
Lectures on Supersymmetry
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Dedicated to Lochlain O’Raifeartaigh

Abstract

These notes are based on a number of Graduate Lectures I gave over the
last six years. The aim of these lectures is to provide a concise introduction to
supersymmetry including some classic material such as the Coleman-Mandula
theorem, supersymmetry algebra and non-renormalisation theorems. Then, spe-
cializing to N =1 and N =2 Yang-Mills theory, I will present simple derivations
of recent non-perturbative results in supersymmetric field theory. In particular,
low energy effective actions, electric-magnetic duality and superconformal Ward
identities are explained.
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1 Introduction

A supersymmetric Lagrangian is invariant under a transformation which relates bosonic
degrees of freedom, ϕ say to Fermionic degrees of freedom e.g.

δϕ = εαψα.

For consistency ε must have mass dimension −1
2

and must be Grassmann-valued, i.e.
anti-commuting. The corresponding transformation of a fermion would then have to
be of the form

δψα = (ε∂/ϕ)α + possibly other fields.

Imposing invariance under such a transformation would then put conditions on the
most general form of the Lagrangian. In particular one would find that the number of
bosonic- and fermionic degrees of freedom would have to be the same and that Bosons
and Fermions would have to have the same masses.

What is the physical motivation for imposing such a symmetry? One motivation
for demanding supersymmetry is to improve the ultraviolet behaviour of the theory.
For example if we consider the vacuum energy for free fields of mass mj and spin j

Ej ∝ (−1)2j(2j + 1)
∫

d3k
√

k2 + m2
j

= (−1)2j(2j + 1)
∫

d3k |k|
(
1 +

1

2

m2
j

k2
+ O(k−4)

)
,

(1)

we find that a necessary condition for the absence of power-like divergences is that
both, integer and half-integer spin fields are present and that these fields have the
same masses.

Supersymmetry may also be required to solve the hierarchy problem, which ex-
presses our ignorance in explaining the value of the Higgs mass. Indeed, the Higgs
mass is not protected by any symmetry. Therefore if mH is different from zero its
natural value would be of the order of the Plank scale. In a supersymmetric version
of the Standard Model however, the Higgs field is accompanied by its fermionic super
partner which could acquire a mass through anomalous chiral symmetry breaking with
condensate 〈ψ̄ψ〉 ' Λ3

W ' m3
H where the last identity follows from the fact that the

Higgs field and its fermionic partner ψ are in the same supersymmetry multiplet. This
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Figure 1: n-particle scattering

explains the continued interest in supersymmetry despite of the fact that no experi-
mental evidence in favour of supersymmetry has been found so far.

Another motivation is of conceptual nature. It originates in the attempt to unify in
a non-trivial way internal symmetries with the Poincaré group. In the early 60’s much
effort was put into finding such a unified symmetry group. This came to an end after
a series of no-go results culminating in the Coleman and Mandula no-go theorem [1]
which excludes this possibility, at least within the context of Lie-groups.

More recently supersymmetry has become increasingly important as a tool to anal-
yse strongly coupled non-abelian Yang-Mills (YM) theories and string theories. Su-
persymmetrising ordinary YM-theories has lead to a number of new results on the
strong-coupling, and therefore non-perturbative sector of these theories. In particular
it lead to the discovery of explicit realisations of electromagnetic duality and gener-
alisations of it to string theory. This electric-magnetic equivalence in turn provides
evidence for the equivalence of a number of a priory different field theories. To what
extend these properties rely on supersymmetry is still unclear.

The first part of these lectures, sections 2-5, reviews some textbook material, in
particular, Coleman-Mandula theorem, supersymmetry algebra, representation theory,
superspace, action formulas and non-renormalisation theorems. The second part, sec-
tions 5-7, contains more recent results. In particular, we derive the superconformal
Ward-identities for N =1 and N =2 Yang-Mills theory and obtain the quantum cor-
rected central charge of the N = 2 SUSY-algebra. Low energy effective actions for
supersymmetric QCD and N = 2 Yang-Mills theory are then derived by integrating
the superconformal anomaly.

2 Coleman-Mandula Theorem

The Coleman-Mandula theorem is concerned with the unification of symmetries in
interacting quantum field theory. Concretely it applies to the internal symmetries of
the S-matrix. Let us first recall some elements of scattering theory:

The Hilbert space of scattering theory, H is the infinite direct sum of n-particle
sub-spaces

H = H(1) ⊕H(2) ⊕ · · · ,
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where H(n) is the (symmetrised) subspace of the tensor product of one-particle Hilbert
spaces. The S-matrix is then a unitary operator on H describing all possible scattering
processes in a given theory. It is usually written as

S = 1− i(2π)4δ4(pµ − p′µ)T,

where the delta function ensures the conservation of energy and momentum during
the scattering process. A unitary operator U on H is a symmetry transformation of
the S-matrix if

• 1) It maps one-particle states into one-particle states;

• 2) U acts on many particle states by the tensor product representation of one-
particle states;

• 3) U commutes with S.
Internal symmetries of the S-matrix are symmetries which do not act on space-time

coordinates, x ( e.g. U(1) × SU(2) × SU(3)). However, if we want to include gravity
into the scattering process, then the symmetry group has to be extended to include the
Poincaré group P , which acts on the vierbein ea

µ. The question we will need to answer
is then whether the Poincaré group can be combined in a non-trivial way with other
internal symmetries of the S-matrix.

In what follows we restrict ourselves to theories for which all scattering states are
in positive mass representations of the Poincaré group P . We shall further assume that
for any finite mass M there are only a finite number of particle types with mass smaller
than M (particle finiteness assumption)
Theorem:
Let a Lie group G be a symmetry group of the S-matrix which contains the Poincaré
group P and which connects a finite number of particles in a supermultiplet. Assume
furthermore that

• 4) Elastic scattering amplitudes are analytic in the centre of mass energy s =
(p + q)2 and the momentum transfer t = (p− p′)2 (see fig. 2).

• 5) T |p, q > 6= 0 for almost all s

Then, G is (locally) isomorphic to a direct product of an internal symmetry group
and the Poincaré group G.
Proof (sketch):
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Figure 2: Scattering of two particles with momentum p and q into two particles with
momentum p′ and q′.

Let D be the subset of one-particle states whose momentum space wave-functions are
test functions. For two two-particle states φ1 ⊗ φ2 and ψ1 ⊗ ψ2 in D⊗D the variation
of their scalar product under infinitesimal G-transformations is then given by

(ψ1, Aφ1) + (ψ2, Aφ2)

where A is an infinitesimal generator of G. The G-invariance of the S-matrix is then
equivalent to

(S ψ1 ⊗ ψ2, A S φ1 ⊗ φ2) = (ψ1 ⊗ ψ2, A φ1 ⊗ φ2) (2)

For a given test function f with support in a region R not containing the origin (of
momentum space) we then consider the distribution

f · A ≡
∫

d4a U †(1, a)A U(1, a)f̃(a),

where f̃(a) is the Fourier transform of f(p). Since

U(1, a)|p〉 = e−ip·a|p〉

f · A has matrix elements

f · A(p′, p) = f(p− p′)A(p′, p).

By the finite particle assumption, if R is sufficiently small not containing the origin,
there exist regions Ui in a given mass hyperboloid, such that for p ∈ Ui and k in R, the
sum p+k is not in any mass hyperboloid (see fig. 3) and hence this state is annihilated
by f ·A. We now choose p to be in the complement of these regions and q, p′, q′ ∈ ∪iUi

such that

p + q = p′ + q′.
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Figure 3: A sketch of a two-dimensional mass hyperboloid with four scattering states
satisfying p + q = p′ + q′. If p is outside the region U then this state is annihilated by
f · A.

The centre of mass energy and invariant momentum transfer are defined as usual
by

s = (p + q)2 and t = (p− p′)2

and are chosen to be below the threshold for pair production. By (2) the S-matrix
element must be zero for such states. Using the analyticity in s and t, the S matrix is
then zero in the whole region of analyticity. Repeating the argument for multi particle
scattering one obtains the result:
Lemma 1 : The support of A(p, p′) is restricted to p=p′.
Corollary: A cannot connect states on different mass hyperboloids (O’Raifeartaigh’s
theorem).

We make the technical assumption that A is a matrix valued distribution. Then, it
follows that A(p) is a polynomial in the differential operator on the mass hyperboloid,

∇µ =
∂

∂pµ

− pµpν

m2

∂

∂pν

.

In other words

A =
N∑

n=0

A(n)(p)µ1,···,µn

∂

∂pµ1

· · · ∂

∂pµn

, (3)

with [A, pµpµ] = 0, acting on any state on D. To complete the argument we need
another result which we state without proof.
Lemma 2:
Let B be the subset of G-transformations which commute with space-time translations
then for B(p) ∈ B

B(p) = aµp
µ + b,
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where aµ is a constant four vector (i.e. no internal indices) and b is a constant Her-
mitian matrix which does not involve spin indices. Note hat lemma 2 assumes a
Lie-multiplication [ , ] for generators of B. In particular the result does not hold for
anti-commuting generators. Now, taking the N -fold commutator of A with pµ:

[pµ1 , [pµ2 · · · , A] · · ·] = A(N)
µ1···µN

(p)

we obtain an object which is in B, hence by lemma 2,

A(N)
µ1···µN

(p) = aλµ1···µN
pλ + bµ1···µN

.

However, (3) and the symmetry properties of N -fold commutators with pµ imply

bµ1···µN
= 0,

unless N =0. Similarly

aλµ1···µN
= 0,

unless N = 0 or N = 1. For N = 0 we then showed that A is the sum of a trans-
lation and an internal symmetry transformation and for N = 1 the antisymmetry of
aλµ implies that A is just an infinitesimal Lorentz transformation. This then completes
the proof of the theorem.

3 Supersymmetry

A way out of this dilemma was discovered by Golfand and Likhtman [2] in 1971. They
avoided the conclusions of Coleman and Mandula by introducing a graded Lie-algebra,
that is, to the standard generators of a Lie-algebra, satisfying commutation relations
they added (fermionic) generators Qi

α with the corresponding anti-commutation rela-
tions1. We have

[A, B} ≡ AB − (−1)abBA,

1Without restricting the generality we can assume the Qi
α to be Majorana fermions
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where a, b is the number of fermionic generators in A and B respectively. There is
a corresponding generalised Jacobi identity (exercise)

[A, [B, C}}+ (−)a(b+c)[B, [C,A}}+ (−)c(a+b)[C, [A,B}} = 0.

3.1 SUSY-algebra

Let us now determine the structure constants of the general super algebra. Because of
[odd, even} = odd we must have

[Qi
α, Ba] = −(ha)

βi
αj Qj

β.

The (Q,Ba, Bb)-Jacobi identity then requires that the matrices ha represent the bosonic
symmetry algebra i.e.

[ha, hb] = if c
ab hc.

This implies in particular the commutation relations

[
Qi

α, Pµ

]
= 0, and

[
Qi

α, Jµν

]
= (bµν)

β
α Q i

β , (4)

with

[bµν , bρλ] = ηµλbνρ + ηνρbµλ − ηµρbνλ − ηνλbµλ, (5)

showing that bµν forms a representation of the of the Lorentz transformations. We
shall assume that Qi

α be in the (0, 1
2
)⊕ (1

2
, 0) representation of the Lorentz group and

hence bµν = 1
2
σµν . Similarly for the generators of the internal symmetry group T a

[Q i
α , T a] = (la)i jQ

j
α + i(ta)i j(γ5)

β
α Qj

β,

where la + itaγ5 represents the the Lie algebra of the internal symmetry group. Here
we have used that δ β

α and γ5 are the only (pseudo-) scalar invariant tensors.
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Let us now consider the odd − odd commutator {Qi
α, Qj

α}. The result must be
composed of even generators and must be symmetric under simultaneous exchange of
i ↔ j and α ↔ β. The most general possibility, compatible with the Coleman-Mandula
theorem is then

{Qi
α, Qj

β} = rδij(γµC)αβPµ + sδij(γµνC)αβJµν

+CαβU ij + (γ5C)αβV ij.
(6)

The (Q,Q, Q) Jacobi-identity together with (Q,Q,B) Jacobi-identity then imply that
U and V commute with everything and are therefore central charges. The latter identity
also implies that s=0. The remaining undetermined constant r can be absorbed in a
redefinition of Pµ. Here we take r=−2.

We end this section by noting that the above supersymmetry algebra is the most
general superalgebra consistent with an interacting quantum field theory [3]. Note
also that in the presence of fermionic charges the first part of the proof of the no-go
theorem (O’Raifeartaigh’s theorem) goes still through. In particular, supersymmetry
transformations cannot connect different mass hyperboloids.

3.2 Irreducible Representations

Before constructing explicit irreducible representations of the algebra explained in the
last section we recall some representation independent consequences of the algebra.
i) The Hamiltonian of a supersymmetric theory is positive definite.
Proof:
From the Majorana property Q̄i =QT iC we have with (6,61)

{Qi
α, Q̄j

β} = 2δijP/αβ − δαβU ij − (γ5)αβV ij.

Multiplying with γ0 and taking the trace we then obtain

8NP0 = Qi
α(Qi

α)† + h.c. ≥ 0.

ii) The number of fermionic and bosonic states with non-zero energy in a supermultiplet
is the same.
Proof:
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Define the fermion number operator (−1)NF . Then, using (−1)NF Qi
α = −Qi

α(−1)NF ,

0 = tr
[
(−1)NF {Qi

α, Q̄i
β}

]
= 2P/αβtr

[
(−1)NF

]
,

where the trace is over a single supermultiplet. For P0 6= 0 this leads to the result. For
P0 = 0 the result does not hold. We then have

tr
[
(−1)NF

]
= #zero energy bosons−#zero energy fermions

This is the Witten index. We note in passing that if this index is non-vanishing sponta-
neous SUSY breaking is excluded since we have from i) that Q|0〉 6= 0 implies P0 > 0,
i.e. the zero energy modes are lifted. But if their number is not equal then ii) is
violated.

The irreducible representations of the super-Poincaré group can be found using
the Wigner method for constructing irreducible representations of the Poincaré group.
This method consists of finding a representation of the little group leaving a given
four-momentum invariant and boosting it up to a representation of the full Poincaré
group. In this way one obtains irreducible representations labelled the values of the
Casimir operators PµP

µ =−m2 and WµW
µ = m2s(s + 1), where Wµ =−1

2
εµνρλJ

νρP λ

is the Pauli-Lubanski vector. The two Casimir operators of the super Poincaré group
are p2 and Ŵ 2, with Ŵµ a linear combination of Wµ and Q̄γµγ5Q.

3.2.1 Massless Supermultiplet

We choose pµ = (E, 0, 0, E). The little group (in the Lorentz group) of that vector is
generated by

J1 = J10 + J13, J2 = J20 + J23 and J = J12.

They satisfy the commutation relations of E2 i.e.

[J1, J ] = −iJ2, [J2, J ] = iJ1, [J1, J2] = 0.

As in any finite dimensional unitary representation, J1 and J2 are trivially represented.
The remaining operator J =J12 has the helicity-eigenstates

J |λ〉 = λ|λ〉,
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with λ ∈ 1
2
Z.

On the other hand for vanishing central charge the odd-odd commutator (6) simpli-
fies to

{Qi
α, Q̄i

β} = 2Eδij(γ0 + γ3)αβ. (7)

Making use of the Majorana condition one then easily shows that (7) contains only one
independent non-vanishing commutator i.e.

{Qi
2, Q

†j
2 } = 4Eδi

j.

But from (4) and (5)

[
J,Q†i

2

]
= −1

2
Q†i

2 and
[
J,Qi

2

]
=

1

2
Qi

2,

and therefore Qi
2 and Q†i

2 act as creation and annihilation operators on the Hilbert
space spanned by the eigenvectors of J . Positivity then requires that that the remain-
ing supercharges are trivially realised on the physical states (eg. [4]). Starting from the
highest weight vector |Ω〉 defined by Qi

2|Ω〉= 0 we then obtain the full Hilbert space
upon acting with Q†i

2 , i = 1, · · · ,N . i.e.

|Ω〉, Q†i
2 |Ω〉, · · · · · · , Q†i1

2 · · ·Q†iN
2 |Ω〉

with helicities

λ, λ− 1

2
, · · · · · · , λ− N

2

and multiplicities

1,
(N

1

)
, · · · · · · ,

(N
N

)
.

The total number of states is then
N∑

k=0

(N
k

)
= 2N . Because of the CPT -theorem,

a physical massless state contains always the two helicities λ and −λ and therefore a
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single supermultiplet can contain all massless states for λ = N
4
. Otherwise the states

must be doubled starting with a second vacuum λ′ = N
2
− λ.

Examples:
N =1 :

1. chiral multiplet: The chiral multiplet consists of two irreducible submultiplets
which are related by the CPT symmetry.

Φ = (|1
2
〉, |0〉) , Φ̄ = (|0〉, | − 1

2
〉)

Field theory realisation:

Q =
(

Qα

Q̄α̇

)
, {Qα, Q̄β̇} = 2P µ(σµ)αβ̇ .

Start with ϕ ≡ |0〉, then

Qαϕ = χα , Q̄α̇ϕ = 0 chiral !

Qβχα = 1
2
εβαF, Q̄α̇χα = −2i∂/α̇αϕ

QαF = 0 , Q̄α̇F = 4i∂/α̇βχβ

Note that the field F is an auxiliary field to match the number of degrees of
freedom off-shell. It has no dynamical degrees of freedom.

In order to complete the field theory representation of the N =1 chiral multiplet
we need to construct an invariant action for this multiplet. This leads to the
Wess-Zumino Model

S =
∫

d4x
{
∂µϕ̄∂µϕ− i

4
χ̄α̇∂̄/ β

α̇ χβ − i

4

(
∂/ α̇

β χ̄α̇

)
χβ +

1

16
|F |2

}
(8)

2. vector multiplet: We denote the two irreducible multiplets by Wα and Wα̇.

Wα = (|1〉, |1
2
〉), Wα̇ = (| − 1

2
〉, | − 1〉)
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Field theory realisation:

Qαλβ = Fβα − 1
2
εαβD, Q̄α̇λα = 0

QβAµ = (σµ) α̇
β λ̄α̇, Q̄β̇Aµ = (σ̄µ) γ

β̇
λγ

QαD = −2i(∂/) α̇
α λ̄α̇, Q̄α̇D = 2i(∂̄/) α

α̇ λα

where Fβα = Fµν(σ
µν)βα.

We will postpone the construction of an invariant action for the vector multiplet to the
next section and continue instead with representations of the N =2 SUSY algebra.

N = 2 :

The internal symmetry of the N =2 algebra is given by U(2) = U(1)I × SU(2)I . This
is an example of the so-called R-symmetry in supersymmetric theories.

1. Yang-Mills multiplet: The irreducible N =2 multiplet with helicity ≤ 1 contains
already all states required by CPT invariance. Thus

A =
(
|1〉, |1

2
〉+ |1

2
〉, |0〉+ |0〉, | − 1

2
〉+ | − 1

2
〉, | − 1〉

)

Aµ

ψ1
α ψ2

α

ϕ, ϕ̄

We note in passing that this multiplet can be realised as a combination of N = 1
chiral- and vector multiplets. The invariant action for this multiplet is given by

S = − 1

g2
Tr

∫ {1

4
(Fµν)

2 − 1

2
ϕ†∆ϕ

+
i

2
ψ̄iσ̄µDµψi +

i

2
ψiσµDµψ̄i

− i

2
ϕ†{ψi, ψi}+

i

2
ϕ{ψ̄i, ψ̄i} − 1

4
[ϕ†, ϕ]2

}
,

+
iθ

8π2
Tr

∫ 1

4
FµνF̃

µν (9)
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Twisting:

When working in Euclidean space, E4 it is sometimes convenient to identify the
various SU(2) symmetries of N = 2 YM-theory in a non-standard way. Indeed
the ’Lorentz’ group in E4 is L = SO(4) ' SU(2)L × SU(2)R. Combining this
with the internal R-symmetry the total symmetry group contains

H = SU(2)L × SU(2)R × SU(2)I

with the various fields transforming as follows

SU(2)L SU(2)R SU(2)I

Aµ 1/2 1/2 0
ψi

α 1/2 0 1/2
ψ̄α̇i 0 1/2 1/2
ϕ, ϕ̄ 0 0 0

The standard embedding of the Lorentz group is, of course,

L = SU(2)L × SU(2)R

Alternatively we can embed the Lorentz and R-symmetry as

L′ = SU(2)L × SU(2)′R
SU(2)′R = diag (SU(2)R × SU(2)I)

Of course, L′ and L describe the same N = 2 Yang-Mills theory in E4, but the
transformation properties are now different:

(
ψi

α, ψ̄α̇i

)
→





ψ scalar
ψµ vector
ψµν antisymm. tensor

This alternative embedding is called the twisted N = 2 Yang-Mills multiplet.
While the two embeddings are equivalent in flat space they lead to different
couplings to gravity.

2. Massive Hypermultiplet All fields of a super multiplet will have the same mass M .
We choose the rest frame pµ = (M, 0, 0, 0). Using again the Majorana property
we have in the absence of central charges

{Qi
α, Qj†

β } = 2Mδijδαβ
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that is

{Qi
1, Q

j†
1 } = {Qi

2, Q
j†
2 } = 2Mδij,

with all other commutators vanishing. One then proceeds as in the massless
case with the difference however that the number of generators is twice that of
the massless representations. Correspondingly the dimension of a supersymme-
try multiplet is now 22N . Note that in the presence of central charges there is
a possibility of constructing massive representations that are in ’small’ i.e. 2N -
dimensional representations of the SUSY algebra.

Exercise: What is the condition between mass and central charge for a massive
representation of a N =2 SUSY algebra to be 2N , rather than 22N -dimensional.
Solution: Making use of the Majorana property and the γ5-invariance (6) can be written
as

{Qi
1, Q

j†
1 } = {Qi

2, Q
j†
2 } = 2Mδij + εijγ0

αβZ, (10)

where Z is a real number. The second term on the right of (10) has eigenvalues
±Z. In the eigenbasis the it is therefore proportional to 2M ± Z. In particular the
combinations Q1

1 ± Q2†
2 diagonalise the r.h.s. For Z = ±2M there is then only one

linearly independent, non-vanishing commutator, reducing the representation to a 2N -
dimensional one. The little group of pµ = (M, 0, 0, 0) is generated by J12, J23, J13, i.e.
the SO(3) ∼ SU(2) algebra. The states are labelled by the spin which is an SU(2)-
Casimir. The combinations Q1

1 ± Q2†
2 and Q1†

1 ±Q2
2 form a doublet with spin 1

2
. This

follows from (6) and its hermitian conjugate. For N > 2, Z ij is a totally antisymmetric
N ×N matrix. For N even there exists a unitary transformation U that brings Z into
the form εij⊗ diag(λ1, · · · , λN

2
). Multiplets which form a 2N -dimensional representation

are called short multiplets. They are related to BPS-configurations in field theory and
play an important role for dualities in field theory and string theory as we will explain
in the sequel.

4 Superspace

In order formulate manifestly SUSY-invariant field theories we first generalise ordinary
Minkowski space to super-Minkowski space (or super space) IR4|2N . It can be realised
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as the coset SP/L of the super-Poincaré group and the Lorentz group. Indeed, any
element of the N =1 superpoincaré group can be written in the form2

g = exp{aµPµ + ε̄α̇Qα̇ + εαQα} exp{1

2
ωµνJµν},

where we have changed to Weyl notation (Qβ = (Qα, Q̄α̇); α, α̇ = 1, 2) for the su-
percharges. The coset space is then parametrised by coordinates (xµ, θα, θα̇) ≡ zA

corresponding to the group element

exp{xµPµ + θαQα + θ̄α̇Q̄α̇}.

Superspace is therefore the tensor product of Minkowski space with the Grassmann
algebra of anticommuting variables

Λ = ⊕n
l=0(∧V )l

where V is a vector space over C. The left action by a group element g0 is equiv-
alent to the coordinate transformation

xµ → xµ + aµ + iεα(σµ) α̇
α θ̄α̇ − iθα(σµ) α̇

α ε̄α̇ + ωµνxν

θα → θα + εα +
1

4
(σµν)α

βθβωµν

θ̄α̇ → θ̄α̇ + ε̄α̇ − 1

4
(σ̄µν) β̇

α̇ θ̄β̇ωµν .

Exercise: How does zA transform under the product of two left multiplications?

We define left- and right differentiation on the algebra by

∂

∂θα
θβ = δ β

α ,

or, in two component notation3

∂

∂θα
θβ = δ β

α and
∂

∂θ̄α̇
θ̄β̇ = δ β̇

α̇ ,

2For simplicity we restrict ourself here to N =1 supersymmetry
3The lowering of the the internal index j for the antichiral fermions is purely conventional. The

dotted indices indicate that Q̄j transforms according to the (0, 1
2 )-representation
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with a sign change for left differentiation. Similarly we can define an integration on
the algebra as the functional

∫
dθ f(θ) =

∂

∂θ
f(θ)|θ=0.

In analogy with usual x-space integrals we may define δ-functions by
∫

dθδ(θ − θ′)f(θ) = f(θ′),

and correspondingly for more that one Grassmann variable. For example, the delta
function for N =1-superspace, δ4(x− x′)δ4(θ − θ′) can be represented by

1

4
δ4(x− x′)(θ − θ′)2(θ̄ − θ̄′)2.

From the above it follows in particular that
∫

d8z f(z) =
∫

d4xd2θd2θ̄f(x, θ, θ̄),

is an invariant integration over the coset space SP/L. Functional differentiation in
superspace is then simply

δf(x′, θ′, θ̄′)
δf(x, θ, θ̄)

= δ4(x− x′)δ4(θ − θ′).

4.1 Superfields

We now consider functions (superfields) on the superspace introduced above. A scalar
superfield is defined by its transformation property:

φ′(z′) = φ(z), (11)

or, under an infinitesimal transformation
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δφ(z) = φ(z + δz)− φ(z) = ζAXAφ(z), (12)

where

Xµ = ∂µ

Xα =
∂

∂θα
+ i(σµ) α̇

α θ̄α̇∂µ

Xα̇ = − ∂

∂θ̄α̇

+ i(σµ)α̇
αθα∂µ

Xµν = −(xµ∂ν − xν∂µ)− 1

2
θβ(σµν) α

β

∂

∂θα
+

1

2
θ̄β̇(σ̄µν)β̇

α̇

∂

∂θ̄α̇

, (13)

are the Killing vector fields of flat superspace and ζA =(aµ, εα, ε̄α̇, ωµν) are the infinites-
imal parameters of the transformation.

A general superfield will be of the form φi
A where i denotes the collective index for

the internal indices and A for the space-time indices. The natural generalisation of
(11) is then

φ′iA(zg) = [D(g)]iBAj φj
B(z).

Next we introduce the covariant derivatives, that is derivatives that (anti-) commute
with supersymmetry transformations. It is easy to see (exercise) that these are obtained
from the first three Killing vectors in (13) by simply changing the sign of the second
term, i.e.

Dµ = ∂µ

Dα =
∂

∂θα
+ i(σµ)αα̇θ̄α̇∂µ

Dα̇ = − ∂

∂θ̄α̇
− iθα(σµ)αα̇∂µ (14)

Note that the connection appearing in the covariant derivatives (14) is not torsion free.
Indeed computing the (anti-) commutators of the different covariant derivatives in (14)
we obtain

[DA, DB} = T C
AB DC ,
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where

T µ
αα̇ = −2i(σµ)αα̇,

and all other elements of the torsion vanishing.

4.2 Superfield Actions

We are now ready to construct supersymmetric field theories choosing different super-
field functionals that is, superspace integrals of suitable combinations of superfields.
The simplest example, is

∫
d4xd2θd2θ̄ φ(x, θ, θ̄). (15)

However if we want irreducible representations of the supersymmetry algebra, (15) is
not a valid action. Indeed, the constraint

Dα̇φ = 0 (16)

is supersymmetry invariant and hence a general φ is not an irreducible multiplet. We
can remedy this by considering only chiral scalar fields φ defined by (16). We shall see
that chiral super fields form an irreducible representation of the N =1 SUSY-algebra.
Substitution of a chiral super field into (15) however leads to a zero result. The next
simplest possibility is then

∫
d4xd2θd2θ̄ φ̄(x, θ, θ̄)φ(x, θ, θ̄), (17)

which defines a valid supersymmetric field theory. To see what it corresponds to in
terms of bosons and fermions we need to disentangle the component field content of
the chiral superfield φ. Due to the constraint (16) the only independent degrees of
freedom in φ are

ϕ ≡ φ|θ=0,

χα ≡ Dαφ|θ=0,

F ≡ D2φ|θ=0,

(18)

where D2 ≡ DαDα. Higher derivatives of the superfield vanish identically. Assuming
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that the fields fall off fast enough at infinity we then use dθα = Dα and hence (17)
becomes up to a global normalisation

1

16

∫
d4x D̄2D2φ̄φ|θ,θ̄=0 =

1

16

∫
d4x D̄2(φ̄D2φ)|θ,θ̄=0

=
∫

d4x
{
∂µϕ̄∂µϕ− i

2
χ̄α̇∂̄/ β

α̇ χβ +
1

16
|F |2

}

where we have used {Dα, Dα̇} = −2i(σµ)αα̇∂µ and (σµ)αα̇(σ̄ν)α̇α = −ηµ
ν . The compo-

nent field action is therefore just the Wess-Zumino model (8) describing a free Weyl
fermion and a complex scalar field. Note again the presence of the auxiliary field F . It
has two purposes: i) to match the counting between fermionic and bosonic degrees of
freedom of shell and ii) to linearise the supersymmetry transformations. We can read
off the supersymmetry transformations of the component fields repeating (18) after
making an infinitesimal super translation (12). Alternatively, using that the covariant
derivatives differ from the Killing fields only by a term that vanishes when θα = θ̄α̇ = 0
we have

δϕ = (εαDα + ε̄α̇Dα̇)φ|θ,θ̄=0 = εαχα

δχα = (εαDα + ε̄α̇Dα̇)Dαφ|θ,θ̄=0 =
1

2
εαF − 2i(∂/)β̇αε̄β̇ϕ

δF = −1

2
(εαDα + ε̄α̇Dα̇)D2φ|θ,θ̄=0 = 4i(∂/)β̇αε̄β̇χα

(19)

which agrees with our previous result. Let us now consider a Yang-Mills multiplet.
As the lowest component is a spinor we expect the corresponding superfield to be a
spinorial one. Indeed the chiral superfield Wα with Dα̇Wα =0 has the components

λα, Fαβ = Fµν(σ
µν)αβ and D

respectively. In order to identify Fµν with the field strength we impose the Bianchi
constraint ∂[µFνλ] =0 which, in superspace becomes (exercise)

DαWα = Dα̇W̄ α̇.

This constraint can be solved introducing a real superfield V as

Wα = D̄2(e−
g
2
V Dαe

g
2
V ). (20)

Under gauge transformations the prepotential V transforms like
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eV → eiΛ†eV e−iΛ, (21)

where Λ is a chiral super field4. The Yang-Mills action is simply

1

4
Tr

∫
d4x d2θ (WαWα) + c.c..

Adding the chiral multiplet to this action we then obtain the superfield action for
N = 1 SUSY QCD

SQCD =
1

16

∫
d8z

(
φ†egV φ− φ̃†e−gV φ̃

)

−1

4

∫
d6z W(φ, φ̃) + c.c.

+
1

4
Tr

∫
d6z W αWα + c.c.

where d8z is a short hand notation for d4xd2θd2θ̄. Thich describes the strong in-
teractions of gluons, gluinos, quarks, and squarks. Here φ̃ transforms in the anti-
fundamental representation of the gauge group so that

Φ =
(

φ
φ̃

)

contains a Dirac spinor. The superpotential W = 1
2
mφφ̃ + · · · contains the mass term

for the quarks and squarks.
Next we consider an N =2 multiplet. As explained in section 3, a N =2 supermulti-

plet containing the gauge field contains furthermore two Weyl fermions and a complex
scalar. In terms of the N =1-superfields, φ introduced earlier the N =2-superfield A
can be written as

A = φ + θ∈αWα + θ∈αθ∈αD2φ,

or equivalently

φ = A|θ∈=0, Wα = D2
αA|θ∈=0.

4The chirality of Λ is required in order to preserve the chirality of φ.
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In order to satisfy the chirality and Bianchi condition for the N = 1 superfields A
must satisfy the N =2-constraints

Di
α̇A = 0, i = 1, 2 and DijA = D̄ijĀ,

where Dij = DiαDj
α. Unlike the N = 1 constraints, a closed solution for the N = 2-

constraints is available only for abelian fields. The action of the N =2-YM-theory then
is given by

S =
1

8π
ImTr

∫
d4xd2θ1d

2θ2 τA2 (22)

=
1

16π
ImTr

∫
d4x

∫
d2θ τW αWα +

Im(τ)

16π
Tr

∫
d4x

∫
d2θ d2θ̄ φ†φ

= − 1

g2
Tr

∫ {1

4
(Fµν)

2 − 1

2
ϕ†∆ϕ +

i

2
ψ̄iσ̄µDµψi +

i

2
ψiσµDµψ̄i

− i

2
ϕ†{ψi, ψi}+

i

2
ϕ{ψ̄i, ψ̄i} − 1

4
[ϕ†, ϕ]2 −X2

}
,

+
iθ

8π2
Tr

∫ 1

4
FµνF̃

µν

where τ = i4π
g2 + θ

2π
and X is an auxiliary field. We thus reproduce (9). The prepotential

V has been absorbed in the definition of the chiral super field φ which is therefore
covariantly chiral i.e. [∇α̇, φ] = 0 where ∇α̇ = e−

g
2
V Dαe

g
2
V . Note that the chiral fields

are in the adjoint representation. An important consequence of this fact is the presence
of flat directions in the potential for the scalar component ϕ of the N = 2-multiplet,
V (ϕ) = 1

4g2 Tr[ϕ, ϕ†]2, where g is the coupling constant. The potential vanishes for
constant ϕ taking its value in the Cartan subalgebra of the gauge group. For ϕ 6= 0,
the Higgs mechanism breaks the gauge symmetry spontaneously down to U(1)l, where
l is the rank of the Cartan subalgebra. In particular for gauge group to be SU(2),
the classical theory is then parametrised by two real parameters, g2 and |a|, were
a = Tr(〈ϕ〉σ3) is the expectation value of the scalar component of the N =2 superfield5.
The mass of the charged fields (with respect to the remaining U(1)) is proportional
to a. In addition, the equations of motion have solitonic solutions with magnetic- or
dyonic charge. The simplest of them is the so-called t’Hooft-Polyakov monopole. It is
obtained starting with a radially symmetric ansatz:

ϕa =
xa

gr2
H(agr) A0

a = 0 Ai
a = −εaij

xj

gr2
[1−K(agr)] (23)

5The phase of a is irrelevant because of the R-symmetry A → eiαA
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Insertion of (23) in the equations of motions yields the system of coupled differential
equations

r2d2K

dr2
= KH2 + K(K2 − 1)

r2d2H

dr2
= 2K2H.

(24)

The boundary conditions are determined by imposing finite energy and ϕ2 → a2 for
r →∞. The solutions of (24) are given by

K(ξ) =
ξ

sinh ξ
H(ξ) =

ξ

tanh ξ
− 1 (25)

The mass of these states can be obtained by computing the their energy. Substituting
(23,25) into the energy functional yields

E =
∫

d3x∂i
[
Bi

aϕa

]
≡ agm

where Ba is the non-abelian magnetic field and gm = 4π/g is the magnetic charge
of the monopole solution (25). Corrigan et al. [5] have shown that the most general
solution of the previous equations is of the form

Aµ
a =

1

a2e
εabcϕb∂

µϕc +
1

a
ϕaB

µ

where Bµ is arbitrary. The corresponding non-abelian magnetic field

Bi
a = −1

2
εijkFa jk = − 1

2a4e
ϕaεijkε

bcdϕb∂jϕc∂kϕd

is aligned with the Higgs field. The magnetic charge is therefore

gm =
4π

g
εabc

∫
dϕa ∧ dϕb ∧ dϕc. (26)

It is clear from (26) that the magnetic charge is topological since it counts the times
that the two-sphere, defined by ϕ2 = a2 is covered when the two-sphere at infinity in
space is covered once. To summarise we get

M = ag and M = agm,

23



for the masses of the electrically and magnetically charged states respectively. This
structure generalises to states with both electric and magnetic charge (dyons) [6]. In
the quantum theory the monopoles and dyons correspond to a new particles of the
spectrum which are extended objects (with size ∼ 1/a) located in the region where the
energy density is appreciably different from zero. The quantum Hamiltonian is nor-
mally taken to be the Laplace operator on the moduli space of the classical solutions
[7].

According our discussion of the massless and massive representations of the super-
symmetry algebra in section 3, assuming continuity in a, the central extension for these
states must be equal to their mass. To see that this is indeed the case we determine the
central extension in these charge sectors. It is convenient to combine the two Majorana
supercharges Q1 and Q2 into a Dirac supercharge Q=Q1−iQ2. For the classical action
(22) Q is then found to be

Q =
1√
2g2

Tr
∫

d3x Sψ,

where S = X + iY and

X = −iγ · (g2Π + iγ5B)− iγ0γ5[A,B],

Y = g2(πA − iγ5πB) + γ ·D(A + iγ5B)γ0.

Here A and B are the real- and imaginary part of the scalar field ϕ respectively and
ψ is a Dirac Fermion. The central charges U and V in turn are related to the Dirac
super charges by

U =
1

4i
Tr{Q, Q̄} and V =

1

4i
Tr({Q, Q̄}γ5),

respectively. Evaluating the Poison brackets and taking the trace one one finds

U + V = 2Tr
∫

d3x [Π ·Dϕ + 2[A,B]π†ϕ + i{ψ, πψ}], (27)

where π†ϕ = 1
2
(πA + iπB). Now, using the Bianchi identity D ·B=0 and Gauss’s law

D ·Π = i[ϕ, πϕ] + i[ϕ†, π†ϕ] + i{ψ, πψ}

the centre (27) can be written as a pure boundary term
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U + V = 2Tr
∫

dΩ ϕ
(
Π +

τ

4π
B

)
. (28)

Using the asymptotic behaviour of the fields appearing in (28) the centre becomes

U + V = 2a(ne +
i

g2
nm),

where ne and nm are the electric and magnetic charges respectively. This last for-
mula shows that the classical spectrum of N =2 YM-theory indeed coincides with the
BPS-states.

5 Quantisation

In this section we consider the quantisation of supersymmetric Yang-Mills theory. The
quantum theory is encoded in the set of all Green functions that is the Schwinger
functional W [J ], or, equivalently in the 1PI effective action Γ[ϕ,Wα], which is the
Legendre transform of W . Evaluated at zero momentum the effective action reduces to
the effective potential. It characterises the ground state of the quantum theory and, in
particular determines the value of the different order parameters6. What distinguishes
supersymmetric theories is that the effective superpotential is an integral over only half
of superspace In other words it is a holomorphic function (or more precisely, a section)
of the superfield. This strongly restricts the general form of the super potential and
often allows to determine it exactly.

5.1 Background Field Effective Action

The background field effective action is best adapted to supersymmetric theories. In
contrast to the standard definition via Legendre transform it is (formally) defined by

e
i
h̄
Γ[φ] ≡

∫
[DΦ]e

i
h̄

S[Φ+φ]− i
h̄

∫
d4x δΓ

δφ
Φ+Sgf [Φ,φ], (29)

where φ is a general background field and Φ is the fluctuation field and is integrated
out. In a loop-wise (h̄) expansion the second term in the exponent of (29) is is of one
order lower in h̄ and therefore the definition makes sense. The last term in (29) is

6Because a superfield also contains derivatives of the component fields, the super potential some-
times contains derivative terms as well.
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the gauge-fixing term which is necessary when φ is a gauge field. It can be shown on
general grounds [8] that the two definitions agree provided the Schwinger functional is
evaluated in a particular gauge.

In a supersymmetric theory the functional integral which corresponds to a sum
over all possible configurations includes, in particular, also all configurations which
are related to a given configuration by supersymmetry transformations. On the other
hand, because the action is invariant under such transformations the integration over
supersymmetry orbit is equivalent to multiplication with the super-volume

Vs =
∫

d4ad2εd2ε̄ = 0

unless the background field absorbs the ε-integration. Here, a and ε, ε̄ are the trans-
lation and supersymmetry transformations respectively. This qualitative argument
suggests the following picture

Partition function: Z = e
i
h̄
Γ[0] =

∑

{c : Qc=Q̄c=0}
e

i
h̄

S[c]

Super potential: e
i
h̄
Γ[φ]θ =

∑

{c : Q̄c=0}
e

i
h̄

S[c+φ]

D-term: e
i
h̄
Γ[φ]θ,θ̄ =

∑

{c}
e

i
h̄

S[c+φ],

(30)

where {c} denotes the set of configurations corresponding to the functional integral.
This simple picture is only approximately correct. This is because the relation between
functional integrals and the above sum over configurations is formal. In particular,
regularisation and gauge fixing lead to additional complications. The purpose of the
following discussion is to make these properties more precise.

Super Feynman rules

The derivation of the superfield Feynman rules proceeds in close analogy to the non-
supersymmetric case by expanding the Schwinger functional about the free field action.
That is, for a general action in N =1 superspace

S =
∫

d4xd2θd2θ̄ L(V, φ, φ̄) +
∫

d4xd2θ V (φ) + h.c.,
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we define the Schwinger functional W[J, j] by

e
i
h̄

W [J,j] ≡
∫

[DV DφDφ̄] e
i
h̄

S[V,φ,φ̄] e
i
h̄

∫
d4x d2θ d2θ̄V J+ i

h̄

∫
d4x d2θφj+h.c

= exp

[
iSint

(
1

i

δ

δj
,
1

i

δ

δJ

)]
e

i
h̄
W0[J,j] (31)

where W0[J, j] is the corresponding Schwinger functional for the free theory. It is
important to note that functional integrals are defined only for unconstrained fields7.
Functional differentiation of both expressions in (31) with respect to the currents then
yields the Feynman rules in the usual way:

1. Propagators

〈φ(1)φ̄(2)〉 =
−ih̄δ4(θ1 − θ2)

p2 + m2

〈φ(1)φ(2)〉 =
ih̄mD2δ4(θ1 − θ2)

4p2(p2 + m2)

〈V (1)V (2)〉 =
ih̄(Π 1

2
+ αΠ0)δ

4(θ1 − θ2)

p2

where Π 1
2
=

DβD̄2Dβ

8p2 , Π0 =− D̄2D2+D2D̄2

16p2 are projection operators [4] and α is the
gauge fixing parameter.

2. Vertices such as igφ̄V extφ, iλφk · · · are represented by

ig
∫

d2θd2θ̄V extD2D̄2, iλ
∫

d2θd2θ̄(D̄2)k−1, · · ·

3. Loop integrals are given by
∫ d4k

(2π)4

4. There is an overall factor (2π)4δ4

(
∑
pext

pext

)

After these preparations we are now ready to formulate the non-renormalisation theo-
rems in the next paragraph.

7In the case of the chiral field φ both, the constrained and the unconstrained integral lead to the
same result. This is not so for the YM-multiplet.
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5.2 Non-Renormalisation Theorems

In this subsection we discuss two different but related approaches to the non-renorma-
lisation properties. The first is based on simple properties of the super Feynman rules
[4]. The second uses the holomorphicity [10, 11] and the global symmetries of the
classical action.

5.2.1 Feynman Graphs

Let us begin by formulating a theorem based on Feynman diagrams:

Any counter term in the effective action must be a full superspace integral of local
functionals of the fields corresponding to the external lines.

The proof of this theorem follows form the structure of the various propagators given
in the last paragraph and making use of the properties of the Dα

′s [4].
If we restrict ourself to graphs with no external lines, then these functionals depend

only on the background fields. This then implies that counter terms, holomorphic in
the background fields cannot arise in perturbation theory. What about SUSY QED?
First note that the above result does not apply at one loop in super YM-theories. This
is due to the gauge fixing where ghost terms must be included. In a supersymmetric
theory however the ghosts themselves have a gauge-invariance, and in this way one
obtains ghosts for ghosts. This can only be avoided by introducing prepotential for
the background fields which invalidates the above results. However, provided there
are no massless charged fields in the theory, one can show [9, 13] that the situation is
unchanged beyond the the one-loop corrections. Let me illustrate the above remarks
for the two-point function on N =1 YM-theory. Using the Feynman rules listed above
one finds that the vacuum polarisation contributes to the effective action a term (see
fig. 4)

g2

2

∫ d4p

(2π)4

d4k

(2π)4
d2θ1d

2θ̄1d
2θ2d

2θ̄2V (−p, θ1)
D̄2

1D
2
1

16

δ12

(p2 + k2)

D2
1D̄

2
1

16

δ12

k2
V (p, θ2)

∝
(

1

ε

∫ d4p

(2π)4
d2θd2θ̄V (−p, θ)DαD̄2DαV (p, θ) + O(ε)

)
,

(32)

where δ12 = δ4(θ1 − θ2) and we have used dimensional regularisation to regulate the
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Figure 4: Feynman diagram for vacuum polarisation

divergent momentum integral. Now, using (20) the last integral can be written as

∫ d4p

(2π)4
d2θ W α(−p, θ)Wα(p, θ),

and therefore this is indeed a counter term for the super potential leading to the
1-loop running of the gauge coupling. Similarly, contributions of the form

∫ d4p

(2π)4
d2θd2θ̄ W α(−p, θ)

DβDβ

p2
Wα(p, θ)

arise at higher orders. They contribute to the effective action unless an infrared cut-
off µ is introduced in the momentum integral. This leads to the so-called Wilsonian
effective action [9]. The problem of construction of such a cut-off without destroying
gauge-invariance is to date unsolved.

5.2.2 Holomorphicity [10, 11]

The starting point is the assumption that superpotential is a holomorphic section of
the superfield (and the coupling constants), excluding essential singularities. If the
classical theory has furthermore continuous global symmetries and if the fate of these
upon quantisation is under control, one can make use of these symmetries to derive
selection rules. Let us illustrate this approach with a few examples.

1.) Wess-Zumino Model:
The Wess-Zumino model is defined by the classical super-field Lagrangian

S =
1

16

∫
d4xd2θd2θ̄ φ̄φ− 1

4

∫
d4xd2θ

(
mφ2 + gφ3

)
.

This Lagrangian is invariant under U(1)×U(1)R-transformations, provided the ’fields’
φ,m, g are given the charges

U(1) : Qφ = 1 , Qm = −2 , Qg = −3

U(1)R : Qφ = −2

3
, Qm = −2

3
, Qg = 0.
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Provided there are no holomorphic anomalies the effective super potential must then
be of the form

Γ[φ]θ =
∫

d4xd2θ mφ2 f

(
gφ

m

)
,

where f(z) is some holomorphic section. For small g perturbation theory is valid
and therefore Γ[φ] has can be expanded as

Γ[φ] =
∞∑

n=0

cn
gnφn+2

mn−1
, (33)

corresponding to a tree-diagram with n + 2 external legs, n-vertices and n− 1 propa-
gators. For n > 1 such a diagram would however not be 1-particle irreducible and does
therefore not contribute to the effective action. Loop corrections are not compatible
with the structure of (33) and must therefore be absent. We therefore conclude that in
the Wess-Zumino model the classical potential is not modified by quantum corrections.

2.) SUSY QED:
Using (21) we find that the minimal gauge invariant combination of chiral fields and
YM-fields is given by

S =
1

16π
Im

∫
d4x d2θτW αWα +

1

16

∫
d4x d2θ d2θ̄

(
φ†eV φ + φ̃†e−V φ̃

)
,

where τ = i4π
g2 + θ

2π
and we have used that

Im
∫

d4x d2θ WαWα = 4
∫

d4x FµνF̃
µν .

The matter fields φ and φ̃ have electric charge 1 and −1 respectively. The effec-
tive coupling τeff can only depend φ and φ̃. The classical theory is invariant under
U(1)R-transformations. The R-charges of Wα, φ and φ̃ are 1, 2 and 2 respectively. Due
to the axial anomaly the continuous U(1)R is broken down to the discrete subgroup Z2.
In order to reproduce this anomaly τeff must be a linear combination of log(φ) log(φ̃)
and log(φ + φ̃). Higher log’s are incompatible with the Adler-Bardeen theorem and
therefore absent. This in turn implies that the β-function for the gauge coupling gets
no contribution above 1-loop. On the other hand an explicit computation shows that
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the β-function gets contributions at all orders. This discrepancy is due to the presence
of massless charged fields which typically lead to holomorphic anomalies [9]. This can
be cured by introducing an explicit infrared cut-off. The corresponding effective ac-
tion is the Wilsonian effective action and is in general different from the 1PI-effective
action. This shows the limitations of the holomorphic approach.

3.) SUSY QCD:
Let us now consider a supersymmetric version of QCD with chiral matter in the adjoint
representation

S = SY M +
1

16
tr

∫
d8z

(
φ̄egV φ

)

−1

4

∫
d6z W(φ) + c.c. (34)

with a general superpotential:

W(φ) =
n∑

k=0

gk

k + 1
tr φk+1

If the non-abelian gauge symmetry is unbroken by the superpotential we expect that the
non-abelian theory is confining and that the low energy degrees of freedom are described
in terms of gauge singlets. Such a singlet is the glueball superfield S = 1

32π2 tr (WαWα).
In what follows we will try to constrain the general form of the effective potential for
the glueball field, W(S) upon integrating out the massive chiral multiplet φ. Following
[11] we will again use a combination of dimensional analysis and invariance properties
under U(1)×U(1)R. The dimensions ∆ and charges Qφ, QR of the different multiplets
are given by

∆ Qφ QR

φ 1 1 −2/3
Wα 3/2 0 −1
gl 2− l −(l + 1) 2

3
(l − 2)

Assuming that these symmetries are conserved we then conclude thatW(gk, S) depends

only on the combination gk/g
(k+1)/2
1 . Thus,

∑

k

(k + 1)gk
∂

∂gk

W = 0 (35)
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Figure 5: A planar diagram with vertices of degree 3. The double line notation indicates
that the fields are in the adjoint representation with each line representing one index
of φij

Using dimensional analysis we then find

W = W 2
αf

(
gkWk−1

α

g
(k+1)/2
1

)
,

so that (k ≥ 1) (∑

k

(2− k)gk
∂

∂gk

+
3

2
Wα

∂

∂Wα

)
W = 3W (36)

Finally, combining (35) and (36) we end up with
(∑

k

(1− k)gk
∂

∂gk

+ Wα
∂

∂Wα

)
W = 2W (37)

To continue we count the number of loops L of diagrams with vertices i of degree ki +1
(see fig 5). For a planar diagram PL we have

L = 2 +
1

2

∑

i

(ki − 1)

so that we can make the substitution
∑

k

(1− k)gk∂/∂gk → (4− 2L)

Combining this with (37) we then find that the power of S coming from a planar
diagram PL equals L − 1. Such terms arise by the same mechanism form as in (32)
from covariant derivatives with a trace for each closed index loop in fig. 5.

For non-planar diagrams (e.g. fig. 6), on the other hand, we have

L = 2− 2g +
1

2

∑

i

(ki − 1) (38)

which requires at least one double trace within a single index loop in fig. 6. Therefore
non-planar diagrams cannot contributes to W(S). It turns out that this result is
unchanged when gauge-loops are included. Furthermore this result holds as well for
(spontaneously) broken gauge symmetry.
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Figure 6: A non-planar genus g = 1 diagram

6 Currents in Supersymmetric Theories

In this section we first describe how the different Noether currents are assembled in
super multiplets. We then discuss the different anomalies and the corresponding Ward-
Identities for the effective action. This serves as a preparation for the next and final
section where we will ‘integrate’ these Ward identities to derive low-energy effective
actions.

6.1 Noether Currents

The conserved Noether currents for a Poincaré invariant theory are given by

Tµν and Lµνρ = −xνTµρ + xµTνρ

respectively. Apart from general relativity all fundamental theories are in fact invari-
ant under a bigger group of transformations at least if the bare masses are taken to be
zero. This is the group of conformal transformations which contains in addition to the
Poincaré transformations the dilatation D and the special conformal transformations
Kν . The corresponding conserved currents are

xνTµν and 2xνx
λTλµ − x2Tµν .

These currents are conserved provided the stress tensor is traceless i.e. T µ
µ =0.

In a scale-invariant, supersymmetric theory the set of conserved currents is sup-
plemented by the supersymmetry current jµα and the superconformal current (x/jµ)α.
The corresponding conservation equations are

∂µj
µ
α = γµj

µ
α = 0.

In addition, if the theory is U(1)R-invariant then the R-current j(5)
µ is also conserved.

Note that only Tµν , jµα and j(5)
µ are fundamental objects the remaining currents are

moments of the first set. The idea is then that in a supersymmetric theory the different
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currents form a super multiplet. Indeed the counting of degrees of freedom, taking into
account the constraints we have

Tµν : 5, jµα : 8, j(5)
µ : 3.

In addition the dimensions are such that we can collect them into a super current
jαα̇ which has j(5)

µ as its lowest component.

6.2 Supercurrent

In a non-supersymmetric theory the conformal transformations are generated by

Qh =
∫

d3xJ0 ,

where Jµ =hνTµν and hν(x) satisfies the Killing equation

h(µ,ν) =
d

2
ηµν(h

λ
,λ).

In order to combine these transformations with supersymmetry and superconformal
transformations we promote hµ into a parameter superfield hαα̇. However, in order
to get an irreducible multiplet of symmetry transformations the superfield hαα̇ must
be be constraint. To see which constraints are the correct ones let us first consider
a bigger group of transformations, that is the superdiffeomorphisms. For our purpose
it will be sufficient to consider those superdiffeomorphisms which preserve chirality in
superspace since this already includes the localised superpoincaré transformations nec-
essary to obatin the Noether currents. Such chirality preserving superdiffeomorphisms
are then parametrised by hαα̇ (and h̄αα̇) subject to the constraints

D̄(β̇hαα̇) = 0 , D(βh̄α)α̇ = 0 . (39)

To keep our formulas simple we consider N =1 superspace at present. We will give the
necessary generalisations later in the next section8. The corresponding transformations
of the chiral coordinates are given by

δxµ
+ = hµ(z) + 2iλ(z+)σµθ̄ , δθα = λα(z+)

δxµ
− = h̄µ(z)− 2iθσµλ̄(z−) , δθ̄α̇ = λ̄α̇(z−)

8see [12] for more details.
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where xαα̇
± ≡ xαα̇ ± 2iθαθ̄α̇ and θα respectively θ̄α̇ form the coordinates z+ and z− of

chiral- and antichiral superspace respectively. Furthermore,

λα(z+) = − i

8
D̄α̇hαα̇ , λ̄α̇(z−) =

i

8
Dαh̄αα̇ .

We are now ready to impose the restriction to superconformal transformations.
These are obtained by imposing

hαα̇ = h̄αα̇ (40)

To see that this is the correct constraint we can look at the components of the parameter
superfield which are then just the usual superconformal transformations. Concretely
we have

hαα̇ = aαα̇ + 4iεαθ̄α̇ + 4iε̄α̇θα − ωα
βxβα̇

− + ω̄α̇
β̇xαβ̇

+ − 4ηθαθ̄α̇ − 6iηθαθ̄α̇

+κxαα̇ + xβα̇
− bββ̇xαβ̇

+ − xβα̇
− ρβθα + θ̄α̇ρ̄β̇xαβ̇

+ .

The different parameters correspond to translations aαα̇, supersymmetry transfor-
mations εα, Lorentz transformations ωα

β (with ωαβ = ωβα and ωα
α = 0), U(1)R-

transformations η, dilation κ, special conformal transformations bαα̇ and special super-
conformal transformations ρα. Finally, super-Poincaré transformations are those for
which the chiral superfield

σ =
1

6

(
Dαλα − 1

2
∂αα̇hαα̇

)

vanishes.
In order to obtain the multiplet of conserved currents by the Noether procedure we

also need the representations of these transformations on superfields. The representa-
tion on chiral scalar superfields, φ is given by

Lφ =
(
hµ∂µ + λαD−

α 2qσ
)
φ (41)

where

σ =
1

6

(
Dαλα − 1

2
∂αα̇hαα̇

)
(42)

The conformal dimension ∆ and the R-weight QR are the given the real- and imaginary
parts of q respectively, i.e.

∆ = (q + q̄) , QR = −2N
3

(q − q̄) .
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Note, that [D̄α̇,L] = 0 as a consequence of (39).
For a supersymmetric theory with action S[φ], we then have δS[φ] = 0 for any

global super-Poincaré transformation. As in ordinary Noether procedure, we then
consider the variation of the action under a local transformation, that is by letting the
parameters have an arbitrary x-dependence. We will implement this by removing the
reality condition (40) but still maintaining the chirality preserving constraint (39). Of
course, there is always the ambiguity of adding terms to δφ which are proportional to
derivatives of the parameters of super-Poincaré transformations. By construction, the
terms in δS[φ] induced by them are of the form “derivatives of the parameters” times
“equations of motions” and thus induce in the currents terms which vanish on-shell. We
will make use of this freedom when dealing with constrained superfields. Using (41),
the variation of the action can then be written as

δS[φ] =
i

16

∫
d8z

(
hαα̇ − h̄αα̇

)
Tαα̇ − 1

2

∫
d6z+ σJ − 1

2

∫
d6z− σ̄J̄ , (43)

with Tαα̇ real and J chiral. Note that if the theory has superconformal invariance then
δS vanishes off-shell for hαα̇ = h̄αα̇. Thus J and J̄ vanish identically for scale-invariant
theories. Consequently the multiplet Tαα̇ contains the complete set of Noether currents,

Tαα̇ 3 {Tµν , jµα, j(5)
µ } ,

where Tµν and jµα are traceless9 . This irreducible multiplet of Noether currents is the
improved multiplet.

In order to obtain the conservation equations we solve the constraint on hαα̇ in
terms of an unconstrained superfield. This is achieved by

hαα̇ = 2D̄α̇Lα , h̄αα̇ = −2DαL̄α̇ .

where Lα is an unconstrained spinor superfield. Substitution into (43) and imposing
the variation of the action to vanish, on shell, under an arbitrary local transformation
parametrised by Lα then leads to the conservation equation

D̄α̇Tαα̇ − 1

6
DαJ = 0

where we have used (42). This equation contains at the same time the conservation
equations of Tµν , jµα and j(5)

µ , as well as the zero-trace condition of Tµν and jµα. The
superfield Noether procedure is thus an economical way to deal with the variety of

9By the trace of jµα we mean γµjµ.
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Noether currents. Note again that J vanishes for a scale-invariant theory. Thus J
contains the trace of Tµν , jµα and the divergence of j(5)

µ . In particular, we have

T µ
µ = −2(D2J + D̄2J̄)|θ=0

j(5)µ
,µ =

i

12
(D2J − D̄2J̄)|θ=0

The multiplet J is thus called the multiplet of anomalies. It will play an important
role in the next section.

As an illustration we give the supercurrents for two simple models. First we compute
the supercurrent for the N = 1 sigma model defined in terms of arbitrary real Kähler
potential K(φ, φ̄) and superpotential W(φ), where φ is a chiral scalar field. Such
Lagrangians arise as the local part of quantum effective actions for supersymmetric
field theories and string theory. The general action is given by

S =
1

16

∫
d8z K(φ, φ̄)− 1

4

∫
d6z+ W(φ)− 1

4

∫
d6z− W̄(φ̄) ,

The variation of this action under an infinitesimal transformation (41) can then be
written in the form (43) with

Tαα̇ = 1
12

DαφD̄α̇φ̄Kφφ̄ − i
6
∂αα̇φKφ + i

6
∂αα̇φ̄Kφ̄ ,

J = −1
4
D̄2(K − qφKφ) + 3W − qφWφ .

(44)

The next example we consider is that of a single chiral multiplet Φ coupled to an
abelian gauge multiplet Wα. Applying the procedure outlined above we find (exercise)

Tαα̇ = −1
8
WαW̄α̇ + 1

12
∇αΦ∇̄α̇Φ̄− i

6
Φ̄

↔
∇αα̇ Φ ,

J = 1
4
(q − 1)∇̄2

(
Φ̄Φ

)
,

where

∇α = Dα − gDαV ; ∇αα̇ = ∂αα̇ − i

2
gD̄α̇DαV

are gauge- and SUSY- covariant derivatives.
The alert reader will have noticed that in the discussion so far we have included

the U(1)R-symmetry but not the U(1)-symmetry introduced in the section on non-
renormalisation theorems. The reason for this is that U(1)-transformation,

Uφ(1) :




φ 7→ eiαφ
Wα 7→ Wα

Qα 7→ Qα




37



commutes with all generators of the N = 1 supersymmetry algebra. The Nother cur-
rents associated to this symmetry therefore forms its own super multiplet which con-
tains no other physical components. This multiplet is constructed in the same way as
above by localising the U(1)-transformation as

δφ = σφ, D̄α̇σ = 0

The variation of the action under the local transformation is then

δσS [φ,Wα] = D̄2Jφ − 1

4
φ

∂W
∂φ

Jφ =
1

16
φ̄ egV φ

In particular, the divergence of the Uφ(1)-current resides in the superfield equation,
(D2 − D̄2)Jφ, and is thus conserved if and only if φW ′(φ) = 0, up to anomalies which
we will discuss now.

6.3 Anomalies

In supersymmetric field theory quantum corrections are to a large extent due to anoma-
lies. These, in turn, can often be computed exactly allowing to extract non-perturbative
information about the quantum theory. In this paragraph we consider in particular

• scale anomaly: T µ
µ 6= 0, (x/jµ)α 6= 0

• UR(1)-anomaly: ∂µj(5)
µ 6= 0

• Uφ(1)-anomaly: D̄2Jφ 6= 0
since they will play an important role for the calculation of low energy effective

action in the next section. It is clear that the supermultiplet structure of Noether
currents imposes constraints on anomalies. In particular, if the anomalies form a
irreducible multiplet,it is enough to determine one anomaly explicitly. One can then
deduce the remaining anomalies using the multiplet structure.

We have already encountered the scale anomaly originating the introduction of a
renormalisation scale in the one loop photon propagator in SUSY QED in the previous
section. Similarly, at one loop the quadratic term in the effective action Γ(1) for the
photon in SUSY-QED receives a contribution of the form

−1

2
A(p)

∫
d2θ W α(−p, θ)Wα(p, θ)
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where A(p) diverges logarithmically with the ultraviolate cut-off Λ. Minimal subtrac-
tion the introduces a scale dependence in the effective action of the form

µ
∂

∂µ
Γ(1) = −1

2
T α

α = − 1

16π

∫
d6z W αWα + h.c.

If we now recall the identity

−1

2
Tα

α = D2J + D̄2J̄

we find that the anomaly multiplet J is given by

J = − 1

32π
W αWα

The generalisation of this result to supersymmetric QCD with Nc colour, Nf flavours in
the fundamental representation and Nc chiral multiplets in the adjoint representation
of the gauge group is the easily found to be

J = (3Nc −Nf −NaNc) S , S =
1

32π
tr(W αWα) .

Let us now turn to the UR(1)-anomaly. For this we recall the identity

D̄α̇Tαα̇ =
1

6
DαJ

which implies in particular,

∂µj(5)
µ =

i

12

(
D2J − D̄2J̄

)
|θ=0

∝ εµνλδFµνFλδ

Note that the Adler-Bardeen Theorem implies that the UR(1)-anomaly is 1-loop exact.
On the other hand we saw that the scale anomaly receives contribution at higher order
as well. How is that compatible with the multiplet structure? The solution of this
puzzle lies in the fact that at 1-loop

j(5)
µ ∈ Tαα̇

Tµν ∈ Tαα̇ ∪ J

therefore j(5)
µ and Tµν do no longer form an irreducible multiplet at one loop. This is

not so in N = 2 SUSY as we will see later.
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Figure 7: A planar diagram with vertices of degree 3

Finally we consider the U(1), or Konishi-anomaly. We start with the action for
SUSY QCD with adjoint matter (34). U(1)-symmetry at the classical level then re-
quires vanishing super potential, W ≡ 0. Dimensional analysis then implies

D̄2Jφ = U

where U is a chiral superfield of dimension 3. Thus, U ∝ trWαWα. To fix the coefficient
we use Pauli-Villars regularisation, that is we introduce a second massive multiplet with
mass m. For the difference (Jφ − Jφm) UV-divergences are absent so that we can use
the equations of motion leading to

lim
m→∞ D̄2 (Jφ − Jφm) = − lim

m→∞
m

4
Tr〈φmφm〉

The one-loop contribution to the right hand side of this equation comes from the
diagram in fig. 7. Concretely we have

Tr〈φmφm〉 = −8imNcNa

∫ d4p

(2π)4
{ TrW α(q)Wα(−q)

[p2 + m2][p2 + m2][((p + q)2 + m2]
}

Taking the large mass limit, this expression simplifies and we end up with

lim
m→∞

m

4
Tr〈φmφm〉 =

1

16π2
TrWαWα

Thus,

U = −2NcNa S

We note in passing that, unlike the R-anomaly, there are higher loop corrections to
the Konishi anomaly but these corrections cannot be expressed in terms of chiral su-
perfields.

7 Effective Actions

In this section we will combine the results established so far to obtain low energy
effective actions for supersymmetric field theories. Essentially we do this by running the
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superfield Noether procedure backwards. That is, rather than obtaining the anomaly
multiplet by varying the action we obtain an effective action by demanding that the
anomalies computed in the microscopic theory are reproduced by varying the effective
action. This procedure is called integrating anomalies.

7.1 N =1 Yang-Mills theory

To begin with we recall that the anomaly multiplet for N =1 Yang-Mills theory with
gauge group SU(Nc) is given by

J = 3NcS

We now want to integrate this equation to obtain an effective potential for the glueball
superfield S. For this we note that S has R-charge QR = −3. Substitution into the
formula (44) with K ≡ 0 then gives

J = 3W − 3SWS

Combining these two results we get
∫

d6zW(S) =
∫

d6z

(
log(

Λ3

SNC
) + δ

)

≡ ΓV Y [S]

This is the Veneziano-Yankielowicz effective potential. Several comments are in order.
1. The generalisation of this result to include adjoint matter is simply 3NC →

(3Nc −NaNc).

2. The integration constant δ is undetermined. It can always be set to 1 by a
redefinition of the dynamical scale Λ.

3. W(S) is exact up to R-invariant terms, that is

W(S) = WV Y (S) +W2(S, {gk})
whereW2(S{gk}) receives contributions only from planar graphs as a consequence
of the non-renormalisation theorem proved in the last section.

4. W(S) contains no kinetic terms and therefore does not describe the dynamics
of the glueball superfield. It solely determines the vacuum expectation values in
terms of the dynamical scale Λ, i.e.

〈S〉|θ=0 = Λ3/Nc ; δ = 1
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5. The present analysis does not prove that S is the relevant low energy field in
SUSY Yang-Mills theory. It simply determines the effective potential for this
degree of freedom.

7.2 N =2 Yang-Mills Theory

In this section we compute the low energy effective action for N =2 YM theory with
gauge group SU(2) by integrating the superconformal anomaly. To begin with let us
recall some aspects of the classical theory. The classical action in N =2 superspace is
given by (τ = i4π

g2 + θ
2π

)

S =
1

8π
ImTr

∫
d4xd2θ1d

2θ2 τA2

In component fields this action includes a potential for the scalar field

V (ϕ, ϕ̄) =
1

g2
Tr[ϕ, ϕ†]2

which has flat directions for ϕ ∈ Cartan (su(N)). For ϕ 6= 0 the SU(N) gauge symme-
try is spontaneously broken down to U(1)N−1. This is the sector of the theory we will
consider and which is called the Coulomb branch. In what follows we will assume that
the gauge group is SU(2). The classical moduli space of the theory is then parametrised
by {g2, |a|}, where

a = Tr (〈ϕ〉σ3)

and is thus a subset of IR2. In particular R-symmetry implies that the phase of a is
irrelevant. Charged fields are σ± valued with mass M = |a|g. Let us now consider
the effective action. When expressed in terms of the massless N =2-superfield10 A =
ϕ + θψ + · · ·, the most general local N = 2 supersymmetric low energy superpotential
must be of the form

Γ[A] =
1

4π
Im

∫
d4xd2θ1d

2θ2F(A), (45)

where the prepotential F , to be determined, is the result of integrating out the massive
(i.e. charged, root-valued) fields. Using the formalism developed in section 4, it is
straight forward to show that in N =1 notation (45) becomes

10As we neglect derivative terms, it is not meaningful to retain the massive (root-valued fields) in
the super potential.
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Γ[A,Wα] =
1

8π
Im Tr

∫
d4x

{ ∫
d2θd2θ̄(φDφ̄− φ̄Dφ) +

∫
d2θτ(a) WαWα

}
, (46)

where φ and Wα are the (covariantly) chiral- and vector N =1 superfields respectively.
Furthermore

φD = F ′(φ) and τ(a) = F ′′(a) = a′D(a). (47)

The spectrum of the quantum theory is contained in the set of BPS-states of the
supersymmetry algebra. The quantum corrections to the centre is determined by the
Poisson brackets of the effective supercharges i.e.

{Qeff, Q̄eff} = i(2P/ eff − Zeff),

where Qeff
α are the supercharges obtained from the low energy effective Lagrangian

F(
√AaAa) and Z = U + V γ5. Apart from the fermionic contributions, the effective

Lagrangian (46) has the same structure in the classical theory with

4π

g2
→ Iab ≡ Im

∂2F
∂Aa∂Ab

θ

2π
→ Rab ≡ Re

∂2F
∂Aa∂Ab

.

Accordingly one has

Q =

√
2

8π

∫
d3x SaIabψ

b,

To continue we write S = X + iY with

Xa = −iγ · (4πIabΠ̃b + iγ5B
a)− iγ0γ5[A,B]a + O(ψ2),

Y a = 4πIab(π̃A − iγ5π̃B)b + γ ·D(A + iγ5B)aγ0 + O(ψ2),

with Iab = I−1
ab , Π̃a = 1

4π
IabE

b and π̃Aa = 1
4π
Iab(D0A)b. Repeating the steps outlined

for the classical case one ends up with the simple result

U + V = 2
∫

dΩ
(
ϕaΠa +

1

4π
ϕDaB

a
)

= 2 (ane + aDnm) ,

where aD =F ′(a). Hence, independent, of the actual form of the effective potentialF ,
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the spectrum of the quantum theory is entirely determined by the quantities aD and

a! The effective coupling τ = daD

da
is the coefficient of the kinetic term in (46) . Its

imaginary part must be positive. On the other hand its real part plays the role of an
effective θ-angle: Re τ = θ

2π
. Thus a shift τ 7→ T (τ) = τ + 1 is a symmetry transfor-

mation of the effective theory. The invariance of the chiral part in (46) together with
(47) requires then that this transformation induces on (a, aD) a linear transformation
in U(1) × SL(2,Z). In general the mass spectrum and hence the low energy effective
theory may have other invariances which are not symmetries of the effective action.
These play an important role for the solution of the model.

We now proceed to compute the effective potential F(A) for the massless abelian
vector multiplet A by ’integrating’ the N =2 superconformal anomaly. For this we first
need to construct the N = 2 supercurrent. The starting point is again the parameter
superfield hαα̇ introduced in section 6. There is, however, an important difference with
N = 1 supersymmetry. This is that in N = 2 superspace the constraints on hαα̇ and
h̄αα̇ can be solved as

hαα̇ =
1

2
[Dαi, D̄α̇

i ]H , h̄αα̇ =
1

2
[Dαi, D̄α̇

i ]H̄

where

H = D̄ijLij, H̄ = DijL̄ij

and Lij = Lji is an unconstrained N =2 superfield.
In order to find the representation of these transformations on A we first solve the

constraint

DijA = D̄ijĀ .

This constraint can be solved by A = D̄4DijVij [4] where the prepotential Vij is a real
superfield. The superconformal transformations can be represented on Vij by

δVij ≡ − i

48
(ALij − ĀL̄ij).

Using the definition of A and the constraints it satisfies, we then compute the trans-
formation of A. It leads to

δA = − i

24
D̄4

(
DαjLijD

i
αA

)
− i

48
D̄4DijLij A− i

48
D̄4

[
(H − H̄)Ā

]
.
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Upon substitution into the effective action (45) we then have

δS = i
∫

d12z (H − H̄)T − 144i
∫

d8z+ σJ + 144i
∫

d8z− σ̄J̄ (48)

with

T = − i

384π
(AĀD − ĀAD), J =

1

192π
(F − 1

2
AAD) .

This result deserves some comments:
1) The invariance of the action under super-Poincaré transformations is explicit as

H = H̄ and σ = σ̄ = 0 for these transformations. It is then clear that the theory is
superconformal invariant if and only if J = 0. Hence, in analogy with the N = 1 case,
J is the superconformal anomaly and therefore our method provides a derivation of
the anomalous superconformal ‘Ward identity’.

2) As for N = 1, the conservation equations are obtained from (48) by expressing
H, H̄, σ and σ̄ in terms of the free parameters Lij and L̄ij. This leads to

DijT = −iD̄ijJ̄ . (49)

The anomalous superconformal Ward identity in N =2-superspace is now

F(A)− 1

2
F ′(A)A =

i

π
J , (50)

where J is the N =2 anomaly multiplet. In N =2-Yang-Mills one has J = i
2π
A2 to

all orders in perturbation theory as a consequence of the non-renormalisation theorems
in the last section. Indeed, because there are no massless charged fields present in the
Coulomb phase of this model, the only perturbative contribution to the holomorphic
part of the effective action arises from the vacuum polarisation, where the effective
field must be expressed in terms of the prepotential in order to avoid an infinite tower
of ghosts. The higher loop contributions are absent because for non-zero a the theory
has a natural infrared cut-off. Integrating eqn (50) we obtain

F(A) =
i

2π
A2 log

(A2

Λ2

)
.

If non-perturbative effects are included the relation between J and A becomes more
complicated. Integrating the corresponding equation will occupy the rest of these sec-
tion. In the low energy effective potential the phase of a plays a role because the
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R-symmetry is anomalous at the quantum level. The moduli space of inequivalent
vacua is therefore 1-complex-dimensional. The equivalence is here with respect to the
mass spectrum. On the other hand a cannot be a global parameter on the moduli space
since in that case the monodromy group of the couple (aD, a) would be abelian, contra-
dicting the positivity of Im(τ). We therefore need to choose some other (uniformizing)
variable to parametrise the theory. The only other complex parameter available is the
superconformal anomaly u =J |θ=0. Let us assume that this is indeed a uniformizing
variable11 on the moduli space and think of the couple (a, aD) and τ as functions (sec-
tions) of u ∈ C− {ui} where {ui} is the set of singular points of these functions. One
such singular point is at infinity, where τ(u) diverges logarithmically and the functions
aD and τ are defined only up to a discrete transformation

aD → aD + 2na, n ∈ Z and τ → τ + 2n. (51)

Note that the latter identification corresponds to a shift of the θ angle by 4π and is
therefore a symmetry of the effective action. Given this form at infinity there must
be at least two more singular points ui to avoid that the imaginary part of τ becomes
negative. On the other hand, if u ∈ C indeed parametrises the space of inequivalent
vacua, the mass spectrum must be single-valued everywhere and hence the ambiguity
in aD and a at these points must be by a SL(2,Z) × U(1)-transformation. From this
we conclude in particular that the system aD, a is equivalent to the solutions of some
second order differential equation (Riemann-Hilbert Problem). In fact we can say more.
Differentiating the anomaly equation (50) with respect to u we obtain

W(aD, a) = const.

where W(aD, a) is the Wronskian of aD and a. From this we conclude that there
is no first derivative term in the differential equation for a=(aD, a) i.e.

a′′ + V a = 0,

for some potential V . Differentiating this equation once more we get for b=a′

b′′ − V ′

V
b′ + V b = 0.

11This assumption can in fact be derived from more fundamental properties of the theory [16]
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On the other hand it is a well known fact in the theory of conformal mappings [17]
that any SL(2,Z)-section can be written as

τ(u) =
y1

y2

with

y′′ + Qy = 0
(52)

where Q is of the form

Q =
1

2

∑

i

1

2

1− α2
i

(u− ui)2
+

βi

u− ui

, (53)

with 0 ≤ αi < 1. Compatibility of the two differential equations and τ =
a′D
a′ then

requires

b = V
1
2y and

V ′′

V
− 3

2

(
V ′

V

)2

+ 2V = 2Q, (54)

supplemented by the boundary conditions Q → 1/4u2 and V → 1/4u2 for |u| → ∞
in order to recover the logarithm at infinity. Near a singular point u0 of V we have
V ' V0(u− u0)

γ with V0, γ 6= 0. Eqn (54) then implies

−1

2
γ(γ + 2)

1

(u− u0)2
+ 2V0(u− u0)

γ ' 2Q(u).

Consistency with (53) requires that u0 coincides with one of the singularities ui of
Q and

V0 =
1

4
(1− α2

i ) for γ = −2 and

γ = −1± αi for γ > −2.
(55)

Consequently V must be of the form

V (u) = V
∏
r

(u− ur)
−2

∏
s

(u− us)
±αi−1, (56)

where ur,s are the singular points of Q(u). On the other hand, substitution of (56) into
(54) implies that V is rational function with no zeros. The boundary condition then
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implies that V has only simple and double poles. But because it must have at least
two poles it can have only simple poles and hence it has precisely two simple poles.
More precisely

V (u) =
1

4(u− a)(u− b)
.

We are free to choose a=−b=1. Furthermore Q takes the form

Q =
1

2

(
1

(u− 1)2
+

1

(u + 1)2

)
− 1/2

(u− 1)(u + 1)
. (57)

The equation for aD(u) and a(u) therefore becomes a standard hypergeometric differ-
ential equation with solutions

aD(u) = i
u− 1

2
F

(
1

2
,
1

2
, 2;

1− u

2

)
,

a(u) =
√

2
√

u + 1F
(
−1

2
,
1

2
, 1;

2

u + 1

)
.

(58)

The prepotential can then, at least in principle be obtained by solving for aD(a).
Instead of pursuing this route we note that the monodromy group associated with (57)
is

Γ2 = {M ∈ SL(2,Z) | M − 12 = 0 mod2}.

This group is generated by

T−2 =
(

1 −2
0 1

)
and (T 2)T =

(
1 0
2 1

)
.

The first generator corresponds to the the singularity at infinity whereas the second to
u=1. Hence we conclude that the involution

u → 1− 4

1− u
,

is equivalent to exchanging aD and a i.e.
(

aD

a

)
→

(−a
aD

)
,
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or, equivalently

τ → −1

τ
≡ τD. (59)

But this is precisely the electric-magnetic duality transformation g → 4π
g

and ne ↔ nm.
This is the manifestation of electric-magnetic duality in this model. It tells us that
for u ' 1 the system can equivalently be described by strongly coupled electrically
charged fields or, by weakly coupled monopole fields. The only N =2 supersymmetric
theory with the same number of degrees of freedom and which is weakly coupled in
the infrared u ' 1 is N = 2 QED where we replace the electric charges by magnetic
charges. The action for this theory is given by the usual kinetic terms plus a potential
(in N =1 formulation)

∫
d4x d2θ M̃φDM,

where M and M̃ are the n = 1 monopole fields in the fundamental representation.
We can now break N =2 SUSY to N =1 by adding a mass term to the chiral multiplet
in the classical action (22). That is

S → S + m2
∫

d4x d2θ Tr(φ2).

The dual effective potential then becomes

Re
∫

d4x d2θ
(
M̃φDM + m〈Trφ2〉

)
= Re

∫
d4x

(
M̃aDM+ m2〈Trϕ†ϕ〉

)
,

where M is the scalar component of the chiral monopole multiplet. Now, it can
be shown [18] that 〈Trϕ2〉= u. Using this we then obtain upon minimising the dual
effective potential

aD = 0 and

M̃ = M =

(
−1

2
m

ū

u

du

daD

|aD=0

) 1
2

6= 0.
(60)

Hence the monopoles condense! In other words the vacuum of softly broken N = 2
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YM-theory is similar to that of a dual superconductor. In particular the electric flux
lines are confined to a tube, which is precisely what is necessary to create a linear
potential for the quarks (here gluinos). We therefore have proved that this theory
confines! This is the main result of Seiberg and Witten’s seminal paper [19] on N =2
Yang-Mills theory.
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8 Appendix: Conventions

We choose the ”relativist’s” signature for the metric

ηµν = (−, +, +, +)

The conventions for the gamma matrices are

γµ =
(

0 −σµ

σ̄µ 0

)

(σµ)αα̇ =
(
−112, σ

i
)

αα̇

(σ̄µ)β̇β =
(
−I2,−σi

)β̇β

=
[
(iσ2)

(
−112, σ

i
)

(iσ2)T
]β̇β

Relativistic covariance:

S(Λ)γµS(Λ)−1 = γνΛ µ
ν

S(Λ) = 114 − i

4
ωµνσµν + O(ω2)

with

σµν =
i

2
[γµ, γν ] .
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Weyl spinors:

Ψ =
(

ψα

χ̄α̇

)
∈ (0,

1

2
)⊕ (

1

2
, 0) of SL(2,C)

(SU(2) in E4)

α, α̇ = 1, 2.

Charge conjugation: Ψc = CΨ̄T

C =
(

iσ2σ̄0 0
0 iσ̄2σ0

)
(61)

Majorana: impose Ψc = Ψ, i.e.

Ψ =
(

ψα

(iσ̄2)α̇βψ∗β

)
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