functions. For the transverse normal stress, we have

(2k+1)
o=} o0 ,0sk<om] (10.17)
2k + 1)

. . . . P .
in which each component is the sum of a principal effect ¢ ° and a residual effect
2k +1)

R . .
¢ giving

2k+1) (2k+ll’) 2k +1)
R
o e o + [2 (10-18)

From (10.18) we see that

(I)P 3 (I)R [ )(3)“
g = gp, g = g h Sﬂl)\ (10.193)
(3)P : (3)R ) 5 (3)x : (5)}\
L - _ _~ B L I
g = TR hl 25 Sﬂl)\ + % Su A (10.19b)
(2k+[L) 2k+1)  (2k+1)
o’ =0, of = o, k=22 (10.19¢)
so that, if we write
R (2k+Pl) 2k+1)
o = o ,0sk=w], o =| of, 0<k=oo] (10.20)
then the standard convention for vector addition gives
s=0 +d" (10.21)

The corresponding resolution of the other field quantities follows the same pattern.
(R)
Letting W denote the residual component of the mean transverse displace-
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(R)
ment, it follows from (10.15) that W must satisfy the differential equations

(R) | 5 @), S
_ “
“ERW gs = — 350 [8ag S5 + Syjagl

(3) 3

(3)
1,2 A A 1 2
+§h [ACE+») (S, ppt Sﬂ)\a)—gA_h (S

(5)
A 1 A
W = 77 SulWjagl (10.22)

where we have combined terms in the second bracket. The system consisting of (10.16)
combined with (10.22), when complemented by the edge conditions (5.14c) with odd
index n, namely

2k +1) (2k+1) 2k +1) 2k+1)

sfn, = T h $¥n,= D k=1 (10.23)
constitute the boundary value problem for the determination of the residual effects:

it is presumed that the principal problem has been already solved so that the terms
(D
involving the principal coefficients S _; in (10.16a) have been calculated and thus
appear as inhomogeneous terms.
We write W for the principal component of the mean transverse displacement so
that
(0) (R)
W=W+ W (10.24)

and, by subtracting (10.22) from (10.15), we have

m (§))
N3
—EhW|mﬂ =(1+v) 8,5~ 8.5(» S\+zv.p)

(1 ) (S}
2 2, oA 1 2 A 3 2
—'S—A(1+V)h (Sul)\ﬁ+ Sﬂ')\a)+ El’,h S)\'aﬁ_%Ath p|aﬂ (10.25)

which, when combined with the equilibrium equation (10.6) and the edge conditions
(5.14b), namely

1) ) () (n
o o

sPuy = 1% h$™gn, =D (10.26)

constitute the boundary value problem for the principal effects.

10P. The Principal Bending Problem

For the further analysis of the principal bending problem, governed by equations
(10.25) and (10.6) we start by taking the trace of the tensor equation (10.25): if we
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substitute from (10.6) into the resulting relation, we find

(1 (1)

SERWIL = (1= SE4 der B SN+ A0 =12

3 2«
%A‘h Plo (10P.1)

p -
A second relation is derived by considering the contravariant form of (10'265) and
taking the repeated covariant derivative with respect to tzhe variables x* and x": after
summing over the repeated indices, we multiply by #° and again utilize equation
(10.6) to obtain

(l) ()
—ER W =~k SNe vkt SYes - 2w

+IA(1+v)— %u,]gthlz - %A,h"ng (10P.2)

The consistency of relations (10P.1) and (10P.2) implies a compatibility relation for
the principal stress components. If the Laplacian operator is applied to relations
(10P.1), then on multiplication by h there follows an alternative form of relation
(10P.2) namely

(l) ()
~ER Wy = (1= STlg+ 1o vk’ S0

+[A(]+V)-—u] hpl Ahp[mﬁ (10P.3)

The comparison of (10P.2) with (10P.3) shows that the principal stresses must satisfy
the compatibility equation

(1)
K sNS = - %(1 + v)p+%u*h2p|:{ (10P.4)

From the introduction of this latter relation into (10P.1), we have the formula

)
(-v) §% = —ERWS -[(A- =

o
o

—v )1 +v)—-v»]< p+(A 14 2)—h 4

=, (10P.5)

expressing the trace of the laminar stress tensor in terms of the principal component
of the mean displacement and the surface pressures. If we now apply the Laplacian

operator to (10P.5) and then substitute from (10P.4) into the left hand side of the
resulting equation, we obtain the differential equation to be satisfied by W, namely

4 2 4 af
- 152 n'pleg  (10P.6)

ER’Wiip = 30 -v)p~ (A= 15 =

12 ‘)(]+u) hp| + (A,
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(1)
Next by substituting for S: from (10P.5) into the tensor equation (10.25), we see
that the latter may be written

0 oy
(T=vI[S 5= SAR(Sng+ Sl

= —Eh[(l—v)W|aﬁ+ug W|)\ u h W|)\aﬁ]

[V(A—-—V) u‘](l+v)g

6
12+ afl gp

I 2 I5 2,2
+[V‘(A [2V‘)([+l’)—l"+EA*(1—V)]E’I p|m3
3 2
+7—0(A‘ [51/ )[;gudh p|)\ 157 h p|Mﬁ] 1or.7)

Moreover from the identity

(l))\ (l))\ n \ (1))\ (l))\ (l))\
# N
Sangt Sgpna = Saghht Snapt 8apl S~ Sil) (10P.8)

which holds for any symmetric second order tensor in the plane, it follows from the
n (n (n

introduction of S} from (10P.5), of S }[% from (10.6) and of S}* from (10P.4) that

(l) (l) (l)
A Eh

2
h (S")\ﬁ+ Sdm) & h Saﬂl)\ W|)\aﬁ+gaﬁ2[(2+u)p——u h p| ]

6 14 2,3
[<(A——u)(l+u)—u) Wps (A, - 15 )7th|mﬁ]

(10P.9)

If we now substitute from (10P.9) into (10P.7), then the latter system of relations
takes the form

n 5 2(1) N
S ShS o4l

afl

2 A
S =) W, 5+ vg s W) +2<A([+u)—- )i wi g

l—u
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1 v, I 3
+[A (2—"‘]—_*:)) F (e g3 p

_ A _;)( N SN )_E A 2,2
[(61—u 1= 2 Uy (A =50 =n ) = g 755 135 7 Plas

5 v 14 2 6 ,2 A
[Av, - o2 . A -3 v, N8qp 55 1 Py

14 2 A 1 " 3 .4 A
+ (A, - EV')(I_——V - g—)ﬁgh p|)\ag (10P.10)

1~ uZ
Equations (10P.6) and (10P.10), with the supplementary equations (10P.4), (10P.5)
and (10.6) describe the principal bending problem of plate theory: they are to be solved
subject to the edge conditions (10.26).

To facilitate comparison as well as for greater ease in the subsequent discussion,
we now consider the simplified form taken by these equations when the surface
pressures vanish. In that case, equation (10P.6) reduces to

WIS =0 (10P.11)
ind, in the notation of (4.32b), relations (10P.10) become

3
2Eh A
R (=) W + g g Wy

P A
Mg~ TARM |\ = ~
SR 31 -v)

-2 (Aen - %u) W Wi (10P.12)

while the supplementary equations (10P.4), (10P.5) and (10.6) read

M =0 (10P.13)
2ER
Tz - * 10P.14
M, 3037 "l ( )
A
Mu|; =0 (10P.15)

‘espectively. Except for the effects due to transverse normal stress, as reflected in
he terms with », on the right of (10P.12), the above equations are identical in form
vith those of Reissner’s theory of Plate Bending.

If we consider the asymptotic form of (10P.12) for small 4, by substituting the
form of the right hand side for M_, in the differentiated term on the left, then on

e ——

e ——

e —
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noting (10P.11) and rearranging, we find

3
My = - _ZE_[(I—V)Wlaa+vguaW|)\+( A- 15”')" Wine!  (10P.16)

3(1—V)

In the above system, if we replace (10P.12) by (10P.16), we have the equivalent of
the ““Thick’’ Plate theory of Michel-Love. There is a discrepancy in the effect due
to transverse normal stress: what appears as — 11—5 v, in (10P.16) corresponds to

+ 11—0 v, in the Michel-Love derivation. However if the latter is reformulated in

terms of the mean displacement, rather than for the midsurface displacement of the
original, this discrepancy disappears.
Finally we note that if we omit the terms with h in the bracket on the right of
(10P.16), we have
2
My = — —2Eh (=)W 5+ v, Wi (10P.17)
I(1-v» )

which, if used instead of (10P.12) yields the classical plate theory of Kirchhoff.

Both the Michel-Love theory and the Kirchhoff theory are contracted ‘‘interior’
theories to be solved subject to the contracted Kirchhoff edge conditions: only by
retaining the form of the left hand side of (10P.12) intact can the three independent
conditions be satisfied.

10R: The Residual Bending Problem
Taking the trace of the tensor equation (10.22), we have

(R) NN
~ERW | = —Euh[ZS')\+S)\|Z]
(3) 3 (5)

+3—h[2A(1+u)S|)\ —Ah(S|)\——S')\)|] (10R.1)

If we also consider the contravariant form of (10.22) and, after taking the repeated
covariant derivative, sum over the repeated indices, we obtain

(R) g 1 , (3))\ )\ 5
o po o
~EhW |ag = - 35 h (S, ha+ leaal
N L
® By o
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For the consistency of (10R.1) and (10R.2), we have
(3)

A
Sulxa = 0
and hence also
3(R) 5 . (3))‘ | (5)}\ "
o (B
EhW | 5= Eh v, Sy - @A.S#)\”mﬁ

so that, except for an additive biharmonic function, we have

(R) 0 (3))\ 1 ’(5)}\
W o= — - — AN S
E 35 10 Sy — g AT S )
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(10R.3)

(10R.4)

(10R.5)

The omitted biharmonic term has already been accounted a principal effect.
We next write the relations resulting from taking the trace of the tensor equations

(10.16), namely
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where in (10R.6a) we have noted (10R.3) and also substituted from (10.6) and (10P.4)

on the right.
We obtain an alternative system of these relations if we take the repeated covariant
derivative of the contravariant form (10.16) and sum over the repeated indices: we find
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where in (10R.7a) we have again substituted from (10.6), (10P.4) and (10R.3). The
consistency of each equation of the system (10R.6) with the corresponding equation
in (10R.7) then leads to the sequence of compatibility relations

2k +1) 2k + 1) (2k+ 1)
A
(1+0) Sgl— sii+w, oli=0 (10R.8)

2k + 1)
With the o , k=1, given by (10.8b,c) and also noting (10R.3), the two systems

of equations (10R.6) and (10R.8) are for the simultaneous determination of the two
(2 +1) (2k + 1)

. . A A
sequences of invariants { S, k= 1}, and | S#|’;, k=1}.
If we utilize the identities
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in relations (10.16), we obtain the explicit form of the equations for the determina-
tion of the individual components, namely
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where on the right of (10R.10a), we have substituted from (10.6) and (10P.4).
Equations (10R.3), (10R.6), (10R.8) and (10R.10) constitute the system of equa-
tions for the determination of the residual effects: they are to be solved subject to
the edge conditions (10.23), with odd index n = 2k + 1. Again, we note that the
system assumes a simplified form in the case of transverse inextensibility, when

Background Survey

The history of plate theory, which is almost coincident with that of the General Theory
of Elastticity, was launched from the particular interest in plate vibration in the early
nineteenth century. This beginning gave to the bending problem a preferred position
which it has since consistently retained. The greater emphasis on the bending case is
understandable for the principal problems, since the problem of stretching does not ex-
hibit a comparable variety of interesting mathematical features. However, the extension
of this bias in the residual problems can only be explained by association since, in the
analysis of the residual effects, both problems are equally challenging.

The approximate description of stress and strain in a stretched plate was discussed
by some of the earlier authors, notably by Clebsch [10] in 1862, whose anlaysis extended
the earlier work of Kirchhoff and Gehring, for which reference may be found in the
treatise by Kirchhoff [21(b)]. While this theory is substantially equivalent to the prin-
cipal stretching problem, its formulation as the generalized theory of plane stress ap-
pears to date from the later work of Filon [11] in 1903. The formal similarity of the
latter theory to the two-dimensional theory of plane stress of Airy [2], suggested the
stress-function representation leading to the reduction to the biharmonic equation. Apart
form the rather restricted refinements suggested by Reissner [32(a)], and later by Reiss
and Locke [31], the residual problems seems to have received but scant attention.

The history of the theory of plate bending begins with the publication of the work
of Germain [15] in 1821, who deduced the biharmonic equation for the transverse deflec-
tion from a two-dimensional extension of the moment-curvature hypothesis of Euler.
This work preceded the formulation of the General Equations of Elasticity by Cauchy
[8] later in the same decade. On the basis of this general theory, distinct derivations,
based on power series expansions, of the contracted two-dimensional equations, were
subsequently proposed by Cauchy [8(c)] and by Poisson [29], from which it was soon
recognized that the order of the system of equations was not adequate for the satisfac-
tion of the three independent edge conditions, presumed necessary to a two-dimensional
formulation. These difficulties remained unresolved until the appearance of the classic
paper of Kirchhoff [21(a)] in 1850.

As a two-dimensional adaptation of Coulomb’s kinematic assumption for beams,
Kirchhoff adopted the hypothesis, that normals to the undeformed midplane deform
without extension into normals to the deformed midplane, whose consequences he then
combined with the Principle of Virtual Work. The variational procedure then yielded
the two-dimensional equations in the form of the Eulerian minimizing conditions, while
the appropriately contracted edge conditions emerged as the natural boundary condi-
tions. The order of the differential equations was now correct for the satisfaction of
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the two Kirchhoff conditions. Comparing the latter with the three originally proposed,
one remains unchanged while the remaining two are merged in the second Kirchhoff
condition. It is not surprising that this feature of Kirchhoff’s derivation aroused con-
siderable interest. The theory was further developed in the subsequent works of both
Kirchhoff [21(b)] and Clebsch [10].

It appears that most of the lingering reluctance to accept the Kirchhoff contraction,
was removed by the work of Kelvin and Tait [20], where it was shown how the merging
of two physical conditions in one Kirchhoff conditino could be interpreted in terms of
the “equivalence of statically equipallent systems” as prescribed by Saint Venant’s Prin-
ciple. Specific difficulties of the (Kirchhoff) theory were subsequently considered by a
number of investigators notably Boussinesq [7] and Lamb [24]. The larger problems
associated with relating the classical two-dimensional theory to the three-dimensional
theory were discussed by Hadamard [19). Reference to prior investigations of these aspects
of the problem may be found in this paper of Hadamard, who seems to have been alone
in recognizing the value of the interesting work of Levy [25].

Following the semi-inverse procedure of Saint Venant, Michel [28] in 1900 proposed
a refinement of the classical theiry, which, in the somewhat simpler form in which it
was reproduced by Love [26], has been called the “Theory of Moderately Thick Plates”.
A rather specialized refinement for a specific thick plate problem was derived by Mesnager
[27]. A more general procedure, based on series expansions in terms of a thickness
Jarameter, was developed by G. D. Birkhoff [4] in connection with obtaining refinements
n the theory of plates of varying thickness. This latter method was further extended
n the specific cases considered by C. A. Garabedian [14]. Both the Michel-Love and
Jirkhoff theories, although they offer corrections to the classical formulae, nevertheless
eflect their asymptotic nature by their retention of the Kirchhoff contraction in the edge
onditions.

In 1944 there appeared the significant papers of Reissner [32(b), (c)) which finally
evealed the boundary layer nature of the effects suppressed by the Kirchhoff contrac-
ion. By incorporating the transverse shear stress into the expression for the strain energy,
teissner derived a set of equations permitting the satisfaction of three independent edge
onditions. Similar results were later obtained independently by Bolle [6] whose method
ras based on the relaxation of the Kirchhoff hypothesis so as to admit transverse shear
rain. Except for the numerically unimportant terms due to transverse normal stress,
.eissner’s equations are formally identical with equations (10P.12) to (10P. 15). We have
:en how the Kirchhoff and Michel-Love theories then appear respectively as one- and
vo-term representations, asymptotically valid in the interior. Other aspects of the theory
ere discussed in the later paper of Reissner [32(d)] and in the alternative derivation
y Green [17(a)], which may also be found in the book by Green and Zerna [18]. A
:at summary of Reissner’s theory together with a brief consideration of the questions

left unanswered may be found in the discussion by Goldenweizer [16(a)].

Meantime an alternative approach to the edge-effect phenomena revealed by Reissner’s

eory was proposed by Friedrichs [12]. This method, based on the matching of inner

id outer asymptotic expansions, was further developed in the later treatment of
iedrichs and Dressler [13] and also in the papers of Goldenweizer [16(b)] where
ferences to related work by other investigators in the Soviet Union may be founc_l.
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The idea of Legendre expansions, originally developed by Cicala [9] has been adapted
by Poniatovski [30], and more recently by Krenk [22], to the variational method followed
by Reissner. However, it appears that, in the former application, the retention of more
terms does not lead to any modification in the final form of Reissner’s equations, whereas
in the latter adaptation, the incorporation of the effect of transverse extensibility
necessitates a re-interpretation of the displacement function appearing in Reissner’s
Theory.

In previous considerations of the residual bending problem, the residual effects have
been treated as higher order corrections to the principal effects within the three-
dimensional theory. Such a process of successive refinement has been dealt with in some
detail in the analysis of Green [17(b)], based on Fourier expansions and also in the later
work of Alblas [3]. We have already noted the simplificiation effected in the equations
governing the residual effects by the assumption of transverse inextensibility. Again in
the context of determining refinements to the principal effects, this simpler case has been
studied in the papers of Kromm [23] and also in the subsequent analysis by Boal and
Reissner [5], who also discuss the contraction of the edge conditions required by the
assumption of transverse inextensibility.

The residual problems as formulated in Sections 9R and 10R involve infinite systems
of partial differential equations. Certain analytic questions posed by such systems have
been treated in the studies of Agmon, Douglis and Nirenberg [1], where references to
other related material may be found.
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Addendum in Proof

In the present derivation, as has already been noted, except for the numerically unim-
portant factor due to transverse normal stress, Reissner’s theory emerges as the exact
formulation of the principal bending problem, when the displacement function is
given its appropriate interpretation. It has been pointed out by a reviewer that
reference should be made to the following papers by Nordgren and Simmonds wherein
the method of the hypercircle is applied to derive estimates on the error in the theory
of plate bending in terms of the thickness-wavelength ratio.

Nordgren, R. P., (a) Quart. Appl. Math., vol. 28, pp. 587-595, 1971.
(b) Quart. Appl. Math., vol. 29, pp. 551-556, 1972.
Simmonds, J. G., Quart. Appl. Math., vol. 29, pp. 439-447, 1971.
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“Shell Theory is hard.”

Anonymous

Chapter Three

Shell Theory — A First Approximation

Introduction

The configuration of a plate, namely, a three-dimensional figure cut from a right cylinder
by two mutually reflecting surfaces symmetrically placed with respect to a plane normal
to the generators of the cylinder, is generalized in the shell by replacing the plane of
symmetry by an arbitrary base surface, which, by analogy, is termed the midsurface.
For a figure defined on the base surface by one or more simple closed curves, which
we collectively call the edge-curve, the ruled surface, generated by the normals to the
midsurface along the edge-curve, defines a region of space. Introducing the two faces,
namely two surfaces mutually reflecting with respect to the midsurface, so that, on every
normal to the latter, the intercept between the faces is bisected by the midsurface, then
‘he portion of the ruled surface lying between the faces will be referred to as the edge-
surface. The figure enclosed by the edge-surface and the two faces is a shell and for
any point on the midsurface the normal intercept between the faces measures the shell-
thickness at that point.
In the case of shells whose midsurface curvature variation is uniformly moderate,
f also the maximum thickness is sufficiently small compared with the minimum radius
>f midsurface curvature so that each point of the shell is safely free from proximity
o possible singular points, we say that the shell is thin. Moreover, we shall see that
he square of this ratio of thickness to radius of curvature furnishes the small parameter,
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in terms of which, we effect an approximate integration, with respect to the thickness
coordinate, of the governing equations. For thin shells, a first approximation is adequate.

The shell will be related to the general coordinate system natural to a configuration
generated by the normal translation of the segment of a surface. The reference system
will then consist of the systtem of laminar surfaces parallel to the midsurface together
with the family of transversals normal thereto. The elements of the field quantities lying
in the laminar surfaces will be called laminar components while those associated with
the normal to the midsurface will be termed transverse effects.

The mechanical behavior of the shell material is described by the system of Cauchy-
Green constitutive relations and we consider the shell so constructed that the mechanical
characteristics associates with the transverse direction are distinct from those associated
with directions in the laminar surfaces. We shall confine our analysis to the stress bound-
ary value problem and, in order to focus on the factors of primary interest, we shall
restrict our attention to the homogeneous shell of constant thickness, free from the action
of any body force field, subjected to a purely normal pressure on the faces, but on whose
edge-surface we consider the applied stress distribution in its most general form.

Resolving the edge stress distribution into its principal part consisting of the thickness-
integrated stress-resultants and stress-couples, and its subsidiary part characterized by
the fact that as a distribution it is self-equilibrating along any generator, then the prin-
cipal problem of shell theory will be formulated in terms of the effects induced by the
former while the residual problem will be concerned with the influence of the latter.
The resolution is most conveniently effected through the Legendre representations for
the stress quantities, which also facilitates the (approximate) integration of the differen-
tial equations with respect to the thickness coordinate. In the resulting integrated form
we have an approximate two-dimensional formulation of the governing equations in
which the thickness-averaged displacements are the only displacement quantities that
appear explicitly. By making an appropriate decomposition of these mean displacements
into their principal and residual parts, we effect the detachment of the system of equa-
tions describing the residual effects from the equations satisfied by the principal effects.
A corresponding separation in the boundary conditions yields the uncoupled formula-
tion of the principal problem together with a detached formulation of the residual
problem.

Beyond its formulation we shall not concern ourselves with any further discussion
of the residual problem. The subsequent analysis of the principal problem requires
considerable manipulation extending the procedure previously followed in the reduc-
tion of the principal problems of plate theory. Finally, we derive the contracted form
assumed by the equations governing the principal problem, when we introduce the
simplifying approximation associated with the so-called ‘‘interior” description, valid,
except in the edge-zone where the edge-effect due to transverse shear is significant.
This corresponds to the Kirchoff asymptotic form of the equations of plate bending
and has associated with it an analogous Kirchoff-type contraction of the boundary
conditions.

The objectives of the analyses may now be stated under three main headings:

1) the clarification of the distinction between the principal and residual effects;

2) the separate formulation of the principal and residual boundary value problem;

3) the derivation of the constitutive relations for shells, adequate for describing

the principal (*‘interior’”) effects in the region beyond the edge-zone.
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In Section One we describe the coordinate system and derive the relevant tensor
formulae: besides expressing the Christoffel symbols for the three-dimensional system
in terms of the surface elements, we also relate the description of the edge-surface
to the corresponding surface specification of the edge-curve. This is followed by an
appendage giving the form taken by the expressions for the Christoffel symbols when
the approximation for thin shells is introduced. The three-dimensional boundary value
problem is formulated in Section Two, to which we also add the approximate form
of the constitutive relations adequate for thin shells. With the introduction of the
normalizing transformation in Section Three, we apply it to the exact form of the
equilibrium equations and boundary conditions and to the approximate form of the
stress-displacement relations for a reformulation of the problem.

From the integration of the equilibrium equations with respect to the thickness
coordinate, we derive in Section Four the Legendre series representations for the stress
components: the application of the face conditions then yields the equations satisfied
by the leading coefficients which include the classical equilibrium equations of shell
theory. By the introduction of the thin shell approximation into the relations con-
necting the coefficients in these series, we are led to the approximate expressions for
the elements in the representations for the transverse stresses, in terms of the coeffi-
cients appearing in the series for the laminar stresses. Relating these representations
to the expansions for the edge distributions applied at the edge-surface we effect,
in Section Five, a reformulation of these conditions in terms of the laminar stress
coefficients.

From the transverse integration of the approximate stress-displacement relations,
~e obtain, in Section Six, the associated Legendre representations for the displace-
nent components, followed, in Section Seven, by the final two dimensional formula-

ion of the equations involving only the laminar stress coefficients and the mean
lisplacements. Having effected the detachment of the residual boundary value prob-
em in Section Eight, we consider, in Section Nine, the complementary formulation
f the boundary value problem for the principal effects and perform the reduction
if the governing equations as suggested by the corresponding procecures followed
n plate theory. In Section Ten, we introduce the Kirchhoff-type approximation to
erive the set of constitutive relations adequate for a description of the principal effects
1 the interior region, valid at a sufficient distance from the edge.

We conclude with a brief survey of some of the previous work on shell theory
dgether with a list of references.

1. The Coordinate System

he intrinsic geometry of a surface may be investigated in the reference frame of
general two dimensional coordinate system in terms of which the metric characteriz-
g the surface is defined. Since, in the analysis of shell theory, it will be necessary
' consider the midsurface within the framework of the imbedding three dimensional
uclidean space, we shall relate the metric elements of the former to the physical
sments of the latter.

Referred to a general two dimensional Gaussian coordinate system [x”,o = 1,2]

e ——————
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we may write for the position vector to an arbitrary point on the midsurface
12
r o=r (") =r(x.x) (1.1)

By partial differentiation we introduce the base vectors
g =r =-—-—,a=1,2 (1-2)

the scalar products of which yield the components of the symmetric covariant metric
tensor

8ap = 8o " 88 a,8=1,2 (1.3)

also called the first fundamental form of the surface with determinant

2

2 2
g = detlg gl; = 811822 — 812 . (1.4)

The related contravariant metric tensor is defined in the standard manner: using the
Kronecker delta notation and with summation implied over repeated indices, the
system of equations

A 8
8ur8 f = 6, (1.5)

determine the components of the contravariant metric tensor gaﬁ in the form

1 gy 2 &u 12 &12
g =%, ¢ =—., 8 =7 (1.6)
g g

From these we define the system of conjugate base vectors by setting
" =8\ (1.7)
from which it follows that
8o =88 8a" 8 =8, (1.8a,b)

With g given by (1.4), the associated permutation tensor €.g has components

e =€ =0, €= € = VE 1.9
while the elements of the corresponding contravariant tensor eaﬁ, defined by

eaB = ga)\ ga" W (1.10)



SHELL THEORY — A FIRST APPROXIMATION 145

are readily shown to be

(1.11)

and therefore the identity

g% = o P &, (1.12)

€xpresses relations (1.6) in tensor form.
The Christoffel symbols of the first and second kinds are defined as in the planar

configuration, namely

le,B:p] = % (8ap6 + 8ura — 8ap,, (1.13a)

{a)\g} = g)\#[a.BIH] —;-g)\“[gw,ﬁ + 88,0 — guﬁ'“] (1.13b)

and, for the case of coincidence of the upper index with either of the lower indices
in the second symbol, we find by expansion of the determinant that

N _1 dg
{a)\} =% G (1.14)
giving
La\/§=\/§{"} (1.15)
Ix a A

Corresponding to the resolution formulae in the planar case, we shall see that, for
the surface, the Christoffel symbols account for the projection, on the tangent plane,
of the partial derivatives of the base vectors. In particular, by differentiation of rela-
tion (1.3) and forming appropriate combinations it can be readily verified that

8op " 8, = lo.Bip] (1.16)

It then follows from relations (1.8) that

gﬁ.ﬂ ' 5)\ = {Q)\ﬁ } » 5“_6 ° 5)\ = — {'Bah } (1.173,]))

e ————
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These latter formulae (1.16) and (1.17) reflect the fact that the intrinsic geometry
is analyzed exclusively in terms of the first fundamental form.

For the fuller description it is necessary to introduce a second characteristic measure,
that relates the surface to the imbedding Euclidean space. At each point of the sur-
face the base vectors define a tangent plane, the normal to which is given by

X

loe
o
[¥)

1

(1.18)

n(x™)y = |

X 8>

Iy
oo

The infinitesimal vector representing the instantaneous variation of the unit normal
lies in the tangent plane: this is seen analytically by noting that from

n-n =1 (1.19)

we derive
(1.20)

nen,,=0

Hence, since the system [g ., 2 ] constitutes a vector triad in the enclosing space, we
may write for the resolution of the derivatives of the normal”

n,, = -bhg, (1.21)

where the b[}: are the components of a mixed tensor reflecting the curvature through
its effect on the variation of the unit normal. Moreover, differentiation of the first
of the orthogonality conditions

o

g, n =0, g -1 =0 (1.22a,b)

yields the alternate form

§a,u3 cn= __g,n-r-"ﬁ':ga)\b:;:b(xﬁ (1°23)

for the corresponding covariant components. Combining (1.17a) and (1 .23) we ob-

tain the resolution
= A 1.24
Ea,B a B §x+baﬂﬂ (1. )

for the derivatives of the base vectors. Similarly the result of differentiating the second
orthogonality condition (1.22b) when combined with (1.17b) gives the correspond-

ing resolution
(4] o A @
g = ~ {Mi} g +bgn (1.25)

« These are the relations of Weingarten.
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for the derivatives of the conjugate system.

The tensor buﬁ, whose components give the resolution, along the normal, of the
derivatives of the base vectors, is called the second fundamental form and has
associated with it the classical surface invariants, namely the mean and Gaussian cur-
vatures. The mean curvature H is related to the trace by the formula

2H = g™ b,, = b) = b} + b (1.26)
while the Gaussian curvature KX is given in terms of the determinant by the relation
2
gK = det[b,g1; = by; by — b, by, (1.27)
or equivalently
1,2 1,2
K=1b b, - b,b] (1.27%)
where we have noted formula (1.4) for g. Moreover, it can be readily verified that

he relation

e ™ by, + 6 = 21" (1.28)

10lds between the covariant and contravariant components.
The fact that the tensor b4 constitutes the second fundamental form of a sur-
‘ace implies certain restrictions on the components. Recalling that

a8 Loag =Ligy = 84,0

(1.29)

ve see, from the defining relations (1.23), that the second fundamental form is a
ymmetric tensor, namely

b

24

wg = b (1.30)

‘urthermore, from the observation that

Hiog = 1,5, (1.31)
1ere follows a second symmetry condition*
A A
boig = bgia (1.32)
‘hich with the first condition (1.30) implies for the covariant components
bang = o = Dopin (1.33)

inally, we note that the celebrated theorem of Gauss, that the invariant X is an

These relations are associated with the name of Codazzi and in the Soviet literature with that of Peterson.
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intrinsic characteristic of the surface, shows that the determinant of the second
fundamental form can be expressed in terms of the elements of the first fundamental
form.

For quantities defined in a general metric space the covariant derivative measures
the intrinsic variation of the field elements and is identical in form with that for a
Euclidean space. Accordingly, if we use a single stroke to denote covariant differen-
tiation on the surface with base vectors g , and metric g 4, then for the vector field

g=d g =ag (1.34)

we have for the covariant derivatives of the respective components

P {“"a} a" (1.352)
Oyjo = One — {“} a (1.35b)
la No \a n

while for the components of a second order tensors ao‘ﬁ and a4 the corresponding

formulae read
afl af o uf ¢ ap
a |,=a , *+ {u)\} a’ + {“)\} a (1.36a)

augn = dag N~ {B“)\} Ay, = {:)\} a,g (1.36b)

However, in the expression for the partial derivative of a vector field there now ap-
pears an additional term due to the curvature. Taking the derivative of the vector
(1.34), we insert the resolution formulae (1.24) and (1.25), and using the notation
of (1.35), we obtain

A
a |,

8,6 = ")\|a gn t bay a)\ﬂ (1.37a)

A A
=ay,8 *b,an (1.37b)
emphasizing how the normal component of the variation is a product of the second
fundamental form.

We next outline the relevant formulae for a general coordinate system
[x',i = 1,2,3] in a three dimensional Euclidean space. Writing

R = R(x) = R (x'x*x) (1.38)
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for the position vector to an arbitrary point we derive the base vectors

G, =R, == | i=1.23 (1.39)

and form the covariant components of the metric tensor G,.j by setting

G,=G,-G, (1.40)
with determinant
G = det[G,]; (1.41)

The contravariant metric tensor is determined from the system of equations

GG =45 (1.42)

where the Kronecker symbol on the right denotes the unit matrix: then for the con-
jugate system of base vectors we have

G =G G, (1.43)
and hence also the relations

G, %G, G.-6 =4 (1.44)
In the three dimensional covariant permutation tensor e ijk» associated with the metric
Gu" the non-vanishing components are given by

€123 = €3] = €3, = e (1.452a)

€132 = €331 = €33 = — Ve (1.45b)

By noting the standard expansion of a determinant as the sum of products of its
elements, it can be easily checked that in the corresponding contravariant tensor ¢
the non-vanishing elements are

AL SR (1.46a)
VG
132 321 213 (1.46b)

m
I
m
]
o
1

1

VG

Then for a pair of vectors A, and A ;) with contravariant components a'(,) and
1 R R . "

a7y, respectively, the associated cross product is defined as the vector A* whose
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covariant components a,'are given by

* J k
a; = €91y 92) (1.47)

For the Christoffel symbols of the first and second kinds, we write, respectively
1
Tipi =3 (Gijx + Gk~ Gl (1.48a)

i il I il
ij =G FJ-,‘,:, =3 G [G,j_k + le,j = ij.I] (1.48b)

and the latter are the components of the derivatives of the base vectors, namely

=T G, (1.49)

Qj.k jk =i

In the case of an arbitrary vector field 4 with resolution

A=d G, =a,G (1.50)

i i

partial differentiation with respect to one of coordinate variables yields

=dl, G, =ay, @ (1.51)

4,
where we use a double stroke to distinguish covariant differentiation in the space
with metric G;: namely, we have written

k k

, oay=a ;- Tja (1.52a,b)

! 1 i
a||J=a.j+I‘j,‘.a ilj i
while for a second order tensor with components a”, contravariant in both indices,
we would write

) ; 5

a'j!k = a”,k + F',k a’ + I‘j,k d (1.53)
as the defining formula for the covariant derivative

For the shell configuration, the natural frame of reference is the general conoidal
coordinate system, consisting of the general Gaussian system [xa, a = 1,2]
augmented by the transverse coordinate z normal to the midsurface. If we specialize
the general system [x', i = 1,2,3], by identifying the first two coordinates with
those of the Gaussian system [x", e = 1,2] and equating the third with the
transverse coordinate, namely

x =x,a=12,x =2 (1.54)
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then in place of (1.38) we write for the position vector to an arbitrary point
R =R(x)=R("2) (1.55)

Observing that the latter is the resultant of adding the appropriate transverse segment
to the position vector of the corresponding point of projection on the midsurface,
namely

£ (x") =Ry =R(%,0) (1.56)
it follows that the vector (1.54) has the resolution
R=R(x)=R(:"2) =1 (x) + 2 (x%) (1.57)
which enables us to relate the elements of the spatial coordinate system to the fun-
damental forms defined on the surface.
Recalling the defining relations (1.39), we differentiate (1.57), and noting formulae
(1.2) and (1.21), we obtain for the base vectors of the conoidal coordinate system
Qa=§u—zb2§)\, =12 Gy=n (1.58a:b)
and hence for the components of the metric tensor G,; we have
Gup = 8ag = 22byg + 262 brgy @B = 1,2 (1.59a)
Gi3=GCy; =0 Gyy=1 (1.59b:c)
The coefficient of z2 in (1.59a) is sometimes called the third fundamental form: in
fact it can be resolved as a combination of the first and second forms. We, therefore,

obtain an alternate representation for the metric tensor in terms of the surface
elements, namely

Gup = 8ag(l = K) = 22b (1 — zH), af = 1,2 (1.60a)

Ga3=0, a=12: Gy =1 (1.60b:c)
by introducing the tensor relation
by by = 2Hb 5 - Kg,, (1.61)
whose validity may be established by direct verification.
It follows from relations (1 -60b:c) that the determinant of the metric tensor is given

by

G =G Gy, — Gy = det[G ) (1.62)

e ———

——————————
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1f we now introduce the components (1.60a) into (1.62), then a straightforward calcula-
tion yields the formula for G in terms of the midsurface invariants. Since it will be
convenient to have a distinct symbol for the square root of the ratio of the deter-
minants of the space and surface metric tensors, we set

() = j(x%2) = 1 - 2zH + 2K (1.63)
and the above calculation renders G in the form
22 . 2
G =g(l —2zH + ZK) = gli(2)] (1.64)

We note that j (z) measures the ratio of the area of the laminar element at transverse
distance z to the area of the corresponding element on the midsurface.
With the covariant components given by (1.60) it can easily be seen from the deter-

mining equations (1.42) that the components of the contravariant metric tensor G"
are given by

G G G

11 22 22 11 12 12

G = —G— , G = —G— , G = - —G— (1.653)
¢ =6"=0 =1 (1.65b:c)

By means of the permutation tensor eijk whose nonvanishing components are given
by (1.46), the three relations (1.65a) may be combined in the tensor form

" =M, (1.66)

Inserting formula (1.64) for G into (1.45), we see that the components €z, and emB3

are related to the two-dimensional permutation tensors in the following manner

N afl I af
€afy = Jj(z2) .5, € = 7727 € (1.67a,b)

If we introduce expression (1.60a) for G, into (1.66) and also use (1.67b), we have
af I

L’

in which we now employ relations (1.12) and (1 .28) to eliminate the permutation ten-
sors yielding

G

e gy, (1 = K) = 22b,,(1 = 2H)] (1.68)

G =1 - [gaﬁ(l %K) - 22(1 — zH) (2Hg™® - b"B)] (1.69)
i)l
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Thus, with a slight rearrangement in the above we may now replace (1.65) by the
tensor relations

G** =

[gaﬂ[] —4zH + 22 (4H — K)) +2zbaﬁ(l—zH)jI LaB = 1,2

L)1’ (1.70a)

G? =0, a=12 6%= (1.70b:c)

which, with (1.58a), when introduced into the defining formulae (1.43), give for the
conjugate base vectors

(1~ 22H) g%+ 26y "), a=1,2: G’ =n (L71ab)

G* =1
= J(z)

|

—_—

where, in the rearrangement of (1.71a), we utilize the contravariant form of (1.61).

Relations (1.59) and (1.69) are now to be used for the computation of the Christoffel
symbols (1.47). It is immediately evident that those symbols, in which the index 3
appears at least twice, vanish

M3 =0 I'j;=0, A=1,2 (1.72a:b)

and also

I, =T =0, a=1, (1.73)

Moreover, for the symbols with 3 in the upper position but in neither of the lower
positions, we have

3
Tag = = Gapg 3 = 2Kg,g + bog(l - 2zH) (1.74)

leading to the equivalent forms
3
Plg=byg - Z(2Hb,g - Kg,4) (1.75)

= bog ~ 24 b, (1.75%)

4

wherein we have used relation (1.61). Next, for those symbols with index 3 in one’

of the lower positions but not in the upper position we note that

A 1 Au
Mg =35G" Gy, s (1.76)

which, when we substitute for the metric coefficients from (1.60a) and (1.70a) and
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perform the multiplication, gives

A 2
rh, = - —! (| - 62H + Z(12H + K) - 82 H'1by

[j(z)]

v2() - 4zH + Z@H ~ K)IKb

+2201 - 3zH + 22°H )b, bg} (1.77)

The mixed form of relation (1.61) reads
N u A A
b“ bﬁ = 2Hbﬁ - K&H (1.78)

which may now be introduced into the third factor on the right of (1.77): after a
rearrangement, we find

= - (- 22 + ) (b - 2K5p) (1.79)

2

(1"

Recalling the defining formula (1.63), we may cancel the factor j (z) in the numerator
with one of those in the denominator again using relation (1.78), we obtain the
equivalent forms

A I A A
FSB = - 7(7)— [bﬂ r ZK(Sﬁ] (1.80)
1 A - Nop .
- gy gl — 22H) + 2, b (1.80*)

Lastly, for the symbols in which the index 3 does not appear, we have

A

Tos

A
G ¥ 1Gaup + Gpua = Gapyl (1.81)

1
2

which, when we introduce the covariant metric coefficients (1.60a) into the second
factor, becomes

A

1 Mu 2
Tog= EG [ (1-z K)[gau,B+gBy,cx_guﬂ,u]_zz([_ZH)[bay,B+bﬁp,a_baﬁ,u]

L

2
+z [(ZbQ“H,B—gu#K,ﬁ) +(2b|j“H,Q_gﬁ“Kva)_(ZbaﬁH,“_gaaKv“)] ]

(1.82)
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From the defining relation (1.36b) for the covariant derivative, it can be easily checked
that

= p
bau'ﬁ + bﬂ“‘a - baﬁ'“ = bcm“3 + bMa - baﬁlu +2{aﬁ}bp*‘ (1.83a)

= oy + Z{Q"B}bp# (1.83b)

where the latter form follows by virtue of the Codazzi relation (1.33): if we utilize
(1.83b) and also the notation of (1.13a) in (1.82), we see that

r, = M [(1 -2 K Bl - 2(1 —z”’”’w'ﬂ”{ape}b"“]

Recalling the defining formula (1 -62), we may cancel the factor j (z) in the numerator
with one of those in the denominator: again using relation (1.78), we obtain the
equivalent forms

A 1 A A
F}ﬁ = - m [bﬂ - ZK(Sﬁ] (1.80)
=~ =3 31 - 22H) + 20 b)) (1.80*)

Lastly, for the symbols in which the index 3 does not appear, we have

A 1 A

Tag =53G 1Gaup+ Gg, o = Gog ] (1.81)

which, when we introduce the covariant metric coefficients (1.60a) into the second
factor, becomes

A
Paﬁ=

N —

A 2
G [“ 2 K) (80,8 + 80~ 8ap,,) —22(1 “ )by 5+ bg o= byg,,]

2
+2z [(2bayH’ﬁ - guukyﬁ) + (Zbﬁtua _gﬁ“]()a) - (ZbaﬁHy“ _gaﬁK!#)] J
(1.82)

From the defining relation (1 .36b) for the covariant derivative, it can be easily checked
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that

b

afl,p

p
bapg * bgula ~ bosiu +2 {a ﬁ} b,,“ (1.832)

boyus *+ 2 {a"ﬁ} b,, (1.83b)

where the latter form follows by virtue of the Codazzi relation (1.33): if we utilize
(1.83b) and also the notation of (1.13a) in (1.82), we see that

bops + bgua ~

FL\‘B = G)‘I‘ [(] —zzK)[a,B:u]—z(l _ZH)[b“#|ﬁ+2 {apﬁ} bpu]

1 2
L 212y Hog 20y Kop) + (20 Hoo = 85K o) = (e o™ 205K ]

(1.84)

We now replace the first factor by the appropriate expression for the contravariant
metric coefficient as given by (1.70a) and perform the multiplication: again we utilize
relation (1.78) and after a considerable rearrangement we find

A —
rh, = {a"ﬁ} —z#(—z)% [[1—4zH+zz(4H2—K)]b:G—2z(l—zH)b,): b';.ﬂl]
J\z

2 2
2(1-4zH+z (4H - K)] [6)\Kﬂ+6§K ]
a’? ‘a

2
i 12K (B H, g+ by H 1 - 32 /
[j(2)] [j(2)]

2 2 2 A A
+ 5z ! gag[[1—4zH+z(4H —K)]g“+2z(l—zH)b“] K.,

L)

|-

L b [[1—4zH+z2(4H2—1<)]g“‘+2z(1—zH)b“‘] H.,
[j(2)]

SP U=z (6} K.+ By K g+ 2K (S Hog+ 85 H. )] (1.85)
Li(2)]

having introduced the notation of (1.13b). The latter may be written in the form

oo {axﬁ} L e (1.86)
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if we use the symbol ;26 to denote the “‘correction’” terms due to the curvature.

Using relations (1.72), (1.73), (1.75), (1.80) and (1.86), we may now write the for-
mulae for the covariant derivative in a surface related form. In particular if we consider
the vector 4 with component resolution

o

4d=a,G +ayn (1.87)

o

then for the normal component ay, if we note (1.72), the transverse derivative is
given by

a3y =ay, (1.88a)

while introducing (1.73) and (1.80) we obtain for the laminar derivative
- L » pt 1.88b
a3ﬁ_a3'ﬁ+_[j-(z)—][ ﬁ(l_ZZH)'f'Zb“bB]a)\ ( . )

Similarly for the laminar components a,, the transverse derivative is given by
Qo3 = . + —— [b)(1=22H) + 25" b"]a (1.88¢)
al3 T Ya,z J(z) B8 u TRIEN °

while from (1.75) and (1.86) there follows for the laminar derivative
dyig = Qg — ;‘25 a, - (baa - zb:{ bygla, (1.884d)

where we have introduced the notation of (1.35b).

For the description of the shell we first note that referred to the Gaussian coor-
dinates [x%, o = 1,2] the equation of the edge curve along which the boundary
intersects the midsurface may be written in the parametric form

C: X =x"), a=1,2; 0s9<1 . (1.89)

where the x* are given functions of the normalized running parameter 5 on the
curve. The nonparametric form

C: Y = v ) =0 (1.90)
follows from the elimination of 1 from (1.89) and hence, the set

@: Yx)<0 (1.91)

—
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describes the region occupied by the projection of the shell on the midsurface. Accord-

ingly, if we let 4 denote the half thickness of the shell, then, referred to the conoidal
coordinate system [x", z], the boundary consists of the ruled edge surface

®: = x(), a=12;0sy=1: —h=z=h (1.92a)

together with the pair of faces
z=Fh, Y(x)=0 (1.92b)

and hence the region

®R: Yy =0, |zl=h (1.93)
defines the interior of the shell.

We shall use a bar to indicate when quantities are evaluated on the edge so that
on the curve (1.89) we write for the base vectors

g, = 8,1 = |§a(-\'x)| (1.94a)
«\‘)‘=Xx(n)

(41 n

log
I

a, N
(n) = |§ (x| - (1.94b)
A A
x =x (n)
and for the metric and permutation tensors

8up = Buplm) = gm;(.\'x)l o (1.95a)

A A
X =x (7)

eaﬁ

€p(n) = leuB(g)l (1.95b)
g=g(n)

where in the latter we have noted (1.9) and set

2(n) = detlz,(0l, (1.96)

For the curve (1.89), the contravariant components of the tangent vector referred
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to the surface base vectors g _ are

x(n) = L7 (y) (1.97)
n

and hence, the covariant quantities

alm) = () X" (n) (1.98)

constitute the principal normal vector. If we introduce the associated normalized com-
ponents n_ (n) by

Yy (n)

N, (n) = - (1.99)
\/)')\ )y (9)
then referred to the surface vectors & , we have resolution
n =n, ga (1.100)

for the unit vector n along the principal normal to the edge curve.
Consistent with the notation of (1.94), we use a bar to distinguish the forms

[G_,n]and [_Q—a, 2] assumed by the space triads, on the edge surface. We next
@ —

obtain the representation, referred to the triad [G®, 7] of the unit normal i to
the edge surface (1.92a) at an arbitrary point. The edge surface may be generated
by parallel translation of the edge curve (1.89) along the binormal n. In the
conoidal coordinate system the parallel curve at transverse distance Z is given
parametrically by

=2, a=1,2: z=¢ (1.101)

and hence, referred to the triad [G,, 1], we have for the components ;(' of the
tangent vector

x“(m =d4‘f7x“(n) =x"(n), a=1,2: ¥ =0 (1.102)

which together with the transverse vector n determine the plane tangent to the edge
surface. Recalling formula (1.47) for the cross product and also relation (1.58b) giv-
ing E = Q—J, we derive the components ;,- of the vector normal to the edge
surface at an arbitrary point n,2),

Yin2) = € ;3(na) ¥) (1.103)
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where

]

e (1:2) = [e,-jk(x)‘,z)] (1.104)
S

x =x (1)

We therefore have

;a(n,z) = eup3 (M 2)s xa(n), a=1,2: ;3 =0 (1.105a,b)

and if we introduce relation (1.67a) and set

H = [H(x)‘)] . K= [K(x)‘)l (1.106)

=5 () S=x ()

for the edge values of the surface invariants and also write
o =1 -2H+ 2K (1.107)

then the nonvanishing components (1.105a) of the vector normal to the edge sur-
face, may be written

5 =i 0D g X () = J(,2) Yol (1.108)

where the y, are the components of the principal normal to the edge curve given by
(1.98). 1t is easily seen that the corresponding contravariant components are

PE)) (1.109)

yimz) =
Jj(mn.2)

and hence the magnitude of the normal vector is unaffected by the transverse distance
since

52 502 =y (1.110)

It follows from the definition of the associated normalized components, namely

~ ;a(n,z)
n_(n,2) =

o

(1.111)

\I';)\(n,z);x(n.Z)

that these may be expressed in terms of the corresponding components n, of the unit
principal normal to the edge curve by the relation

W, n,2) = J(n,2) ng(m) (1.112)
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Hence for the unit normal i at an arbitrary point (n, z) of the edge surface we have
the alternative resolutions

-~ ~ o

n=n_G (1.113a)

~ ¢4

=j(ma)n, G" (1.113b)

which at z = 0 clearly coincides with the unit principal normal to the edge curve
given by (1.100).

On the remainder of the boundary consisting of the pair of faces (1.92b) the unit
normal coincides with the unit transverse vector n except for change of sign on the
lower face,

In the sequel Greek indices will consistently have the range (1,2) while Latin in-
dices will range over (1,2,3).

1A. The Approximation Scheme and Associated Relations

The series of relations (1.58) to (1.85) for the coordinate elements and Christoffel
symbols reveal one of the sources of difficulty in the analysis of the general equa-
tions in the conoidal coordinate system. In particular we note that although the base
vectors G (1.58a) and the covariant metric coefficients G5 (1.59a) are respective-
ly linear and quadratic in their dependence on the transverse coordinate, this relative
simplicity is not shared by the conjugate system: in fact, in relations (1.70) for the
contravariant metric coefficients and in formulae (1.71) for the conjugate vectors,
we see that there occur denominators which in the latter are quadratic, and in the
former are biquadratic, in their dependence on z. This non-polynomial dependence
propagates into the Christoffel symbols (1.80) and (1 .85) thereby imposing a tedious
complication on the problem of integrating the equations with respect to the transverse
variable.

Even apart from this difficulty we can see from relation (1.85) that the exact in-
tegration, to eliminate the thickness coordinate from the three dimensional equations,
would nevertheless pose a formidable computational problem. However if we take
advantage of the characteristic features of the shell configuration, we can develop
an approximate procedure that allows a relatively straightforward execution of the
transverse integration.

At any point on the midsurface we have the geometrical radii of curvature R,
and R,, together with the radius of torsion R, given by the relations

b
RL =@ _ » @8 =1,2 (no summation) (1A.1)

of VEao 8gp
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In terms of these we define the critical radial measure R, as the minimum value as-
sumed by any of the three radii (1A.1) on the midsurface, namely

R, = min. | Ryl 1Rl (R J (1A.2)
Y(x*) <0

A shell configuration may be characterized by the satisfaction of the two requirements
(1) The curvature variation on the midsurface is uniformly moderate.
(2) Theregion is uniformly thin in the sense that the critical radius is large com-
pared with the half-thickness.
The first requirement, excluding sharp curvature variations, may be satisfied by
stipulating that the wavelengths characterizing the variation of the first and second
fundamental forms be comparable, namely

[a,B:p]) (1A.3)

The second condition, which also guarantees that the conoidal coordinate system is
free of singularities in the region of interest, may be formally stated by introducing
0 as the thickness-curvature parameter, namely

_h
0=% (1A.4)

*

so that the shell characteristic is equivalent to the comparison inequality

g << 1 (1A.5)

The mensural feature (1A.5) admits the treatment of the transverse integration
by successive approximations with the square of the thickness-curvature parameter
(02) playing the role of the small parameter. We shall be satisfied with a first order
theory based on the neglect of effects of order 8~ in comparison with unity. An in-
spection of relations (1.60) to (1.71) shows that such an approximation allows all
coordinate elements to be linearized in their dependence on the transverse coordinate.
These approximate formulae then yield linear representations for the Christoffel
symbols which in turn lead to a form of the constitutive relations that can be in-
tegrated with the specified degree of accuracy.

The base vectors (1.59) are unaffected by the approximation so that we have as

before

Go=&a 'zbigx, a=12: Gy=1 (1A.6a:b)

but by neglecting terms of order 9° from (1.60) we obtain the approximate covariant
metric coefficients, namely

G = 8oy = 22bs @B = 1.2 (1A.7a)
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Go3 =0, a=1,2: Gy =1 (1A.7b:c)
The determinant G is still written in the form
G =gli()) (1A.8)

where for the ratio j(z) and its reciprocal we may now take

@y =1-2eH, 1,y (1A.9a,b)
J(z)

respectively. From (1A.9) it follows that

1 1
=c——— =1+ 4zH (1A.10)
L) 1-42H

which is to be introduced into formulae (1.70) for the contravariant metric coeffi-
cients: by neglecting terms of order 6 we then obtain the approximate form

G =6 4+ 206, g1 (1A.11a)

67 =0, a=12 6%, (1A.11b:c)

A similar approximation applied to (1.71) would yield the simpler form of the
conjugate base vectors

o

G =g+ 2b)g", a=1,2: G =4 (1A.12a:b)

which however, we shall not have occasion to use.
In the case of the Christoffel symbols only those given by (1.80) and (1.85) are
affected by the approximation. As in (1.72), (1.73) and (1.75*) we have

T =0 Th=0, A=1,2 (1A.13a:b)
3 3

T3 =T3, =0, a=1, (1A.14)
3 A

Tug = bag — b2 by, (1A.15)

whereas the introduction of (1A.9) into (1.80*), if we neglect terms of order 02, gives
the approximate form

A Yy A
Pip = — [0y + 20, b)) (1A.16)

A similar use of the appr,oximation (1A.10) in relation (1 .85) together with the omis-
sion of terms of order §° effects a considerable simplification in the latter formula,

e —————

————
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namely

A A A
r, = {aﬁ} bt (1A.17)

which can be used in place of (1.86)
We now apply these approximations to the expressions for the covariant derivatives

of the components of the vector field

o

A=a,G +ay8 (1A.18)

24

For the normal component d3 the transverse derivative (1.88a) is unaffected, namely

a3 = a3 - (1A.192)
while from (1A.14) and (1A.16) we have for the laminar derivatives
P zb) bhla, (1A.19b)

replacing (1.88b). Similarly for the transverse derivative of the laminar components
we have instead of (1.88¢)

4,y = Gy +10h + 2b) 410y (1A.19¢)

while, using (1A.15) and (1A.17), formula (1.88d) for the laminar derivatives is ap-
proximated by

0,5 = Gup + Zbawp @ = e 2b) bya (1A.19d)

where, as before, we utilize the notation of (1 .35b). These expressions will be used
in obtaining approximate expressions for the strain measures.

2. The Boundary Value Problem

For a three dimensional medium referred to a general coordinate system
[x',i = 1,2,3], in which the stress tensor is represented by TU, the equilibrium

conditions* for a material element consist of the symmetry relations
pLE 2.1
together with the vector equation, which in the absence of body forces takes the form
36T ga=0 (2.2)
ax
where again summation is implied over the repeated indices: in (2.1) the base

« For the derivation of these and other basic equations we refer to the standard treatises, €.8. *“Theoretical
Elasticity’’ by A. E. Green and W. Zerna.
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vectors (7 ; are derived from the position vector R( x') in accordance with (1.39) and
G is the determinant of the metric coefficients as defined in (1.40) and (1.41). The
vector equation (2.2) is equivalent to the system of tensor equations

~F
7l

=0 2.3)

where as before the double vertical stroke indicates covariant differentiation as defined
for the metric GU by relations (1.48b) and (1.53), Using formula (1.72) to (1.85),
the above equations could now be written in the particular form they take in the coor-
dinate system natural to the shell configuration.

The stress tensor 7 is defined with reference to the base vectors G ; induced by
the coordinate system which for the conoidal system of the shell consist of the triad

surface base vectors. Accordingly, we shall write the equilibrium conditions in terms
of the components of a pseudo-stress-tensor 7 which gives an alternative represen-

S e Ger Ge+ 77 Gyl + i}[\/a(?m Ge+77GPl=0 (2.4)
ax” ax

Next we identify the first two coordinates [x”, o = 1,2} with the laminar system
[x*, a = 1,2] and equate x~ with the transverse coordinate z, so that in the conoidal

system, equation (2.4) becomes

~a ~ ~ ~33
2 e TGt T L VG (P, 4 T = 0 (2.5)
dx az

where we have noted (1.58b). In order to transform the latter into a vector equation
referred to the midsurface triad (g4, 7] we introduce relations (1.58a) for the G,
into (2.5): if we also note formula (1.64) for G and make one interchange of dummy

indices, we obtain

2 [j(z) GIG™ =~ 268 7™ g, + :“’MJ
dx

a—az [j(z) ] (G W ?”51} =0 (2.6)

ij
Squation (2.6) indicates how the components of the psuedo-stress-tensor 7 are to

e ——

e ———————

e e

e ——
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be defined: we set

S (7P = bl T, s 7 (2.7a,b)
W= ~ ~
BB i GP T =i . 2.7¢,d)
so that equation (2.6) becomes
a — afl o
REAC §6+13g)1+aiz[»'§(rwgﬂ+r”g)]=0 (2.8)

ax

We now perform the differentiation and utilize relations (1.15), (1.21) and (1.24):
omitting the common factor Vg we rearrange and obtain

B8 A B8 A B a3 I8
[Tﬂ o T {a)\} 7+ {)\Ba} r —ba'r" +7 .18
4 [TD‘S,Z 4 {a)\)\} TDIJ " baﬂ T“ﬁ N 133,21 n=0 (2.9)

1f we introduce the notation (1.35a) and (1 .36a) into (2.9) and then write in compo-
nent form, we obtain the system of differential equations for the psuedo-stress
components T", namely

@b PP =0 (2.10a)
P b bt AT =0 (2.10b)

Furthermore it follows by direct substitution from (2.7) that

8 M -l T - b 7w SO T (2.11a)
3t = - by Pl (2.11b)

so that the symmetry requirements (2.1) on the stress tensor 7", namely

~af _ ~ 8o ‘;-od _ ;’3“ (2.123,b)

T T =

are, for the psuedo-stress tensor 7, equivalent to the conditions

'rm[i - zb: 'rm\ = Ti]a - zbf\ Ta)\ (2.13a)
Aot = (2.13b)

The differential equations (2.10) together with the symmetry conditions (2.13) con-
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stitute the full set of equilibrium conditions on the field quantities 7" to be satisfied
in the region ®. N

It is important to remember that the quantities 7” are strictly neither stress quan-
tities, nor the components of a tensor in the three dimensional space. However, as
they are referred to the surface vectors g ,» the quantities 7°* are the components
of a first order surface tensor: similarly the quantities 7** constitute a correspond-
ing second order tensor. For such surface tensors the lowering of indices is effected
through the surface metric &, this is in contrast to the stress tensor 7 ” where the
change to covariant representation is made through the spatial metric tensor G,.J as
given by (1.60). As we wish to avoid the tiresome repetition of the prefix “‘psuedo’’
in indicating the quantities 77, we shall, having emphasized the above cautionary
remarks, hereafter refer to them loosely as stress quantities or stresses.

For the displacement vector field ¥ we have the resolution

! o

V=v,G =v,G +vn (2.14)

and hence, utilizing formulae (1.88), it is easily shown that the linearized strain tensor

consists of the system of strain measures
Ya3 = Uy (2.16a)
= Uy + o)+ (61— 20H) + 26" b (2.16b)
Ya3 T 2 Y3 Va,z j(—z)' a ~ <0, 0.1y 4
1 A A
Yaz = 3 Way + U30) = Sagty = (b5 = 2b, by )vy (2.16¢)

where the single stroke denotes covariant differentiation as defined in (1.35b). The
components of infinitesimal rotation associated with the displacement vector (2.14)
are the laminar rotation

g = %(v, ) = Uy ) 2.17)

= — (L‘I

- ) (2.17%)

(]

together with the two transverse components

- %(1-__‘_: -ty (2.18%)
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where, in each formula, we have noted the cancellation of the terms arising from
the Christoffel symbols, due to the symmetry of the latter with respect to their lower
indices.

We consider a homogeneous material with linear stress-strain law, which, in the
shell configuration, has the property of laminar isotropy: this latter feature signifies
invariance in the mechanical characteristics under changes of direction in laminae
parallel to the midsurface, but admits a distinguished response in the transverse direc-
tion. In the conoidal coordinate system, the constitutive relations for such a material
take the form

1 ~ Vy ~\
Y=o T E (2.192)
o3 = lB B (2.19b)
—~ ~A\ -
vop = SEL T, - Gug g v 7a *+ 72 731 (2.19¢)

in which the covariant components of the stress tensor appearing on the right are
in accordance with (1.60), namely

T = G Gy T T =T S 70 (2.20a,b)
7= Car 73 =Gar T (2.20¢)

. . S .
and the invariant 7, is the trace of the laminar components of the stress tensor,
namely

~\ ~A\n
Ty = GM T

(2.20d)
In the case of complete isotropy, the Young’s moduli and Poisson’s ratio associated
with the laminar and transverse directions coincide, namely

E.=E, v,=v (2.21a,b)

and the transverse shear modulus is related to E and » by

E

B=an

(2.21¢)

so that the number of independent coefficients is then reduced to two.

1n our prescription of the boundary conditions, the faces are subjected to a purely
normal pressure, while on the cylindrical edge we consider a general stress vector
field distributed in an arbitrary manner. If we let E and p * denote the pressures
on the lower and upper faces respectively, the conditions on the lower face read

= —h Yy =0 TN k) =0, B om =7 (2.22a,b)
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while, on the upper face, we have

&

= +h, Y(.\‘A) =< 0: ;Ju(.\':l',+ll) =0, ;33(.\"\,+h) = ;_ (2.23a,b)

At an arbitrary point (n,2) of the cylindrical surface, we consider the applied stress
vector Z (n,z) with the resolution with respect to the midsurface triad (g.. n),
given by

Z=2"nng, + 2o (2.24)

If we define quantitjes El(n,z) by the relations
q

« T T 3

Z° =7~ i 7 2l P (2.25)

Ta b . ;
where by denotes the edge value of b, then we have the alternative resolution

]

referred to the coordinate triad (5“, )

z2=2'G, + 27 (2.26)

Q|

for the applied stress vector and the boundary conditions on the edge surface take
the form

R
-~

7 (n,2) n,(1.2) = Z2°(n.2) (2.27a)

X N
—hszs +h ¥ =y (n):<

-QJ -—
7T (n.2) n,(n2)

22 (2.27b)

where the n (n,2) denote the components of the unit normal vector (1.113) and
we have written

o = 7 (2.28a)
X =xN ()

o = 790N (2.28b)
A A
=)

to signify the edge values of the stress components.

We now transform the above boundary requirements so as to express conditions
on the modified stress quantities 7", Starting with the face conditions (2.22a) and
(2.23a), we first note, that since we have assumed zero values on the faces for the
shear stress ;h, the homogeneity of the transformation (2.7¢) implies that the
nodified quantities 7°¢ also satisfies homogeneous face conditions. We next note
he transformation (2.7d) for the normal stress, and accordingly, multiply (2.22b)
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by the factor j{ — h), and similarly, multiply (2.23b) by j(+h):if we then set
p =i(-mp =(+2kH + 1PK) P (2.292)
ot = j(+myp =1 - 2hH + WKy p' (2.29b)

we see that, in terms of the modified stresses, the face conditions become

0: 1-3“(.\‘)\,—/1) =0, Tn(.\')\,- hy =p (2.30a,b)

|

1A

z= —h, Y(.\-)‘)

+h, Y(.\')\) < 0: r"”(.\')\,+h) 0, Tn(.\'h.*—/l) — p‘ (2.31a,b)

LY

]

2
il

in transforming the edge conditions, we first note relations (2.25) and multiply

both sides of (2.27a) by the factor (62 - zbi), so that, in terms of the original
resolution (2.24) of the applied stress vector, the conditions (2.27) read

—af

G e, =2 (2.32a)

~h=<z=+h, .\')\ = .\'x(n)t
;-u) E‘ = ZJ (2.32b)

w

We now use formula (1 .112) for the ;{u in (2.32), and, recalling the transformations
(2.7b,d), we see that, in terms of the modified stress quantities, the edge conditions

take the form

{ —

| T“ﬁ(n.z) n, (1)

Z’(n.2) (2.332)

A )y
_h<z<+h x =X (17):-.|

Z2n2) (2.33b)

t 2 n2)

\

where the 1 are the components of the principal normal to the edge curve as given
by (1.100).

The equilibrium equations (2.10) and (2.13), when combined with formula (2.7)
are complemented by the constitutive relations (2.19) with the associated strain-
displacement relations (2.16): the boundary value problem consists of the solution
of this system of relations in the region ® subject to the boundary conditions (2.30),

(2.31) and (2.33).
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2A. The Approximate Constitutive Relations

For a more consistent formulation, it is desirable that the constitutive relations be
transformed so as to relate the strain measures to the modified stress quantities 7",
In the transformed system, the factor j(z) would appear as a denominator in the
right hand side, so that this is an appropriate point for the introduction of the ap-
proximation scheme outlined in Section 1A. In accordance with the procedure for
a first order theory, we neglect terms of order 6° in these expressions involving the
modified stresses. It is, therefore, consistent to make a similar approximation in the
expressions for the strain measures appearing on the left. We are thus led to asystem
of stress-displacement relations accurate to first order in the small parameter 6°.

In considering the right hand side of the first relation (2.19a), we first note from
(2.20b) and (2.7d) that

- _~B_ 1 n
mET =i (24D

=+ 2:H) 7 + 0(8)) (2A.1%)

while by g_t)ilizing formula (1.59a) for GM in relation (2.20d), we obtain for the
invariant 7,

~A 2 ~X\
T = len, — 23y, + BB, 1T (2A.2)
which may be rewritten as
b)\ “‘up)

TN = Mgy, — 2, (T - bt T (2A.3)

On the introduction of (2.7a) the latter relation becomes

~\ | A
™ B )T
| Ap R
= mg)\“(T it pr T )
1 A A
=3y (-2, ) (2A.5)

so that from the approximation (1A.9b) we have

Th= U+ 22H) (1) - ) )+ 006 (2A.6)

= (1 + 22H)7y — 2bh 7h+ 0(8) (2A.6%)

For the transverse shear stresses appearing in the second relation (2.19b), when we

e ——eeeee
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introduce (1.59a) into (2.20c) and note the symmetry relation (2.12b) we find

2 ~3A
3 = (8o — 2zby + 2 b'; b“)\) T

(g — 2B T~ 2, PE) (2A.7)

I

Substituting from (2.7¢) into the latter expression we obtain

3N
Ta3 = (ga)\ - Zbu)\)T

J(Z)

= 7 s b T3 (2A.9)

so that using the approximation (1A.9b) we have

=+ 2zH) (ryy — by T 08 (2A.10)

-
1]

S (14 22H) 1y, — bk Ty + O(8) (2A.10%)

The covariant laminar tensor ;a;i appearing in (2.19¢) is given in (2.20a): if we
insert formula (1.59a) for G,, we have

TaB

Gon(8gy — 2205, + 2 05,00 B (2A.11a)

~A -
= G\(85, - 2bg )7 - zb'; 7

) (2A.11b)

which when we introduce (2.7a), reads

1 A

T = m Ga)\(gﬂ“ = Zbﬁ“) T (2A.12)
By utilzing the approximation (1A.7a) and (1A.9b) in (2A.12), we obtain

5= (1 + 22H) (4 — 2200085, — 2bg) M+ 0(8%) (2A.13)

A 2
= (1 + 22H) (8o 85, — 2(8ar Dpu + 280, Dad) 7 “1+0(8) (2A.13%)

. . e Y
Hence, letting the surface metric lower the indices in the surface tensor 7 . we have

S 1+ 2tH) (ry — 2(2b g Th + by T+ 0(6% (2A.14)

ap

1l

(1 + 22H) 7,5 — 2(2b,y 75 + by )+ 00" (2A.14%)

If we had substituted for G, rather than Gﬁp in (2A.11a) and followed a similar
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procedure, we would have found

~ A A 2

Tag = (1 + 22H) 75, = 2(bgy 75 + 2bg, 7,) + O(67) (2A.15)

By taking the arithmetic mean of (2.14*) and (2.15) we obtain the symmetric form
= I 3 A A 2
Tog = E(l + 22H) (1,5 + T5,) - Ez(b”‘)‘ T+ banTy) +0(8)) (2A.16)

In spite of the attraction of the symmetric form (2.16), we shall rather use the original
form (2.14*), the advantage of which will be evident presently.

We next consider the simplification effected in the strain measures by applying
the approximation scheme to expressions (2.16). The first relation (2.16a) for the
transverse extensibility is unaffected, namely

Y33 = VU3 (2A.17)

whereas, by noting the approximations (1A.9), we see that relations (2.16b) for the
transverse shear strains may be replaced by

A A 2
Dy, = Uy + Uy + 2660, + 2260 b vy + O(67) (2A.18)
Moreover, observing that
A 2\ 2\
Vg + 220, bhu, = (v, + 2 b, b B .-z b, b Uy (2A.19)
it is consistent with neglecting effects of order 62 to set

Uo + 22b) bh vy = v, (2A.20)

a3

and hence (2A.18) may be replaced by the approximate form

2y 3 = Uy, U, + 200 by (2A.21)
In obtaining the third set of measures (2.16c) we utnhzed relation (1.88d) for the
covariant derivatives: if we neglect terms of order 0 we may use formula (1A.19d)
in place of (1.88d) in this latter derivation and obtain the approximate form

I A A
’Yaﬁ = E(Uﬂ,ﬁ + UB a) + zbaﬁ U)\ - (btxﬁ b’ zba b)\B)UJ (2A.22)

for the laminar strains.

We now combine the above relations to obtain the approximate stress-displacement
relations. In (2.19a) we use relation (2A.17) on the left and intrgduce formulae (2A.1%)
and (2A.6*) on the right: after neglecting terms of order 8~ we have

SO+ (g -l = 20, 1) (2A.23a)
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Using the approximate form (2A.20) on the left of (2.19b) we insert formula (2A.10%)
on the right: if we neglect effects of order ~, we are lelt with

U'l.u + Uu,

S+ vy = S0+ 2H) Ty, shh Ty (2A.23b)
For the third stress-displacement relation we substitute the approximate form (2A.22)
into the left of (2.19¢) and then introduce formulae (2A.1%), (2A. 6*) and (2A.16)
into the right: if we also’nole the approximation (1A.7a) for G' ;» then the omis-
sion of terms of order §” yields after some rearrangement

1 A A
i (U(v ] * U.i (v) t :bu-.d' Uy — (baﬁ B Zbu' b}\d)u"
1 . A kX
= E, (l + 2.,H)[(l +r) ij 2 g”ﬁ (,l‘r}\ + v, T )]
A N on A 3
- — y[(l ) (2h Tyt by T'x) g l'/)“ T‘)\ - 2b pvry + v T 1)] (2A.23¢)

The advantage of using the unsymmetric form (2A.14*) now becomes evident from
an inspection of (2A.23c). The symmetric form of the strain measures on the left
implies symmetry for the g\ight hand side: this yields symmetry for the quantigy
(1 + 2zH) 7, — zb,, 7,] which, consistent with neglecting effects of order 67,
is equivalent to the condition
b Ty = by T (2A.24)

T

wl T

This is the covariant form of condition (2.13a). Hence, when we consider the stress-
displacement relations, the use of the unsymmetric form in the right of (2A.23¢) im-
plies conditions (2.13a) making redundant the explicit imposition of the latter.
However, in our analysis of the equilibrium equations we shall, for the present, treat
(2.13a) as an independent condition.

In the sequel we shall confine our consideration to the boundary value problem
consisting of the exact equilibrium equations (2.10) and (2.13) together with the ap-
proximate stress-displacement relations (2A.23) and subject to the boundary condi-
tions (2.30), (2.31) and (2.33).

3. The Normalized Formulation

To the boundary problem consisting of the exact equilibrium equations and boun-
dary conditions complemented by the approximate constitutive relations, we now give
a normalized formulation by introducing the dimensionless thickness variable 7 defined
by

3.1)

>
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As the thickness 4 is constant we have

a - ar
— =0 9z

ax

I
% (3.2a,b)

so that only the z-differentiation is affected by the transformation. The interior of

the shell ® as given in (1.93) corresponds in the transformed coordinate system
(x%,t) to the region

R, “l=rs 4l Y(x) =0 3.3)
whose boundary is now described by the pair of faces
t=%1, Y(x) =0 (3.4)

together with the edge surface

—“l=r=+1,x=x"(p) 3.5)

We now introduce notation reflecting the effect of the transformation (3.1) on
the field quantities. In terms of the new coordinates, we write for the laminar stress
quantities

A A
Pt = Pt (3.6a)
and fOl‘ the transverse normal stress we set

o(x ) = 7o 2) (3.6b)

In transforming the transverse shear stress quantities, we distinguish between the shear
stress

2ot =0 (3.6¢)
and what we shall call the reciprocal stress
o0 = M) (3.6d)

In the transformed displacement quantities, we separate the transverse component
from the laminar components by setting

ua(xx,t) = ua(.\'x,z), a=1,2: w(.\')\,l) = UJ(.\‘)\,Z) (3.7a:b)
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For the relevant edge values, we set

oaﬁ(n,l) = [aaﬁ(xx,t)| = Tﬂﬂ(n,z) (3.8a)

xx=xx(n)

@ a, A a3,
T (n,0) = [T (x ,I)J =7 (1,2) (3.8b)
N
x =x (7n)
and for the associated applied edge stress vector, we write

T (,0) = 2%(mz), T(n,0) = Z (0,2) (3.9a,b)

completing the notation necessary for the statement of the transformed boundary
value problem.

In the above notation and with a slight change in the indices, the differential equa-
tions of equilibrium (2.10) become

ha™*|g - hbG 7" + 0%, = 0 (3.10a)

hl, + kb ol + 0, = 0 (3.10b)

while the symmetry conditions (2.13) reads

ao‘ﬁ - thb: a)\‘6 aﬁa - Ihbf a)\a (3.11a)

= thb 1 = 6" (3.11b)

Moreover, the approximate stress-displacement relations take the form

Wi = 2 (1 + 2hHO) 0 = v, %{(1 + 20H1) o) = thb, o}l (3.12a)
k4
A h A
Uy + 2hby uy + hw,, = ZE ((1 + 2hHt) o, — thb_ a,) (3.12b)

1 A A
3 ("aw -+ uﬂ,a) -+ thbmﬁ uy — (buﬂ - thb, b)\ﬁ)w
1 N
= E(l + 2ZHD)[(1+v) Oup — gaﬁ(ua)\ + v, 0)]
h A A A A
- E (L +v) (2b,y 05 + bgy 0,) — &4p ub“ a; = 2b,p(ray + v, 0)] (3.12¢)

complementing equations (3.10) and (3.11). For the laminar and transverse rotations,
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we write

<
|

= %("1,2 — ) (3.13a)

[3) =—-l—(u

«= 3% - hw,,) (3.13b)

a,l

respectively replacing formulae (2.17*) and (2.18%).
Writing the boundary conditions (2.30), (2.31) and (2.33) in the transformed nota-

tion, we have

f= -1, YD) =0 & (x-1)=0, o(x',-1)=p  (3.14a,b)

and
f= 41, YD) =0 S +1) =0, o(x,+1)=p  (3.153,b)

respectively for the conditions on the lower and upper faces, while the set of constraints

o™ (1) ng(n) = (1) (3.16a)
Sisrs+1, % = X ()
™ (n,1) n(n) = T(n,1) (3.16b)

express the conditions on the edge surface.

The boundary value problem now consists of the determination of the solution
of the system of equations (3.10) to (3.12), valid in the region ®; of (3.3) and satis-
fying the conditions (3.14) to (3.16).

4. Stress Representations: The Face Conditions

The reformulation of the problem in two dimensional terms requires, at the outset,
that we integrate the differential equations of equilibrium (3.10) with respect to the
thickness coordinate. This integration is facilitated through the expansion of the stress
quantities in terms of Legendre polynomials, in which the Legendre functions reflect
the transverse variation as separated from the implied dependence of the coefficients
on the laminar coordinates. The symmetry conditions (3.11) yield the system of rela-
tions that must hold between the coefficients in the respective expansions while the
application of the face conditions leads to the equations to be satisfied by the lower
coefficients.

We start by considering the Legendre series expansion for the laminar stress ten-
sor o*? together with the associated representations for the transverse shear and
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reciprocal stresses 7~ and ¢”. By utilizing a recursion formula for Legendre func-
tions in the symmetry relation (3.11a) we obtain the symmetry requirements on the
laminar stress coefficients. A similar procedure in the symmetry condition (3.11b)
leads to a sequence of formulae expressing the elements appearing in the representa-
tion for the reciprocal shear stress ¢” in terms of the coefficients in the expansions
for the transverse shear stresses 7.

We next introduce the series for the laminar stresses ¢°” and for the shear stresses
7 into the first equilibrium differential equation (3.10a) and by means of a second
recursion relation for Legendre polynomials we integrate and obtain the implied Legen-
dre representation for the reciprocal stress . The form for the coefficients in the
expansion of ¢ thus obtained, when combined with the expressions already derived
from the second symmetry condition, yields the sequence of relations connecting the
coefficients in the representation for the transverse shear stresses with those in the
original expansion for the laminar stress tensor. By repeating the integration pro-
cedure in the second equilibrium differential equation (3.10b), we obtain the
corresponding Legendre series for the transverse normal stress.

The two successive integrations introduce in turn an undetermined first order ten-
sor and an unknown function. The satisfaction of the conditions on the upper and
lower faces leads to a set of four relations involving these latter quantities together
with the first two coefficients in the initial expansion. By appropriate combination
of these relations, we obtain

(1) a system of coupled partial differential equations involving the zero-th and

first laminar stress coefficients together with the zero-th transverse shear stress
coefficient.

(2) an expression for the zero-th transverse normal stress coefficient.

The first system can be interpreted as the well-known integrated equilibrium equa-
tions of shell theory.

If we denote the Legendre polynomials of degree n in # by P, (), the polynomials
resulting from multiplication by ¢ can be expressed in the form*

n+1
2n+1

P, (1) = P, (1) + ~P, (1) 4.1)

W
2n+1
Employing a dot to signify d/dt, we have for the difference between differentiated
polynomials

@un+1) P, (1) = P, (1) — P,_ (1) 4.2)

which in its integrated form, apart from an additive term independent of ¢, reads

1

S”n""“ﬁ

[P,,+|(’)_P,,_|(’)] (4-3)

* For the derivation of other recursion formulae (4.1), (4.2) and(6.1) for Legendre polynomials, we refer
to § 15.21 of ‘““Modern Analysis”’ by E. T. Whittaker and G. N. Watson, C.U.P., Cambridge, 1952.
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Relation (4.1) will be utilized in the symmetry relations (3.11) and formula (4.3) will
effect the integration of the differential equations (3.10).
We write the expansion for the laminar stress tensor in the form

w (1)

Pty = Y s®N P (4.4)
n=0

in which the coefficients are undetermined functions of x)\. Considering the left hand
side of (3.11a), we introduce the expansion (4.4); and by means of the recursion for-
mula (4.1), we obtain the Legendre series representation which, after a rearrange-
ment of terms, reads

8 N ()] (l))\
o = thp} ™ = (5% = L hoy 5™
- " e
3 a n n
+ E [ S - hb)\(m S + 743 S )] P" (4.5)

n=1

where we no longer exhibit the explicit dependence on the coordinates. When the
expansion (4.5) is substituted into (3.11a), the orthogonality of the Legendre
polynomials requires that the symmetry condition be satisfied for each term in-
depenc(lsr)ltly: we are thus led to a sequence of symmetry conditions on the coeffi-

cients S*°, namely

(0) () (0) [0}
5% - 3 ney 8% = 5% - L S™ (4.6a)
B T VB N
S o5y METFE )
= (;)ﬁ" - et (I (";l*)" At ("-sH‘)") n=1 (4.6b)
B A 2n—1 2n+3 T ’

In a similiar manner when we consider representations for the transverse shear and
reciprocal stresses in the form of the Legendre series

w (n) o (m)
A=Y GNP, o= D ST P (4.7)
n=0

n=0

we see that the symmetry relation (3.11b) is equivalent to the following sequence of
relations between the coefficients

(0) (0) 1 (l;i
[+ 4 a [+ 4
$%= 1"~ Shbg T (4.82)
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(n) (n) (n—ﬂl) +1 ("+ﬁ”
o o o n n
= -_— + = *
S T hbﬁ(Zn—l T T3 T), n 1 (4.8b)

These will be used to relate the shear stress coefficients to the laminar stress
coefficients.

In the integration of the equilibrium equations, we first introduce the expansions
(4.4) and (4.7a) into equation (3.10a): after a transposition, we have

3 (")ﬂ w (1)
o= -h Y sPp, +n05 Y P, (4.9)

n=0 n=0
and the integrated form follows from the application of (4.3). At;toe)r a rearrangement,

we may write the resulting series in the form (4.7b) in which the N (x)‘) are the com-
ponents of an undetermined first order tensor introduced by the integration and the
higher elements are related to the laminar and transverse shear stress coefficients by
the formulae

(n+1) (n-1)

(n+1) (n—1)
(;)a . sﬁalﬁ_ sﬁulﬁ ) hb"‘ T;J ) TB . (4.10)
- 2n+3  2n—1 Bl 2n+3 2n—1|'" 7% i

By identifying the two alternative expressions (4.8b) and (4.10) for the higher elements
in the expansion for the reciprocal stress, we obtain the sequence of formulae relating
the higher shear stress coefficients to the constituents in the original expansion for
the laminar stresses, namely

(n+1) (n-1) r
() SBa|B Sﬁulﬁ | (n+ﬂl) | (n—Bl)
@ 4 n n+
= h —— I - .
7 5n%3 " st | TP a3 T T aaoy 7| 0nE! @I

The second differential equation is treated in an identical manner. After substituting
the series representations (4.4) and (4.7a) into (3.10b), we transpose and obtain

w (1) w (1)
o= -h Y 1. P, —hby Y sip, (4.12)
n=0 n=0

the integration of which is also effected by means of formula (4.3). Rearranging we
see that the Legendre series for the transverse normal stress may be written in the form

w (1)
o= Y o) Pun (4.13)
n=0
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(0)
in which ¢ is undetermined and the higher terms are related to the laminar and
transverse shear stress coefficients through the relations

(n+1) (n=1) (n+;3) ("_[li)
A e T2 | s 4
7 sns3 an1 | P He | 3pg3 T aaog | 0" @A

Before applying the face conditions, we recall the terminal values of the Legendre
polynomials, namely

P(-1)=(-1" P,)=1 (4.15)
which, when used in the expansions (4.7b) and (4.13), give for the face values of the
reciprocal and transverse normal stress, respectively

(0) ® (n) 0 o (1)

)
(N -D= 5"+ ¥ (-0 57 S+ = 57+ Y ST (4.16a,b)
n=1 =1
0) ® (n) \ (0) o (M)
a(x)\,—l) = o0 + (—l)” g, g(x ,+1)= 0 + E ¢ (4.17a,b)
=1 =1

()
If we insert formulae (4.10) for the S into (4.16) and note the cancellations
resulting from the recursive features of (4.10), we find

N 0) (O)ﬁ I “)ﬁ (0;i I (1}3

o (=) = ST+ h ST~ S h Sy —hbg 7 + 3 hbg 7 (4.182)
. © © Lo o

TS ISR Ly R 3h s hoh 4 Fh05 7 (4.18b)

Similarly by introducing formulae (4.14) into (4.17) and making the corresponding
cancellations, we obtain

N 0) (0) 1 N (0) 1 N

a(x", =) =0+ h 7|, - 3h I, +th Sg - ghbg Sﬂ (4.19a)
N (0) ()] 1 ) (O)B 1 (n

0(.\’ , + l) =qag - h Tala _ § h Tala —hbg Sa - 3 hbg Sg (4.19b)

By means of the above relations, we may now write the face conditions in terms of
the coefficients appearing in the expansions (4.7) and (4.13). The face conditions
(3.14a) and (3.15a) become

0) (O)ﬁ 1 (l)ﬁ (0) 1 QD]
R PR YV T 3 hbj P =0 (4.20a)
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and

(0) (O)E 1 (l)j (o) I N
o o da a { 3
$* —h 7y~ 30 ST+ hbg 7 43 hbg T =0 (4.20b)

respectively, while conditions (3.14b) and (3.15b) take the respective forms

(W] (0) ) () (0)Ij ) (n
o y
o+ h 1", = 3 h 1l + hb Sq 3 hbg st =p (4.21a)
and
) 0) 1 9% (O)ﬁ { “)B
o o a [+3 +
o—h T |a - 3 h T |u - hbﬂ Sa - g ’le Sa =p (4.2]b)

The subtraction and addition of relations (4.20) give respectively
(0 (0)

sP - b5 7 =0 (4.22)
and

ns™g - Luvg 7 (4.23)

while the corresponding combinations of relations (4.21) give

(0 (0)

2h 1%, + 2hbG Sh 4 p =0 (4.24)
and
© | m | (l)ﬁ |
[+3 o
0=§hT|a+§hbﬁ Sa+5p‘ (4.25)
respectively, where we have used the notation
p*=p +p . pP=p -bp (4.26)

for the pinching and bending effects of the surface pressures.
Relations (4.22) and (4.24) respectively yield the relations for the completion of
the systems (4.10) and (4.14) by providing the omitted form for %he case n = 0 in
(0)

each set. Furthermore, the identification of formula (4.23) for S* with the alter-
(0) (n
native expression (4.8a) leads to the equation relating 7~ to the 5% in the form

(0) | (H_3
=3 hST 4.27)
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thus furnishing the excluded formula for the completion of the system (4.11).
The system of equations (4.22), (4.24) and (4.27) are in fact the well-known in-
(0)
tegrated equations of shell theory, We may use (4.27) to eliminate 7" from (4.22)
and (4.24) to obtain, respectively

(0) (1)

Ba I a _ B\
ST g = 3 hby ST, =0 (4.282)
and
3 ST+ 2mb5 55 4 5 2 g (4.28b)

The alternative system (4.28) constitutes the coupled set of equations to be satisfied
by the zero-th and first coefficients in the expansion of the laminar stress tensor.

We may put these equations in more familiar form by introducing notation for
the integrated quantities. Defining the stress resultants N** apd Q% and the stress
couple M*? by

(3}

h 1
NP = |8 j P dr = 2y 598 (4.292)
“h 2
I 2 (' 2,20
M* =f 27 dz = i f to® di = Zh" s° (4.29b)
“h ~1
h ; 1 (0)
O =) Parn | gy e (4.29¢)

~h -1

then equations (4.22), (4.24) and (4.27) respectively become

Ne| - b 0" =0 (4.30a)
Yl + 05N+ p = (4.30b)
Q" - M*|, =0 (4.30c)
from which the elimination of 0° yields
Ny = by ™ = (4.31a)
af a B
Mg + bg N, + p =0 (4.31b)

quivalent to the set (4.28).

e S

-

e

V‘-—-.:——-_u-—_—l.—‘v—_..-n_-.‘-“r_‘-\_. -

|
|
|
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4A. Approximate Form of the Transverse Stress Coefficients

The three systems of relations between the coefficients, namely (4.10), (4.11) and
(4.14) may now be inverted so as to EXpress the elements appearing in the representa-
tions for the transverse stresses, in terms of the laminar stress coefficients. 1f we
introduce the approximation scheme, this can be carried out in a straightforward
manner to any desired degree of accuracy. As we shall have use only for the first
approximations of these expressions, W€ shall include only those first order terms:
the exclusion of the higher order effects considerably simplifies the inversion.
Starting with the relations for the transverse shear coefficients, the required form
for the zero-th term is already given exactly by (4.27) which, for convenience, we

repeat here
) M

o 1 B
== Lns™, (4A.1)

1
exact form for rﬁ but the expression for 7 must be introduced from (4.11) with
n = 2. However, in this latter substitution, the second bracket, si(x(})ce it would give

For the first coefficient, we consider (4.11) with n = 1: we substitute the above
(0), (

rise to effects of order 02, may be omitted: if we also substitute for Sﬁa\ 8 from (4.22)
and rearrange, Weé have
n 2) 3 (m

o Ba 2. a1 A8 4 NGl
o Lys, e wbyls S oty S W (4A.2)

1
5 15
)
The formula for 7 is obtained in a similar manner(gvith the added feature that
)

besides omitting the second bracket when introducing ® frlom (4.11), we need only
(

consider the first term in (4A.2) when substituting for 1'6: after combining like
terms, We obtain

4)

(2) (3) m \8 ) (Z)XB
& RENE I (4A.3)

(
_ 1 B 1 Be 2,0, 2
T —h[7S \ﬁ———iS Iﬁ] -fth —6—3—

The same pattern is followed for the higher coefficients for which we need use only

relation (4.11). We consider the gen?rall)form( amgi use both the preceding and
n-— n

succeeding formulae to substitute for 7 and 7 respectively: omitting terms of
over 8, we rearrange and find

r (“+}a) ("—;i)
(n) a o
| S
| 2n+3 2n—1

(n+2) (n ))\6 (n —-%\)ﬁ
)
n SV 3 5™, (n+1) S

2| - 2o L SER S Y  n=3 (4A4
+h bﬁ (2n+5)(2n+3)+(2n+3)(2n—1) (2n—l)(2n—3) n=3 (
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obtain for the zero-th coefficients.

(0) (n . (2)w
g — Tsh by 8™, (4A.5)

For the first coefficient, we userelation (4. 10) with "(ﬁ I, and note the cancellation

resulting from equation (4.22): if we then introduce ° from (4A.3) and neglect ef-
fects of order 02, we have
o o o
S =ghs™y -y bglys s h =15 8K (4A.6)
(2) (8} (3)
For S we take (4.10) with h = 2and ir;troduce 7~ from (4A.2) and ,° from (4A.4)
with n = 3. omitting terms of order 67, there follows

(2) (3) (n 4) (2)

a 1 .6 1 Ba 2 1 AB 2 A8
s =/1[7S“]B—§S lg] = & bylgg S |A—ﬁs N (4A.7)
(3) (2)

) Saulg Sﬁa,ﬁ
=
2n+3 2n—1
o .
s™ 2 5™ ™
n 2 o A _ A >3 4A.8)
k™ bg 2n+5)(2n+3) (2n+3)(2n—l)+(2n—l)(2n—3) =3 (

(n (€3] (3)

> T B N
Mt 3 ko) SN+ 3P4k (15 @, s™0, +
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For the first coefficient, W€ consider formula (4.14) with n = 1; after introduc-

mg + from (4A.1) and T“ from (4A.3), we rearrange the terms: if we then use equa-

tion (4.28b) to eliminate S , there follows
m 2(3)x 3 Lo o
o=t S Maw 52 F 5, st + S
(2) ) (4)
___ s ne,
+ h [ (b s* ))\ n 5(b S .“)|)\1 (4A.10)

(n

}gl a similar manner, W€ use formulae (4A.2) and (4A.4) to substitute for 7 and
)
7 respectively in relation (4.14) withn = 2, which on rearrangement then becomes

(2) (2) (4) [§% 1(3)
5 +€3-s x1-111;[fsx-—sx]
(1) (5)

u)x—fs’l(b s*,, 1 (4AID)

(2) ) 3
After introducing ~ from (4A.3) and 7 from (4A.4) into the formula for o

—h [———(b

as given, by (4.14), we may again use equation (4.28b) to eliminate S . after
some rearrangement, we obtain

3) (3) (5) (0) (2) 4)

3 _l_ A _l_ A 1 B 1 1 B 1o
=hl-7355 et 59 S bl 107 hb [ sh o+ 5 sh- g SN
3.2 )\(2) 1 )\(4) (6)
— “ ne L ne, e SH
W1y (b, S 1D, T 95 (b, S 1, 1287 (b RIN (4A.12)

(n+1) (n-11
For the higher coefficients, it suffices to substitute for S and 7 from (4A.4) into
(4.14) and rearrange: we find

(n—2) (n) (n+2) 1

(2n—3)(2n—l) (2n——1)(2n+3) (2n+3)(2n+5) |
(n-1) (n+1) .
sy sh

A
_hbl‘ 2n—1 T 2n+3

)\('1—3) )\(n--l)

up np
’3| n(b, S°1), (n+3)b, STL,
- e 7T

' ll (211—5)(2n—3)(2n—l) (211—3)(2/1—1)(211+3)
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)‘(n+l) )‘(n+3)
(n—2)(5) s“"g“).A (n+1)(b) s“"lﬂ)_A

* @n=DQ2n+3)2n+35) ~ Qn+3)2n+5)2nr7) | " 24 (4A.13)

thus completing the determination of the transverse elements in terms of the laminar
coefficients.

stress coefficients 7%,

(0) n (0)
The edge conditions thys obtained for the coefficients 5, 5 and 7" are

quilibrium equations (4.28). F

The derived conditions on the remaining coefficients (8 n > . ™ n =1y

dmplement the system of equations for the higher coefficients to be described later.

S these latter €quations will be formulated exclusively in terms of the laminar co-

Ticients, it is desirable that the associated edge confiit)ions also be so defined: this
n

ill be done by transforming the conditions on the 7% into equivalent conditions
(n)

| the $% -
If we write for the edge values of the coefficients

(n) (n) (n) (n)

—_ w (1) - o (m)

o 1) = L s rn, o < L 0P (5.2ap)

n=0 n=0

anding the components of the applied stress distribution vector in the form

o (n) «w (n)

"= Y T%(n) P(1), T(nt) = L TP  (53ab)

n=0 n=0
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it follows directly that the three edge constraints (3.16) are equivalent to the three
sequences of conditions on the coefficients

T (n)
s () ngn) = T (m)n =0 (5.42)

X=X
- KTy (n)

75(@) ng(m) T(g),nz0 (5.4b)

In particular we have the conditions

© (0) o (n © (0
%) ng(my = T (m), S “n)ng(m) = TO(n), 7 () mg () = T (1)
(5.5a,b,c)

associated with the system of equilibrium equations (4.2(2), (4.24) and 4.27).
ny
In transforming cc(mditions (5.4b) on the coefficients +% into an equivalent set
n

of conditions on the S "ﬁ, we use relations (4A.1) to (4A.4). If we write successive-

ly the formulae for the transverse shear stress coefficients with even index n, then

from“(4A.l), (4A.3) and (4A.4) we have the following sequence of relations for
(2k)

the 7
(O)a 1 h(;)ﬂu
T =3 lg
(2) 3) (1 5 (4))\ (1))\
= hl s 5™ - L™ e byl S+ L5
(4) (5 (3) , (6))\ (4))\ (2))\
= hlgr S L 5™ + bl ag S ot 2 ST - LM
(2k+l)‘ (Zk—l)
(ZAT.L » s, 5o,
ak+3 | 4k—1
(2/\'+;’.\) (2/\'))\ 2k ';’.\)
i 2k M, L3S b, @k+D S I
B | (dk+5)(4k+3) @k +3)4k—1) 4k —1(4k=3)
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which, when added, give, for k > 1,

,=Eo T =mh S ]ﬁ+mhbﬂ s™
2k +3 2 o,
+W" bg ST\ k21 (5.6)

while the case 4 — 0 is covered by (4A.1): actually (5.6) can be used for this cage
also if we note that the second term vanishes and that the third s of order §° by
virtue of (4.22). By multiplying by the factor (4k +3), we may write these relations
in the alternative form

8 ©
hS™y =3~ (5.7a)
(2A+t;) 2% 5 (Zk+>31)3 2%+3 2 (2/\)}\ k (21)
a +
"S5ty s Nt ST ey s =Gk 3 ks

Summation on these relations for the Ta» We oObtain for k > |,

(k~1) (2i+1) (2k) 2k +1)

a Ba 2k—1 2, a AB
T T @S o @SRy 0 s

i=Q

(21\';i 2 2 (2k+>{t)3 2%+ 3 (Zk—;) k—11(2i+1)
o - a + (53 8 o
sa=1 St = =1,
s Y3l S ]A+4k_]h by §™, (k+1) ¥ 7% k>

i=0

e ——

e

e ——

S——
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We shall use relations (5.7) and (5.9) only at the edge values; if we set

2k + 1) k) (21)

D(n) = 4k+3 L T(n., k=0 (5.102)
i=0

(2Kk) (k_l)(2i+l)

D =wk+ Y T (m, k=1 (5.10b)
i=0

we see that (5.4) is equivalent to two sets of conditions, the first of which are

o © (0 M m

1
§Pmg= T g = T RS lgna =P (5.11a,b,0)

while the second set consists of the remaining condition

) (n)

sy = T n =2 (5.122)
(n)‘3 1 2__(n+l)‘3 5 ,— (n—;\)ﬁ (n}
s n— A n+ 2 o
n 8"y + 33 by S et T " by S e =D nz2 (5.12b)

in which the bar is also used to designate the edge values of the components of the
second fundamental form.
The set (5.11) equivalent to conditions (5.5) are associated with the alternate form
(4.28) of the equilibrium equation. The second set (5.12) complem(er}ts the system
n

of differential equations for the higher laminar stress coefficients { S uﬁ, n = 2jto
be formulated later. However, in tl‘1e first condition of the sequence (5.12D) there
)

also occurs the laminar coefficient SO‘B: thus, it would be more appropriate to write
(5.12b) in the form

v o

(2) (3} (2) 1

27a M 2 A
B s™gng + g bZSﬁ\)\nu=D—%h o sV
|
ro(5.127)
(n)‘3 ) 7'—'("+;\)ﬁ 5 s (n—l)\)‘3 (n) ||
o - 2, a n+ o
RS lgna t 2% hbg S by Wy F 2n—lh by S Iy = p,n=3 |

4}

in which quantity S B ¢ now presumed determined. Thus, in the case of the shell
the principal problem must be solved prior to the analysis of the residual problem
this is further discussed later.



(n+1)P, (1) P, (1) nP, (1)
Puln) = @n+3)GasD * Crn+3)En=Ty - Q@n+Di2n-1y (6.1
which, apart from an additive term independent of ¢, yields
(n+ 1P, (1) P, (1) nP,_ (1)
j Py (1) = @n+dansn * 2n+3@n=1y ~ Qn+Den-1 (6.2)
We introduce the dimension]ess constants A, and A by setting
) ) = E
A‘_E_’ A(l+z)_B (6.3a,b)

W= B0+ 2np0y (A0~ 4 o) +r,1hbot) (6.4a)

Uou = 28BN+ 0)[(1 4 2hHD o, ~ thoay] - o, - 2hbNu, (6.4b)

where the purpose of the transpositions made in the latter equation will be recognized
i .+ from (6.4b) into formula (3.12b), we
»btain, for the transverse components of rotation, the alternate eéxpression

AL+0)[(1 + 201y — thbyo,) = v, - bhu, (6.5a)

wa—

tryf =

hile we retain the original form
Y= Zl(u,,2 - uy ) (6.5b)

r the laminar rotation.
If we insert the €xpansion (4.4) for a"ﬁ, together with the related representation
13) for o, into the right hand side, we obtain the series form of the differentija]
lation (6.4a), namely

@ () (n) o () (n) o (1)
=20y oo v SOP, + 20 L Ao-u ship vty ¥ Stip )

n=0 n=0 n=0

(6.6)

e ———

e

e
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The application of the integration formulae (4.3) and (6.5) yields the Legendre series
for the transverse displacement in the form

w (1) N
= Y wx) P 6.7
n=0
(n)
in which w isan unknown function introduced by the integration and the higher

coefficients are given by

(+y D) -1y D)
(:v)*‘—ﬁ A, 0 — 7 S)\_A, g —v, S
- E 2n+3 2n—1
(n+2) (n+§\) (n) (n))\ (n-2) (n-?).\)
hH (n+2)(A g —v, S\ Ao —v, S (n—1D(A, o —-v, SN
» * _ - - . * *
* Gn+52n+3) GrniHan-1 Gn-n@en-3
(n+2) (n) (n-2)
(n+2) S\ sk (-1 S\

2 Sy ey A
+v.hb, ; an+o@en+d @n+3@n-D @n-1nen-3)

n=1 (6.8

Although the last terms in each of the square brackets have index (n—2), their in-
terpretation for n = 1doesnot require any special attention since, in each case, they
are multiplied by the factor (7~ 1).

The most convenient way to effect the integration of the dif ferential equation for
u,is to anticipate the Legendre series for the laminar displacements, namely,

o (1)
u, = E uu(x)\) P, ) 6.9)
n=0

in the transposed terms involving the i, on the extreme right of {6.4b). The integra:
tion then leads to @ sequence of equations for the determination of the coefficients
which can be readily solved to the desired degree of accuracy.

If we introduce the expansion (4.7b) for o, together with the representations 6.7
and (6.9) for the displacement quantities, into the right hand side of (6.4b), we obtai
the series form of the differential equations for the laminar displacements, namel
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P w (1) w (1) N (n)
“a = 2E A(14y) Y S, P+ 2mm ) Sq 1P, ~ hb) X s, 1P,]

n=0 n=0 n=0

w {(n) (n)

“h X wl, P, - 2np} Y wP, (6.10)

n=0 n=0

since, for invariant Quantities, t
application of formulae (4.3) and (
after some rearrangement, we obtain, for the laminar displacements, Legendre

equations

(n+1) {(n=1 (n+1) (n—-1)
(1,1” ZhA(l+ ) S, S, . howl, h wl,
= - —_ v T - - T - —__ Y

= E 2n+3 2n—1 2n+3 2n -]
(n+1) (n—1)

u u
+2hb} oD

(n+2) (n) (n-2)
(n+2) Sa S (n — 1) Su

h a
T2EAU+N {2y (211+5)(2n+3)_(217+3)(2n—])_(Zn—l)(Zn—3)

{(n+2) (n) (n=2)
A (n+2) S, Sy (n—1) Sy
(2n+5)2n+3) Q@n+3)2n=T) = 3= N(2n=73)

=1 (6.11)

(n—-1) (n+1)
into each of equations (6.11), we introduce #, and U, from the precedh}g
1the Succeeding €quations, respectively, then on neglecting effects of order 6°,
obtain the explicit expressions for the laminar displacement coefficients in the form

e —
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(1) (0) )\(0) " [{)] l(2)
u, = —hwlg = 2hba i + 275-1\(1+u)[su -5 S

1 Q] 1 3) N (1) 1 (3)
f s - —= - s -=<S
r2p AQEY) {2“1( LS. 35 s.) - hbn(75 Sx 7~ 33 Q}

) (2) , 1 (1) | (3)
+ —S-h { wi, ~ 2hba(§ w- g "')\)\} (6.12a)
(n+1) (n-1) (n+1) (n—1)
(n)
h Sa S, howl, h wl,
= —2=A(1+ _ .
Yo FAHY 553 7 an- + | an3 2n-1
(n+2) (n) (n—-2)
h w 2h w w
+2hb, L S 2wl oovh
(2n+5)(2n+3) (2n+3)(2n - 1) (2n— nERn-3)

-
| (n+2) (n) (n-2)

T |I hH (n+2) S, s, (n=1) Sq
-2 — + - R PSS TS
E ") Gnin@en+d  @neHen-bh an-nEn-3

|
L

r (n+2) (n) (n-2) I1|

i I 35, _wEb S, |
2 |L (2n+ 5)(2n +3) (2n + »nERn-1) 2n-12n- 3) '~

J
,n=2 (6.12b)

(n)
By substituting into expressions (6.1(2), the formulae (4A.5) to (4A.8) for the S,

n)
as well as expressi?ns (6.8) for the W, together with the implied formulae (4A.¢
n)

to (4A.13) for the o , W€ could obtain the set of formulae expressing the lamin:
displacement coefficients directly in terms of the laminar stress coefficients.
From the Legendre series for the stress and displacement quantities, we now deri
the corresponding representations for the rotation components 6.5). Utilizing t
expansion (4.7v) for o, together with the series (6.7) and (6.9) for the displaceme
quantities, formula (6.53) becomes
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w ()

) sap,,+2th:

n=0 n=0

(n}) e
SqtPy — hby ¥

n=0

(n)
1
We = E A +0) [ S\ tP,]

o (n) o {(n)

L =62 Y u p, (6.13)
n=0 n=0

(n)
A
Wo = 3w (x) P (1)

(6.14)
in which the coefficients are given by
(0) (0) (1 N (1) (0) }\(0)
Y = 2 A(14y) [ Su+3nHs, - 3 hb) SAJ ~h Wy~ b uy (6.153)
(n) I (n) (n=1) I (n+1)
ol o ntli )
O = F AT+ [SQ+2I1H =T Sa* 34y Sa '
(6.15¢)
] (n-1) (n+1)
i n n+l )
fbq (Zn—] St s S J
(n) (n})
~h wlu - bi wly ,nzl
The corresponding representation for the laminar rotation (6.5b) reads
w () .
V=3 v P ) (6.16)
n=0Q
'ith the coefficients given by
(0) ] (0) (0
Vo= 5(14,_2 - uy,) (6.17a)
() (n) (n)
¥ =E(u,'2— uy,), nz=1 (6.17b)
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(n)
where, in the latter, the u, are 1o be substituted from (6.12).

For the undetermined quantities introduced by the integration of the constitutive
relations, we note that

1 h 1Sl (0) ) Sh
h __,,v“dz'__f _‘uadtz Ugr S _hu3dz=

0)

|
S wdt = W (6.18)
1

[

©) (0)
so that u and w, respectively, represent the mean laminar and mean transverse
0) (0)

displacements: similarly ¢, and o, respectively denote the mean laminar and mean
transverse rotations.

We have now concluded the approximate integration of the three dimensional equa-
tions with respect to the thickness coordinate. Except for the undetermined mean
values, all higher coefficients in the representations (6.7) and (6.9) have, to a first
approximation, been expressed in terms of the elements of the original expansions
(4.4) for the laminar stresses. This completes the determination of all field quantities
in terms of the unknown laminar stress coefficients and mean displacements.

7. The Equations for the Unknown Functions

From the third constitutive relation, we shall derive the equations to be satisfied by
the mean displacements and by the higher laminar stress coef ficients. These together
with equations (4.28) then constitute the full system of two dimensional equations
describing the three dimensional problem.

We first introduce the representations for the displacements into the left hand side
of (3.12c) while into the right hand side we introduce the corresponding expansions
for the stress quantities. By rearranging we can then write each side as a series of
Legendre polynomials, the orthogonality of which implies equality for the correspond-
ing coefficients. This yields an infinite sequence of equations for the unknown
quantities. Although the effect of the curvature results in the complete coupling of
the system, so that mean displacement terms appear in the higher (i.e.n > 2) equa-
tions, we shall nevertheless refer to the first two as the equations for the determina-
tion of the mean displacements, and consider the set consisting of the remainder of
the sequence as the system for the determination of the higher laminar coefficients.

Replacing the displacement terms in (3.12c) by their Legendre representations 6.7)
and (6.9), we apply the recursion formula (4.1) and rearrange so that the left hand
side takes the series form

® [ ) ((n) (n} (n) \ (n—1) l(n+1)
—\u_g+ U ) —b_,w+ hb ( L Uy + _n+l )
nz=:o |_2 ol Ble of aB\zn-1 " Znrs

N (n—1) ](n+|) 4
n n+
+hbmbm(———2n_I w5 w ) P,
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where the terms with index (n — 1) do not require any special attention for n = 0,
since they are multiplied by n. Similarly by introducing the expansions (4.4) and (4. 13)
for the stress quantities, we again apply the recursion formula (4.1) and rearrange
to obtain the corresponding Legendre series for the right hand side, namely

. r ) (n=1) I (n+1)
1 ( n n+ )
EL U0 | S+ 2mH 5T Sus t ey Sus

n=0 |

(n—i) ) (n +;\) (n—;\) n4l (Il+;\)
n n+ > _ (L ntloe )
CHboN\gnoT Set gars Se) ez Sev 2n+3 T«

(n) (n-1) (n+1)

(n)
-~ A _ A( n ® n+1 ® >
L. [(u Sy + v, 0) Vhb“ T Sy + T3 Sy

FH[S 0 Sy + v, o)+l sh L, o)

(n=1) (n+1) (n+1) (n+1)
n
2n -1 2n+3

+2/1buﬁl:ﬁ(u Sy, + v, U)+”*+1(u S:+u‘ g)

(n—=1) {(n+1}) {(n+1) (n+1)
P
2n+3 } 4

(7.2)

The identification of (7.1) to (7.2) leads to the equations to be satisfied by the unknown
functions.

The equations in which the mean laminar displacements predominate follow from
the identification of the coefficients of Pg: if we recall formula (6.8) for n = 1,

. . . 2 A
we see that, consistent with neglecting effects of order 8°, the terms hzbn}\b,3 w may
be omitted and we obtain

1 (0) 0) (0) | \ (n
E[E(uaﬁ +oug )—bygw + Ehbaﬁ u,]

(0) P (D 5 (l))\ 1 (l)}\
= (+0)[Sqg + 5hHS,g = T hby, S - 5 hbg, S

(0) 0) I )\(1) 5 (l))\ (4]
A
—Bupllr Sy + v, 0 )-gvhb“ S; + EhH(”Sx + v, 0)]
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5 (l))\ (1}
+ 3 hb gy Sy, +v, 0] (7.3)

Similarly, by identifying the coefficients of P,, we obtain the equations in which the
mean transverse displacement predominates, namely

) 1) () (n \ (0} 2(2) (0)
A
E[E ( Uyg + uBIa)_ baii w o+ hbaﬁ( uy + 3 u)\)+hbub)\ﬁ w ]

)] (0) (2) (0) (2) (0) (2)

= , 2 N2 A A A
S (140 [ Sy + ZHH(S 1y + 2 Syg)~ 2hboy(Sy + 5 Sp) ~hbp(Sy + 2 51

(l))\ ) (0))\ (0) 5 (2))‘ (2) N (0) 5 (2)
~ 848 [ (vSy+v, 0 )+2hH[(v Sy + v, 0 )+—5 (»Sy+v, 0)] - vhb“( S;+§ S';)jl
(0) ) (2) (2)
A 2 A
+2hb glv S, +v,0)+ -5-(1' S, + v, 0)]

1.4
B .
where we l;ave omitted the terms hb by w , since by (6.8) they give rise to terms
of order 8° compared with the corresponding terms on the right.

The identification of the higher coefficients yields the system of equations for the
higher laminar coefficients. Again from (6.8), we observe that the last factor in the
square bracket in the higher coefficients in (7.1) is negligible compared with the cor-
responding terms on the right: omitting such terms, we have

{ ) (n}) (n) (n) N (n—1) l(n+l)
' n n+ )
E | 5("045"' u B‘a)—baﬁu + hba|ﬁ<§n_—T u}‘+——2n+3 uy ]

(n) (n=1) (n+1)
=(|+u)[sa6—2hH( n_g 4 ttl s"_.j)

2n—1 "B 2043

(n+1) (n+1) (n=1) (n+1)
B n N, on+l o NN - (_"_ N,o_ntlogt )
2hba)\<2n_ 1 SB+ SB ) hbﬁ)‘ 2n—1 So * 2n+3 Sa

2n+3

A
(uS)\+u*a)+2hH[E'z_—l(v S;+u‘ o)+ —nﬂ(v S;\\+v. a)]

(n) (n} (n-1) (n—1) (n+l1) (n+1)
—&a ‘: 2n+3

(n—1) (n+1) ]

B x(_ n g on+1 u)
vhb \55=7 it 33 S ]
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1
+2hbaﬁ[2nn_l(u Sx+w, o)+ltly, S o)

(n—1) (n—1) (n+1) (n+1)
J s n =1 (7.5)

2n+3

(n) (n)
which, with the U, given by (6:12) and the w given by (6.8), gives the completed
sequence of equations.

The system of equations (4.28), (7.3), (7.4) and (7.5), when complemented by the
edge conditions (5.11) and (5.12), constitute the approximate two dimensional for-
mulation of the boundary value problem, previously posed in three-dimensional terms
by equations 3.10) to (3.12) with the boundary conditions 3.14) to (3.16). The ap-
proximation in the two-dimensional description is consistent with that already made
in the formulation of the three dimensional constitutive relations (3.120).

8. Detachment of the Residual Problem

In order to examine equations (7.3) and (7.4) in more detail, it is necessary to have
the higher displacement coefficients expressed in terms of the stresses and mean
(1

displacements. In particular, we must calculate u, completely. Accordingly, we
(n %2 (3)
insert into formula (6.12a) the expressions for w » W and w, as given by (6.8):
(n)

if we also substitute for the S, (n = 0,1,2,3) from relations (4A.5) to (4A.8),
then, after omitting terms of order 6" and some rearranging, we find

(8} 0) )‘(0)
Uy = -hwl, - 2hb,, u,

12 7(1))‘ ; (3))‘ 4 (2))\ 1(4))\
1 2
+2EA(I+V) [(g SQ”)‘_ ESQ)‘)+W/IH( Sﬂll)\—g S“)‘)
1 \ 2) 5 (4) |
u u
T 705 "l Sh— 33 ST |

J

i n (”}\ I 3) (3))\
+F [E(A‘O—I“S}\)—g(l\‘ﬂ—l"S)‘)

) 0) (0))‘ I (2) (2))\ 4 [C))] (4))‘
+E/1H[(A" o~ S)‘)+7(A, o~ wn §))- E(A’ g -, S)‘)]

| VO @ .
u u u
+ 15 0,18y + S\~3p le] fa
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, A © R @ @
u u 3
- hbylA, 0 - v S5 (A, 0—v, S+ 57 (A, o =2 Sl

(8.1)

Insofar as its introduction into (7.3) is concerned, many terms in (8.1) are negligible:
however, the full formula 2is necessary in (7.4). In the latter equation there also occur
n (2)

the coefficients w and u,’ however from the combinations in which they occur,
we see that it is not necessary to have the complete expression for these quantities.
Thus an inspection of (6.8) shows that for its insertion into (7.4) we may take

n ) (0) 2) (2)

(A, o v, S-S, 0 =7, sH) (8.2)

w = g

| >

(2)
The expression for u, may be calculated in the same manner as was done for
4

u,: however for its use in (7.4) it is consistent with neglecting effects of order 6
to use the simplified formula

2) n 5 (2))\ 1 (4))\
u, = EZA(1+V) [5'1—’1 Sa')\__6—3hsa|)\]
1 hz 0) (0))\ 5 (2) (2))‘ 1 (4) (4))‘
~3F [(A, 0V, S)\)-—7 (A, o — v, S)‘)+El_(A‘ o —v, SN (8.3)

We now introduce expression (8.1) into equation (7.3) and, neglecting terms of
order 02, we impose an arrangement that leaves only mean displacement terms on
the left: there follows

) (0) (0) (0) L2 (0)
E[ 5( uu.ﬁ+ u6|(!)_b0¢3 w _—3"h balﬁ Wl)‘]

0) 5 (0 5 (l))\ 1 (1))\ 5 (l))\ (1)
= (140 Seg+ 3 hH Sap~ 2 hboy Sp= 3 by Sal ¥ 2 hbygly Sx+v. 0]

(0))\ 0) 5 (l))\ 19 i )‘(I)
—gglv Syt o) FHH G S\, o)~ 3vhb, 531

(n (3) (8)] n 3) (3)

4 3.\ ® | —} 1 A 1 u
- 13 h balﬁ[A(l +v)( Sy~ 7 SM“)+ T (Ao -7, S“),)‘— 58 (A, 0—v, S“)l)\]

8.4)
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If we also introduce formulae (8.1), (8.2) and (8.3) into (7.4) and make a similar
transposition, then, after considerable rearrangement, we obtain
(0) (0)

(0) 0)

(0
~ Eh[ wlaﬂ+b uyig + bﬂ Upjo + b}

A
ol My — ba)‘bﬂ w]

) 0) 2) (0) (2)
= (1+v) [ S,

2 (0) 2)
g+t 2hH( Suﬁ+§ Sap)—

2hbop (S5t 3 Sp) = hbgy( s +%s )J

0) (0))\ (2) 2)
+hbg [((A‘+2v,)a+(2v—v*)s)‘> - % ((A —4v) 0 —(4v+1) S )J

(”)\ [4))] (0))\ 0) (2) 2) (0) 2)
~ & [(V S)\+u‘ o)+ 2hH[(v S,+rv, 0 )+ = (v

]
Sy, a)]—uhb (S)‘+—S>\)J

) (') (l) (3) 3
)\
‘A(“’”)[g (Sa)\ﬁ+sﬁ)\)— ”(5 Saina)
8 (’) (4)
F ISy, - L))
(2) (4)
22
" T0s 110y SN0 26Nt
g 3, @ L@
m
* 705 " Basl S - 5 Sh,1 |
5 ; (N (1)}‘ 3) (3) \ (0) (2) 4)
- h [E(A, 7= S =3 (A, o~ v, S)a v ko sty L 1sh- £ s
0) (0))‘ I 2) (2) (4) (4)
—shH[(A‘a—u. S)‘)+7(A o

A
—v, S - %(A‘ o, s:)]J s

0) 0) 2) (2) 4) (4)
hb (A, g~ s” )——(A o

u 1 #
-, S#)+ ﬁ(A’ o= v, Su)].kﬁ
(0) 0)

(2) (2) 4)
- —h balﬂ[(A o -, s )—
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where we have consistently retained the unsymmetric form on the right hand side
by noting the symmetry conditions (4.6).

Equations (8.4) and (8.5) indicate how the residual components of the mean
displacements are to be defined. Returning to relations (4A.9) to (4A.13), we decom-
pose the transverse normal stress coefficients into their principal and residual parts
by setting

(n) (n}) (n)
P R

g=0 + @ (8.6)

where by inspection we have

@ 1 )\(l)/.t 4 3 x“),.p

o = Ep* + ihb“ Sy + Eh (b, S 1 (8.72)

s L

o =5p+ ghb“ Sy (8.7b)

(Z)P 1 )\(l)# 8 .3 )\“)up

o = —3hb, S\~ g h b, "1, (8.7¢)

m” 1 1 A (3)#

o ==-P" gth Sy (8.7d)

“p 4 3 )\“)up

g = - mh (b, 5 1) (8.7e)

(n)

o" =0, nz5 (8.76)

(n)

R . . . . .
and the ¢ are the complementary expressions involving only the residual laminar
(n)
A - . .
stresses { S * n = 2}. If we now connect the decomposition (8.6) with equations
(8.4) and (8.5), we see that the appropriate definition of the residual components

of the mean displacements is through the pair of determining equations

| (R) (R) (R} L2 (R)
EL5 (Ugg + Uga) = bag¥ - 3 bag Wl

(O)R 2 “)R 2 (O)R
= —v‘gaﬁ[o +—3—hHa ]+§v*hbaﬁo
3) (N (3) 3)

2, L,oor ] R 1 R ‘,
Wb IA(1+9) =h Sy, —gAho Wtz (ke vk st (8.8)

2
* 15

and
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(R) NG VB y R )‘(R)
~Eh|[ Wi + b, Ung + bg Uy, + boip Uy ~ bobgw]

4 (2) 4 (2))‘ By (2)
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= (l+ll) [EhHSaw—ghba)‘ Sﬂ —ghbﬁ)‘ Sa]
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+A(1+vp) [3/1 (Sa]}\ﬁ+ Sﬂl)\o{)— mh [(”Sa:x)m‘ E(Hsalk)'lﬁ]

3 A
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* 105 " 1B S\ ~ 5 0) s, - 105 " Palsl Sh, = 83, ]

1 R
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I
—h [EA_U “35 (Ao —y_S,\)+Eu.hb#(7S)‘——S)‘)

a1 B @ w
+H/IH[A.U +7(A.U —V‘S)‘)—E(A,U -, S)‘)]ng

) ) (2) 4) (4)
R

2,3 R 2 3 1 R “
hba[A.a —7(A‘o -, S#)+ H(A‘a -, S“)]p‘ﬁ

15

PN 0, @ @ @ @
I3
T s P oslA, oF - AR I T AR N TN (8.9)

Equations (8.8), (8.9) and (7.5), when complemented by the edge conditions (5.12)

constitute the boundary value problem for the residual effects. The analysis of this
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9. The Principal Problem
Decomposing the mean displacements in accordance with the resolution

(0) (R) (0) (R)
u, = U, + Uy, W= W+ W (9.1a,b)

the equation for the determination of the principal components U, and W then

follow from the subtraction of equation (8.8) and (8.9) respectively from (8.4) and

(8.5). Taking the difference between (8.4) and (8.8), we substitute formulae (8.7) for
o o) 3)

.. P P P . .
the coefficients o , O and ¢ and on omitiing effects of order §2 we obtain

1 1,2,M
E[E(Uulﬁ + Uﬁm) -~ baﬁW -~ —3-h bys /4N

(0) ) Q)] ) (1))\ ] (l))\
— (14+9) [ Sug + 5 hH Sag ~ 2 hbo S5 - 3 hbgr Sal

) )] i (1) n

(
S 2 A N B 4 3, N oHP
_guﬁ[u(S)\+§hHS)\)—E(v—v_)hb“S)\-f-Eu‘h (bpS ‘“)p\]

(1) (R)] n

2 IS 4 3, M 2 1 u
+_3—Vhb°fﬂs)\__1—5_h ba|ﬁ[A(l+V) S)‘l“—_l_z_v‘ Sl‘l)\]
1 .. 4 4 I
= —Z'V‘[gaﬁ (p + thp) - —S-hbaﬁp]— %A.h balap\)\ (9.2)

0 () (2 (4)
Similarly, after subtracting (8.9) from (8.5), the introduction of oP, aP, aP and oP
from (8.7) yields

A A A A
—ER Wy +b Uyp T+ bﬁU)\.a + bwﬁU)‘ - ba)\bﬁW]

(1) 0) (0))\ (0))\ (0))\
= (14 9) [ S g+ 2hH Sog = 2hboy Sg = b S+ (2r—v,)hbeg Sy

(1) (0) (0) (1) (1)

S A 1 S
g5 (v( Sy + 20H S3) = 5(5v=r )by Y -A( 40 2R Shag + Shinal
W © © © ©
_1_ 2 A S _ 2 N oM 2 3..N ob S "
N XN L OO ARBY S g + 5 v Log Sipg * 2oala Sid)

3 . 1 2
vgag(2p+ BHP)+ 5 (A 422 )P AP+ 75 hHP s

1 3N 3N,
s AL (b pt g * 2 bhspthy)  (93)
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be considered in conjunction with the equilibrium equations (4.28), and the edge con-
ditions (5.11).
The trace of the system of equations (9.2) yields the relation

A 1,2, gx
E[U Ia —ZHW—EII b '“ W|)\]

(0) (1) (1)
A A 1 A
=U=nsy+ aenZams) oy 3O+20)1m0" 5"

(1) (n (1)
4 3 A 1 A onp
- ﬁh [bp ,p[A(l +v) S;“I“ BTN S:l)\] + 20, (6,8 ]”)',‘]

—wap — %A_hsbp)‘]pp])‘ (9.4)

A second relation is obtained by considering the contravariant form of (9.2) and taking
the repeated covariant derivative with respect to the indicated variables (first with
respect to x* and then with Tespect to x°): if we then Sum over the repeated indices
and utilize equation (4.28a) in the resulting equation, we find

EW ), - (bgw)|° - %hz(b“)‘lﬁ winif

i (N (1)
al a @ A
=(1+u)[3lh(bfs la)js +§I1(17!S[,)lf—h(bA Sﬁ)lg]

0) (1) (1) (1)
A A A A
~rUSye + 2acH s & %(u—v_)h(b“ SVl + 253 NP

n (n n
4 .3 ak B 1 ak 8 A @
T (6™, Syl - 25 @ skl + A CA BTN

a @ al
- 3 n(p, + ShHp) | 4 %V.h(bﬁp)lg - =5 ALK b beiVIE (9.5

We now apply the Laplacian operator to equation (9.4) and, on subtracting 9.5
from the result, we obtain

~E [ 2AHW)|S - ogw) P 3 HG™, Wiy - &™), Wlx)lflj

© M M
A A A
= S+ (1+20) ZhHSHE - 1y %(zuw,)]h(b# sHe

e ——
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. B“)x m A (1))‘ 5 5 “)x 5
o [+3 o o
-z U+ B ST I +2(H Sle 30y Spla— 3 vhbg SOl

N ) (1)
4 ,3 A by 8 by |
-h { AL+ 0™, Shle = 07 g Shiled + 7.0y 51,0 e ':

1 N ()] N N Q)] g |

- u,[(b" 1, s '.,)‘.2 " g S‘;\‘“)lu]] ".

P LU IO W (G GRS
9.6)

which is the analog for the shell configuration of the well known compatibility equa-
tion for the generalized plane stress theory of the stretching of flat plates.

We now derive the corresponding equations resulting from the second set of rela-
tions (9.3). The trace of this latter system yields the relation

_En[ W, + 2b} uh, + b, Uy - bl b W1

(1) (0) (0)
— (- Syt v v 2hH Sh+ 112A(1+9) = (15 + 5+ 20)) Lho, S

(0)

6 2 3N By O
- g[A(l+u)-u,1p o5 AL, S\
- o © O @ Lo
T Bo 3
v gk |L ( Sh+2hH Sy — hb, Slly +2h1ba Sty + 207 Ly s‘;.x]}

- 2 3 1 wy ¥ 1 A . al .
+A, \th —h [(—7—6p+T§th Mo ¥ Eh(bal’ |\ +2b [P |)\)]:\ 9.7)

As before, we deduce a second relation from taking the repeated covariant derivative,
with respect to the indicated variables, of the contravariant form of (9.3): after sum-
ming over the repeated indices, we multiply by A~ and utilizing equation (4.28b), we
rearrange and obtain

3 A [ S 5
_ER W+ 203U e+ N Uplh - (bR !
2(1))\ 3 (0))‘ (0)
o [
L RSN -2 (H S+ 112A (14 ) 45y =] Lile, sV
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Formulae (9.2) and

(9.3), when modified by the compatibility equations (9.6) and
2.9), are the constitutj

ive relations for the principal problem complementing the
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equilibrium equations (4.28): this system is to be solved subject to the edge condi-
tions (5.11).
Rather than derive more unwieldy equations by further substitution, we shall merely
indicate the procedure to be followed in the subsequent (tlreatment. We first consider
)

. . L2 QN

equation (9.9) as a formula expressing the quantity # S)\II'; in terms of the surface

forces, together with other stress and displacement quantities, the latter being ‘‘cor-

rection’” terms arising directly form the curvature. This formula is then used to
(n

substitute for h2 S;','; in the factor with coefficient », in 9.7), thus yielding a derived
(1

. . . N .
expression for the invariant S, in terms of displacement components, surface forces

and the «correction’’ terms consisting of products of the stress and curvatureé com-
(1) (0)

ponents. When this latter expression for S: together with the formula for S, im-
plied by (9.4) are then introduced into (9.2) and (9.3), we obtain the modified form
of the constitutive relations for the principal problem.

Further modification is possible if we utilize relations (9.2) and (9.4) to elimin(ag)e

from (9.3) the correction terms, namely those terms involving products of the S')‘\
and the curvature components: in partic(t)llar, it is desirable to eliminate the correc-
(0)

tion terms involving derivatives of the S’):. After neglecting terms of order 02, we
then have what may be considered the final form of the full constitutive relations,
exhibiting the expected feature that the terms involving the higher derivatives of the
stresses are associated exclusively with the transverse shear deformability modulus A.

10. The Contracted Interior Problem

The rationale for considering a simplified «interior’’ problem is based on the inference
that, when the typical linear dimension on the midsurface is sufficiently large com-
pared with the thickness, then, except in the region close to the edge, the variation
of the field quantities, in directions parallel to the midsurface, is quite moderate.
This feature, which presumes a comparable moderation in the initial geometrical varia-
tion of the midsurface, permits a systematic simplification of the constitutive relations.

It is, therefore, appropriate 1o introduce a length scale L characterizing the
minimum wavelength of variation in both the fundamental form and in the field quan-
tities. For the comparison of this characteristic length with the shell thickness, we
introduce a second dimensionless parameter B defined by

B =h/L (10.1)

and the effects associated with the parameter § are comparable with the dominant
effects only in the edge zone Or boundary layer. Thus the interior problem is
characterized by the inequality

g << 1 (10.2)
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sistent with the above approximation to omjt the last term on the left of (9.2), we
introduce the measures of deformation e, and k.p for the interior problem by

€ap = Zl(Uaﬁ + UBla)— baﬁ w (10'38)

A A A A
“ag = Wlog + 05Uy + b) UhNe * bogUy = by by w (10.3b)

(0) 2 n 2 (”}\ | (”)\
Eeaﬁ = (1+V)[Sa.ﬂ' + thSGﬂ = jhba)\ SB - ?hbﬁ)\ Sa]

(0))\ 3 (l))\ | )\(l) 3 (l))\
~8aslv( Sy + 3HH S)) - TW=v)hb, S+ T vhb g Sy
S rleas (0 + L nip) “ho ) (10.4)
5". 8ap(D 5 p)— 5 MWegP .

n (0) (1))\ (l))‘
“ERkag = (149)[S . + 2np Sas = 2hb,\ S5~ hby, 57

ay © L@ ©
“8alv(Sy + 20H $)) - 5 Gr=v)hb) s;‘1+(2»-u,)hbaﬁ s,

185 (30 + hHp) 4 %(A, + )b zpt (10.5)

Bearing in mind that these relations are to be used in conjunction with the
equilibrium equations (4.28), we find that further simplification is possible. An in-
1

e ——
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or 36 compared with the corresponding terms already appearing in the equilibrium |
equations. It is, therefore, consistent with the approximation already made to replace '
(10.5) by the simpler form*
n (l))\ 3
—Ehxyg = (1+v) S, — gagr Sh t gu‘p) (10.6)

To invert (10.6) we first take the trace :

m

_ERS = (-9 Sy - up (10.7)
yielding the expression
“ Eh N, 6 ¥
S)\=—1_VK)\+§1_Vp (10.8)

which, when substituted into (10.6), given, after a transposition,

[$3]

Eh A 3 v,
Sas = —————2[(1—u)xaﬂ+ ugaﬁx)\] +§1_,,g°t5p (10.9)

1—-v
Returning to the other set of relations, we take the trace of (10.4) and obtain

(0) M Q)]
A N2 A 1 2 A .
Ee) = (1-») Sy + 3(1+7) hH Sy —(1+3v+ 3 v, hb, S\ = v.P (10.10)

(0)
which, on inversion gives for Sy

(0) (1)
st = E e)‘—21+"hHS)‘+3+V+2"‘
AT oA 30— LTS IED|

N
AN oM v, .
hb“ S)\ + —l—_—yp (10.11)

Inserting formula (10.1 1)into (10.4), we transpose the strain terms and, after a rear-
rangement, W€ obtain

A
El(1 -v)e,s + 8ag e,]

0) n )] m

S (=) [ Sag + 2 hH S - 2 b Sy~ 3 hbpy Sh]

) H Q)]
4 2 PN | A 2 A
+8.5l 3" hHS)\——j(l+u)(2u+u‘)hb” shi+ Sv(l—u)hbaﬂ s\

< lzv‘[gaa((l+u)p" + %(1 —u)th) - %(l—u) hbogp) (10.12)

* That (10.5) may be replaced by (10.6) implies further that, within the present approximation procedure
the mean curvature change are insensitive to the addition of strain-curvature terms.
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In the right hand side of (10.12), we now employ relations (10.9) and (10.8) to
(1 (n (@]
substitute for the elements S0 S: and S;‘ in terms of the megt)n Curvature changes,
(
We, thereby, obtain the formulae expressing the coefficients Saﬁ explicitly in terms
of the deformation measures: a further rearrangement thep renders these relations
in the form

0)
E A
Saﬁ = \2 [(1- v)eaﬁ + LAPLN

|
Eh2 A A
+ — [(l —u)[ZHKaB - Zba)\Kﬁ - bﬁ)\"aj
3(1 -v)

A A
*rQHg g~ b g)e) - 28,56, k] -u,gaﬁ[b:K;‘ +ﬁ2m;1]
I v, R 1
tg—te [(1 g . pt + ;l\" [(1-2)b, + uZHgM,]hp]]
the equilibrium €quations (4.28).

Neglecting the effect of surface pressure, we now write these relations jp terms
of the resultants (4.9): we obtain

A A A A
+u[(2Hgm3 - baﬁ)")\ - ZgQBb#xf] —u_gaﬁ[buxf+ﬁ21-1k)\] ](10,143)

Mo = - 2EH_ W) hag + g ekl (10.14p)

vhich with the corresponding form (4.31) o/ he equilibrium €quations, namely
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fa -3
NP, - by Mg =0 (10.152)

8
MGl + b N =0 (10.15b)

are to be solved subject to the contracted Kirchhoff form of the boundary conditions.

Background Survey

The literature on the basic equations of shell theory has grown considerably since the
original derivation of the expression for the elastic energy by Aron (1] in 1874, and the
associated works of Mathieu [22], Rayleigh {261 and Lamb [19]. With the appearance
of the basic and significant paper of Basset 2] in 1890, followed by the more general
and comprehensive treatment of Love [20(a)] in 1893, each of which included a discus-
sion of the form taken by the edge conditions necessitated by the Kirchhoff contrac-
tion, the foundations of the classical theory were established.

Extending to the shell configuration the Kirchhoff hypothesis that normals to the
undeformed midsurface deform, without extension, into normals to the deformed mid-
surface, Love 20(a)] derived the system of constitutive relations, appropriate for a first
approximation description of the principal effects, asymptoticaliy vyalid in the interior.
These relations correspond to, but are not quite identical with, the system (10.14). In
emphasizing the significance of the terms involving the curvature changes in the €xpres-
sions for the stress resultants (eq. (10.14a)), Love [20(a)] acknowledges that the neces-
sity for the retention of such terms had already been recognized by Basset [2], whose
derivation, however, had been quite different. In Love’s procedure these relations follow
from the evaluation of certain integrals, in which, expressions, quadratic in the thickness
coordinate, appear in the integrands.

In the rewriting of the second and later editions [20(b), (©), (@), Love alters the se-
quence somewhat and first shows that by retaining only the linear terms in the integrands,
one obtains a system of uncoupled relations equivalent to (10.14b) together with the
relations obtained from neglecting the curvature changes on the right of (10.14a). Having
proposed this simpler system as adequate for a wide class of problems, he then proceeds
to the derivation of the full expressions for the stress resultants, which would be necessary
for a consistent theory covering all cases. The system including these latter expressions
then corresponds to the original system of the first edition and Love anticipates that
the necessity for the full expressions would arise in problems of inextensional bending.

It is understandable that the attractive simplicity of the uncoupled relations should
merit them special attention, particiuarly since so many problems are insensitive to the
inconsistency jmplicit in their utilization. Apparently because of its association with an
integrand linear in the thickness coordinate, Love 2000, (©). (d)] labels the uncoupled
system a first approximation even though he clearly recognizes its inconsistency: the full
system, associated with an integrand quadratic in the thickness coordinate, is then in
the later editions [20(b), (€), @ described as a second approximation. The nomenclature
has proved unfortunate since Love’s “first approximation,” although admittedly incon-
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sistent, has entered the folklore, while the full system — the only system appearing the
first edition and which, as pointed out by Love, is in substantial agreement with the

or its deserved attention.

The fourth and final edition of Love’s treatise, printed in 1927, includes references
to the work of other investigators published in the intevening years. In the following
decade there appeared the more restricted investigations of Flugge [8] and Donnell [7],

The suggested refinement of Love’s constitutive relations proposed in the former work

Meantime Trefftz [31] adapted the variational method to the shell of general form, while
Reissner [28()] derived a form of Love’s first approximation in a simpler and more
elegant manner. The intrinsic theory developed by Synge [30] and Chien [5, 30], while
interesting in its treatment of the shel] as a two-dimensional continuum, is of marginal
interest to the present outline since it is not concerned with relating the shell €quations
to the three dimensiona] theory. For a fuller discussion of work prior to 1950, we refer

Novoshilov [25].

Further consideration of the constitutive relations based on the Kirchhoff-Love
hypothesis were initiated by Reissner [28(b)] and further developed in the Jjoint work
with Knowles [17(a), (b)] while the method of asymptotic expansions was applied to
the same problem in the paper of Johnson and Reissner [16]. These investigations are
further discussed in the survey article of Reissner [28(c)], which also includes an exten-

sion of the variational procedure leading to a set of Constitutive relations with the fur-

suggested by Sanders [3, 29], Koiter [18] and Budiansky [3]. Generally, these involve
a judicious modification of the tensor of stress resultants so as to accommodate the

be used. While the uncoupled systems proposed in [3, 18, 29] circumvent the particular
difficulty in the reduction of the specific problem of the Symmetrically deformed helicoid,
they exclude many terms of the fuller set, thereby admitting possible errors in the calcyla-
tion of the stress resultants. They also ignore the cautionary remarks of Love and Basset
on the nNecessary retention of such terms in a general approximation scheme designed
to cover all possible contingencies.

An interesting comparison of these uncoupled systems together with a discussion of
other selected sets of constitutive relations appear in the report of Naghdi [23(b)]. In
Naghdi’s work [23], there also appears an alternative derivation of the refined set of
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constitutive relations that includes the effects of transverse shear Stress. If, from the rela-
tions of Section Nine, one omits the effects of transverse normal stress together with
certain other terms, then by introducing Naghdi’s assumptions on the displacements,
it is possible to derive 2 set of relations in substantial agreement with his.

Further application of the method of asymptotic expansion is pursued in the papers
of Reiss [27], Johnson [15], Green 110}, Goldenweizer [9] and Reissner [28(d)]. A sum-
mary of the latter paper apperas in the survey article of Reissner [28(e)], which also
includes a more general discussion of the possible approaches to the problems of shell
theory. In the context of expansion procedures, we also note the work of Hu [13}, whose
procedure, though substantially different from that followed here, is also based on ex-
pansions in terms of Legendre polynomials.

The interesting work of John [14], whose main thrust is at the nonlinear theory, shows
how the technique of Sobolev can be applied to derive estimates on the relative significance
of the quantities in the three dimensional theory, whereby one can extract the dominant
effects: the procedure leads to a pair of coupled two-dimensional equations with estimates
on the neglected terms. While this significant investigation may ultimately be the basis
for establishing a rigorous foundation for the two-dimensional theory, it is incomplete
in its present form: the procedure manages to avoid the issue of the constitutive rela-
tions and leaves some ambiguity on the question of a first approximation. Also in 1965
there appeared the comprehensive analysis of Vekua [32] aimed at the systematic deriva-
tion of the successive approximations of shell theory. There, t00, the procedure is based
on expansions in terms of Legendre polynomials. However, for his fundamental elements
Vekua takes the displacement components, whose Legendre representations are then in-
troduced into the three-dimensional equations of elasticity. This work includes a treat-
ment of such factors as thickness variation and discusses some of the general analytic
procedures developed by the author.

For an indication of the more recent trends and developments, We refer to the Pro-
ceedings of the 1967 LUTAM Symposium on Shell theory edited by Niordson [24].

Apart from the basic difficulties of the problem, it appears that more confusion
than simplification has resulted from not maintaining the distinction between the cur-

2 . .

vature parameter (6°) associated with the shape and the less clearly defined parameter
B associated with the edge-effects. It should be noted that while there is every reason
to expect convergence for the approximations with respect to 02, any expansion in
powers of 3~ can, at best, be asymptotic. Moreover, many investigations have been
based on the premise that 8 (= h/R) is the appropriate approximation parameter —
a tradition that seems to claim its origin in the work of Love [20], though it does not
appear to be explicitly stated there. In our method of integration, the quantity 9 has
emerged as the appropriate thickness-curvature parameter, and any effort at consider-
ing 0 as the basic approximation parameter would have to be tied to an extra assump-
tion on the relative magnitude of the bending and stretching effects that would
compromise the inclusion of a state of inextensional bending.

These features are further confounded by the incidence that there is a significant class
ot; problems for which, in fact, the relation L = VAR holds so that the parameters
B~ and 6 become indistinguishable. The success of a procedure, based on neglecting ef-
fects of order 8, in those cases, is due to the fact that, in deriving the leading term in
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Addendum

A reviewer has pointed out that reference should be made to the following works:

Naghdi, P.M., Theory of Plates and Shells, Handbuch der Physik, vol. 6A/2/,
Springer, 1972.

Koiter, W.T. and Simmeonds, J.G., Foundations of Shell Theory,Proc. 13th, Int.
Cong. Theor. & Appl. Mechs., Springer-Verlag, 1972.



